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The mutual diffusion coefficient D", of a Brownian particle may be expressed as the ratio of a thermodynamic 
factor K and a friction factor 1m. K and f~, both being dependent on the macroparticle concentration. The 
contribution to f m of direct (e.g., hard sphere, electrostatic) interactions is here estimated to first order in the 
macroparticle concentration. In contrast to our earlier calculation [1. Chern. Phys. 67, 4690 (1977)] in which 
the direct interaction contribution JIm to the Stokes' Law 'drag coefficient was obtained from a 
fluctuation-dissipation equation. JIm is here obtained directly from a mechanical argument based on the 
equations of motion of the macroparticles in solution. J fm is explicitly evaluated for the case of particles 
which interact through a weak Gaussian potential. 

I. INTRODUCTION 

The frictional force - fV on a moving macroparticle 
has usually been interpreted in terms of hydrodynamic 
effects, the concentration dependence of the drag coef
ficient f being taken to arise entirely from perturbations 
of the solvent flow around a probe macroparticle due to 
the other macroparticles in the solution. Direct inter
particle interactions then affect f in a secondary way; 
by altering the relative likelihood of different configura
tions of neighboring macroparticles, the direct interac
tions influence the probability of perturbations of the 
solvent flow around a probe macroparticle. Some years 
ago, Mazo l showed that direct interactions between dif
fusing particles also can make an intrinsic contribution 
to f, as reflected by measured values2 for the tracer 
diffusion coefficient of sodiumlauryl sulphate micelles. 
More recently, this author argued3 that, in the absence 
of hydrodynamic interactions, direct interactions should 
increase the Stokes' law drag coefficient fs of a macro
molecule in concentrated solution. 

The calculations of Refs. 1 and 3 are both based on 
fluctuation-dissipation type relations which equate a drag 
coefficient to a time integral over a force -force corre
lation function. While a relation such as 

1 t \ 

f=3KBT fo (F(O)' F(t»dt (1 ) 

is a convenient starting point for a calculation, Eq. (1) 
and its usual derivations mask the casual chain leading 
from the movements of a probe macromolecule through 
the series of events which repOSition the other macro
molecules in the system into configurations in which 
-Iv is enhanced. Furthermore, Eq. (1) and the argu
ments based on it apply directly to the Stokes' law drag 
coefficient IT which is relevant to the tracer diffusion 
coefficient DT=KBT/IT' For the mutual diffusion coef
ficient Dm and its associated drag coefficient 1m, matters 
are more complex. Indeed, Weissman4 argues that 
while the fluctuation-dissipation argument does apply 
tOfT' a more comprehensive analysis shows that there 
is not a direct interaction contribution to 1m. 

a) This work supported in part by the National Science Founda
tion under Grant Che-7920399. 

In this paper a novel direct mechanical procedure is 
used to estimate the effect of direct intermacromolecu
lar interactions onfm' In Sec. II, we re-examine the 
case of a macromolecule moving with constant velocity 
vo, USing the new procedure to rederive the central re
sult of Ref. 3. Having demonstrated the procedure in 
a simple case, we proceed in Sec. III to estimate the 
(frequency dependent) contribution of direct interactions 
to fm' Section IV discusses our results. 

II. DIRECT INTERACTIONS AND STOKES' LAW 
DRAG 

Reference 3 obtains a fluctuation-dissipation form 
for the direct contribution to Is. Using the prescrip
tion (see Appendix) 

1 d{N}exp[ - {3(W -Al1-f d{N}exp[ - (3(W -A») 
akO 

(
fakoexP(-ik. rj)) 

xexp f;t (lakI Z) 
(2) 

(where rj is the location of one of the N macroparticles 
in the system, W is their total potential energy, A is 
the Helmholz free energy, f d{N} denotes an integral 
over all particle configurations, (I ak l

2 ) is the ensemble 
average of the squared magnitude of the kth spatial 
Fourier component of the macroparticle density, and 
f akO d{N} denotes a constrained integral limited to con
figurations for which 

N 

f;exP(ik. rj)=a kO ' 

to replace the constrained integral with an uncon
strained integral [Eq. (2.9») of Ref. 3 becomes 

() -KBTcgYg f [h(q)]2 ( ~)2 
fT= (21T)3 dq(la.(O)IZ)q·vo 

(3) 

x{(exp[(-iq' vo-r.)T]-l)j(-iq· vo-r.)}, (4) 

where g(r) is the macroparticle radial distribution func
tion, r. is the relaxation time for macroparticle density 
fluctuations of wave vector q, and 

h(2)(q)= f drexp(iq. r)[g(r) -1]. (5) 
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Using the numerical approximations of Ref. 3, except 
assuming r .=KB Tq2/f( I a.1 2), one finds 

f=-Vof coj(::)3 (vo ' k)2[h(k)]2, (6) 

which result was previously obtained in Ref. 3. 

Our new argument considers a probe molecule in a 
suspension of similar particles. Initially (t = 0) the 
radial distribution of particles around the probe is 
spherically symmetric. The probe is then brought 
instantaneously to some (small) velocity vo. The dis
tribution of particles around the probe attempts to 
track the motion of the probe. However, because the 
relaxation time of the suspension is not zero, the par
ticles in the radial distribution function tend to lag be
hind the probe, their positions being characterized by a 
distribution function g(r; AX t) which expresses the 
probability of funding a particle at r relative to the probe 
given that the probe moved through AX during the inter
val (0, t). g(r; AX, t) is not spherically symmetric; the 
asymmetry in g produces a net retarding force on the 
probe. An argument related to this appears in the 
classic paper of Onsager and Fuoss5

; these authors, 
however, explicitly state that the effect which they treat 
does not modify the mutual diffusion coefficient. We 
now estimate g and compute the drag force which it 
produces. 

Because of its symmetry, the initial geq(ro) for a par
ticle at the origin can be expanded entirely in terms of 
cosine waves, namely, 

(7) 

In describing the distribution of particles around a probe 
located at AX, one commonly discusses too sy-mmetric 
geq(r), r being measured from the probe. For the prob
lem considered here, it is more convenient to expand 
geq in a coordinate system fixed in space. Defining R 
as the space-fixed coordinate and r as the particle
fixed coordinate, R = r + AX 

geq(R)=1+(2!)3j dqh(q) (8) 

x[cos(q. R)cos(q· ~x)+sin(q' R)sin(q. ~)]. 

Equation (8) would always be exact if the solution ad
justed instantaneously to the changing position of the 
probe. The behavior of a real system may be described 
by the expansion 

g(r;Ax,t) = 1 + f (::)3 [ait) cos(q· R) + b.(t) sin(q· R)] , 

(9) 
a.(t) and b.(t) being implicit functions of ~x. For g(R) 
around a moving probe, the a.(t) and bit) do not achieve 
their limiting values h(q) cos(q. ~) and h(q) sin(q· AX). 

I 

Their relaxation rates are determined by diffusion; as
suming that their regression is adequately described by 
a linear process, one finds 

da (t) & = - r.(a.(t) -h(q)cos[q. AX(!)]) , (lOa) 

dbJ~t) = _ r .(b.(!) - h(q) sin[q. AX(t)]) . (lOb) 

If we initially have an equilibrium ensemble of probes, 
at t=O a.(O)=h(q) and b.(O)=O; 

a.(t)= h(q)e·r• t + r. it ds e·r • (t'S)h(q) cos[q· AX(S)] 
o 

b.(t) = r. 1t ds e·r• (t·s) h(q) sin[q. AX(S)] , 
o 

(l1a) 

(l1b) 

where, when AX = 0, direct probe -particle interactions 
do not affect the temporal behavior of the b.(t). In this 
case, the probe-solution forces are spherically symme
tric, tending equally to increase (or decrease) the con
centration at pOints + Rand - R. However, the b.(t) 
are antisymmetric around the probe; forces having 
equal effects at ± R change the a.(t) but have the wrong 
symmetry to couple to the b.(t). Hydrodynamic inter
actions between the probe and its neighbors will affect 
r., in that an Oseen-type interaction will uniformly 
slow the motion of near neighbors of the probe, re
gardless of whether the motion is out of a region where 
b.sin(q· R) is positive or into a regionwhere b.sin(q· R) 
is negative. If hydrodynamic interactions are ignored 
and clusters containing more than two particles are un
important, the relaxation rates of the a. and the b. are 
the same. If these conditions are not satisfied, r. de
scribes an aspect of the decay of the three -point density 
correlation function. 

Given that the density of particles around the probe 
is not spherically symmetric, the nonvanishing force 
on the probe is 

(F>=cOJdrg(r;Ax,t) :~ f. (12) 

Using Eqs. (9) and (11) for g, one has 

+ r. f ds exp[ - r.(t -s)]h(q)cos(q. AX(S))] 

+sin(q· R)r.latdse·r.(t'S)h(q)Sin(q. Ax(s))}f :~. 

(13 ) 
For a particle moving with constant velocity, AX = vos; 
for this case the time integrals give 

(F>=cojdr[1+(2
1
)3Jdqh(q){COS(q. R)[exp(-r.t)+r (rqcos(q. vot)+q· vpsin(q. vot)-rqexp(-r.t))J 

7r .• r~+(q.vo? ~ 

(14) 
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Expanding (q. R) in terms of rand vot, integrating by 
parts on r, applying the approximation 

(15) 

which is ·obviously valid for I j3WI «1, and using spheri
cal symmetry to eliminate terms in sin(q· r), 

CoKBTf ~ 2 lh(2)(q)]2r 
<F>=-Vo~ dq(q·vo) r2+(q.vo)2+A, (16) 

where A represents terms vanishing exponentially as t 
_00. If r2»(q. vo)2 and r=KBTq2/!0, which approxima
tions were also used in Ref. 4, 

(17) 

This form is the same as Eq. (6), which was, however, 
obtained by indirect means. The approximations used 
to obtain Eqs. (6) and (17), such as Eq. (15), do not ap
pear to be identical in all respects. 

III. DIRECT INTERACTION AND fm 

The procedure of Eqs. (7)-(17) is now applied to esti
mate the effects of direct interactions on the friction 
factor of the mutual diffusion coefficient. We consider 
explicitly the behavior of the dynamic structure factor 

N 

S(k,t)=(~1 N"1exP{ik.[rj(0)-rjU))}; (18) 

at small times, defining 

D - _ 1 1" dS(k, t) lS(k t)]-1 
m- 11 1m dt ' , 

t- 0 
(19) 

The limit t - 0 is interpreted so that t is always much 
greater than the Brownian velocity relaxation time T B • 

The relation of Dm to the quantity measured in the 
classical boundary-spreading measurement will not be 
considered here. 

By dividing the velocity of each particle into an in-

teractive part vrj(t) and a Brownian part VBI(t), one ob
tains to lowest order in time (see Appendix) 

. dS(k t) 1 ( ~ [ 11m -Jt-=N lim L.J exp[ik. rjJ(O)] ik· vll (t) 
toO toO j,J=1 

(20) 

The first line of Eq. (20) will be treated elsewhere6 ; 

it is found that in the absence of hydrodynamic interac
tions 

(21 ) 

In this section the final term of Eq. (20), viz., 

2 ( N 
1= lim N L exp[ik· rjJ(O)] 

1-0 1,J=1 

(22) 

is considered. [A term proportional to k· vIl(s)k. vIl(t) 
is of second order in t and will be neg~ected here.] 

The force on a probe is again obtained from Eq. (13); 
however, in this section ~x(s) is assumed to arise from 
the random motions of the probe. The average < > then 
includes an average over all possible paths ~x(t). Re
placi!1g R = ~x(t) + r and integrating by parts on r, Eq. 
(13) becomes 

F(t) = ~~~3 f dr dq kB T h(q)q cos(q. r)h(q) {- sin(q. ~xI)[exp (- r "t) + r. f ds 

xexp[ -r.u -s)] cos(q· ~xs)] + cos(q. ~xI)r. f ds exp[ - r.u -s)] sin(q· ~x.)} 
r, being measured from the moving probe, is impliCitly time dependent; terms in sin(q' r) are eliminated by 
spherical symmetry in r. To proceed further, the approximation (15) is applied. Substitution of Eqs. (15) and 
(23) into Eq. (22) gives 

I=~ ~r;)3~ (t.1 exp[ik· rjJ(O)] f(k, V BI (S1))ds 1j dqk· q[h(q)]2 

x {r. f ds exp[ - r.u -s)] sin[q. (~. - ~Xt)]- e-r • t sin(q. ~t)}) . 

(23) 

(24) 

Equation (24) appears to be the simplest general form for I for weak potentials. To effect a significant further 
reduction in Eq. (24), an explicit expression for h(q) is needed. For particles with purely weak interactions, we 
use the Gaussian form 

h(q)=Bor~exp(-q2ro) , (26a) 

() 1 Boexp(--?/4ro) 
g r = + 87Ta 72 , (26b) 
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where ro and Bo determine the range and strength of the potential, respectively. From Eqs. (24) and (26b), W(O) 
= -KBTBo/(81T3 12). Combining (26a) and (24), performing the angular part of f dq, making an integration by parts 
on Iql and replacing r.=Doq2, 

where j),2X = j),x(s) - j),x(t) and - indicates a unit vector. 
The integral on q gives a confluent hypergeometric func
tion. From Luke1 [Eq. 4.2(2)] 

IF1(u, v + 1, - A2/4z 2) 

2r(v + 1)z2a f" (2 2) 2a-v-1 ( ) 
=r(u) (X/2)Z 0 duexp-zu u JvXU. (28) 

(29) 

where 

(a)n = a(a .,: 1)· .. (a + n - 1), (a)o = 1 , 

f exp(-z2u2)usin(Au)du= ~~ exp(-X2/4z2), (30a) 

f exp(- Z
2u2)u3 sin(Xu)du = 1!\ (6z2 - X2) exp(- X2/4z2) , 

(30b) 

J exp(_z2u2)u5 sin(Au)du 

15v1TX ) 2 2 [ 4 X2 4 (X2)2]\ 
=~ \exp(-x /4z ) 1-"3 4Z! +15 4Z! ~. 

(30c) 
If the potential W is weak, the Brownian displacement 
during the period (0, t) will be given in first approxima
tion by its unperturbed form 

P(j),x(s) -j),x(t))=[41TDo(t _s)]3/2 exp[(j),X(S) _~X(t))2] • 
4Do(t -s) 

(31) 
Equation (31) allows evaluation of the average over dis
placements, the reduction 

(j),x(t): (j),x(s) - j),x(t)) = - ([j),x(s) - j),X(t)]2) 

being used as needed. At this point the integration over 
s is elementary. 

I_Dok2coFor~ [_4y-1/2+ ly-3/2+(x+~)y-5/2 
- 24/21T372 T TO" 

+H +1T -4arctan(ly)], (32) 

(33) 

where <PT=COV is the thermodynamic volume fraction of 

(27) 

particles in the system, the "volume" V of a Gaussian 
particle being defined: 

V=I f dr(g(r)-l)l =4IBolr~. (34) 

From Eqs. (19)-(21) and (33) the cross correlation be
tween vn(t) and VB1(S) (sst) serves to retard the decay 
of S(k, t). Combining these equations, for weak Gaussian 
particles, 

(35) 

<PH being the hydrodynamic volume fraction of the sol
ute. If Dm is expressed formally as a ratio of thermo
dynamic, hydrodynamic, and kinematic factors as 

(36) 

to first order in concentration one may write 

..!.. =!. [1 _ 0.3917 1 (0) -11] 1m I 24/2 <PT g . (37) 

Direct interactions therefore do serve to increase tie 
effective drag coefficient in the mutual diffusion coeffi
cient. 

For weakly interacting particles, this eff€ct is not 
large. Equations (17) and (26a) give the change in the 
Stokes' law drag coefficientls for our model potential 
as 

f -/[1 + ¢Tlg(O) -11] 
s- 24/2 (38) 

or 

(39) 

Direct interactions between diffusing particles are mod
erately less effective at hindering diffusion than at hin
dering very slow steady motion, at least in this system. 

There is a classical argument, due originally to Ein
stein, 8 that in the solvent-fixed reference frame 1m 
should be identically the same as Is. This argument is 
now understood to apply only as a long-wavelength, low
frequency (i. e., t -"") limit, in which the fluctuating 
forces relax in a time T much shorter than the time t 
of interest for diffusion. In the present case, the mo
tion of the probe particle and the relaxation of the force 
fluctuations are governed by the same diffusion coeffi-
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cient Do; requiring t» T is effectively the same as re
quiring Do «Do, which is an absurdity. In other words, 
if encounters between diffusing macroparticles are taken 
into account, the low-frequency limit, needed if fm = fs 

is to obtain, does not exist. 

Weissman4 has suggested that direct interactions do 
not contribute to fm' This argument is based on the 
assertion that the molecular mean potential (expressed 
as the chemical potential /1) "depends on no variables 
which do not equilibrate rapidly with c. Rapidly means 
at a rate faster than Dmk2 • .. " Our result, however, 
is that the intermolecular forces contain terms (vari
abIes) which relax at rates which are not faster than 
Dmk2, namely, there are terms which relax as Dmq2 for 
q:s k. Weissman's ingenious argument would therefore 
appear to fail because its underlying assumptions do 
not apply to the systems of interest here. 

Schurr9 has previously obtained a result related to 
that of this paper. Using the Kirkwood form lo for the 
drag coefficient, he demonstrated that fluctuating poly
electrolyte-small ion interactions substantially enhance 
the friction factors of isolated, diffusing polyelectro
lytes. 

APPENDIX: DEMONSTRATION OF EQS. (2) AND 
(20) 

This Appendix summarizes the justifications for the 
use of Eqs. (2) and (20), as will eventually be presented 
in full detail in Ref. 6. 

The purpose of the prescription (2) is to replace a 
constrained integral, in which the integration is held to 
the (3N -I)-dimensional hypersurface determined by 
Eq. (3), to an unconstrained integral over a 3N-dimen
sional space. In the unconstrained integral, the effect 
of the constraint is to be supplied by an additional factor 
in the kernel of the integral [the exponential on the right
hand side of Eq. (2 )]. The justification for (2) is that it 
is the simplest substitution which gives the correct an
swer when applied to the constrained integrals: 

( d{N}exp[ -.B(W-A)] [I:exP(lk' rlr =a~o, 
JakO 1=1 

(AI) 

N 

1 d{N} Lexp(iq. rl)exp[-.B(W-A)]=O (kHq) , 
akO 1=1 

(A2) 
N 1 d{N}exp[-.B(W-A)] Lexp[iq. (rl-r,)]=Ns(q) 

akO 1,,=1 

(kHq). (A3) 

(AI) follows from the definition of Iako' while (A2) and 
(A3) are required by the statistical independence of a k 

and a. for k*±q. Equation (2) loses many mode-mode 
coupling effects, which are neglected conSistently 
throughout this paper. 

A previous paper of this author3 replaces the exponen
tial with the product form 

Jd{N}expl-.B(W-A)ll]ll+akoeXP(-ik. r.)), (A4) 

which lacks the self -terms exp(ik. (r. + r.)) needed to 
satisfy Eq. (AI) for n> 1. The normalizing factor 
( i ak l 2

) in (2) has a physical interpretation, beyond the 
need for its presence in order to satisfy (AI). ak(O) 
may be increased either by changing the relative posi
tions of the particles within clusters of nearby parti
cles. The smaller (la k I

2
) is, the harder it is to dis

tort a cluster; as ( I akl2) becomes smaller, a given 
value of ak(O) corresponds more and more to the re
location of noninteracting particles. 

Equation (20) is obtained from Eqs. (18) and (19) by 
first expanding (18) in terms of the displacements 

, 
r,(t)-r,(O)= In v,(s)ds, (A5) 

and then decomposing V ,(s) into its Brownian and inter
active parts vB,(s) and VIis), obtaining 

N 

S(k, t)=N"1 L exp{ik. [rl(O) - r,(O)]} 
., '=1 

xt; [ik. J
O
'lVBI (S)+VlI (S)]dS]" 

nl 

One notes that 

(k· VBI(S)=O, 

(fo' dS I fa' ds2k· VBI(SI)k· V BI (S2) =2Dk2
t, 

and 

vIl(t) = F.(t)lfl , 

(A6) 

where F. and fl are the force on i and the drag coeffi
cient of i, respectively. Taking lim,_odS(k, t)/dt, and 
observing that all terms containing two or more factors 
M ds vanish at t - 0, a term -by -term expansion of the 
nonzero part of Eq. (A6) yields Eq. (20). 
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