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Phonon assisted intersubband transitions in step quantum well structures
H. B. Teng, J. P. Sun, and G. I. Haddad
Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor,
Michigan 48109-2122

Michael A. Stroscio
U.S. Army Research Office, P.O. Box 12211, Research Triangle Park, North Carolina 27709-2211

SeGi Yu and K. W. Kim
Department of Electrical and Computer Science, North Carolina State University, Raleigh,
North Carolina 27695-7911

~Received 19 February 1998; accepted for publication 27 April 1998!

We evaluate effects of heterointerfaces on optical phonon modes and phonon assisted electron
intersubband transition rates in step quantum well structures for intersubband lasers. Various
phonon modes and electron–phonon interaction Hamiltonians, including the interface modes,
confined longitudinal-optical modes, and half space modes in the quantum well structures are
calculated based on the macroscopic dielectric continuum model and microscopic analysis. The
transfer matrix method is used to calculate the interface modes. The intersubband transition rates
due to electron–phonon scattering by these phonon modes are evaluated using Fermi’s golden rule,
with the electron wave functions obtained by solving the Schro¨dinger equation for the
heterostructures under investigation. Our results show that, compared with the transition rates in the
same structures calculated using the bulk phonon modes and the bulk Fro¨hlich interaction
Hamiltonian, the electron interface–phonon interactions give significantly larger transition rates up
to an order of magnitude. Therefore, the effects of localized phonon modes, especially the interface
modes, must be taken into consideration for optimal device design. ©1998 American Institute of
Physics.@S0021-8979~98!03915-2#
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I. INTRODUCTION

Optical phonon assisted electron transitions play an
portant role in novel intersubband lasers1–4 operating at mid-
infrared wavelengths since preferential intersubband tra
tion rates are critical to establish and maintain the popula
inversion for the device operation. These lasers incorpo
narrow quantum well regions that must have thicknesse
small as 30–50 Å. In these structures, the intersubband e
tron transitions induced by electron–phonon interactions
the dominant relaxation process when the intersubband s
ration between the lasing states is made close to one un
a multiple of the bulk longitudinal–optical~LO! phonon en-
ergy.

It is well known that the shape and energies of opti
phonon modes are modified by quantum wells. The prese
of heterointerfaces gives rise to the confinement of
phonons as well as localized phonons at the interfaces5–9

Therefore, use of the bulk Fro¨hlich Hamiltonian may give
inaccurate predictions of electron transition rates in such
ser structures. The optical phonon confinement effects
electron transition rates were evaluated in Refs. 10 and

In this work, we calculate the modified phonon mod
evaluate the intersubband transition rates due to interact
between electrons and these phonon modes, and com
them to the transition rates calculated using the bulk Fro¨hlich
Hamiltonian. The structures studied are shown in Fig.
where materials 1, 2, and 3 are GaAs, Al0.25Ga0.75As, and
2150021-8979/98/84(4)/2155/10/$15.00
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Al0.4Ga0.6As, respectively. The structure shown in Fig. 1~a!
is asymmetrical, having three heterointerfaces, whereas
1~b! shows a symmetrical structure with four heterointe
faces. These step quantum well structures represent the q
tum well laser cells where the phonon induced intersubb
transitions are important. We will see that different structu
give different optical phonon dispersion relations and diff
ent phonon electrostatic potential profiles. In Sec. II, the d
persion relations and electrostatic potentials of the opt
phonon modes and electron–phonon interaction Hami
nians for these two structures are obtained based on the
electric continuum model and microscopic analysis; the
terface phonon modes are calculated using the tran
matrix method.7 In Sec. III, we investigate the transitio
rates between the quasi-bound states in the step qua
well structures due to the interface and confined LO phon
modes. Comparisons are made to the rates predicted by
bulk Fröhlich interaction Hamiltonian.12–14 Fermi’s golden
rule is employed to calculate the transition rates. We fou
that in these structures the interface phonon scattering do
nates the electron transitions and generally gives an orde
magnitude larger transition rates than those by bulk mode
is concluded that for preferential electron transition in int
subband laser structures the effects of the localized pho
modes, especially the interface phonon modes, must be
cluded for optimal design of these structures. For example
5 © 1998 American Institute of Physics
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facilitate electron transitions between two subbands, the s
band energy separation should be set at the interface m
frequency.

II. PHONONS IN QUANTUM WELL STRUCTURES

Similar to electron confinement in the low-dimension
structures, both acoustic15 and optical phonons are modifie
in quantum well structures. In this work, we are mainly i
terested in the modified optical phonons because their e
gies are comparable to the desired intersubband separa
These phonon modes are the interface optical phonon mo
confined LO phonon modes, confined transverse–opt
~TO! phonon modes, and half space LO and TO mod
While the confined and half space modes can be regarde
bulk modes ‘‘segmented’’ by the heterostructure interfac
the interface modes are a new type of phonon with locali
polarization and potential at the interfaces. These pho
modes can be calculated based on the dielectric contin
model and the microscopic analysis by Lucas,et al.,5 and
Licari and Evrard.6

We first obtain the functional form of the interfac
modes, the confined and half space LO modes, using
dielectric continuum model for the structure in Fig. 1~a!. The
electrostatic equations are given by

¹•D~r !5r0~r !,

D~r !5eE~r !5e0E~r !1P~r !,
~1!

E~r !52¹f~r !,

whereE~r !, D~r !, P~r !, andf~r ! are the electric field, electric
displacement, electric polarization and scalar potential,e and
e0 are dielectric constants of the respective materials and
permittivity of free space, respectively, andr0(r ) is the free
charge density. Considering free oscillation with free cha
densityr0(r )50, the above equations lead to

FIG. 1. Heterostructures used for the optical phonon mode calculati
Materials 1, 2, 3 are taken to be GaAs, Al0.25Ga0.75As and Al0.4Ga0.6As,
respectively.
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e2f~r !50. ~2!

In a quantum well structure, since the system has no c
straint on thex-y plane, we can write

f~r !5
1

AA
eiq•rf~z!, ~3!

whereA is the in-plane cross section area of the structu
and q and r are the two-dimensional in-plane wave vect
and position vector, respectively. This gives

eS ]2

]z22q2Df~z!50, ~4!

whereq5uqu, the magnitude of the two-dimensional phono
in-plane wavevector. While Eq.~2! is general, Eq.~4! is
applicable to two-dimensional quantum well systems. App
ing Eq. ~2! to bulk materials leads to the usual result of bu
LO phonons, with frequencies satisfyinge(vLO)50. The po-
tential itself can be expanded in the Fourier form as the s
of the LO phonon modes with different wave vectorsq. In a
quantum well structure, Eq.~4! is satisfied by requiring ei-
ther e50 or @(]2/]z2)2q2#f(z)50. With e50, f can be
any functions as long as the boundary conditions onE~r ! and
D~r ! at the interfaces are satisfied.

For the asymmetrical structure shown in Fig. 1~a!, Eq.
~4! with e50 leads to the following functional forms of th
confined and half space LO modes. The frequencies of th
modes are determined by settinge50, and therefore are
equal to the bulk LO mode frequenciesvL of the respective
materials. Although the materials in Fig. 1 are specific,
following results of the electrostatic potential can be eas
extended to other ionic materials: for the confined phon
modes in regioni 52, v5vL1 of material 1,

f~z!}H cos
mp

a
z, m51,3,5,¯

sin
mp

a
z, m52,4,6,¯

uzu,
a

2
; ~5!

for the confined phonon modes in regioni 51, v5vL2 of
material 2,

f~z!}H cos
2mp

b2a S z1
b1a

4 D , m51,3,5,¯

sin
2mp

b2a S z1
b1a

4 D , m52,4,6,¯

2
b

2
,z<2

a

2
; ~6!

for the half space LO modes in regionsi 50,3, v5vL3 of
material 3,

f~z!}H sin
2pm

L S z1
b

2D , m51,2,3,¯ z<2
b

2
,

sin
2pm

L S z2
a

2D , m51,2,3,¯ z>
a

2
.

~7!

s.
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The interface phonon modes can be obtained whee
Þ0, then the solution for@(]2/]z2)2q2#f(z)50 is a linear
combination of exponential terms, i.e.,

f i~q,z!5ci 2e2qz1ci 1e1qz, ~8!

where i 50 – 3 denotes the four regions in Fig. 1~a!, and
ci 6’s are coefficients to be determined. The boundary c
ditions are

f1~q,2L/2!50, ~9!

f i~q,zi !5f i 21~q,zi !, ~10!

e i

]

]z
f i~q,zi !5e i 21

]

]z
f i 21~q,zi !, ~11!

f3~q,L/2!50, ~12!

wherezi is the location of thei th interface:z152b/2, z2

52a/2, andz35a/2. With these boundary conditions, th
coefficients are determined up to a constant. From Eq.~9! we
readily findc0250. With Eqs.~10! and ~11! all other coef-
ficients can be recursively expressed as functions ofe’s
which are proportional toc01 . The coefficientc01 can be
obtained from orthonormality and completeness conditi
to be discussed shortly. Since the boundary condition~12!
requiresc31 to be zero, the following equation determin
the dispersion relations for the interface modes:

1

em1em2em3
@~em32em1!~em11em2!~em22em3!e2q~a1b!

1~em32em1!~em12em2!~em21em3!e22qa

1~em31em1!~em12em2!~em22em3!e2q~b2a!

1~em31em1!~em11em2!~em21em3!#50, ~13!

whereemn(v) is the dielectric constant of materialn. While
the normal relationemn(v)5emn(`)(v22vLn

2 )/(v22vTn
2 )

can be used for the dielectric function of binary compoun
appropriate expressions for ternary and even more com
systems can be found in Ref. 16. For the material show
Fig. 1, we use7

emn~v!5emn~`!
~v22vLAn

2 !~v22vLBn
2 !

~v22vTAn
2 !~v22vTBn

2 !
, ~14!

where values for the dielectric constants and the pho
frequencies of GaAs, AlAs, and AlxGa12xAs are listed in
Table I.

TABLE I. Dielectric constants and phonon frequencies used in the calc
tion of the dispersion relations.

GaAs AlAs AlxGa12xAs

e~`! 10.89 8.16 10.8922.733x
\vLA ~meV! 36.25 ¯ 36.2526.553x11.793x2

\vTA ~meV! 33.29 ¯ 33.2920.643x21.163x2

\vLB ~meV! ¯ 50.09 44.6318.783x23.323x2

\vTB ~meV! ¯ 44.88 44.6310.553x20.303x2
-

s

,
ex
in

n

With these expressions and parameters, the coeffici
c31 is plotted in Fig. 2 as a function of frequency forqa
53. At the characteristic frequenciesvLAn , vLBn , vTAn ,
andvTBn , the coefficientc31 jumps between6`. The fre-
quencies at whichc31 vanishes give the eigenfrequencies o
the interface modes. From Fig. 2 we see that equationc31

50 has ten solutions, corresponding to the ten interfa
modes in the structure of Fig. 1~a!. Equation~13! is numeri-
cally solved for differentq in order to obtain dispersion re-
lations for these ten modes. The result is plotted in Fig.
with six GaAs-like modes having energies from 32 to 3
meV, and four AlAs-like around 46 meV.

The macroscopic dielectric continuum model based
classical electrostatics involves relatively simple formul
tions. It gives the functional form of the interface mode
confined and half space LO modes, but it cannot give T
modes because TO modes do not produce macroscopic e
tric field and charge density. Fortunately the TO modes
not interact with electrons for the same reason and we c
ignore them completely. However, to formulate the intera
tion Hamiltonians between electrons and the interface, co
fined and half space LO phonon modes, we also need
amplitudes of these modes. These amplitudes can be der
from the orthonormality and completeness conditions of t
phonon eigenfunctions, which can only be formulated in t
microscopic framework. Assuming the standard forms f
the continuum expressions of the ionic force equation a
the polarization of the polar medium, the normalization rel
tion is derived from an appropriate generalization of th
optical–phonon normalization condition and is given by7

a-

FIG. 2. Solutions toc31(v)50 which give ten eigenfrequencies of the
interface modes. For this plot,qa53. Other parameters are given in Table I
The dispersion relations for these ten modes are shown in Fig. 3. Note
the lowest two eigenfrequencies are close to each other.
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\

2v
5(

i

e0

2v

]e i~v!

]v E
Ri

dzS q2uf i~q,z!u2

1U]f i~q,z!

]z U2D , ~15!

from which the amplitudes of electric potential for differe
modes can be determined. For the confined LO and
space modes in structure 1~a!, we have the following results
of the electrostatic potential:
for the confined phonon modes in region 2 (v5vL1),

f~z!5S \

e0

1

]e i~w!/]wD 1/2S 1

q21S mp

a D 2D 1/2S 2

aD 1/2

3H cos
mp

a
z, m51,3,5,¯

sin
mp

a
z, m52,4,6,¯

uzu,
a

2
; ~16!

for the confined phonon modes in region 1 (v5vL2),

f~z!5S \

e0

1

]e i~w!/]wD 1/2S 1

q21S 2mp

b2aD 2D 1/2S 4

b2aD 1/2

3H cos
2mp

b2a S z1
b1a

4 D , m51,3,5,¯

sin
2mp

b2a S z1
b1a

4 D , m52,4,6,¯

2
b

2
,z<2

a

2
; ~17!

FIG. 3. Dispersion for the interface modes in structure 1~a!. Ten interface
modes are shown, with six GaAs-like modes from 32 to 36 meV, and
AlAs-like around 47 meV. Note that the lowest two curves are close to e
other.
lf

and for the half space LO modes in regions 0 and 3v
5vL3),

f~z!5S \

e0

1

]e i~w!/]wD 1/2S 1

q21S 2pm

L D 2D 1/2S 4

L D 1/2

3H sin
2pm

L S z1
b

2D , m51,2,3,¯ z<2
b

2
,

sin
2pm

L S z2
a

2D , m51,2,3,¯ z>
a

2
.

~18!

Expressions for the interface modes are also obtained.
stead of giving the long expressions for the coefficientsci 6 ,
we plot some typical interface modes in Fig. 4, where a
included are the confined LO modes and half space mo
with m51,2. As can be seen in Fig. 4, the interface mod
are localized at the interfaces, whereas the confined and
space modes are sinusoidal. For the interface modes, the
plitude is typically concentrated at the interface, where
dielectric constant changes sign and has large absolute
ues on both sides.

The procedure for the interface mode calculation is f
mulated in a matrix form and referred to as the transfer m
trix method.7

For structure 1~b!, the dispersion relations of the inte
face modes are given byc41 /c0150, with c41 obtained
from the same iteration procedure used for structure 1~a!:

1

em1em2
2 em3

@2~em32em2!2~em21em1!2e2qb

22~em3
2 2em2

2 !~em2
2 2em1

2 !eq~a1b!

1~em32em2!2~em22em1!2e2q~b2a!12~em3
2 2em2

2 !

3~em2
2 2em1

2 !eq~b2a!2~em31em2!2~em22em1!2e2qa

1~em31em2!2~em21em1!2#50. ~19!

This equation has 14 solutions as shown in Fig. 5, co
sponding to six GaAs-like and eight AlAs-like interfac
modes. The potential of some typical interface modes for
structure are plotted in Fig. 6. Due to the symmetry of t
structure, they can be categorized as symmetric interf
modes@f(z)5f(2z)# and antisymmetric interface mode
@f(z)52f(2z)#.

The electrostatic potential of the confined and half sp
phonon modes for this structure are:

for the confined phonon modes in region 2 (v5vL1),

r
h



ode
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FIG. 4. Electrostatic potential for the phonon modes in structure 1~a!: the half space modes in region 1, confined LO mode in region 2, confined LO m
in region 3, and half space mode in region 4 for~a! m51 and~b! m52. Four typical interface modes are shown in~c!, with energies equal to~1! 46.84 meV,
~2! 35.48 meV,~3! 34.81 meV, and~4! 32.57 meV, respectively. Vertical lines represent heterointerfaces. For this plot,qa53.
(

f~z!5S \

e0

1

]e i~w!/]wD 1/2S 1

q21S mp

a D 2D 1/2S 2

aD 1/2

3H cos
mp

a
z, m51,3,5,¯

sin
mp

a
z; m52,4,6,¯

uzu,
a

2
; ~20!

for the confined phonon modes in regions 1 and 3v
5vL2),
f~z!5S \

e0

1

]e i~w!/]wD 1/2S 1

q21S 2mp

b2aD 2D 1/2S 4

b2aD 1/2

3H cos
2mp

b2a S z6
b1a

4 D , m51,3,5,¯ ,

sin
2mp

b2a S z6
b1a

4 D , m52,4,6,¯ ,

~21!

where the plus sign is for (b/2),z<2(a/2), and the minus
sign for b/2.z>a/2; and for the half space LO modes in
regions 0 and 4 (v5vL3),
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f~z!5S \

e0

1

]e i~w!/]wD 1/2S 1

q21S 2pm

L D 2D 1/2S 4

L D 1/2

3sin
2pm

L S z6
b

2D , m51,2,3,¯ , ~22!

where the plus sign is forz<2(b/2), and the minus sign fo
z>b/2.

There are other forms of solutions which may not
categorized as the confined, half space, or interface mo
These modes are similar to the interface modes in some
gions and to the confined or half space modes in other
gions. For example, there are the modes which are
spacelike in regions 0 and 3, but are interfacelike in regi
1 and 2 for structure 1~a!. The contribution to electron tran
sition by these modes is either interface modelike or confi
modelike, depending on whether they are interface mode
or confined modelike in the most active region of the devi
We will refer to both the interface modes and the mod
which are interface modelike in the active region as ‘‘surfa
modes.’’

The interaction between electrons and a particular p
non modes is given by the Hamiltonian

He2ph52e(
q

1

AA
eiq•rfs~z!~a2q

† 1aq!, ~23!

where (1/AA)eiq•rfs(z) is the electrostatic potential func
tion for the phonon modes, with in-plane wave vectorq,
andaq

†(aq) is the creation~annihilation! operator of phonons

FIG. 5. Solutions toc41(v)50 for the interface modes in structure 1~b!,
which give 14 eigenfrequencies of the interface modes. For this p
qa50.5. Other parameters are given in Table I. Note that the lowest
GaAs-like solutions are very close to each other.
es.
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III. PHONON-ASSISTED INTERSUBBAND
TRANSITIONS

Neglecting the nearly flatq dependence on phonon en
ergy ~see Fig. 3 for an example of the interface mode disp
sion!, the transition processes can be visualized in Fig. 7.
emission, an electron in the upper subband with in-pla
wave vectork can emit a phonon and jump to one of th
accessible final states in the lower subband~shown as the
equal-energy circle in the lower subband!. For absorption, an
electron in the lower band absorbs a phonon and jump
one of the states on the circle in the upper band. The pho
induced transition rate of a single transition event betwe
two electronic statesun,k& and un8,k8& is given by Fermi’s
golden rule:

W
n,n8

$e
a%

~k,k8!5
2p

\
u^n8k8,Nq61uHe2phunk,Nq&u2

3d~En81Ek86\v2En2Ek!, ~24!

whereEn andEn8 are the band-edge energies of thenth and
n8th subbands,k andk8 are the in-plane electron wave ve
tors of the initial and final states, respectively,Ek
5\2k2/2m is the in-plane energy,v is the frequency of a
given phonon mode, andNq is the phonon population base
on the Bose–Einstein statistics. In addition, the superscr
e and a denote emission process and absorption proc
respectively. The emission and absorption rates are gene
of the same order and have similar in-plane energy dep
dence. For given statesun,k&, un8,k8& and a given phonon
mode, the ratio of the emission and absorption ra
Wn,n8

e (k,k8)/Wn,n8
a (k,k8)5(Nq11)/Nq5e\v/kBT, is con-

stant at a specified temperature. The difference betw
these two processes lies in whether the emission or abs
tion process is forbidden or requires an onset in-plane ene

FIG. 6. Electrostatic potential for some typical interface phonon mode
structure 1~b!. Due to the symmetry of the structure, the modes are eit
symmetric or antisymmetric. The frequencies of these modes are~1!35.86
meV, ~2!34.91 meV,~3!34.26 meV,~4!34.01 meV,~5!33.17 meV,~6!33.07
meV, respectively. Vertical lines represent heterointerfaces. For this p
qa50.5. Other parameters are given in Table I.t,

o
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required by energy conservation. When the subband sep
tion is smaller than the phonon energy, an electron emittin
phonon has to possess a certain amount of in-plane en
Ek for the transition to occur. For phonon absorption, t
transition can always happen whenEn82En<\v. If the
subband separation is larger than the phonon energy, the
emission can always happen while the absorption requ
the electron to possess a certain amount of initial in-pl
energy. We will hereafter focus only on the emission proc
and drop the superscripts ofW, while indicating the differ-
ence in absorption case when appropriate.

The electron wave function can be written as

un,k&5
1

AA
eik•rcn~z!. ~25!

In writing cn independent ofk, we have neglected the effec
of kinetic energy confinement.cn(z) in the quantum well
structures are obtained numerically by solving the Sch¨-
dinger equation. The structures and the wave functions of
first two levels in each structure are plotted in Figs. 8 and
respectively. As in the interface mode calculation describ

FIG. 7. Electron emission and absorption between initial stateun,k& and
final stateun8,k8&. For emission, the accessible final states are those on
circle in the lower subband. For absorption, the accessible final state
those in the upper subband.
ra-
a
gy

the
es
e
s

e
,
d

in Sec. II, the materials are chosen to be GaAs~material 1!,
Al0.25Ga0.75As ~material 2!, and Al0.6Ga0.4As ~material 3!, re-
spectively.

From Eqs.~24! and ~25!, with the electron–phonon in
teraction Hamiltonians written in a general form

He2ph5(
q

1

AA
eiq•rh~q,z!~a2q

† 1a2q!, ~26!

whereh(q,z)52ef(q,z). The emission rate is given by
e
re

FIG. 8. Quantum well potential profile of structure 1~a! with electron wave
functions associated with the first two levels. Layer 1, 2, 3 and 4
Al0.6Ga0.4As, Al0.25Ga0.75As, GaAs, and Al0.6Ga0.4As, respectively.

FIG. 9. Quantum well potential profile of structure 1~b! with electron wave
functions associated with the first two levels. Layers 1, 2, and 3 are Ga
Al0.25Ga0.75As, and Al0.6Ga0.4As, respectively.
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Wn,n8~k,q!5
2p

\
~Nq11!uF~q!u2d~En81Ek2q

1\v2En2Ek!, ~27!

with F(q)5*dzh(q,z)cn* (z)cn8(z) and the two-
dimensional in-plane wave vector conservation relationk
5k81q.

Summing over all allowable final states~or, in other
words, summing overq!, we calculate the emission rate o
an electron in an initial stateun,k& to a lower subbandn8

Wn,n8~k!5(
q

Wn,n8~k,q!. ~28!

As discussed above, due to energy conservation, some
sition is forbidden. For the emission process, whenEk
,\v8[\v2(En2En8) and v8.0, i.e., the two subband
edges are closer than a phonon energy and the electron
not posses enough initial kinetic energy, there are no fi
states available and the process is forbidden. Forv8.0 and
Ek.\v8,

Wn,n8~k!5
A

4p2

2p

\
~Nq11!E

2umax

umax
du

2m

\2

3
uF~q1!u2q11uF~q2!u2q2

uq12q2u
, ~29!

where

q65k cosu6Ak2 cos2 u2
2m

\
v8,

umax5cos21SA2mv8

\k2 D .

For v8,0,

Wn,n8~k!5
A

4p2

2p

\
~Nq11!E

0

2p

du
2m

\2

uF~q1!u2q1

q1
.

~30!

The above argument also holds for the absorption p
cess, as long as changes are made forv→2v, v8→2v8,
Nq11→Nq , and q→2q. That is, for the absorption pro
cess,

Wn,n8~k,q!5
2p

\
NquF~q!u2d~En81Ek1q2\v2En2Ek!,

~31!

when Ek,2\v8 and \v8[\v2(En82En),0, i.e., the
two subband edges are farther away than a phonon en
and the electron does not have enough initial in-plane
ergy, there are no final states available and the absorp
process is forbidden. Forv8,0 andEk.2\v8,

Wn,n8~k!5
A

4p2

2p

\
NqE

2umax

umax
du

2m

\2

3
uF~q1!u2q11uF~q2!u2q2

uq12q2u
, ~32!

where
n-

oes
al

-

rgy
n-
on

q65k cosu6Ak2 cos2 u1
2m

m
v8,

umax5cos21SA2
2mv8

\k2 D .

For v8.0,

Wn,n8~k!5
A

4p2

2p

\
NqE

0

2p

du
2m

\2

uF~q1!u2q1

q1
. ~33!

To proceed further we need the electronic wave fu
tions. Instead of assuming some form of the wa
functions,12 we seek numerical solutions as they enable us
examine various structures, such as the asymmetric and s
metric structures as shown in Figs. 8 and 9.

For the half space modes and confined LO modes,
numerical results obtained from our calculation show that
coupling between electron wave functions and these mo
is negligible compared to that between electrons and bulk
interface modes. This is because the first two electronic
els are essentially localized inside the well while half spa
modes are outside the well, therefore the overlapping inte
of F(q) is minimal. For the confined modes withm
51,3,5,¯ , since we are considering two consecutive ele
tronic subbands which always have opposite parity in
symmetric structure or near-opposite parity in the asymm
ric case, these modes have zero or near-zero coupling
neighboring electronic subbands due to the symmetric po
ization of these modes. For the confined LO modes withm
52,4,6,¯ , the coupling is larger but still negligible a
compared to the electron–bulk-mode and electron–interfa
mode coupling.

For the interface modes, typical comparisons betwe
transition rates due to the bulk mode and the chosen inter
mode are shown in Fig. 10~for the asymmetric structure in
Fig. 8! and Fig. 11~for the symmetric structure in Fig. 9!,
respectively. The emission rates due to electron interac
with the interface modes are about one order of magnit
larger than those calculated using the bulk Fro¨hlich Hamil-
tonian. We found that, for certain interface modes, the ra
of the emission rates due to the interface mode scattering
the rate calculated using the bulk Fro¨hlich Hamiltonian can
be as large as 50. Carefully examining these interface p
non modes, we found that these modes usually have on
two orders of magnitude larger amplitude than the other
terface modes. In Fig. 10, for the asymmetric structure,
rate obtained using the bulk Fro¨hlich Hamiltonian is com-
pared to the rate of an interface phonon emission with
phonon energy near 34.8 meV, which is close to the subb
separationE22E1533.7 meV. In Fig. 11, the same com
parison is made for the symmetric structure, showing
emission rate assisted by an antisymmetric interface mod
50 meV, withE22E1547.1 meV. An antisymmetric mode
is shown here, while the symmetric modes have near-z
coupling to the first two levels due to the parity conside
ation. In these two figures, the emission rates due to the
space modes and confined phonon modes are all neglig
and merge into thex axis. These results indicate that th
interface phonon-assisted transition rates can be one to
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orders of magnitude larger than those calculated with
bulk Fröhlich Hamiltonian, which agrees with the results
Ref. 12. In Figs. 12 and 13, the maxima of emission ra
~the maxima ofWs as functions ofEk! as functions of the
level separationE22E1 for different phonon modes are plo
ted, and those of the interface mode and bulk mode are c
pared. Figure 12 shows the maximum rates calculated u

FIG. 10. Comparison of the transition rates for the asymmetric struct
Only the contribution of one surface mode of 34.8 meV is shown. T
energy level separation is 33.7 meV for this plot. The maximum rate du
the surface mode is about 50 times larger than that of the bulk mode.
rates for the confined and half space modes are negligible and indiscer
from thex axis.

FIG. 11. Comparison of the transition rates for the symmetric struct
Only the contribution of one antisymmetric interface mode of 50 meV
shown. The rates for the confined and half space modes are negligible
indiscernible from thex axis. The rates for the symmetric modes are ze
due to the parity consideration.
e

s

m-
ng

the bulk mode and an interface mode with energy near
meV for the asymmetric structure. In Fig. 13, the maximu
rates calculated using the bulk mode and an interface m
with energy near 50 meV for the symmetric structure a
compared. These results confirm that the interface phon
assisted transition rates are significantly larger than those
tained from the bulk mode interaction Hamiltonian.

The form factors can be defined through the effect
electron–electron interactions mediated by phonons. The
fective electron–electron interaction due to exchange of p
non modes can be formally written as9

e.
e
to
he
ble

.

nd

FIG. 12. Comparison of the peak transition rates as functions of level s
ration for the asymmetric structure. The surface mode has an energy o
meV.

FIG. 13. Comparison of the peak transition rates as functions of level s
ration for the symmetric structure. The surface mode has an energy o
meV.
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He2e~q,in!52pasS 2vs
3

m* D 1/2 1

2q
Fs~q!Ds~ in!, ~34!

wherea j is the coupling constant defined as the term in
pendent of the electron wave functions and it reduces to
bulk Fröhlich coupling constant when the differences amo
materials are neglected,Ds( in)52vs /@( in)22vs

2# is the
phonon Green’s function,vs is the frequency of phonon
mode s, m* is the electron effective mass, and the for
factor Fs(q) is defined as the term independent of mate
parameters. Since the form factors depend only on the e
tron wave functions associated with the quantizedz motion
and phonon electrostatic potential profiles, the sum of
form factors for various phonon modes should be equa
the form factor for bulk modes, due to the orthonormality
the phonon eigenmodes. Therefore, if phonon eigenfrequ
cies and the coupling constants of the interaction Hami
nians were the same as those of bulk phonons, the sum
transition rates induced by all phonon modes in a quan
well structure would just be equal to the rate by bu
phonons. However, for interface modes the transition ra
are sensitive functions of eigenfrequencies, possibly hav
orders of magnitude difference among transition rates by
interface modes of different frequencies. Nonetheless,
sum rule provides a way to examine the phonon mode
culations. The form factors for the calculated phonon mo
in a simple double heterostructure are shown in Fig.

FIG. 14. The form factors of various phonon modes in the symmetric st
ture. The electron wave function of the second level is used. The f
factors of the confined LO mode and antisymmetric mode are neglig
compared to those for the symmetric and half space modes.
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-
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where the electron wave function of the second level in
structure is used. In this specific case, the form factors for
confined LO mode and antisymmetric interface mode
negligible as compared to those for the symmetric interf
and half space modes. The sum rule is well observed in
calculation.

IV. CONCLUSION

Optical phonon modes and their effects on electron
laxation rates in the step quantum well structures are stu
in this work. The various phonon modes, including the int
face phonon modes, confined LO modes, and half sp
modes are calculated using the transfer matrix method, ba
on the dielectric continuum model. We have examined a
compared electron transition rates obtained using the b
Fröhlich Hamiltonian and interaction Hamiltonian with th
localized phonon modes. It is concluded that, in narr
quantum well structures, instead of employing the sim
electron bulk–phonon interaction, the interface phon
modes have to be considered as they play a very impor
role in phonon-assisted intersubband transitions.
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