Analysis of laser absorption on a rough metal surface
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We have developed a simple model to estimate the cumulative absorption coefficient of an
ultraviolet laser pulse impinging on a pure metal, including the effects of surface roughness whose
scale is much larger than the laser wavelengtiThe multiple reflections from the rough surface
may increase the absorption coefficient over a pristine, flat surface by an order of magnitude. Thus,
as much as 16%at room temperatujef the power of a 248 nm KrF excimer laser pulse may be
absorbed by an aluminum target. A comparison with experimental data is giveh99® American
Institute of Physicg.S0003-695(197)00806-1

The laser ablative technique is of considerable currenscaling law that accounts for the enhancement in the laser
interest for deposition of thin film.3 Laser pulses are inci- absorption when such large scale roughness is present. Thus,
dent on metals or semiconductors to produce a plume dhe estimates given here may also be applied to keyhole for-
plasma and neutral atoms for deposition. The laser-solid inmation in the continuous high power laser weldihg.
teraction is crucial, particularly the amount of laser energy  Let us first record the absorption coefficient in a single
that is absorbed. In this letter, we use a simple model taeflection. In response to the high frequency laser field, we
evaluate the fraction of the laser light absorbed on a metdfeat solid aluminum as a lossy plasma with dielectric
surface with large scale surface roughness. The depth ammdnstant’ (Sl unit9
width of such surface roughness are much larger than the 2
laser wavelength, and they are observed when a series of KrF o=, | 1 - w_g_ iA
excimer laser pulse$.=248 nm, 40 ns<1.2 J, 6.4 J/crA) is ®

used to ablate a pure solid aluminum tarbdthe surface where , is the electron plasma frequency, is the fre-
rOUghneSS then causes mUltlple reflection and multlple ah:]uency of the laser ||ght$o is the free space perm|tt|v|ty'

sorption of the laser light, and may enhance the absorptio js the index of refraction, and (A<1) is the dielectric
by an order of magnitude over that on a perfectly flat surfaceresistive loss term, given by

By virtue of the large scale in the roughness, diffraction of 4
light becomes unimportant. A=(weo/o)(wplw)". @

Considerable work already exists on the formation ofin Eq. (2), o is the electrical conductivity of the metallic
periodic surface structure on a wide variety of materials bytarget. Equation(2) is valid when wey/o<1, and wpl o
an incident laser. These works concentrate mostly on a dif>-1: its derivation follows a standard proceddfezor our
ferent regime from the present study. Specifically, micror-case, pure aluminum has=3.72<10" (Q m)~! at room
oughness of heighth, less than laser wavelength and  temperature, and=7.6x 10*° rad/s. Numerically, if we as-
lateral wavelength of ordex, is usually considered. Such a sociate the electron plasma frequency with the surface plas-
regime is prevalent when the laser fluence is below the dammon energy E¢)** in aluminum tiw,=Es), then we have,
age threshold, typically 0.12-0.55 J&thbeyond which  with E.=10.3 eV wpl0=2.06, wey/o=0.00181, and
permanent damage would occur. These periodic structureg=0.032(Ref. 12.
are caused by inhomogeneous energy deposition associated By matching the electric field and magnetic fields across
with the interference of incident beam with a surface Scat'the vacuum-metal interfa(}éywe can calculate the absorp_
tered field>® Excitation of surface plasmon can produce tion coefficient(in powes,
anomalous absorption under high fluence irradiafi®and
the laser-driven corrugation instability leads to a strong couy .y 2A cos ),
pling when the critical depth reaches the pump laser wave- ' (w,/w)?\w,/w)*—cos 6;
length (\=~h). and

What we consider here, then, is the case where the sur-
face has already suffered permanent damage. The scale of 2A cos 6,
roughness, in both height and width, is much larger than thé\(6)= (wg]®)2\(wslw)2—cog 6,
wavelength. We set aside the physical processes that lead to P P '
such large scale deformation, such as the positive feedback (wp/w)?~cos X
mechanisnf,the slow decay/mechanismidue to surface ten- (wp/w)? cos 6;—cos ;
sion) of laser-driven corrugation instability, and other
mechanisms explored recenfijWe attempt to establish a

=gon?, 1

, s polarizatioq (3)

[p polarizatior

4
for A<1 andw,/w>1, whereg, is the incident angle. Note
JElectronic mail: yylau@umich. edu that if A=0 there is no absorptionA=0). This means that

bAlso at: Applied Physics Program, University of Michigan, Ann Arbor, Ml t[he_ incident wave is t.OIa”y.reﬂECted even though the'ﬁeld
48109. inside the lossless “dielectric” decays exponentially with a
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FIG. 3. Fraction of absorption by a 690 nm laser pulse impinging on solid
FIG. 1. Surface roughness representation with a rectangular well that hasilver (Ag) as a function of temperatufeoom temperature to melting tem-
heighth, and widthw. The incident position i®, 6; is the incident angle,  peraturg, for three different degrees of surface roughné€s=4.83,
and 6, is the minimum incident angle that a photon can enter the well atu=0.964). Experimental data were taken from Ref. 15.
positiona.

The absorbed enerdy,, on the surface afteX bounces
scale of the “plasma skin depth”5=(c/w)/[(wp/w)2 can then be expressed as

—1]*2, but no energy is dissipated withif Therefore, the

laser energy is absorbed only through a nonzero resistive loss N

(A#0). From Egs.(3) and (4), p polarization(with a large E,= E A(8)[1-A(6)] 1Ey ) =A*E,, (6)
absorption coefficienthas a lower laser damage threshold =1

thans polarization, in agreement with the experimé&htn

this letter, we will use onlys polarization formuld Eq. (3)]. whereE, is the incident laser energy, afd denotes the

Under normal incidence &=0) condition, we haveA average over the_ d_istributior_1 in(w, a, ). Note that
=8.51x 10 3. Thus, less than one percent of laser light en-ven at normal incidencel is much less than one/(

— —3 H AR
ergy is absorbed in a single reflection. This energy is ab-_l\l8'5::j< 10 I)’ Sﬁ we” (t:)an apprpxu;r:ately”vt\:rlt@\ E<A
sorbed mostly within the plasma skin depth 'N). Note also that all bounces in the well have the same

We now include the effects of the surface roughness th ipcident angleg;, except fqr the one \.NhiCh bounces fo the
cause the laser light to undergo multiple reflections and, ase of the well. It has adlfferent incident angig,, wh|ch
therefore, enhanced absorption. To calculate the cumulative®" be related ta); by cos¢’ =sin 0‘; Thus, we can V\Tte
absorption coefficientA*, we have to estimate the number AN as A(‘gi)[N(h'W"”_"ei)_1]+A(0i_)' .TO calcullgteA '
of bounces of a photon on a rough surface. We model thi/€ 8verage over_the |nC|de_nt angle, mmdent position, and the
rough surface with a distribution function of rectangulard's‘t”bmIon functions of height and width:
wells with heighth, and widthw. As shown in Fig. 1, a w o h 2
photon strikes the well at incident positi@awith incident AN)= fog(W)deof(h)dhfop(a)dafoc {AN}d6;
angle ¢,, bounces back and forth between the walls, and Iog(w)ydw/ff(h)dhfiP(a)daf7%ds;,
finally leaves the well afteN bounces, wher8l is a function ¢ )
of (h, w, a, 6)):

where §,=tan Y[ (a+\)/w)] is approximately the minimum
h—a incident angle that the laser light can enter the well at posi-
cot 6, . (5) tion a, without suffering diffractiorfFig. 1], A is laser wave-
length, andP(a) is the probability of laser light entering at
position a. For simplicity, we assume that the laser light
impacts on the top of the wells, so thafa) = 5(a) where s
is the Dirac delta function. We further assurfe=tan [ (a
+\)/wg)], wherewy is the characteristic width to be defined
below. We next consider various distribution functionshof
andw, characterized by indicas andn which measure the
sharpness in the distributions:

2
N(h,w,a,6;)=2+

Fraction of absorption

f(h)=C,,h™ exp( —h?/h?), (8a)

0 1 2 3 4 5 g(w)=Dw" exp( —w?/w?). (8b)

Surface Roughness, h /w

Here,C,, andD, are normalized so that,f(h)dh=1 and
FIG. 2. Cumulative absorption coefficiedtAN), of two different wave- f_g_g(w)dwzl' and f, W) are related to thehp, wg) by

lengths of laser radiatiofin=248, 690 nm on a solid aluminum target, — — Iy . .
where hy/w, is degree of surface roughnesB=w,/w, u=wy/(\? (h=hov2/m, w=woy2/n), with (ho, wo) defined as the

+W2)Y2 and a=we, /o (at T=20 °C). [\ =248 nm:(Q=2.06, u=0.995,  value (h,w) at _the peak of_ the distribution function. Under
@=1.81x107%) andA=690 nm:(Q=5.75, 4=0.972,a=6.5X 10" %)]. these assumptions, E) gives
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2 Q+1 ‘ The above estimates were based on the classical theory

(AN)=— —T—In > > of electrical resistivity applied to a much simplified model of
m-2c08 'ul VP p - p ‘ rough surfaces. Validity of this model awaits further com-
JOZ—1+ 42+ M‘ parison with reflectivity measurements on a rough surface
+In JO7-1 | such as those displayed in Ref. 1. The simple formulas de-
rived in this letter provide an immediate assessment of the
ho [IN2(1—Q"2)/(1— w)] relative importance of surface roughness on laser absorption,
mnw_o{ 2J0%-1 when the roughness scale is much larger than the laser wave-
length.
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