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We evaluate effects of heterointerfaces on optical phonon modes and phonon assisted electron
intersubband transition rates in step quantum well structures for intersubband lasers. Various
phonon modes and electron—phonon interaction Hamiltonians, including the interface modes,
confined longitudinal-optical modes, and half space modes in the quantum well structures are
calculated based on the macroscopic dielectric continuum model and microscopic analysis. The
transfer matrix method is used to calculate the interface modes. The intersubband transition rates
due to electron—phonon scattering by these phonon modes are evaluated using Fermi’s golden rule,
with the electron wave functions obtained by solving the Sdimger equation for the
heterostructures under investigation. Our results show that, compared with the transition rates in the
same structures calculated using the bulk phonon modes and the bulikicFrinteraction
Hamiltonian, the electron interface—phonon interactions give significantly larger transition rates up
to an order of magnitude. Therefore, the effects of localized phonon modes, especially the interface
modes, must be taken into consideration for optimal device designl9@8 American Institute of
Physics[S0021-89788)03915-3

I. INTRODUCTION Al, Gay ¢As, respectively. The structure shown in Figa)l
] . N _ is asymmetrical, having three heterointerfaces, whereas Fig.
Optical phonon assisted electron transitions play an 'M7(b) shows a symmetrical structure with four heterointer-

portant role in novel mt_ersubband Iaé'_er‘éqperatmg at mid- faces. These step quantum well structures represent the quan-
infrared wavelengths since preferential intersubband trans*—

. I . o ._tum well laser cells where the phonon induced intersubband
tion rates are critical to establish and maintain the population i _ tant. We will that diff ¢ struct
inversion for the device operation. These lasers incorporatganSI lons are important. We will se€ that difierent structures

narrow quantum well regions that must have thicknesses five different optical phonon dispersion relations and differ-

small as 30-50 A. In these structures, the intersubband ele€Nt Phonon electrostatic potential profiles. In Sec. Il, the dis-
tron transitions induced by electron—phonon interactions argersion relations and electrostatic potentials of the optical
the dominant relaxation process when the intersubband sepghonon modes and electron—phonon interaction Hamilto-
ration between the lasing states is made close to one unit Wans for these two structures are obtained based on the di-
a multiple of the bulk longitudinal—opticdLO) phonon en-  electric continuum model and microscopic analysis; the in-
ergy. terface phonon modes are calculated using the transfer
It is well known that the shape and energies of opticalmatrix method. In Sec. I, we investigate the transition
phonon modes are modified by quantum wells. The preseng@tes between the quasi-bound states in the step quantum
of heterointerfaces gives rise to the confinement of LQye|l structures due to the interface and confined LO phonon

_?_Eonofns as We”fai Ioga::(z%cri"jpﬂogons_lat .the |nterf§&s. modes. Comparisons are made to the rates predicted by the
ereiore, use of the bu ch Hamiltonian may give \ crelich interaction Hamiltoniah?=4 Fermi's golden

inaccurate predictions of electron transition rates in such la- =~ . .
) : rule is employed to calculate the transition rates. We found
ser structures. The optical phonon confinement effects o

electron transition rates were evaluated in Refs. 10 and 1lﬂqat in these structures the interface phonon scattering domi-

In this work, we calculate the modified phonon modes Nates the electron transitions and generally gives an order of
evaluate the intersubband transition rates due to interactiof§2gnitude larger transition rates than those by bulk modes. It
between electrons and these phonon modes, and Compdﬁeconcluded that for preferential electron transition in inter-
them to the transition rates calculated using the bullhiecb ~ subband laser structures the effects of the localized phonon
Hamiltonian. The structures studied are shown in Fig. 1modes, especially the interface phonon modes, must be in-
where materials 1, 2, and 3 are GaAsyMGa 75As, and  cluded for optimal design of these structures. For example, to
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e?¢(r)=0. (2

i= i=1 i=2 i=3 In a quantum well structure, since the system has no con-
straint on thex-y plane, we can write

material 3 material 2 | material 1 | material 3

v R0 R - $(r)= J—lx €90 p(2), 3
(@)

whereA is the in-plane cross section area of the structure,
andq and p are the two-dimensional in-plane wave vector
and position vector, respectively. This gives

...... —eeas 7

e( &?—qz) $(2)=0, @
i=0 i=1 i=2 i=3 i=4

' . , whereq=|q|, the magnitude of the two-dimensional phonon
.. Material 3 material 2 |material 1) material 2 material 3 in-plane wavevector. While Eq2) is general, Eq.(4) is
L2 b/2 ¥2 0 a2 o L2 applicable to two-dimensional quantum well systems. Apply-
(b) ing Eqg.(2) to bulk materials leads to the usual result of bulk
LO phonons, with frequencies satisfyia@w, o) =0. The po-
FIG. 1. Heterostructures used for the optical phonon mode calculationgential itself can be expanded in the Fourier form as the sum
Materials |1 2, 3 are taken 1o be GaAs, MGa 7S and AbSaAS, ot the | O phonon modes with different wave vectardn a
respectively.
P Y quantum well structure, Ed4) is satisfied by requiring ei-
ther e=0 or [(9%/92%) —g?]$(z) =0. With e=0, ¢ can be
facilitate electron transitions between two subbands, the sutiny functions as long as the boundary condition&an and

band energy separation should be set at the interface mod¥") at the interfaces are satisfied. o
frequency. For the asymmetrical structure shown in Figa)] Eq.

(4) with e=0 leads to the following functional forms of the
confined and half space LO modes. The frequencies of these
IIl. PHONONS IN QUANTUM WELL STRUCTURES modes are determined by settirg=0, and therefore are
Similar to electron confinement in the low-dimensional equal to the bulk LO mode frequencieg of the respective
structures, both acousticand optical phonons are modified materials. Although the materials in Fig. 1 are specific, the
in quantum well structures. In this work, we are mainly in- following results of the electrostatic potential can be easily
terested in the modified optical phonons because their enegxtended to other ionic materials: for the confined phonon
gies are comparable to the desired intersubband separatiofigodes in region=2, o= w, of material 1,
These phonon modes are the interface optical phonon modes,
confined LO phonon modes, confined transverse—optical cosm z, m=135,"
(TO) phonon modes, and half space LO and TO modes. b(2)x a |z|<é' ®)
While the confined and half space modes can be regarded as m 2’
bulk modes “segmented” by the heterostructure interfaces, sin—>-2, m=2,4,6,
the interface modes are a new type of phonon with localized
polarization and potential at the interfaces. These phonofor the confined phonon modes in regior 1, o= w , of
modes can be calculated based on the dielectric continuumaterial 2,
model and the microscopic analysis by Lucesal.®> and

Licari and Evrard cos 2™ (z+ b+a . m=135,
We first obtain the functional form of the interface (2) b— 4
modes, the confined and half space LO modes, using the ¢ - 2mmr b+a
dielectric continuum model for the structure in Figajl The sing—a \ 2t ) m=2,4,6,--
electrostatic equations are given by
b a
V-D(r)=po(r), —5<Z="3; (6)
D(r)=€eE(r)=eE(r)+P(r),
") (1) = B +P(r) (1)  for the half space LO modes in regions 0,3, o= w, 3 of
E(r)=—V(r), material 3,
whereE(r), D(r), P(r), and¢(r) are the electric field, electric 2.m b b
displacement, electric polarization and scalar potentiahd sin— [ z+=|, mM=123, zs-_,
. . X . L 2 2
€, are dielectric constants of the respective materials and the H(2)=
permittivity of free space, respectively, apg(r) is the free 2mm a

charge density. Considering free oscillation with free charge sin L

densitypo(r) =0, the above equations lead to (7)

a
z=5 m=1,23, 2=,
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TABLE |. Dielectric constants and phonon frequencies used in the calcula 35

tion of the dispersion relations. 30E
GaAs AlAs ALGa _,As sk

) 10.89 8.16 10.892.73xx 20F
fo s (MeV) 36.25 36.25-6.55X X+ 1.79x x? 15 g
fiwra (MeV) 33.29 33.29-0.64X x— 1.16X x? 3
hog (MeV) 50.09 44.63 8.78Xx—3.32x X2 10F
fiwrg (MeV) 44.88 44.63 0.55X x— 0.30X X2 -

C3+/C0+
)
M
*-\
),

The interface phonon modes can be obtained when  -10
#0, then the solution fof(9%/9z%) — q%]#(2) =0 is a linear 15
combination of exponential terms, i.e.,

[
(=]
(@Y LRREE LRRES LERRY LEREJ LEERY LARSY LEANI

¢i(9,2)=ci_e ¥+ci e’ 8) -25
where i=0-3 denotes the four regions in Fig(al, and -30
B T H . I B T 1 B B R | . i
Ci='s are coefficients to be determined. The boundary con 35, 35 25 25 =
ditions are
h X frequency (meV)
$1(q,—L/2)=0, (9)
FIG. 2. Solutions toc;, (w)=0 which give ten eigenfrequencies of the
$i(0,z)=¢;_1(0,7), (10 interface modes. For this plaja= 3. Other parameters are given in Table I.
The dispersion relations for these ten modes are shown in Fig. 3. Note that
J J the lowest two eigenfrequencies are close to each other.
€ E¢i(q72i):€i—15¢i—1(q,2i), (11
$3(q,L/2)=0, (12)
wherez is the location of thdth interface:z;=—b/2, z, With these. expressions and p.arameters, the coefficient
=—al2, andzz=a/2. With these boundary conditions, the Cs; is plotted in Fig. 2 as a function of frequency fqa
coefficients are determined up to a constant. From®agve  =3. At the characteristic frequencies a,, wign, ®Tan.

readily findcy_=0. With Egs.(10) and(11) all other coef- andwqg,, the coefficientc;; jumps betweent«. The fre-
ficients can be recursively expressed as functionse'sf quencies at whicle;, vanishes give the eigenfrequencies of
which are proportional t@y, . The coefficientcy, can be the interface modes. From Fig. 2 we see that equation
obtained from orthonormality and completeness conditions=0 has ten solutions, corresponding to the ten interface
to be discussed shortly. Since the boundary conditi@  modes in the structure of Fig(d. Equation(13) is numeri-
requirescz, to be zero, the following equation determines cally solved for differenty in order to obtain dispersion re-

the dispersion relations for the interface modes: lations for these ten modes. The result is plotted in Fig. 3,
with six GaAs-like modes having energies from 32 to 37
o [(ems em) (em+ €ma) (€ma— €mg)e 9@ TD) meV, and four AlAs-like around 46 meV.
m1&m2=m3 The macroscopic dielectric continuum model based on
+(€mz— €m1) (€m1— €m2) (€ma+ €ma) € 292 classical electrostatics involves relatively simple formula-
(et em)( i Je—ib-a) tions. It gives the functional form of the interface modes,
€m3T €M) €m1— €m2)(€ma— €m3)€

confined and half space LO modes, but it cannot give TO
+ (€mat €m1) (€mi+ €mz)(€mat €mz) 1=0, (13 modes because TO modes do not produce macroscopic elec-

tric field and charge density. Fortunately the TO modes do

whereenq(w) is the dielectric constant of material While ot interact with electrons for the same reason and we can

: _ 2_ 2 2_ 2 . .
the normal relationemy(w) = €mn(*) (0~ wip)/ (0= oT)  jgnore them completely. However, to formulate the interac-
can be used for the dielectric function of binary compoundsyjo, Hamiltonians between electrons and the interface, con-

appropriate expression_s for ternary and even more compl%ed and half space LO phonon modes, we also need the
Is;ystelms can é)e found in Ref. 16. For the material shown IIElalmplitudes of these modes. These amplitudes can be derived
'g. &, we us from the orthonormality and completeness conditions of the
— 0fan) (07— wigy) phonon eigenfunctions, which can only be formulated in the
— o (ol —wk)’ (14)  microscopic framework. Assuming the standard forms for
TAn TBn the continuum expressions of the ionic force equation and
where values for the dielectric constants and the phonothe polarization of the polar medium, the normalization rela-
frequencies of GaAs, AlAs, and Aba, _,As are listed in tion is derived from an appropriate generalization of the
Table I. optical—-phonon normalization condition and is giverl by

NG
Emn(®) = €mn(*) (w2
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FIG. 3. Dispersion for the interface modes in structu¢a.1Ten interface
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and for the half space LO modes in regions 0 anda3 (
= 3),

A 1 1/2 1 1/2 4 1/2
¢(Z)=<e_0&ei(w)lﬂw) ) (zwm)z (E)
q*+| ——
L
~2mm b m=1.23. _ b
SII’]T Z+§, L3O, = E'
X
~2mm a m=123 >a
smT V4 E, 1Ly, 2/2.
(18

Expressions for the interface modes are also obtained. In-
stead of giving the long expressions for the coefficients,

we plot some typical interface modes in Fig. 4, where also

included are the confined LO modes and half space modes

modes are shown, with six GaAs-like modes from 32 to 36 meV, and fouwith m=1,2. As can be seen in Fig. 4, the interface modes
AlAs-like around 47 meV. Note that the lowest two curves are close to eacrare localized at the interfaces. whereas the confined and half

other.

i dei(w)

N d¢i(d,2)
0z

2
| s

from which the amplitudes of electric potential for different

space modes are sinusoidal. For the interface modes, the am-
plitude is typically concentrated at the interface, where the
dielectric constant changes sign and has large absolute val-
ues on both sides.

The procedure for the interface mode calculation is for-
mulated in a matrix form and referred to as the transfer ma-
trix method’!

For structure (b), the dispersion relations of the inter-

modes can be determined. For the confined LO and hafficé modes are given by, /Co, =0, with c,. obtained
space modes in structurgal, we have the following results from the same iteration procedure used for structieg: 1

of the electrostatic potential:
for the confined phonon modes in region @ w| 1),
f 1 2

1/2
€o aei(w)/aw) a

1 1/2 1/2

2

¢>(Z)=(

mar

2
+
q a

mar
cos—z, m=135,-:
a a
X <—:
o mm 12| 2’ (16
Sin ? Z, m=2,4,6, -

for the confined phonon modes in region &= w| 5),
1/2

% 1 1/2 1 1/2 4
¢(z)=(6—0 ﬁei(w)/aw) , [2mm)|? b—a
b—a
2mar b+a m=135
COSE Z+T , =1,5,9,
X
_2mmr N b+a M=24.6
Slnm Z T y 4,0,
b< =< 2. 1

1
2 2,.2qb
7 [~ (€ms— €m2) (€mat €mp) €Y
€Em1€m2€m3

— 2(€frg— ) (€mp— €0 1T
2 2,209(b— 2 2
+(€mz— €m2) (€ma— €m1) € o a)+2(6m3_6m2)
2 2 b— 2 2,2
X (€ma— Eml)eq( B (€maT €m2)“(€ma— €m) € a8

+(€msTt emz)z( €mxt eml)z]zo- (19

This equation has 14 solutions as shown in Fig. 5, corre-
sponding to six GaAs-like and eight AlAs-like interface
modes. The potential of some typical interface modes for this
structure are plotted in Fig. 6. Due to the symmetry of this
structure, they can be categorized as symmetric interface
modes[ ¢(z) = ¢(—2z)] and antisymmetric interface modes
[#(2)=—d(-2)].

The electrostatic potential of the confined and half space
phonon modes for this structure are:

for the confined phonon modes in region @ w ),
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in region 3, and half space mode in region 4 f@rm=1 and(b) m=2. Four typical interface modes are showr(dh with energies equal t(l) 46.84 meV,
(2) 35.48 meV,(3) 34.81 meV, and4) 32.57 meV, respectively. Vertical lines represent heterointerfaces. For thigjptet3.

ﬁ 1/2 1 1/2 2 1/2
d)(z):(e_oaei(w)/&w) , [mm\?| \a
T\ 2
mar
cos—z, m=135,;-
a
X
mar
sin—z, mM=2,4,6,"-
a
<a' 20
2<3; 20

for the confined phonon
=i 2),

¢(Z)=<

% 1 1/2 1 1/2 4 1/2
€o aei(w)/aw) , [2mm\?| |b-a
b—a
2mar +b+a m=135
COSE Z_T , =4,9,9, )
_2mar +b+a M=2 4.6 @D
Slnm Z_T s 4,0, )

where the plus sign is fob(2)<z< —(a/2), and the minus

modes in regions 1 and &3 ( sign for b/2>z=a/2; and for the half space LO modes in

regions 0 and 4= w3),
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_20 [ L I 11 I Il ] | i I L 1 L L L] 1 1 L . . . . .
30 35 40 45 50 FIG. 6. Electrostatic potential for some typical interface phonon modes in
structure 1b). Due to the symmetry of the structure, the modes are either
h X frequency (meV) symmetric or antisymmetric. The frequencies of these mode$1336.86
meV, (2)34.91 meV,(3)34.26 meV,(4)34.01 meV,(5)33.17 meV,(6)33.07
FIG. 5. Solutions tac,, (w)=0 for the interface modes in structuréo}, meV, respectively. Vertical lines represent heterointerfaces. For this plot,

which give 14 eigenfrequencies of the interface modes. For this plotda=0.5. Other parameters are given in Table I.
ga=0.5. Other parameters are given in Table I. Note that the lowest two
GaAs-like solutions are very close to each other.

llI. PHONON-ASSISTED INTERSUBBAND

TRANSITIONS
4 1 112 1 112/ 4\ 112 Neglecting the nearly flafj dependence on phonon en-
d(2)= (— ) 5 (—) ergy (see Fig. 3 for an example of the interface mode disper-
€0 Jei(W)/IwW q2+(277_m) L sion), the transition processes can be visualized in Fig. 7. For
L emission, an electron in the upper subband with in-plane

2m b wave vectork can emit a phonon and jump to one of the
Xsin —— (zi—), m=1,2,3,--, (22 accessible final states in the lower subbdsdown as the
L 2 equal-energy circle in the lower subbanBor absorption, an
electron in the lower band absorbs a phonon and jumps to
7=b/2. one of the stang on the circle_in the upper band. The phonon
There are other forms of solutions which may not bemduced transition rate of a single transition event between

H VAN H H
categorized as the confined, half space, or interface modetg/y?delnetr:trloruc statefn.k) and|n’ k') is given by Fermi's
These modes are similar to the interface modes in some r&>?€" MU'€:

where the plus sign is faa< — (b/2), and the minus sign for

gions and to the confined or half space modes in other re- 12 L 2w )
gions. For example, there are the modes which are half Wn,n/(k'k ):7 [(n"k 'Nqi1|He—ph|”kaq>|
spacelike in regions 0 and 3, but are interfacelike in regions

1 and 2 for structure (&). The contribution to electron tran- XO(En +Ep Tho—E,—Ey), (24)

sition by these modes is either interface modelike or confinegyhereE . andE,,, are the band-edge energies of tita and

modelike, depending on whether they are interface modelikg'ih subbandsk andk’ are the in-plane electron wave vec-
or confined modelike in the most active region of the deviceigrs of the initial and final states, respectivel§,

We will refer to both the interface modes and the modes_72y2/o, s the in-plane energy is the frequency of a
which are interface modelike in the active region as “surfaceyiyen phonon mode, an,, is the phonon population based

modes.” . . on the Bose—Einstein statistics. In addition, the superscripts
The interaction between electrons and a particular phog and a denote emission process and absorption process,
non modes is given by the Hamiltonian respectively. The emission and absorption rates are generally

of the same order and have similar in-plane energy depen-
dence. For given statds,k), |[n’,k’) and a given phonon
mode, the ratio of the emission and absorption rates,
_ W; (kG K)IWE (K K)=(Ng+1)/Ng=e"“*eT, is con-
where (14/A)e'%?¢4(z) is the electrostatic potential func- stant at a specified temperature. The difference between
tion for the phonon mods, with in-plane wave vectog, these two processes lies in whether the emission or absorp-
andag(aq) is the creatiorfannihilatior) operator of phonons. tion process is forbidden or requires an onset in-plane energy

1
He_ph=—e§ \/—Ke'q'qus(z)(aiq%—aq), (23
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Ag?— /n’, K'=k-q> e o2} @ o2 §
y » ]
Enlkq - level 1 1
1 2e~-d o KX 0.1} —101
k [ ]
Emissi TS SRS S A
mlss":) " % 100 200 300 °
E z(A)
\ FIG. 8. Quantum well potential profile of structurélwith electron wave
functions associated with the first two levels. Layer 1, 2, 3 and 4 are
Aly Ga As, Aly,Ga 7AS, GaAs, and A GaysAS, respectively.
X In’, K=k+q>
E [
h(’) n . . .
A/“‘V Ky in Sec. Il, the materials are chosen to be Gahsaterial 1,
: v__;/ﬁ,b AI0_25GaO_75As (material 2, and Al (Ga, /As (material 3, re-
‘ B spectively.
n . .
k| _Kx From Egs.(24) and (25), with the electron—phonon in-
—\k:qa i teraction Hamiltonians written in a general form
Absorption

L ig-p U
Hepn= 2 TR an@Eray). (26
FIG. 7. Electron emission and absorption between initial Statk) and q A

final stateln’,k’). For emission, the accessible final states are those on the hereh _ Th A te is qi b
circle in the lower subband. For absorption, the accessible final states arynere (q,z) - eqS(q,z). € emission rate Is given by

those in the upper subband.

required by energy conservation. When the subband separe i) 3 > 3 21°°°
tion is smaller than the phonon energy, an electron emittinga 4 5[ o5
phonon has to possess a certain amount of in-plane energ i
E, for the transition to occur. For phonon absorption, the - 045
transition can always happen whén, —E,<#%w. If the 0al Joas
subband separation is larger than the phonon energy, then th i B '5
emission can always happen while the absorption requireé; i ';0’353
the electron to possess a certain amount of initial in—plane:_; 03 level 2 do3 §
energy. We will hereafter focus only on the emission processg [ level 1 3 025‘2’
and drop the superscripts B, while indicating the differ- % i € \.g
ence in absorption case when appropriate. S.02F ! 02 2
The electron wave function can be written as - = 0'153
1 0.1} Jo.1
nky=— ek ry, (2). 25 I E
[n.k) A n(2) (25) : 008
In writing ¢, independent ok, we have neglected the effect %_0' s '102)6 - '2050 o '30:)6 — lto:m' =
of kinetic energy confinemeni/,(z) in the quantum well ’ ‘ ‘ ' )
structures are obtained numerically by solving the Schro z (A)

dinger equation. The structures and the wave functions of thg . . .

. . . . IG. 9. Quantum well potential profile of structurébiwith electron wave
first tWQ levels 'n.eaCh ?trucwre are plotted in FIQS- 8 an.d 9functions associated with the first two levels. Layers 1, 2, and 3 are GaAs,
respectively. As in the interface mode calculation described\, ,Ga, +As, and Al Ga, 4As, respectively.
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2m
Wi ,nr(K,q)= (N +1)|F(q)|?8(E +Ex—q g.=k cos = \/k2 cog O+ — o',
+ho—E,—Ey), (27) _1< 2ma)')
with  F(q)=SdzNq.2)¢* ()¢, (2) and the two- Omax=cOS TN
dimensional in-plane wave vector conservation relation ,
—K'+q For o’ >0,
Summing over all allowable final statder, in other A 27 2= 2m |F(q,)|%q,
words, summing oveq), we calculate the emission rate of W, (k)= Am2 h qf a q- - (33

an electron in an initial statg,k) to a lower subband’
To proceed further we need the electronic wave func-
Wi nr(K) =2 W, 00 (K, Q). (29) fions. Instead of assuming some form of the wave
' ' functions? we seek numerical solutions as they enable us to

As discussed above, due to energy conservation, some trafi¥@mine various structures, such as the asymmetric and sym-
sition is forbidden. For the emission process, whgp Melric structures as shown in Figs. 8 and 9.
<fo'=ho—(E,—E,) and »’>0, i.e., the two subband For the half space modes and confined LO modes, the

edges are closer than a phonon energy and the electron do@émerical results obtained from our calculation show that the
not posses enough initial kinetic energy, there are no finafPUPling between electron wave functions and these modes

states available and the process is forbidden.dor 0 and is negligible compared to that between electrons and bulk or
E>ho, interface modes. This is because the first two electronic lev-
els are essentially localized inside the well while half space
modes are outside the well, therefore the overlapping integral
of F(q) is minimal. For the confined modes witm
=1,3,5,---, since we are considering two consecutive elec-
IF(a:)]%q. +|F(q-)|%q- 29 tronic subbands which always have opposite parity in the
lg.—q_] ' symmetric structure or near-opposite parity in the asymmet-
ric case, these modes have zero or near-zero coupling with
neighboring electronic subbands due to the symmetric polar-
2m ization of these modes. For the confined LO modes with
q.=k cos 6= \/k2 cos 6 o =2,4,6,--, the coupling is larger but still negligible as
compared to the electron—bulk-mode and electron—interface-

o 2mo’ mode coupling.
Omax=COS | \| 777 |- For the interface modes, typical comparisons between

transition rates due to the bulk mode and the chosen interface
mode are shown in Fig. 1@or the asymmetric structure in
2= 2m |F(q4)|%q. Fig. 8 and Fig. 11(for the symmetric structure in Fig.)9
Wy n(K) = 127 (N +l) do - 7 q respectively. The emission rates due to electron interaction
* (30 with the interface modes are about one order of magnitude
larger than those calculated using the bulkHfich Hamil-
The above argument also holds for the absorption protonian. We found that, for certain interface modes, the ratio

A 27w Omax 2m
Wn’n/(k)z WT (Nq+1)Jl€ deo F

where

For ' <0,

cess, as long as changes are madedfer—w, o'——w’,  of the emission rates due to the interface mode scattering and
Ng+1—Ng, andg——q. That is, for the absorption pro- the rate calculated using the bulk Rtich Hamiltonian can
cess, be as large as 50. Carefully examining these interface pho-
20 non modes, we found that these modes usually have one to
Wi n (K, q)— NglF(a)|?8(Eq +Eys g~ fiw—Eq—Ey), two orders of magnitude larger amplitude than the other in-
31) terface modes. In Fig. 10, for the asymmetric structure, the

rate obtained using the bulk Hriich Hamiltonian is com-
when E,<—%o’ and ho'=ho—(E,—E,)<O0, i.e., the pared to the rate of an interface phonon emission with the
two subband edges are farther away than a phonon energihonon energy near 34.8 meV, which is close to the subband
and the electron does not have enough initial in-plane enseparationE,— E;=33.7 meV. In Fig. 11, the same com-
ergy, there are no final states available and the absorptigparison is made for the symmetric structure, showing an
process is forbidden. Fas’ <0 andE,>—fiw’, emission rate assisted by an antisymmetric interface mode of
A 2n .. om 50 meV, with E2—I§1=47.1 meV. A_n antisymmetric mode
W nr(K)= P qu 77 is shown here, while the symmetric modes have near-zero
- coupling to the first two levels due to the parity consider-
IF(q.)|%q, +|F(q.)|%q_ ation. In these two figurgs, the emission rates due to the_ half
— , (32 space modes and confined phonon modes are all negligible
. | and merge into thex axis. These results indicate that the
where interface phonon-assisted transition rates can be one to two

0max
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In-plane energy (eV) FIG. 12. Comparison of the peak transition rates as functions of level sepa-
ration for the asymmetric structure. The surface mode has an energy of 48

FIG. 10. Comparison of the transition rates for the asymmetric structureMeV-

Only the contribution of one surface mode of 34.8 meV is shown. The
energy level separation is 33.7 meV for this plot. The maximum rate due to
the surface mode is about 50 times larger than that of the bulk mode. The
rates for the confined and half space modes are negligible and indiscernibi{he bulk mode and an interface mode with energy near 48
from thex axis. . . .
meV for the asymmetric structure. In Fig. 13, the maximum
rates calculated using the bulk mode and an interface mode

orders of magnitude larger than those calculated with the" ith energy near 50 meV for the symmetric structure are

bulk Frahlich Hamiltonian, which agrees with the results of ;22&2??@:2;2?} :zfﬁgtzrgogf';r;iégﬁa thlzrlr:ftrazcnetr?:s:gg_-
Ref. 12. In Figs. 12 and 13, the maxima of emission rate g ylarg

. . . %ained from the bulk mode interaction Hamiltonian.
(the maxima ofWs as functions oE,) as functions of the

level separatiotie, — E; for different phonon modes are plot- The form factors can be defined through the effective
b 2 -1 b b electron—electron interactions mediated by phonons. The ef-

: . Mactive electron—electron interaction due to exchange of pho-
pared. Figure 12 shows the maximum rates calculated using. - odes can be formally written &5
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FIG. 11. Comparison of the transition rates for the symmetric structure. E2-E1 (meV)

Only the contribution of one antisymmetric interface mode of 50 meV is

shown. The rates for the confined and half space modes are negligible ar®lG. 13. Comparison of the peak transition rates as functions of level sepa-
indiscernible from thex axis. The rates for the symmetric modes are zero ration for the symmetric structure. The surface mode has an energy of 50
due to the parity consideration. meV.
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1 where the electron wave function of the second level in the
structure is used. In this specific case, the form factors for the
0.9 confined LO mode and antisymmetric interface mode are

negligible as compared to those for the symmetric interface
and half space modes. The sum rule is well observed in our
calculation.

o
=)

e
3

IV. CONCLUSION

Optical phonon modes and their effects on electron re-
laxation rates in the step quantum well structures are studied
bulk mode in this work. The various phonon modes, including the inter-
face phonon modes, confined LO modes, and half space

Form factors
o o
v o

1
~
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0.3 modes are calculated using the transfer matrix method, based
sym mode on the dielectric continuum model. We have examined and

02 compared electron transition rates obtained using the bulk

01 Frohlich Hamiltonian and interaction Hamiltonian with the

half space modes localized phonon modes. It is concluded that, in narrow
[ B BRI e o o ol i i i

0. T o o S s 0 0 T T 5 O T0" quantum well structures., mstegd of emp]oylng the simple

electron bulk—phonon interaction, the interface phonon

In-plane wavevector (1/m) modes have to be considered as they play a very important

i . ) role in phonon-assisted intersubband transitions.
FIG. 14. The form factors of various phonon modes in the symmetric struc-

ture. The electron wave function of the second level is used. The form
factors of the confined LO mode and antisymmetric mode are negligibIeACKNOWLEDGMENT
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