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Dispersion relations are derived to determine the growth rate, dominant wavelength, and 
group velocity of disturbances caused by the beam breakup instability. Considerations include 
weak and strong focusing, x-y coupling in solenoidal transport, the spacing of accelerator 
cavities, and periodically pulsed beams. Beam breakup growth is minimum when the cavity 
spacing equals an integral number of half-betatron wavelengths for quadrupole focusing, 
and an integral number of betatron wavelengths for solenoidal focusing. Minimum growth is 
also found for periodic pulses separated by an integral number of half-periods of the 
TMllo cavity mode. Expressions for beam breakup growth at the minima are obtained. 

1. INTRODUCTION 

The acceleration and transport of high-brightness elec- 
tron and ion beams are subject to disruption by the beam 
breakup (BBU) instability.le7 This instability results from 
coupling of transverse beam oscillations and a nonaxially 
symmetric mode of the accelerating structure. With cylin- 
drical pillbox accelerating cavities, the TMllo mode pro- 
duces the maximum instability growth. 

In the regenerative BBU instability, upstream propa- 
gation of the TM, 10 mode provides feedback for amplifica- 
tion within a single accelerator section.2 In the cumulative, 
or multisection, BBU instability, the TM,,, modes of dif- 
ferent accelerator sections are coupled only by the passage 
of the electron (or ion) beam. In this article, we study the 
cumulative BBU instability in linear focusing systems. In 
quadrupole focusing systems or systems containing certain 
nonaxisymmetric optical elements (e.g., magnetic sector 
field and edge focusing), the x and y directions of motion 
are not coupled.’ With solenoidal transport, the BBU in- 
stability is affected by the coupling of the x and y directions 
of transverse motion.9 

Our approach is to examine the BBU dispersion rela- 
tions. This is a practical approach motivated by ongoing 

*“J’ experiments. the wavelength, e folding length, and 
group velocity of a BBU disturbance are directly obtain- 
able from the dispersion relation. The dispersion relation 
may also be used in a study of the response to initial con- 
ditions, and calculation of beam offset versus time at a fixed 
position.7 

We first consider continuum models of quadrupole and 
solenoidal transport, applicable when the accelerating cav- 
ity spacing is small compared to beam breakup scale 
lengths and the beam current is constant. Our results agree 
with several prior calculations. 

We then consider the case of finite accelerator cavity 
spacing, treating the cavity forces as periodic impulses. For 
cavity spacing that is an integral number of half-betatron 
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wavelengths with quadrupole transport, or an integral 
number of betatron wavelengths with solenoidal transport, 
BBU growth vanishes. When the finite cavity length is 
considered, BBU growth for these cavity spacings is calcu- 
lated and found to be finite. 

Finally, we consider the case of a pulsed beam. For 
pulses of vanishing pulse length separated by an integral 
multiple of one-half the TMllo period of the accelerating 
cavities, BBU growth vanishes. When a finite pulse length 
is considered, BBU growth no longer vanishes completely 
at these pulse separations. An expression for BBU growth 
with finite pulse length is presented. 

II. THE ONE-DIMENSIONAL CONTINUUM MODEL FOR 
QUADRUPOLE TRANSPORT 

We consider a beam transport system with periodically 
spaced cylindrical pillbox accelerating cavities. Transverse 
motions in the x and y directions are not coupled with 
quadrupole transport. Beam displacements in the x direc- 
tion excite one polarization of the TMllo wavemode in the 
accelerator cavities, producing a magnetic field in the y 
direction on axis. The resultant VXB force is in the x 
direction. Consequently, the x and y directions of motion 
are not coupled in the BBU instability. 

For quadrupole transport, the BBU instability has 
been studied previously using a one (transverse) -dimen- 
sional coupled-mode description.3’7 The one-dimensional 
coupled-mode equations are 

d dx 
;iiy;iT+w&=a, (14 

where y= (1 -/32)-1’2 is the relativistic mass factor, w, 
is the betatron angular frequency, and d/dt = iV& + vi3/ 
& is the convective derivative. Equation ( la) describes the 
acceleration of the beam by the focusing field and the mag- 
netic field BY of the TMllo mode. Equation (lb) describes 
excitation of the TMllo mode with angular frequency w. 
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(w. > 0) and quality factor Q by the transverse beam dis- 
turbance. The quantity E is the dimensionless coupling con- 
stant of the e beam to the TM,,, mode, given by12 

(24 

where I is the length of the microwave cavities, L is their 
spacing, and I is the beam current magnitude (I> 0). The 
coupling constant is related to the transverse impedance of 
Ref. 4 by 

c Z,(ohms) I fl 
‘=- Q 

-- 
17kA y’ (2b) 

For a coasting beam, v, y, and E are constant. Assum- 
ing a disturbance of the form e’O’- ik”, Eqs. ( 1) and (2) 
yield the dispersion relation 

f12-o$+r=o, (3) 
where 

R = o - vk and I+ = 
2& 

--co2+w~+iwwo/Q 

For real, positive values of w, the magnitude of I is max- 
imum for w =tio, where I? ( oo) = - 2ic&Q. 

Scaling laws can be determined from the dispersion 
relation by considering the case where w is real and posi- 
tive. The e folding length of the instability is given by 

1, = Pm(k) I a,,l - ‘, (4) 

where w,,, is the frequency giving the largest value of 
Im( k). In this model of the BBU instability, wmsx~:oo, 
with o. (1 - l/21/5&) < w,,(wc. The wavelength of 
maximum growth is 

(5) 

The group velocity of a BBU disturbance dominated by the 
frequency u,,, is given by 

Consider a disturbance excited at (z,t) = (0,O) and dom- 
inated by frequency w,. The time tmmax, at which the dis- 
turbance peaks at fixed z, is related to z by tmax = z/up 
while the disturbance amplitude grows as 8’4 = erm(k)z. 

For sufficiently weak focusing that 1 l?(oo) 1 
= 20&Q ) o:, the dispersion relation reduces to 

fi2+r=o. (7) 
For Q, 1, maximum growth occurs for w,, = w. 
[l - ( l/21/58)], for which 

kl,,,,_=; [wo( 1-A) 

*@&l/2 
33/4 

Q m - 2 (i+3-1’2) , 1 (8) 

ak 1 
2% =v I ( 

1&/2Q3/2 7 . 
%lax 1 

(9) 
The mode with Im(k) > 0 propagates downstream as it 
grows. 

For sufficiently strong focusing that ] l? ( oo) I ( w:, the 
e folding length given by Eq. (8) exceeds the betatron 
wavelength. In this strong focusing regime, the dispersion 
relation reduces to 

a= ~(wf-r)1'2~~f[W,-(r/20,)~. (10) 
Maximum instability growth is obtained at wmaX = oo, for 
which 

k,uw=; [cuo*(coc++$j], 

;I,/; (1+2&J. 

(11) 

(12) 

Because Im(k) a ea l/L, the growth per cavity in the 
strong focusing regime is independent of the cavity spac- 
ing. For weak and strong focusing, the e folding lengths 
and group velocities obtained from Eqs. (8), (9)) ( 1 1 ), 
and (12) agree with asymptotic calculations of the re- 
sponse to an impulse7 [see Eq. (12a) for weak focusing and 
Eq. (12b) for strong focusing in Ref. 71. In the strong 
focusing regime, these results are also in agreement with 
the approach of Ref. 4, if a transfer matrix for quadrupole 
transport is employed. 

111. A TWO-DIMENSIONAL CONTINUUM MODEL FOR 
SOLENOIDAL TRANSPORT 

In solenoidal transport systems, transverse motions in 
the x and y directions are coupled by the VXB force. To 
model this case, we consider a two (transverse) -dimen- 
sional continuum description of the beam motion,’ 

d dx 
;iiY;i3+r”.~=a.. (13a) 
d dv dx 
zY;i;-m;j;=a, (13b) 

where w, = eB/my is the relativistic cyclotron frequency. 
The TM,,, modes of cylindrical pillbox accelerating cavi- 
ties are excited by e-beam displacements according to 

( a2 
,+~&+o$ a,=2yc&x, 

1 

( 

a2 w. a 
,+jj-;i;+& a,=2y&y. 

) 

(144 

(14b) 
Equations ( 13) and ( 14) yield the dispersion relation 

(n2-wp+r)(~2+wF+r)=0. (15) 
While Eq. (15) is easily obtained directly from Eqs. 

(13) and (14), an alternative approach is to consider the 
helical Larmor frame: x’ = x cos 8 + y sin 8, y’ = y cos 6 
- x sin 8, where 8 = 0,+/2v. This frame twists at one- 
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FIG. 1. The spatial growth rate Im(k) is graphed as a function of nor- 
malized angular frequency o/we, of the beam breakup wave. Curves are 
shown for the one-dimensional continuum model (dashed line) and the 
two-dimensional continuum model (solid line). The parameters used are 
kinetic energy = 700 keV, current = 100 A, TM,,, mode frequency = 2.5 
GHz, Q= 200, and l/L = 0.15. (a) Growth rates in the weak focusing 
regime, with a betatron wavelength of 5 m, and 1 r(w,J 1 /wt = 100. In 
the weak focusing regime both models coincide, and the two curves lie 
atop each other. Note that the growth rate peaks at o = a,,,,, 
= oo[l - ( 1/2r3Q)]. (b) Growth rates for a case intermediate to the 

weak and strong focusing regimes, with a betatron wavelength of 0.5 m, 
and 1 r(~,,) ]/c$ = 1. (c) Growth rates in the strong focusing regime, 
with a betatron wavelength of 5 cm, and 1 r(wc) ]/wf = 0.01. Note that 
the growth rate peaks at o = a,,,,, = oe 

half the rate of electron trajectories. In this frame, Eqs. 
(13) separate into two equations identical to Eq. (la) with 
w, -t wJ2. Because the coordinate transformation is not 
time dependent, Eqs. (14) also hold in the helical frame. 
Consequently, the quadrupole focusing dispersion relation 
with w, + oJ2 describes solenoidal focusing in the helical 
frame. Letting R --* R - wJ2 or R + R + wJ2 (i.e., 
k -+ k f wJ2u) gives the corresponding laboratory frame 
dispersion relation. 

In the weak focusing regime where I r,(o,) I, 
Ir,b,) 1 s & Eq. ( 18) has solutions obeying a2 
+ rX = Oforw = o,,andR2 + l?,, = Oforo z o,,.These 

results are identical to the one-dimensional result of Eq. 
(7). 

In the strong focusing regime, I T,(w,) I, I l?JwJ I 
( w:, the dispersion relation ( 18) becomes 

fi = fh- w,+ r,v20,]), (19) 

For weak focusing with ] I’(we) ] > 05, Eq. ( 15) re- 
duces to the one-dimensional results of Eq. (7). For strong 
focusing with 1 T(we) 1 < ~3, Eq. (15) reduces to 

n = f (rxry)1/2/~, (20) 

R = f [co,-- (r/o,)], (16) 

n= *(l-/w,). (17) 
Comparing with Eq. ( 11)) we find that a strong solenoidal 
focusing system with cylindrical pillbox cavities has twice 
the BBU growth of a quadrupole focusing system with the 
same betatron wavelength. 

If the TMllo modes have sufficiently different frequencies 
so that 10, - w,,l > wJQ,, w/Q,,, then Eqs. (19) and 
(20) are no longer approximated by Eqs. ( 16) and ( 17). A 
maximum in growth occurs for w = ox, where Eq. ( 19) 
becomes a = f [o, - rx(w,)/2+j. Similarly, a maxi- 
mum occurs for w = o,,, where Eq. (19) becomes fi 
= f [w, - r,,( w,,)/2w,]. These are identical to the results 

of the one-dimensional model. The growing mode of Eq. 
(20) has greatly reduced growth compared with Eq. ( 19). 

The e folding length and group velocity in the strong In the strong focusing regime, a solenoidal focusing 
focusing regime are in agreement with Ref. 4. In a previous system with cylindrical pillbox cavities will have twice the 
article,’ we incorrectly stated that our results disagreed BBU growth rate of a quadrupole focusing system with the 
with Ref. 4 by a factor of 2, as a result of incorrectly same betatron wavelength. The solenoidal focusing growth 
relating the coupling constant E to the transverse imped- rate may be halved by perturbing the cavities so that ver- 
ance. The correct relation is given by Eq. (2b). tical and horizontal linear polarizations of the TMllo mode 

In Fig. 1, we plot the growth rate versus w for the one- have sufficiently different resonant frequencies. However, if 
and two-dimensional models [Eqs. (3) and (15)]. The the perturbed cavities are oriented so that the linearly po- 

growth rate is plotted in units of dB/m, where growth 
(dB/m) = (2Olog,,,e)Im(k) (m-l). Figure l(a) de- 
scribes the weak focusing regime with I l?(wO) I /wz 
= 100. The two models give nearly identical results, and 

the peak growth occurs at w,,, = wO[ 1 - ( 1/2v3Q)]. For 
the parameters used in Fig. 1 (b), I I’(uO) I /of = 1.0, so 
that the system is intermediate between the weak and 
strong focusing regimes. Figure 1 (c) describes the strong 
focusing regime, with I r(wO) I /a: = 0.01, in which sole- 
noidal transport gives twice as much growth as quadrupole 
transport for the same value of w, and BBU growth is 
largest at o,, = oo. 

In actual accelerating cavities, the normally degenerate 
TMllo modes may be split because of perturbations to cy- 
lindrical symmetry from coupling loops, damping, slots, 
drive rods, etc.2”3 We can model the case where the per- 
turbed modes have vertical and horizontal polarizations by 
using separate resonant frequencies (w, and wu) and qual- 
ity factors (Q, and Q,) for the linearly polarized modes in 
Equations (14a) and ( 14b). 

For a disturbance of the form eiof - ikz, Eqs. ( 13) and 
( 14) then yield the dispersion relation 

f-k4+i-P(-Wf+r,+ry)+rxry=0, (18) 

where R = w - ku, TX = 2w&( - a2 + co: 
+ iww,/Q), and l?,, = 2w$/( - w2 + w; + ioo,JQ) . 

Note that TX is a function of w whose magnitude is maxi- 
mum for w z wX, while the magnitude of TV is maximum 
for 0 z cf+ 
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larized modes of identical resonant frequency are aligned Inserting the ansatz (24) into Eqs. (25) and (26) yields 
in the helical Larmor frame, BBU growth is not reduced by two equations in three unknowns: A,B, and k. Eliminating 
the perturbation. A and B gives the dispersion relation 

The preceding equations treat the beam current as con- 
stant, and the transverse impulsive forces from the accel- 
erating cavities as a continuous force per unit length. These 
approximations limit the dispersion relations to the cases 
where instability scale lengths (e folding length, wave- 
length) are long compared to the cavity spacing, and the 
beam current is constant. 

LR 
cos -7 ( ) 

Lw, p- . Lo, 
= cos u + 2wp sin u , (274 

where fi = w - kv. In the limit that the betatron wave- 
length and BBU e folding length are long compared with 
the cavity spacing, this equation reduces to the continuum 
dispersion relation of Eq. (3). 

IV. DISCRETE SPATIAL EFFECTS 

A. One-dimensional model 

If the betatron wavelength or BBU e folding length do 
not greatly exceed the spacing L of the accelerator cavities, 
we can no longer treat the transverse impulsive forces from 
the cavities as a continuous force per unit length. We con- 
sider a quadrupole focusing system with cavities of length 
I and separation L, with INL. Treating the forces from the 
cavities as impulses, we have 

d dx 
;iiy;ii+yci$x=aL i Sk---&I, (21) 

j= --m 

(22) 

These equations are invariant under space translation by 
distance L and arbitrary time translations. Thus, we con- 
sider solutions of the form x = .-co(z) e’“‘, where x0(z) 
= u(z)emikZ, and u(z) is periodic with period L. Because 

e- ikL = e- iL(k+ 2m*‘L) for integral values of m, k and k 
+ 2m?r/L describe the same solution for any given w. As 

a result, R and fi - 2mm/L describe the same solution for 
any given o. Inserting the solution form, we obtain 

[ (ro+u$)2+~j]xo=~xd. j=am S(z-jL). (23) 

Because of the periodicity of u(z), we need only solve Eq. 
(23) for 0 <z <L. In this region, the right-hand side of Eq. 
(23) vanishes, yielding the solution 

x0(z) = A exp % ( - w + w,) 
i’ ) 

+Bexp :(-0~-tiJ . 
(’ 1 

Continuity at z = 0 implies 

x0(0 + ) =x0(0 - ) = eikLxo(L - ), 

while Eq. (23) implies the jump condition: 
(25) 

where 

dxo dxo --jy (0 - ) = eikL x (L - ). 

(26) 

Equation (27a) may also be written as14 

( iwoo 
- a2 + cd; + - 

N 

LO 4 
Q cos u - cos u 1 

w&L . Lw, 
=-sm---- 

@P v * (2%) 

This form makes explicit the coupling between the cavity 
mode and the beam mode. For kL = 2rrn and complex w, 
Eq. (27) gives the dispersion relation for a recirculating 
induction accelerator with one cavity, quadrupole focus- 
ing, and beam pulse length equal to the recirculation 
time.i5 

For L = (n/2)&, where n is an integer and & 
= 2rrv/wc is the betatron wavelength, the dispersion rela- 

tion becomes 0 = =!=a,. Thus, there is no BBU growth 
for any value of w when the cavity spacing L equals 
(n/2)&. Intuitively, this is a reasonable result: An impulse 
in the x direction provided by an accelerator cavity will not 
result in a deflection in the x direction in the subsequent 
cavity if the spacing is (n/2)&, thwarting the mechanism 
of BBU growth. A finite level of BBU growth will result if 
the cavity spacing is not exactly equal to (n/2)& and 
because of the finite cavity length 1. 

In the strong focusing regime with I I’(wo) I ( w:, Eq. 
(27) is approximated by the one-dimensional continuum 
model dispersion relation of Eq. (10) for cavity spacings 
sufficiently far from (n/2)& that 

IL - (n/2);1,p~> I r(uo) l/20:. 

B. Two-dimensional model 

For solenoidal focusing, a two-dimensional model can 
account for the discrete spatial effects when the cavity 
spacing L is not small compared to the betatron or BBU e 
folding length. We consider cylindrical pillbox cavities: 

iy$+yuc$=aJ i 6(z-jL), (2W 
j= -a 

d dv dx 
dtydt-yac;i;=a+ j=-m i &z-jL), (28b) 

( 

a2 a0 a 
g+yj;i;+a$ a,=2yw&x, 

) 
CW 

(29b) 
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These equations are invariant under space translation by 
distance L and arbitrary time translations. Thus, we con- 
sider solutions of the form x = xc(z) e’“‘, where xc(z) 
= u(z)dk: and u(z) is periodic with period L; and sim- 

ilarly for y. We thereby obtain 

= l-&L i S(z-jL), (30d 
j= -m 

= l-y& i S(z-jL). 
j= --m 

(Job) 

In the region 0 <z < L, the right-hand side of Eqs. (30) 
vanish, yielding the solution 

x0(z) = A exp % ( - w + w,) 
(’ 

ye(z) = -tiexp 

+iBexp 

- 

Continuity at 2 = 0 implies 

x0(0 + ) =x0(0 - ) = e’FXl)(L - ), 

y0(0 + ) =ydO - ) = eikLydL - 1, 
while Eqs. (30) imply the jump conditions 

$O+)-Z(O-)+x,(o), 

where 

dxo dxo -&(O-)=P-&(L-) 

and 

ho ikL dam x(0-)== z(L-). 

(31b) 

(324 

(32b) 

(334 

(3%) 

Inserting the ansatz (31) into Eqs. (32) and (33) yields 
four equations in five unknowns: A,B,C,D, and k. Elimi- 
nating A,B,C, and D gives the dispersion relation 

- 2. Y 
g l. 

0. 

1/ ;;&j 

c* \ . I 

FIG. 2. Graphs of the spatial growth rate Im(k) as a function of the 
normalized cavity spacing L/A,. Dashed lines show the growth rates for 
the continuum models. Growth is shown at an angular frequency o for 
which growth is near maximum. The parameters used are kinetic energy 
=700 keV, current = 100 A, TM,,, mode frequency = 2.5 GHz, Q 
= 200, and I = 1 cm. (a) Betatron wavelength = 5 m; o = oe[l 
- (1/2v‘JQ)]. (b) Betatron wavelength = 0.5 m; o = oo. (c) Betatron 

wavelength = 5 cm; w = o,,. 

cos (y+z) =cos$+$sin$, (34) 

where R = o - kv. Because Eqs. (28) and (29) are sepa- 
rable in the helical Larmor frame, Eq. (34) may also be 
obtained from Eq. (27a) by letting w, + wJ2 and R 
* n f c&/2. 

Four modes are described by Eq. (34). In the limit 
that the betatron wavelength and BBU e folding length are 
long compared with the cavity spacing, this equation re- 
duces to the two-dimensional continuum dispersion rela- 
tion of Eq. (15). 

For L = t&, where n is an integer, the dispersion 
relation becomes fi = 0, f w,. Thus, there is no BBU 
growth for any value of w when the cavity spacing L equals 
n&,, where & is the betatron wavelength. Intuitively, this is 
a reasonable result: An impulse provided by an accelerator 
cavity will not result in a deflection in the subsequent cav- 
ity if the spacing is n&, thwarting the mechanism of BBU 
growth. Unlike the one-dimensional model applicable to 
quadrupole focusing, a spacing of (n/2)&, with odd inte- 
ger n, will no longer suppress BBU growth. This is a result 
of x-y coupling. An impulse in the x direction will result in 
a deflection in they direction in the subsequent cavity with 
a spacing of (n/2)&, with odd integer n, so that the BBU 
instability can grow. 

In the strong focusing regime, where 1 l?(wo) 1 ( wz, 
Eq. (34) is approximated by the two-dimensional contin- 
uum dispersion relations of Eqs. ( 16) and ( 17) for cavity 
spacings sufficiently far from n& that 1 L - n&j/L 
>2lUwo) I/w,“* 

In Fig. 2, we display the BBU growth rate as a func- 
tion of the normalized cavity spacing, L/&,, for the one- 
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and two-dimensional models that account for finite cavity 
spacing by treating cavity forces as impulses [Eqs. (27) 
and (34)]. The corresponding results from the continuum 
models [Eqs. (3) and ( 15)] are shown for comparison. In 
Fig. 2(a), the system is intermediate between the weak and 
strong focusing regimes; growth is significantly reduced by 
the finite cavity spacing, for the values of L/&, depicted. In 
Figs. 2(b) and 2(c), the systems are in the strong focusing 
regime. Finite cavity spacing reduces growth for L/& 
Es n/2 for the one-dimensional model, and L/& s n for the 
two-dimensional model, where n is an integer. As expected, 
the growth of the one-dimensional model is approximately 
equal to that predicted by the 1D continuum model for 
cavity spacings sufficiently different from (n/2)& that 

IL- (n/2)&l/L> Ir(coo)l/2u~. 

For the two-dimensional model, growth is approximated 
by the 2D continuum model for 1 L - n&l/L 
>2lmh3) I/w:. 

We finally consider the case where the linearly polar- 
ized TMllo modes that deflect in the x and y directions are 
perturbed so that their resonant frequencies are sufficiently 
different that Iw, - q,l > dQ,,w,JQ, Then, for OJ 
z w, Eq. (30) approximately holds with l? = rx on the 
right-hand side of Eq. (30a), and the right-hand side of 
Eq. (30b) set to zero. For a centered beam, Eq. (30b) can 
then be used to transform Eq. (30a) into the one-dimen- 
sional result of Eq. (23). Consequently, the one-dimen- 
sional dispersion relation of Eq. (27) will apply for o 
z w,. Because this is an approximate result, the BBU 
growth for L = (n/2)& may not completely vanish. As 
in the continuum models, when the two linear polariza- 
tions of the TMllo mode are perturbed so that their fre- 
quency response curves do not greatly overlap, the one- 
dimensional dispersion relation applies. 
C. Finite cavity length 

The preceding calculations have shown that BBU 
growth vanishes with the proper choice of cavity spacing, if 
the forces from the cavities are modeled as impulses. We 
now consider the finite growth that will occur for nonzero 
cavity length I and errors in cavity spacing from an integral 
multiple of the half-betatron wavelength. We restrict the 
discussion to the one-dimensional model appropriate for 
quadrupole focusing. By letting o, -+ wJ2 and fl + 0 
f oJ2, the dispersion relation we obtain will also be ap- 
plicable to solenoidal focusing with cylindrically symmet- 
ric cavities. 

For a cavity spacing L = nrm/o, + 6, where S is the 
error in spacing from an integral multiple of the half-beta- 
tron wavelength, Eq. (27) gives the result for cavity forces 
modeled as impulses: 

0 = fW,=J= [ - (WL)]‘? (35) 
Equation (35) is approximately true for (S I ( &/27r, 
where &, = 2mYw, is the betatron wavelength. In addition, 
p+s/~~~/~ 4 01~2 rr must be obeyed. Additional values for 
R differing by 2mnv/L, where m is any integer, describe 
the same solution. 

To model finite cavity lengths, we begin with the equa- 
tions for finite cavity separation, replacing the S function 
representing the impulsive acceleration in the cavity with a 
flattop function. This approach should be valid for small 
cavity lengths for which the electron transit time is small 
compared to the TMllo period. Thus, we have 

d dx 
;iiyzfy&=aL 5 Wz -&I, (36) 

j= -m 

( 
a2 a0 a a+~7g+coi a=2y&x. 

) 
(37) 

Here, the function 61(z) = l/1 for - I <z < 0 and zero 
elsewhere. These equations are invariant under space trans- 
lation by distance L and arbitrary time translations, so we 
consider solutions of the form x = x0(z) e’“‘, where 
x0(z) = u(z)emik”, and u(z) is periodic with period L. 
We thereby obtain 

[ (i~+v$~++o=rG j=Iia SI(z-jL). (38) 

Because of the periodicity of u(z), we need only solve Eq. 
(38) for -i<z.cL-I. In the region O<z<L-1, the 
right-hand side of Eq. (38) vanishes, yielding the solution 

x0(z) =Aexp f( -co+uJ 
(’ 

+Bexp :(--w-tic) 
(’ 

(39) 

For - l<z<O, we have 

X0(z) =Cexpli [ --o+ (&-?)“‘I] 

+Dexpr: [ -w- (w:-y)“2]]. (4.0) 

Continuity of x0 implies that x0(0 + ) = x0(0 - ) and 

X0(-1+)=x0(-I-)=eikLxo(L-I-). 

Continuity of dxddz at z = - 1 and z = 0 gives two anal- 
ogous equations, so we have four equations in the un- 
knowns A,B,C,D, and k. Eliminating A,B,C, and D, we 
have the equation 

O= (M-p)(R -S)(e(P+M)L-((P+M)~ 

+ ,-ZikL- (P+M)I ) _ (R _ p)Z(,(P-WL- V’+RV 

+e(M-ik)L-((M+S)I) + (s_P)~(~(P-~~)L-(P+S)I 

+ e(M-ik)L- (M+R)I), (41) 
where P = (i/v) ( - o + wc), A4 = (i/v)( - w 
- wJ, R = (i/v)[ - w + (of - l?L/l)“2], and 

S = (i/v)[ - w - (0: - rL/I)1/2]. 
Writing Eq. (41) in terms of R = o - vk, w, and 

8 = (a; - rL/z)1/2, we obtain a quadratic equation in 
eiLa’“, yielding the dispersion relation 

cos( LWV) = a, (42) 
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where 

a= -~[(Or-8)2COS(~-(OE+8)t) 

- (o,+o)2cos 
i 

OJ 
u- (co,-0) f )I . (43) 

If a is expanded to first order in 1, EQ. (42) reduces to Eq. 
(27), where cavity forces are modeled as impulses. For 
cavity spacings close to an integral multiple of the half- 
betatron wavelength, L = nn~/w, + 8, where S is the 
error in spacing. We expand Eq. (43) through fourth order 
in I and 6, noting that I a E a 1, thereby obtaining the ap- 
proximate dispersion relation 

n= aw,(1 -:‘I 

(44) 

The expression (IL/I) has no dependence upon 1. In order 
for Eq. (44) to be valid, it is necessary that 161,1 
< A/277-, and that the terms on the right-hand side contain- 
ing 6 and 1 be small compared to oJnn. We note that the 
lowest-order terms reproduce Eq. (35), where the forces 
from the cavities are modeled as impulses. For zero spac- 
ing error (6 = 0), Eq. (44) becomes 

i2 n7r rL 
R = *o,f 3-7’ ( 1 

(45) 

so that growth does not vanish for L = (n/2)& when 
finite cavity length is considered. Comparing Eqs. (35) and 
(45) in the strong focusing regime ( 1 I’1 ( wz), we note 
that the BBU growth from a spacing error 6 will exceed the 
growth from a cavity length I when I S I -Z, unless n is very 
large. Thus, a spacing error will usually lead to greater 
BBU growth than a cavity length of comparable magni- 
tude. 

Comparing Eq. (45) with the continuum model dis- 
persion relation in the strong focusing regime, Eq. ( lo), we 
note that BBU growth is modified by the factor (27r/v’3) 
X (I/&) when the cavity spacing is (n/2)&. The reduc- 
tion in BBU growth is substantial when (I/&) ( 1. 

As an illustration of Eq. (45), we calculate the non- 
zero BBU growth resulting from the finite cavity length for 
quadrupole transport with L = &,/2, for the parameters 
of Fig. 2. For the parameters of Fig. 2(a), a cavity length 
of I= 1 cm gives Im (k) = 0.015 m - ‘, corresponding to a 
growth rate of 0.13 dB/m. For the case of Fig. 2(b), a 
growth of 1.3 dB/m is obtained. For the parameters of Fig. 
2(c), a growth of 13 dB/m is given by Eq. (45). Because 
I/& is not small compared to 1, the growth is not signifi- 
cantly reduced compared with the continuum model. 

Moreover, the requirement that I( &/2~ is not obeyed for 
Fig. 2(c), so that 13 dB/m is not an accurate value. 

V. PERIODICALLY PULSED BEAM 

A. One-dimensional model 

In this section, we consider a periodically pulsed beam, 
which can represent a micropulse train, in the limit of 
vanishing pulselength. The beam current is modeled as a 
train of 6 functions separated by time r. We assume that 
the betatron wavelength and BBU e folding length are long 
compared with the cavity separation, so that the impulsive 
transverse forces can be modeled as a continuous force per 
unit length. For a quadrupole focusing system, we have 

d dx 
;i;Y~+Yofx=a, 

( a2 woa 
,+a%+& a 1 

= 2yc&xr j=g, S[t- (,+g)] * 

(46) 

(47) 

The quantity E is defined by Eq. (2) using the average 
beam current. Defining the variables T = t - z/v and Z 
= z, we can write 

a2x 
v2Ygjj2+Y&=a, 

a2 wo a 
-jj+--+a$ Q aT 

: S(T--Jo). j= --m 

(48) 

(49) 

This system is invariant under arbitrary translations in Z, 
and periodic in T with period r. We thus consider solutions 
of the form a = ao( T)e”“” where ao( T) = u( T)eiuT, 
and u(T) is periodic with period 7. In terms of the vari- 
ables t and z, a = u(t - z/v)e-ikZ+iWf, where a =w 
- kv. Because eiw7 = ei”(w + 2m?r/‘) for integral m, w, and 

w + 2m?r/r describe the same solution, giving the same 
value of Sz. Substituting the desired solution form into Eqs. 
(48) and (49) yields 

d2 wo d 
z+aE+a~ 

20&-a0 
2 S(T--Jo). ao=wf-fp j= --m 

(50) 

In the region 0 < T < r, the right-hand side of Eq. (50) 
vanishes, yielding the solution 

a0 = A expC [iwo dm - (w&Q) I T) 

+Bexp{[ -iooJm 

- (~oDQ> 1 T). 
Continuity at T = 0 implies 

(51) 
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ao(O + ) = ao(O - ) = eei"'uo(7 - ), 

while Eq. (50) implies the jump condition: 

go+)-$0~)= 
2f&rae( 0) 

w+-12 ’ 

where 

(52) da0 ~(O-)=e-‘“T;iT(~-). 

(53) Inserting the ansatz (51) into Eqs. (52) and (53) yields 
two equations in thFee unknowns: A,B, and R. Eliminating 
A and B gives the dispersion relation 

I 

fp-*Of= 
o&r sin [ o. J-T] 

ZJl- (1/4@)sin{[ooJl- (l/4&) --w+ (i0~d2Q)](7/2)}sin{[ -tiodl - (l/4@) --o+ (&/2Q)](7/2)}’ (54) 

We note that o and w + 2mr/r give the same value of a, 
as expected. If the period between bunches r is sufficiently 
small that wor( 1, and we consider frequencies w suffi- 
ciently small that ~7x1, then the right-hand side of Eq. 
(54) reduces to - l?, giving the one-dimensional contin- 
uum dispersion relation of Eq. (3). A BBU disturbance 
that does not oscillate in time is described by Eq. (54) with 
w = 0. Consequently, the growth rate given by Eq. (54) 
for w = 0 agrees with that obtained by other authors for a 
steady-state disturbance resulting from a misaligned 
beam’6*‘7 [see Eq. (47) of Ref. 16 and Eq. (16) of Ref. 171. 
The growth rate given by Eq. (54) for w, = 0 has also been 
described in Ref. 6. 

We note that the right-hand side of Eq. (54) vanishes 
for r = (n/2) To, where r. = 27r/( w. d-g) is the 
period of the TM,,, cavity mode. Thus, BBU growth van- 
ishes when the bunch separation is an integral number of 
half-periods of the TMilo mode.18 

For frequencies near wo, obeying I w - 0~1 
5 we/2Q, and bunch separations sufficiently different from 
(n/2)T0, obeying 17 - (n/2)T01 > r/2Q, and nXQ, the 
right-hand side of Eq. (54) reduces to - r, so that the 
one-dimensional continuum dispersion relation applies. Be- 
cause 1 w,, - w. I <Nae/2Q, BBU growth is given by the 
1D continuum theory for I r - (n/2)r01 > 7/2Q and 
n4Q. 

6. TWO-DIMENSIONAL MODEL 

For a periodically pulsed beam in a solenoidal focusing 
system with cylindrical pillbox cavities, we consider a two- 
dimensional model. Again, we assume that the betatron 
wavelength and BBU e folding length are long compared 
with the cavity separation so that a continuum description 
can be used for the acceleration of the beam by the cavities. 
In terms of the variables T = t - z/v and Z = z, we have 

a2x ay v2y~+yocu~==x7 

85 ax 
v2Y~-Yyo~a,=aJo 

(5% 

(55b) 

a2 a0 a 
*+Q~+o i i NT--jr), =,=2ym exr j= --m zl 

(564 
8 u. a 

3+--f& Q aT 
uv=2ym eyr : 2 6(T--Jo). 

j= --m 
(56b) 

This system is invariant under arbitrary translations in Z, 
and periodic in T with period r. We thus consider solutions 
of the form a, = ad ( T) e”” where afi( T) 
= u( T)eiaT, and II ( T) is periodic with period r. A similar 

form is assumed for a,,, x, and y. In terms of the variables 
t and z, a, = u(t - z/v)e-ik+imt, where n = w - kv. 
Substituting this solution form into Eqs. (55) and (56) 
yields 

d2 *o d 
;~?‘z+Q;TT+* z 

2&r(afi + iop#J) 
T 

Wf - a2 f$ NT--Jo), (57a) 
j= --Q) 

d2 00 d *$.--f&j Q dT 

2c&r( aLo - iwpJfL) 
= 

w; - cl2 
2 S(T-jr). (57b) 

j= -00 

In the region 0 < T < 7; the right-hand side of Eqs. (57) 
vanishes, yielding the solution 

afi=Aexp([ioo(l --&)“‘-$]T] 

+Bexp( [ -icoo(1--&)“2-~]T], (58a) 

aN=Cexp [ [- ( rwo l- zg’“-$1 

+Dexp[[ -iiw,(l --&)I”-$]T]. (58b) 

Continuity at T = 0 implies 

U.&O + > = U&O - ) = emimTfzd(r - ), (594 
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where q(O+) =fzN(O-> =emiWruN(r- 1, 

while Eqs. (57) imply the jump conditions: 
(59b) 

d=xo $g(O.)--&o-j 
24b[=.dO) + iwpfl(0)/Q] = 

Ii&R2 f (6W 

2&d=fl(O) - iopxo(0)/fl] = 
t&f-l2 , (60b) 

ho d=xo m (0- ) =emiWrm (7- ) 

and 

d%Q d=fl -p (0- ) =emimr;i?; (r- ). 

Inserting the ansatz (58) into Eqs. (59) and (60) yields 
four equations in five unknowns: A,B,C,D, and R. Elimi- 
nating A,B,C, and D gives the dispersion relation 

0&7sin[ooJ~7] 
raz*o@=2u(l - (1/4@)sin{[wod1 - (l/4@) --o+ (&/2Q)](?-/2)}sin{[ -mod1 - (l/4@) --0-t (iwd2Q)](T/2)}’ 

(61) 

Equation (61) can also be obtained directly from Eq. ( 54) 
by letting w, -+ oJ2 and Sz + R f wJ2. If the period 
between bunches r is sufficiently small that war< 1, and we 
consider frequencies o sufficiently small that 07x1, then 
the right-hand side of Eq. (61) reduces to - I’, giving the 
two-dimensional continuum dispersion relation of Eq. 
( 15). The right-hand side of Eq. (6 1) vanishes for 

7 = n7r/(oo J-p) = (n/2)7-@ 

Thus, BBU growth vanishes when the bunch separation is 
an integral number of half-periods of the TM,,, mode, as 
in the case of quadrupole focusing. 

For frequencies near wo, obeying 10 - wo] 
5 os/2Q, and bunch separations sufficiently different from 
(n/2)ro, obeying lr - (n/2)r01 > r/2Q, and n<Q, the 
right-hand side of Eq. (61) reduces to - I, so that the 
two-dimensional continuum dispersion relation applies. 
Thus, for I r - (n/2)ro[ > r/2Q and n<Q, BBU growth 
is given by the 2D continuum theory. 

In Fig. 3, we plot the growth rate versus the normal- 
ized bunch separation for the one- and two-dimensional 
models [Eqs. (54) and (61)]. Figure 3(a) describes the 
weak focusing regime, Fig. 3(b) describes a case interme- 
diate between the weak and strong focusing regimes, while 
Fig. 3(c) describes the strong focusing regime. As in the 
continuum case, nearly identical growth rates are obtained 
by the two models in the weak focusing regime, while the 
two-dimensional model gives twice the growth of the one- 
dimensional model in the strong focusing regime. BBU 
growth vanishes for r = (n/2)r0, where n is an integer 
and rc = 2r/(wo J1--i/‘74’@) is the period of the TM,,, 
cavity mode with finite Q. In Figs. 3(a) and 3(b), growth 
is maximized for r = (n/2)7,( 1 + 1/2Q), as in the case 
of a steady-state (w = 0) disturbance.6*16 This maximum in 
growth is pronounced when Q is sufficiently large. For 
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I r - ( n/2)r0 I ) r/2Q, BBU growth is the same as that 
calculated by the continuum models in Fig. 1, as expected. 

Finally, we consider solenoidal focusing with per- 
turbed cavities in which the vertical and horizontal polar- 
izations of the TM,,, mode have sufficiently different res- 
onant frequencies so that, for w z w, they polarization is 

1.54 1 

lr&j--+jf; 0 75 ---- --------------------------- 

0.5 0.6 0.7 0.8 0.9 1 1.1 

Z/TO 

FIG. 3. Graphs of the spatial growth rate Im(k) as a function of the 
normalized bunch separation time r/r,. Curves are shown for the one- 
dimensional model (dashed line) and the two-dimensional model (solid 
line). Growth is shown at an angular frequency o for which growth is 
near maximum. The parameters used are: kinetic energy = 700 keV, 
current = 100 A, TMttc mode frequency = 2.5 GHz, Q = 200, and l/L 
= 0.15. (a) Growth rates in the weak focusing regime, with a betatron 

wavelength of 5 m, and ] r(oa) ]/~f = 100; w = o,[l - (1/2v’3Q)]. 
(b) Growth rates for a case intermediate between the weak and strong 
focusing regimes, with a betatron wavelength of 0.5 m, and 
] r(oe) I/W: = 1; o = wo (c) Growth rates for a strong focusing case, 
with a betatron wavelength of 5 cm, and 1 r(wc) I/w: = 0.01; w = tie. 
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not excited. Then, the term a,c vanishes in Eq. (60a), for 
w r w,. Consequently, Eqs. (59a) and (60a) are the same 
as Eqs. (52) and (53) of the one-dimensional model. The 
one-dimensional dispersion relation of Eq. (54) will then 
apply for w = 0, 

C. Pulsed beam with finite pulse length 

Recently, there has been interest in achieving low BBU 
growth by using a pulsed beam with bunch separation 
equal to an integral number of half-periods of the TM,*, 
mode. l8 In this subsection, we consider the finite BBU 
growth that is expected from finite pulse lengths and bunch 
separations differing slightly from (n/2)~~. We restrict the 
discussion to quadrupole focusing systems. By letting 
o, + oJ2 and n + n f wJ2, the dispersion relations we 
obtain will also describe solenoidal focusing with cylindri- 
cal symmetry. 

For the case of &function bunches whose bunch sep- 
aration is r = (n/2)~~ + 6, where the timing error 
16 1 ( n/( w. J-e) = ro/2, the dispersion relation 
of Eq. (54) reduces to 

$-p - of = ( 
2sin2{[o- (iwc/2Q)](r/2)}’ 

for n even, 

w;erti 
,2cos2{[w- (iw,,/2Q)](7/2)}’ 

for n odd. 

(62) 
This approximation is valid when ]wo?j] ( m/2Q and 
I~osl41. 

We now calculate an analogous result for the BBU 
growth resulting from a finite pulse duration A, where the 
quantity A is in units of time. To model a finite pulse 
length, we consider the model of Eqs. (48) and (49), 
where the S function on the right-hand side of Eq. (49) is 
replaced by a flattop function: S,(T) = l/A for - A < T 
~0, and zero elsewhere: 

a2x 
v2y~+y&=a, (63) 

a2 a0 a 
s+az+w i a=2yo cx7 j= --oD il i Sh(T -jr). 

(64) 
This system is invariant under arbitrary translations in Z, 
and periodic in T with period r. We thus consider solutions 
of the form a = ao( T)einz’” where ao( T) = u ( T)eimT, 
and u ( T) is periodic with period r. Substituting this solu- 
tion form into Eqs. (63) and (64) yields 

d2 wo d 20&a. 
z+QE+w : i &(T--j7). ao=wf-n2 j=-, 

(65) 
This equation can be solved in the region 0 < T < r - A to 
give 

ao=Aexp[[ho(l -$)‘“--z]T] 

+Bexp( [ -i,,(l --&)“‘-$]T\. (66) 

In the region - A < T < 0, Eq. (65) is solved by 

At the times T = 0 and T = - A, a0 and daddT are con- 
tinuous. Using the relations ao( - A - > 
=e -ioTao(T - A - ) and 

da0 z(-A-)=e -“‘$-A-), 

we obtain four equations in the unknowns A,B,C,D, and KL 
Eliminating A,B,C, and D, we obtain the equation 

0 = (M - p) (R - S) (e(J’+ MT- (P+ M)* 

+ e2iwl-- (P+ M)A ) _ (R _ p)2(e(P+ia)T- (P+MA 

+ eWf+ io)~- CM++ + (s _ py 

x (,(P+ io)T- (P+S)A + eW+icoh- (M+R)A) , (68) 

where 

P= ioo( 1 - 1/4@)“2 - (oc/2Q), 

A4 = - ioo( 1 - l/4@)‘” - (w,,/2Q), 

R = iwo{l - l/4@ - 20;er/[A(a$ - .2)])“2 

- (M2Qh 
and 

S = - ioo{l - I/4@ - 20&/[A(0: - 02)]}1’2 

- (wd2Q). 
Defining the frequencies wi = oo( 1 - l/4@) 1’2 and 

w2 = wo{l - l/4@ - 2&7/[A(~f - n2)]}“2, 

Eq. (68) gives the dispersion relation 

0 = 4w1w2 cos[w - (&/~Q)]T 

+ (w, - 02)~ cos[og - (w, + 4Al 

- (a1 + ~0~)~ cos[q~ - (q - w~)A]. (69) 

For a short pulse duration, A<rc/2, and bunch sepa- 
ration close to an integral number of half-cavity periods, 

7 = n*/(wf-J &i7@, + 6 = (n/2)r, + 6, 

where 16 I <ro, the last two cosines in Eq. (69) can be 
expanded through fourth order to yield an approximate 
dispersion relation for the BBU instability: 
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&r fp--Of=- 2@A CA= ‘I2 
6 

“z+T-T ) 1 9 (70) 

where 

c= -2(1-(-l)” cos{ [w - (iWa/2Q)]T}). 

Equation (70) is approximately obeyed for sufficiently 
small timing errors and pulse lengths satisfying ]o,$] 
< na-/2Q < 1/2G, and I woA ] < 1. Because mr z 0~7, the 
TMllo mode must not decay significantly between pulses. 
In addition, ] cl< 1 is required, which is satisfied when 
] 0 - oo] < od2nd. This is not a severe restriction 
since frequencies near w. give the greatest BBU growth 
and thus are of primary interest. For A = 0 (vanishing 
pulselength), Eq. (70) gives the BBU dispersion relation 
of Eq. (62), as expected. In addition, the nongrowing roots 
a2 - of = 0 occur. For 6 = 0 (no timing error), Eq. (70) 
becomes 

i-l2 - Of 

I C&-A 
*2Gsin{[w - (&,/2Q)] (r/2)} ’ 

for n even, = I W&-A 
*2v5 cos{ [w - (&/2Q) ] (7/2)} ’ for n Odd’ 

(71) 

Equation (71) shows that BBU growth occurs in the ab- 
sence of a timing error because of the finite pulse duration 
of the electron bunches. Electron bunches of finite pulse- 
width A can also be modeled by “head” and “tail” macro- 
particles rather than a flattop pulse.‘* In this approach, the 
flattop (6~) term in Eq. (64) is replaced by [&( T -j?-) 
+ S( T -jr + A)]/2. For zero timing error, we obtain a 

dispersion relation identical to Eq. (71) with A-+v’3A. In- 
creased BBU growth results from the concentration of cur- 
rent at the head and tail of the pulse. 

In the strong focusing regime, maximum growth oc- 
curs for oroo. At this frequency, Eq. (71) becomes 

R= - uf = i (27r/v9)(A/70)l-‘(00). (72) 

In comparison with the continuum model of Eq. (3), I is 
multiplied by the factor (2rr/fl) (A/r,), so that BBU 
growth is modified by this factor for pulses separated by 
( n/2)To in the strong focusing regime. Thus, for 
( A/rO) (I, significant BBU growth reduction can be ob- 
tained by the use of a pulsed current. 

In Fig. 4 we display the results of Eq. (70) for the 
parameters of Fig. 3 and two different nonzero pulse 
lengths. We also show the results of Eq. (54) for S-func- 
tion pulses. The finite pulse lengths result in nonzero BBU 
growth for all values of pulse spacing r, and a shift in the 
value of r that gives minimum BBU growth. With a finite 
pulse length, r = (n/2)T0 no longer gives minimum BBU 
growth, so that a slight timing adjustment may be advan- 
tageous in applications using a pulsed beam. 
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I’ 
. . ..____. A-& To 1 20 

;I (b) \ Y---- ----;f T.3 10 -1 -I 1 
/-- I6 

g-+% .__.______________ e-A; --- ----A&,, , 
1(:: (Cl - A=0 - 

0.499 0.4995 0.5 0.5005 0.501 
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FIG. 4. Graphs of the spatial growth rate Im(k) as a function of nor- 
malized bunch separation time r/r0 for different values of pulse length A. 
Growth is shown at an angular frequency w for which growth is near 
maximum. Curves are shown for pulselengths of A = 0 (solid black line), 
A = $5~~ (dashed line), and A = Arc (dotted line). The parameters used 
are: kinetic energy = 700 keV, current = 100 A, TM,,c mode frequency 
= 2.5 GHz, Q= 200, and i/L = 0.15. (a) Growth rates in the weak 

focusing regime, with a betatron wavelength of 5 m, and 1 T(wc) 1 /a$ 
= 100; o = wc[l - (1/2flQ)]. (b) Growth rates for a case interme- 

diate between the weak and strong focusing regimes, with a betatron 
wavelength of 0.5 m, and 1 r (tic) 1 /of = 1; o = we. (c) Growth rates in 
the strong focusing regime, with a betatron wavelength of 5 cm, and 
Ir(coo)I/w~ = 0.01;0=0,. 

VI. SUMMARY 

Dispersion relations for the BBU instability have been 
derived for quadrupole and solenoidal focusing. We first 
considered a continuum model appropriate for constant 
beam current and cavity spacings small compared to the 
betatron wavelength and e folding length of BBU growth. 
The x-y coupling of solenoidal focusing affects the BBU 
growth rate for cylindrical pillbox accelerator cavities, in 
which the TM , 1o frequency is independent of polarization. 
BBU growth in the strong focusing regime is twice that of 
a quadrupole focusing system with the same betatron 
wavelength. By perturbing the cavities so that the vertical 
and horizontal polarizations of the TMllo mode have suf- 
ficiently different resonant frequencies, this growth may be 
halved. 

A model was presented for the case where the spacing 
of the accelerator cavities can be large compared to the 
betatron wavelength and the e folding length of BBU 
growth. We first neglected the finite length of the cavities. 
For quadrupole focusing, BBU growth vanishes when the 
spacing is an integral multiple of one-half betatron wave- 
length. With solenoidal focusing and cylindrical pillbox 
cavities, the cavity spacing must be an integral multiple of 
the betatron wavelength to prevent BBU growth. Finally, 
we considered the effect of finite cavity length with quad- 
rupole focusing, showing that the BBU growth does not 
completely vanish for spacings that are integral multiples 
of one-half betatron wavelength. For such spacings in the 
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strong focusing regime, BBU growth is modified by the 
factor (2?r/v”J) (I/&) when compared to the continuum 
model, where I is the cavity length, ,Q, is the betatron wave- 
length, and (l/&) ( 1/27r. 

A model was also presented for a periodically pulsed 
electron-beam current. We first considered vanishing 
pulselength by modeling S-function current pulses. BBU 
growth vanishes when the pulse separation is a multiple of 
one-half of the TMllo period, for both quadrupole and 
solenoidal focusing. When a finite pulselength was consid- 
ered, the BBU growth did not completely vanish. For pulse 
separations that are a multiple of one-half of the TMllo 
period in the strong focusing regime, BBU growth is mod- 
ified by the factor (27r/fi) (A/T,J) when compared to the 
continuum model, where A is the pulse duration, 7. is the 
period of the TMllo mode, and ( A/rO) < 1/27r. 

Because the e folding length, wavelength, and group 
velocity of the BBU instability are directly calculable from 
the dispersion relation, the formulas presented here may be 
used to calculate these important quantities under a broad 
range of conditions. 
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