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A general theory is developed to determine the dynamic characteristics and stability of a gas cavity
situated in viscoelastic liquids whose rheological state is described by the generalized model of the
Kelvin or Maxwell type. The characteristic function of the bubble-liquid system is obtained by the

first-order perturbation method, including the effects of surface tension, vapor pressure, and
thermodynamic behavior of the gas confined in the cavity. The zeros of the characteristic function
determine the types of bubble growth, bound on unbound. The Hurwitz (or Routh) stability is
employed to determine the conditions for the onset of incipient cavitation. The applications of

the theory are demonstrated in some liquids having simpler shear-stress-shear-strain relationship.

INTRODUCTION

The dynamic behavior of the gas medium enclosed in
a cavity is nonlinear due to the combined action of sur-
face tension, inertial force, and pressure, while the
rheological behavior of the surrounding liquid may be
linear or nonlinear in nature. Since the motions of the
gas phase and the enclosing liquid are coupled at the in-
terface, the problems of stability and dynamic charac- .
teristics of the two-phase system are mathematically
quite complicated; even the effects of compressibility
and heat conduction are not taken into account. Stability
refers to whether or not a gas cavity, particularly that
of a nucleus size, will grow without bound when its
steady state is disturbed. In the case where perturbation
results in an unbound growth of a gas cavity, the phe-
nomenon is called “cavitation”. Another major concern
is the system response to various types of external ex-
citations. The natural frequency w, is an important pa-
rameter related to the system behavior. There is only
one natural frequency since only one degree of freedom
exists in the motion of the gas-liquid interface, e.g., ra-
dial motion R(f), where R is the instantaneous radius of
the cavity. When the system is autonomous (free sys-
tem), the cavity pulsates with the natural frequency. On
the other hand, if the system is nonautonomous (forced
system), the cavity will eventually oscillate with the ex-
ternal frequency w after all the free-oscillation compo-
nents are damped out.

Many linear models have been proposed to describe
the stress-strain relation of a viscoelastic liquid.!~"
They are the special cases of the generalized Kelvin and
Maxwell models which consist of spring, dashpot, and
Kelvin units (a spring and a dashpot being arranged in
parallel and series, respectively. The rheological equa-
tion of state of any model of the generalized Kelvin and
Maxwell type has the form (written for a spherically
symmetrical system under the principal shear stress
Trr) ’

2 AkaTrr=2'r/0f/ u,Die , (1)

k=0 §=0

where A’ s are the characteristic stress relaxation times,
D is the substantial derivative, 7, is the component of
deviatoric stress tensor in the radial direction », 7, is
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the shear viscosity, u©’s are the characteristic strain
relaxation times, and ¢, is the rate of strain tensor.
The value of A, is always unity, while that of u, is zero
for the Kelvin or solid type and nonzero for the Maxwell
or fluid type. '

The most commonly used simpler models include the
four-element model

(1+X,D+ 2,037 =214(1+u,D)e,, (2)
and the three-element Oldroyd model
(1+x,D)7, =27,(1 + u,D)e,. (3)

Equation (1) with A, = 4, =0 expresses the Newtonian
fluid, while 7,=0 corresponds to the inviscid fluid.

The knowledge on the pulsation and stability of a gas
cavity in Newtonian fluids is well documented.® The dy-
namic performance of a gas cavity in viscoelastic fluids
of three-parameter Oldroyd model have recently been
studied numerically® and by the first-order perturbation
method*® combined with elementary theorems on the
roots of a cubic equation. For applications to all types
of viscoelastic liquids and all varieties of stress-strain
rate ranges, the present work uses the generalized rheo-
logical model [Eq. (1)|. The dynamic equation for the
motion of the gas-liquid interface is derived by the first-
order perturbation technique. Consideration is given to
the influence of surface tension, vapor pressure, and
thermodynamic behavior of the gas phase. The Hurwitz!!
or Routh!? stability criterion is applied to the character-
istic function of the bubble dynamics equation to deter-
mine the conditions for the onset of incipient cavitation.
The elementary theorems of equations are applied to
determine the types of bubble growth in response to ex-
ternal excitations.

ANALYSIS

Suppose initially a bubble is at rest in a viscoelastic
liquid at the equilibrium temperature T and ambient
pressure P,. Let the equilibrium radius be R,, deter-
mined from

P+ P,=P +20/R,, (4)
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where P, is the initial pressure of the gas, P, is the
equilibrium vapor pressure at T, and o is the surface
tension.

On being disturbed, the bubble executes radial motion
governed by the integrodifferential equation®

p(RR +3R?)

=P,(R) =P (D) +7,, () -7, (R)+3 [“(r, /7 adr,

(5)

where p, is the liquid density; R, R, R, instantaneous
radius and its time derivatives, respectively; P,(R),
liquid pressure at the cavity wall; P_(¢) pressure at in-
finity; 7., ,, component of deviatoric stress tensor in the
radial direction 7. The origin of the spherical coordi-~
nate coincides with the center of the bubble. Velocity at
any point in the liquid is obtained from the continuity

equation as

u:RZI%/’Vz.

Neglecting the radial normal stress due to the gas-
phase viscosity, the balance of forces at the gas-liquid
interface requires that

(6)

P(R)=P,R)+P,~20/R +7,, (R) (7)
in which P, is the gas pressure. If the gas undergoes
polytropic process, the thermodynamic equation of state
for an ideal gas gives

P(R)=P(R,/R)¥, (8)
where 7 is the polytropic index.
Let the pressure at infinity vary with time as
P (=P, +f(1), (9

where f(t) is any function of time. The case f(f)=0 cor-
responds to free oscillation of the bubble.

The following dimensionless parameters are defined:

P:=Pg/Pe’ Pt:Pu/Pe’ R*=R/R,, R*'—'R(Pw/-pe)-l/z,

R*=RRop./P,, t*=(t/R)P,/p)"?,
ng = no/[RO(Pepeo)l /2],

e¥ =e, Rolpo/ P2 Xt =)\[R,(0./P) /%],

o*=0/(R,P,), f*(H=f1t)/P,,
T:r = Trr/Pe’

wr=u[Rolp/ P21, v*=v/Ry, u*=(u/RI(P,/p.) "2
However, in the interest of brevity, the asterisk will be
omitted henceforth,

Equations (5) and (9) may be combined to yield

RE+3(R?=P,(R);®+ P, -1+£(t)

—20/R+3fR°°('r /rydr. (10

rr, b

Now for small amplitude of bubble pulsation, it is con-
venient to write
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R(t)=1+¢(2), (11)

where ¢({)<< 1.0, If after the disturbance, the coordinate
€ remains always small, the undisturbed cavity is said
to be stable; if on the other hand, ¢ becomes large, the
cavity is called unstable, On neglecting terms of order
¢2 and higher, Eq. (1) becomes u=?/%2. Therefore, one
can write

_du _ 24p)
rr—?}?‘__,rﬁ_' (12)

On substituting Eq. (12) into Eq. (1) followed by neglect
of terms of the order ¢* and higher, one obtains

. ai Z(t)
X, D = .
;%3) kD Trr,t 411055 Sy FYAl _’,-5' (13)
An examination of Eq. (13) suggests that 7, .1 is of the

order ¢. Since D=3/t +u(3/07) and u=¢/7* 1t follows
that on the left~hand side of Eq. (13) the products of T,
and € or their derivatives may be neglected. Then, Eq
(13) becomes :

g« ok 'r,, Mo, ivle
7\ . — =~ 47 Z) . 14)
a0 °,,075 FR (

On utilizing Eqs. (4), (7), (8) and (11), Eq. (10) is lin-
earized into
Etale~3 [° (1, /7 dr=A0), (15)

where w?=37(1-~P)+20(3y -1). w, is the natural fre-
quency of a bubble in an inviscid liquid.

On differentiating Eq. (15) with respect to ¢, followed
by neglect of the 7, ; term which is of the order ¢, one
obtains

© 67’,, 1 d’r P

€ +"’6‘3f1+e—"‘ =f. (16)

This process, from Egs. (15) and (16), is repeated n
times. On multiplying each time with the corresponding
time constants A, and adding up, there results

M:

n 2
& Ir—;’—l dT:EAkdf

dk fl
Xk—dF(E"‘“we) 3];5 kdtk

0

-
»

Substituting Eq. (14) into Eq. (17) followed by evaluating
the integral term and neglecting terms of the order € or
higher, one obtains

n

T, (e+we)+4n02u,dt+ Z) 'ZT (18)
k=0

This is the perturbed equation for the bubble motion in
the generalized viscoelastic fluid. The general oper-
ational representation of Eq. (18) is

_ ApD™ Ay D™ 4o A D 2
- bszmz + b"quI oo+ be + bof,
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where
2
by=nw, A, 4Tk

Do =2, for m=n-1 case

=X, +4%1, for m=n and m=n+1 case

b ,=A for m=n—-1 and m =n case

n+2 n,

=2, + 4ok, for m=n+1 case.

The elements are zero when the index is negative. 2, is
always unity. It must be noted that all the coefficients
2’ s and b’ s are positive and constant.

When all the initial conditions are zero (the initial con-
ditions do not affect the dynamic characteristics of a lin-
ear system anyway), the Laplace transform of Eq. (19)
gives

E(S)=L [S)F(S)/L,,,(S) (20)

in which S is the Laplace variable, F(S) is the general
representation for the transform of the forcing function,

m
L (S)=2,\S%,

i=0

and

n+2

Ln+2(s) = E bksk'
k=0

L,.,(S) is the characteristic function of the bubble-liquid
system in the Laplace domain. The equation which re-
sults by setting the characteristic function equal to zero
is called the characteristic equation. L_(S)/L,,.(S) is
called the transfer function, which contains basic infor-
mation concerning the essential characteristics of a sys-
tem without regard to initial conditions or excitation.

DYNAMIC CHARACTERISTICS AND STABILITY

The fundamental dynamic characteristics of the bub-
ble-liquid system is determined by the zeros of the char-
acteristic function L_,,(S) or the roots of the character-
istic equation

n+2

n+2
Ln+2(s) =E bksk: 0'
k=0
When the liquid is of Newtonian type, (m=1, n=0, i.e.,
all X, and p,, are zero except A= to=1), Eq. (21)
takes a quadratic form

(1)

Sz+4nonl-wf,=0

whose roots are well understood. For a three~parameter
Oldroyd liquid (m=n=1, i.e., only A, and u, are non-
zero beside A, = Ky = 1), the characteristic equation is

2,83 + (1 +471,)S% + (4 w? +47)S + Wi =0.

In case of a four~parameter liquid (m=1, n=2, i.e.,
only A, A,, and (i, are nonzero beside A, = u,=1), the
characteristic equation would be
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2,84+ 2 8% + (1 + X007 + 47111, )S% + (A, 02 + 476)S + w2 =0,

Explicit formulas are available for obtaining the roots
of the general third- and fourth-degree equations. How-
ever, for equations of higher degree, there are no ex-
plicit formulas. Numerical and mechanical methods are
available for finding real and complex roots of equations
of high degree; these are discussed by Dickson, !

Since a spherical gas bubble oscillating radially in a
liquid has only one degree of freedom in motion, the
bubble-liquid system in the linearized form of Eq. (21)
has only one natural or fundamental frequency. Thus,
among the n +2 roots of the characteristic equation (Eq.
(21)], there would be only one pair of complex conjugate
roots a+ bi, either as single pair or of multiplicity %.
The imaginary component b represents the magnitude of
the natural frequency. When all the zeros of L, ,{S) are
located in the left half of the S plane, the bubble-liquid
system is stable. On the other hand, if any zero of
L_.,(S) is located on the imaginary axis or in the right
half-plane, bubble growth is unbounded resulting in ca-
vitation. Such systems are said to be unstable.

CONDITIONS FOR THE ONSET OF INCIPIENT
CAVITATION

The Hurwitz criterion, =12 alternatively referred to
as Routh’ s stability criterion, determines the conditions
which must be satisfied by the coefficients of the charac-
teristic function Lm(S) so that bubble growth is bounded.
The Hurwitz criterion states that the roots of the Nth-
degree polynomial equation with real coefficients have
negative real parts if and only if all determinants D;’s
are positive provided that b,> 0. Equation (21) is the
(n + 2)th-degree polynomial equation in which the condi-
tion by=2Xew?> 0 is fulfilled. For the bubble growth to be
bounded, it is necessary that all the determinants be
positive. Therefore, the conditions for the onset of in-
cipient cavitation are that all the » +2 determinants be
zero or negative. That is,

Diéo (i=1,2,3,°,,,n+2)_

For Newtonian liquids, the determinants are D, =D,
=47,. In other words, unbound bubble growth occurs
only in an inviscid liquid, 7,=0, The determinants for
a three-parameter Oldroyd liquid (X, = u, = 0} are found
to be Dy =M\ w2 +41n,, D, =471, (N0 +4), and Dy=4np},
X(1+2 uyw? +47,4,). It is evident that the pulsation of a
bubble in both the Newtonian and Oldroyd liquids is ba-
sically a damped sinusoidal oscillation of corresponding
natural frequency with the amplitude decaying by viscous
friction with a time constant. In case of a four-param-
eter liquid, the determinants are D, =X w2 + 41,

Dy=2 2 wi+ 4no(\ puy + A w2 +4m(1 +41,1,), Dy=47,
XAy =2 w2 + 1 +4n0, ] =4n2,}, and D,=X,D,. It
must be noted that when A, =0, the four-parameter li-
quid is reduced to the Oldroyd liquid. Therefore, the
condition for the onset of incipient cavitation is satisfied
only by D,=0, i.e., 220 [1+4 p, (0 w? +47,) )/ (A 02
+47,). It can be shown that the pulsation of a bubble in
the viscoelastic liquids which have the polynomial equa-
tion [Eq,, (21)] of degree higher than three may not be a
damped sinusoidal oscillation. In other words, a condi-
tion or conditons exist such that the pulsation is ampli-
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fied, which leads eventually to the occurrence of
cavitation.

CONCLUSION

The first-order perturbation method has been employ-
ed to obtain the dynamics equation for a gas cavity in
generalized viscoelastic liquids. Theory of linear equa-
tions is applied to predict the types of bubble growth in
response to an excitation, either the liquid pressure or
the initial conditions of the gas bubble. The Hurwitz or
Routh stability criterion is applied to determine the con-
ditions for the onset of incipient cavitation, unbounded
bubble growth. Three special cases of the generalized
viscoelastic liquids, namely, Newtonian, three-param-
eter Oldroyd liquid, and four-parameter liquid model,
are treated in order to demonstrate the applications of
the analysis. It leads to an important conclusion that the
pulsation of a bubble in a liquid of a simpler model
whose characteristic equation is of degree two or three
is basically a damped sinusoidal oscillation at its own
natural frequency. .On the other hand, in a liquid with
the characteristic equation of a degree higher than three,
there exists a condition or conditions for which the pul-
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sation is amplified, leading to the occurrence of
cavitation,
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