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The electron and ion beam-plasma instabilities in a one-dimensional finite-length system are studied by
computer simulation methods using the discrete charge-sheet model. The results obtained using a one-
component model indicate that the region of highly concentrated oscillation energy (due to a beam-plasma
instability) near the beam entrance plane shrinks with time to a limiting value and then expands to form
a stationary electric-field distribution. The frequency spectrum analysis of the electric field shows that
only the first few harmonics of electron plasma oscillations have been excited and only these harmonics
have amplitudes significantly above the noise level in the nonlinear region. In the experiment on the ion-beam
interaction with a plasma, the plasma electrons and ions achieve greater heating in comparison with the
heating resulting from the interaction between an electron beam and a plasma, because the heavier ion
mass yields a larger energy source, a low rate of decrease of the mean ion-beam speed, and reduced thermal
spreading of the beam particles. The excited electron plasma oscillations are found to dissipate into ion-
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density fluctuations whenever the amplitude exceeds some threshold value.

I. INTRODUCTION

Most of the existing numerical simulations'? of the
electron beam-plasma instability assume the system
to be spatially homogeneous and consider the evolu-
tion of the instability in time only. The infinite geom-
etry theories are only capable of considering the
development of instabilities caused by ‘‘single-shot”
injection of the electron beam which limits the energy
density of the excitation at the saturation level to be
less than the energy density in the beam. In finite-
length systems, fresh energy carried by the beam is
continuously injected into the interaction region. The
limitation of the saturation energy density will then
be due to system nonlinearities rather than the geom-
etry. Davis and Bers® have developed a charge-sheet
model which takes the finite-length effect into account
by assuming a boundary condition that all beam charge
sheets are lost at the ends, whereas plasma charge
sheets are reflected back into the system. This is
equivalent to the assumption that the system is situ-
ated in an idealized ‘“‘square-well” mirror magnetic
field with a mirror ratio such that all beam-sheet veloc-
ities lie in the loss-cone region, and all plasma-sheet
velocities lie outside of that region. They have ob-
served many interesting phenomena such as meniscus
formation, saturation of the instability in space, and
the reduction of instability strength by a plasma den-
sity gradient in the direction of beam streaming.

In this investigation, the model of Davis and Bers
is used to study saturation phenomena in electron
beam—plasma interactions, both in space and time,
and the phenomena of harmonic generation in fre-
quency space. The effects of changes in system length
and particle mass ratio on the ion beam-plasma in-
stability are also investigated. The initial conditions
for the numerical experiments are taken to correspond
to a homogeneous plasma with a drifting beam (Vo=

100). The beam is velocity modulated before it enters
the interaction region with a 39, modulation depth
at the electron plasma frequency. In the calculations,
distance is normalized to the average plasma inter-
sheet spacing and time to 1/wg.

II. RESULTS OF ELECTRON BEAM-PLASMA
INSTABILITY

The passage of an electron beam through a stationary
plasma is capable of exciting plasma oscillations, and
these oscillations will grow convectively at the expense
of the dc energy of the electron beam. In all the cases
considered the thermal conduction velocity (group
velocity) of the plasma oscillations is approximately
equal to 3vp:?/ Vi and is much less than the dc velocity
of the electron beam. Hence, the energy lost by the
electron beam in the excitation of the plasma oscilla-
tions will accumulate in a small region at the plasma
boundary. The fact that energy is fed into the plasma
by the electron beam at a rate larger than that for
which thermal conduction or other dissipative processes
carry energy away will give rise to temporal growth.

Tsytovich* has advanced a general picture of the
dynamic behavior of the electron beam-plasma in-
stability in a semi-infinite system with a contin-
uous injection of the electron beam. He predicted
that the effective width of the intense-oscillation layer
near the plasma boundary must decrease exponentially
with time to a limiting value such that further growth
of the oscillations is attended by a gradual motion of
the saturation front away from the boundary and by
the formation of a stationary electric-field distribution.
To demonstrate Tsytovich’s prediction, a numerical
experiment is performed with the following param-
eters: interaction length /23 wavelengths (2rVa/wm),
Vr:=8X10"3Vy, and wp?= (1/80)wp?. The results for
the inhomogeneous electric-field distribution at three
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1. Evolution of the acceleration for an electron beam-plasma

system with V5s=8X10"? Vy and w?y = (1/80) wpe?.
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Fic. 2. Time evolution of the acceleration for an electron
beam-plasma, system with Vze=8X10"% Vg and wp?= (1/80)wpe?
at =750 (0.01 Va/wp).

different times are shown in Figs. 1-3; the field is
normalized to 0.01Vywm. The electric field which is
equivalent to the beam acceleration is observed to be
highly inhomogeneous in the interaction region, and
the amplitude of the high electric field increases and
travels upstream as indicated in Figs. 1(a) and (b).
This is equivalent to the high-field region narrowing
with time. However, the increase in the energy of the
excited large-amplitude oscillations in the narrow re-
gion gives rise to a rapid increase in the energy density
gradient dW/dz. Furthermore, the instability will heat
the plasma which in turn will increase the group
velocity (v,) of the osciliations. The transfer of the
oscillation energy from this narrow layer is determined
by v,(dW/di) 4 After a sufficient time this mechanism
must become decisive. In Fig. 1(c) it is seen that the
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F16. 3. Frequency spectrum at =750 (0.01 V/wp) for an
electron beam-plasma system with V7,=8X10"2 V4 and wul=
(1/80)wpo? at £=320/wpo.
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maximum of the beam acceleration (¢E/m.) at f{=
280/wy occurs at a position farther downstream than
that at ¢=240/w, [Fig. 1(b)], and the amplitude of
the beam acceleration is slightly reduced at this instant
of time. Thus, the results of the numerical experiment
are quantitatively in good agreement with the predic-
tions of Tsytovich.

The results of the numerical experiment with V=
8X10-2Vy reveal that the electric field at z=
750(0.01V o1 /wm) (Fig. 2) oscillates at the electron
plasma frequency and saturates after sufficient time
has elapsed. A crude explanation of the amplitude
saturation phenomenon in the time domain can be
obtained by describing the plasma as a nonlinear di-
electric medium whose dielectric constant is dependent
on the amplitude of the electric field. The equivalent
dielectric constant for the plasma is®

ep=6] 1— (wpm?/o?) exp(—¢? | E |*/8*m kT)]. (1)
Whenever the plasma equivalent dielectric constant
becomes negative, the beam electrons will attract one
another rather than repel, such that any disturbance
will grow. However, the nonlinear dielectric response
implies that there exists a critical value of the electric-
field amplitude | E, |, such that the dielectric constant
¢, will be negative. Thus, the maximum value to which
the electric field is allowed to grow can be determined.
The oscillation frequency of the most unstable wave
for an electron beam—plasma system occurs at®

w=wpo[ 1— (wp1/4wpm)¥*]. (2)

In this numerical experiment w is equal to 0.91wp.
The substitution of this value into Eq. (1) gives
q| E. |/me~18(0.01Vowy) which is close to the simu-
lation result [¢ | E. |/m224(0.01Vowp) .

In the nonlinear region the large-amplitude funda-
mental plasma oscillations excited by the electron beam
will interact with themselves to generate harmonic
components. Harmonic generation has been observed
by Malmberg and Wharton in their laboratory experi-
ments on beam-plasma interactions. In our numerical
experiments the results of the spectral analysis (Fig. 3)
also exhibit harmonic generation. The amplitude of
the harmonics is small in comparison with the funda-
mental because the plasma is nonresonant at these
frequencies.

In the hydrodynamic approximation, the nonlinear
differential equation for the electrostatic potential &
in the unbounded cold beam-plasma system is®

a@e g [ o Vor—vy)

[(2g/m.) B+ (v,— Vir) 2]2

dn? B €
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n], @
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where p=2—1,¢ and v, is the phase velocity of the
wave. In this section the method of Bogoliubov and
Mitropolsky?® is used to solve Eq. (3). The nonlinearity
arising from the plasma electrons will be neglected in
this analysis since the density of the plasma is much
larger than that of the electron beam in our numerical
experiments. Next expand the right-hand side of Eq.
(3) and retain all orders of ® for the first term, but
only the first order of ® for the second term. Equation
(3) is then simplified to

PB/dy*+ Q20 =ef (), (4)

where
f(®) = (3¢/20) K*®*— (5¢/2e0) K*®*+ -+, (5)
Q) =[wn/ (Vo= Vor) 1+ (wp’/26%), (6)
K=g/me(ve—Va)?, (7)

and e is a small positive parameter. The square-root
expansion of the term {1-4+[2¢®/m,(Vyu—1v,)2]}V2 is
permissible only in the case when the potential energy
of the oscillations ¢® is less than the kinetic energy
determined by the difference between the electron
beam drift velocity and the wave phase velocity.
Equation (4) is an equation for slightly nonlinear
oscillations. The general solution of this equation may
be written in the form

b=a cosy+el1(a, ¥)+eUs(a, ¥) 4+, (8)
where the quantities ¢ and ¥ are defined by the follow-
ing differential equations:

da/dn=eA (a)+E44(a)+- - 9

and

dY/dn=p+eBi(a) +eB(a)+ -+ . (10)
Substitute Eqs. (8)-(10) into Eq. (4). In the first
approximation the coefficients of the first power of e
are equated on both sides of the resulting equation,
and the following result is obtained:

2
Q7 (66 ‘pUz ‘4U 1) =f(a cosy) + 29,4, siny+2Q,0B, cosy.

(11)
To find proper expressions for the functions U;, 4,

and B; the functions f(e, ) and U;(e, ¥) are expanded
into Fourier series as

70, %) =ao(@)+ 3 [enla) cosmp+da(a) sinmp]  (12)
=]
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and

Us(a, ) =eo(a)+ 2 [en(a) cosmp+gn(a) sinmp].
ne=1
(13)
In terms of the Fourier components Eq. (11) becomes

Q2e0(a) + i Q2 (1—n2)[en(a) cosmp+g.(a) sinny]

=co(a) +[cn(a) +22,0B, ] cosy+[di(a) +-29,4,] siny
+ i [ca(a) cosmp+d,(a) sinng]. (14)

Equating the coefficients of the same harmonics on
both sides vields the following relations:

eo(a) =co(a) /A, (15)
ala)+2Q,0B,=0, (16)
di(a)+290,4,=0, 17
en(a) =cn(a) /A (1—0), (18)
and
gn(0) =da(a) /Q(1—n?), (19)

where n=2, 3, +++. The terms e;(a¢) and gi(a) are
chosen to be zero for nonsecular solutions® and, thus,

1 = ¢ d, .

(20)

Hence, explicit expressions have been obtained for
Ai(a), Bi(a), and Ui(a, ¢) in terms of the Fourier
expansion of f(a cosy).

For simplicity only the first two terms of Eq. (5)
are retained and, after using the multiple angle formulas
for cosine functions, it can be written as

3gK?%? 15¢K3a®

Q -
(®) ™ ™ cosy
39K 5¢K3a
+ s cos2y— il cosdy. (21)
460 860

Equation (21) is in the form of a Fourier series in
which only cosine components up to third harmonic
are presented. From Eq. (17) the following can be seen:

A1= —dl(a.)/21r91,=0

It follows from Eq. (9) that the amplitude ¢ is in-
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dependent of 5. This result is not surprising since in
deriving Eq. (3) it is assumed that all oscillating
quantities are functions only of (z—v,f) which implies
that only nonlinear stationary waves exist. By can be
found from Eq. (16),

By=—;(8) /20Q,= 15¢a2K3/16€,Q,,. (22)
Hence, ¥ can be determined from Eq. (10),
¥=[Q,+e(15¢aK3/16€,) Tn+6, (23)

where 6 is the initial phase angle. Substituting the
expressions for ¢(a), c:(a), and c3(a) from Eq. (17)
into Eq. (16) gives

39K%? ¢K%a?
4l ded,?
Thus, the following solution is obtained in the first
approximation:

3¢K%® ¢K%a®
460y 4e2y?

5¢K3a?
64€00,2

Ui(a,¥) = cos2y+ cos3y. (24)

S¢K%a?
642,

d=g¢ cosy+e ( cos2y+ cosS‘[/) .

(25)

It is evident from Eq. (21) that second and third
harmonics have been generated. The fundamental fre-
quency is determined by Eq. (23), and it depends on
the amplitude. The amplitudes of the second and third
harmonics are proportional to the square and cube of
the amplitude of the fundamental, respectively. This
result is in agreement with the experimental results of
Malmberg and Wharton.” If all the terms in Eq. (5)
are retained, all the harmonic components are ex-
pected to be generated.

III. RESULTS OF ION BEAM-PLASMA
INSTABILITY SIMULATION

The energy transfer from the electron beam to the
plasma is decreased by the deceleration and thermal
spread of the electron beam caused by the reaction of
the excited plasma oscillations on the electron beam.
On the basis of this consideration, as well as others,
the ion beam-plasma interaction is investigated in
order to take advantage of the heavier ion mass, which
is expected to yield a larger energy source, a low rate
of decrease in the mean ion-beam speed, and a slower
thermal spreading of the ion-beam velocity in com-
parison with the interaction between an electron beam
and a similar plasma. The beam-plasma instability
can reach very large amplitudes which suggests that
the decaying process® of the excited oscillations might
be substantial. This phenomenon is allowed to develop
in the two-component sheet model used in the simula-
tion of the ion beam-plasma instability. The param-
eters used in these numerical experiments are basically
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F1c. 4. Phase space plots for an ion beam—plasma interaction
at ¢=120/wpe with m;/m,=1000, system length L=3 wave-
lengths.

the same as in the previous experiments except that
an ion beam replaces the electron beam as the energy
source, and the beam drifting velocity is reduced to
half that of the electron-beam velocity and wp?® is
equal to 1/40 of wy?. Initially, the plasma ion thermal
velocity is zero and that of the electron, 8 X103V y,.
In the first experiment the ions are 1000 times
heavier than the electrons, and the interaction length
is taken to be approximately three wavelengths. The
excitation of electron plasma oscillations is observed
in the numerical experiments. In response to the result-
ing electric field the ion-beam velocity is only slightly
perturbed due to the heavy mass of the ions, and it
remains laminar throughout the process, whereas the
plasma electrons because of their great mobility rapidly
gain kinetic energy (Fig. 4) and exhibit a vortex for-
mation with respect to the jon beam in phase space.
In the initial stages the electric field behaves like that
observed in the electron beam-plasma interaction, i.e.,
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Fic. 5. Electric energy vs time for an ion beam-plasma inter-
action with m;/m,=1000, system length L~3 wavelengths.
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the maximum of the electric field increases in ampli-
tude and travels upstream. However, at a later time,
the beam-plasma instability is observed to decay. This
phenomenon is displayed clearly in the time evolution
of the electric-field energy (Fig. 5) in which the energy
initially grows with an exponential growth rate of
approximately 0.041wz which is approximately one
half of the value predicted by the linear theory
(0.0866wp0) . At t=120/w, the energy begins to decay.
This decay phenomenon is also observed by Kruer
and Dawson® in their investigation of the damping
of a large-amplitude electric field in a two-component
plasma. The numerical results indicate that the plasma
ion density distribution (Fig. 6) acquires a large spatial
fluctuation at ¢=200/w, when the electric-field energy
decays to a small value. This may be interpreted as
an electric-field energy dissipation occurring when the
intensity of the ion beam-plasma instability exceeds
some threshold value in association with the excita-
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L=~3 wavelengths.



BEAM-PLASMA INSTABILITY

160 240 320 400

NUMBER OF PLASMA ION SHEETS
80

It
2.5 4.5 6.5

-55 -3.5 -1.5 0.5

Va/Nr(h)

F1c. 8. Plasma ion velocity distribution for an ion-beam inter-
action at #=160/wy0 with m;/m,=1000, system length L=3
wavelengths. [Vr(#) =instantaneous values of the plasma ion
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tion of large-amplitude ion-density fluctuations as sug-
gested by Kruer and Dawson.

There are, of course, other possible mechanisms
responsible for the decaying process. Tsytovich* indi-
cates that large-amplitude plasma oscillations could
possibly decay into ion-acoustic oscillations. Figure 7
shows the time evolution of the electric field at posi-
tion z="750(0.02Vy/wmn). The electric field oscillates
at the electron-plasma frequency and is amplitude
modulated at the ion-acoustic frequency. During the
initial stages, plasma electrons are trapped by the ex-
cited electron plasma oscillations and the oscillatory
energy contributes primarily to the plasma kinetic
energy. At later times the oscillatory energy is con-
verted into random energy, and then a charac:eristic
plasma electron temperature can be defined. The heat-
ing of the plasma electrons is much more rapid than
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the heating of the plasma ions in this experiment.
Figure 8 gives the plasma ion velocity distribution
function at t=160/w, which indicates the develop-
ment of a small high-temperature tail on the positive
velocity side, that is, on the side of the beam-drift
velocity. The velocity at which the small high-temper-
ature tail peaks is of the order of the ion-acoustic
velocity, which suggests that at this time the ion-
acoustic wave has grown to an amplitude large enough
to trap a significant number of plasma-ion sheets.
Another case in which the particle mass ratio is taken
to be 100 is also studied, and much more ion heating
and less electron heating is observed. The excited
plasma oscillations (Fig. 9) begin to decay at an
earlier time (f2284/wyx) than in the previous case, and
the modulation period is reduced to the appropriate
ion-acoustic period. These show that the nonlinear
heating and decaying phenomena do depend on the
mass ratio.
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Fre. 11. Electric energy vs time for an ion beam-plasma inter-
action with mi/m,=1000, system length L=~6 wavelengths.
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Another case with a mass ratio of 1000 and system
length of approximately six wavelengths (Fig. 10) is
also investigated. Doubling the interaction length
approximately triples the maximum attainable electric-
field energy of the system and, thus, results in the
decaying process occurring at an earlier time
(#=100/wm) (Fig. 11) than in the first experiment.
The maximum plasma electron [Fig. 12(a)] and ion
[Fig. 12(b)] thermal velocities have reached 759 and
0.69%, of beam drifting speed, respectively.

IV. SUMMARY

The results of the computer simulation of an elec-
tron beam-plasma instability in a finite-length one-
dimensional system indicate that the electric field is
highly inhomogeneous in the interaction region. The
width of the high-field region decreases with time to
a limiting value then increases with a reduction in the
electric-field amplitude to form a stationary distribu-
tion. The harmonic generation in frequency space is
also observed.

In the ion beam-plasma interactions, the instability
decays when the intensity of the instability exceeds
some threshold level which depends on the particle
mass ratio and interaction length. This decay phenom-
enon is associated with the excitation of large-amplitude

ion-density fluctuations and ion-acoustic oscillations.
The plasma achieves higher heating in comparison with
the interaction between an electron beam and a plasma.
The heating also depends on the particle mass ratio.
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