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S U M M A R Y  
Quantitative correlations between the magnetic fabric (magnetic susceptibility or 
remanent magnetic anisotropies), single mineral anisotropy , and preferred mineral 
orientation is investigated using computer modelling. The influences of various 
initial fabric patterns and imposed strain on the magnetic fabric are simulated using 
multiparticle systems represented by their magnetic anisotropy tensor. Each single 
mineral is numerically reoriented under coaxial deformation conditions using the 
strain response models of March and Jeffery/Gay. The calculated strain In (e,) 
versus magnetic fabric M, = In [k , / (k , , ,  . kinr . k,,,)1’3] curves show the following 
characteristics: (1) for initial randomly oriented distributions a log-linear correlation 
exists for strain magnitudes below 200 per cent. (2) For higher strains the curves 
asymptotically approach the M, value defined by the particle anisotropy. (3) The 
slope a of the correlation lines is a function of the particle anisotropy, the ellipsoid 
shape, and the strain response model. (4) Due to the prolate shape of particles, the 
maximum susceptibility axes are more sensitive to  strain for initially anisotropic 
fabrics than the minimum axes. (5) The relationship between magnetic fabric and 
strain in multiparticle systems with known initial preferred orientations and single 
particle anisotropy shows a similar behaviour. Depending on the pattern and 
orientation of the initial fabric, the maximum axes show either a log-linear 
correlation to strain with a characteristic slope a or  a kinked curve, with two almost 
linear parts. 

Key words: anisotropy of magnetic susceptibility, Jeffery/Gay model, magnetic 
fabrics, March model, preferred mineral orientation, strain analysis. 

INTRODUCTION 

Efforts have been made in numerous studies to use magnetic 
fabrics (mainly the anisotropy of magnetic susceptibility, 
AMS, and to minor extent remanent anisotropies) as an 
indicator of the direction and magnitude of strain (e.g. 
Rathore 1980; Henry & Daly 1983; review by Borradaile 
1991). All of these investigations demonstrated a parallelism 
between the principal AMS axes orientations and the major 
petrofabric features. Some studies proposed an empirical 
quantitative correlation between parameters of the mag- 
nitudes of strain and the corresponding magnitudes of AMS 
(e.g. Rathore 1980; Hirt 1986; Ruf ef al. 1988; CognC & 
Perroud 1988). A quantitative correlation between the two 
tensors is expected only in rocks of identical initial fabric 
and homogeneous mineral composition. This, however, is 
never strictly fulfilled in natural rocks and is difficult to 
simulate by experimental procedures (e.g. Borradaile & 

Puurnala 1989; Richter et al. 1992). Hence, numerical 
methods currently provide the best tool to gain information 
on the pathway that is followed by magnetic fabrics during 
increasing strain, and to investigate the influences of 
mineralogical composition, strain geometry, and initial 
fabric on the magnitudes of magnetic fabrics (e.g. Richter 
1991). 

Applications and problems of the measurement of 
magnetic fabrics were reviewed by Hrouda (1982) and more 
recently by Borradaile (1988, 1991). Quantitative correla- 
tions between AMS and strain have widely been criticized 
because of the strong dependence of the susceptibility 
magnitudes on the mineral composition (Borradaile 1987; 
Borradaile et al. 1987). AMS commonly reflects variations in 
mineral composition rather than strain. Techniques such as 
the measurement of remanent anisotropies (McCabe, 
Jackson & Ellwood 1985), hysteresis loops, and cold 
temperature experiments (Schultz-Krutisch & Heller 1985) 
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can, however, be used to measure parts of the AMS tensor 
separately, or to demonstrate the dominance of one 
component (significant mineral). Magnetic fabrics which are 
dominated by a single mineral measure the crystallographic 
preferred orientation of the paramagnetic and most 
ferrimagnetic minerals, or the preferred orientation of grain 
axes of magnetic (Uyeda et al. 1963). 

The anisotropy of magnetic susceptibility is used in this 
paper as an example of an anisotropic magnetic property 
(the term ‘magnetic fabric’ includes all types of ani- 
sotropies). I emphasize that the modelling does not support 
the idea of an AMS-strain correlation in general. A simple 
correlation between strain and AMS magnitudes may exist 
in certain cases, but varying mineral compositions are likely 
to overprint strain induced anisotropies (Borradaile 1987). 
Strain correlations are much more likely for components of 
the AMS tensor, or for a one-mineral dominated AMS. 
Anisotropic magnetic properties, such as the anisotropy of 
anhysteretic susceptibility (AAS, McCabe et al. 1985), the 
anisotropy of isothermal remanent magnetization, or the 
anisotropy of thermoremanent magnetization (e.g. Cogn6 
1987) may also produce valid strain correlations. 

The AMS is the tensor that relates the intensity of the 
applied external field (H) to the acquired magnetization (M) 
of a material: 

Mi = kii Hi, 

with the proportionality factor k, being a second rank tensor 
referred to as the susceptibility tensor (e.g. Hrouda 1982; 
Nye 1985). The susceptibility tensor is expressed by its 
principal susceptibility magnitudes k,,, 2 kin,  2 k,,, (or 
k , ,  2 k,, 2 k3?) and their orientations. The degree of 
anisotropy P = k,,,/km,n (Nagata 1961) is used to describe 
the shape of the susceptibility ellipsoid. The magnitudes are 
denoted as volume susceptibility in SI units (their absolute 
values are of minor importance in this context). The strain 
magnitude is expressed as the elongation e. It is the ratio 
between the relative change of length of a line (AI)  and the 
initial length (I) of the line e = AI/I. The natural strain or 
logarithmic strain E is defined as the natural logarithm of the 
principal strain magnitudes E = In ( I  + e) and the strain 
magnitude in per cent is lOOe per cent. 

The AMS of a crystal aggregate is the resultant of the 
anisotropy effects of all phases and particles and, therefore, 
a function of the mineral composition (Borradaile et al. 
1987), the grain shape (Uyeda et al. 1963), and the preferred 
mineral orientation. A rock sample in an orthogonal 
reference frame (Ox, Oy, 02) has a total anisotropy that is 
defined by its susceptibility tensor (k,,)l. One single particle 
(mineral or grain) of a rock is represented by 

For a monomineralic crystal aggregate or a one-mineral 
dominated AMS the total susceptibility (k,l)t is calculated by 
the summation of the particle tensors using 

(3) 

and neglecting any physical interactions between the single 
grains. Also, anisotropy effects resulting from a non- 

isotropic distribution of grains, for example in layers, are 
not taken into consideration. 

In the models presented in this paper, single particles 
represented by their anisotropy tensor are individually 
reoriented using models of strain response proposed by 
March (1932) and Gay (1968), based on the work of Jeffrey 
(1923). Both of these models require passive rotation of the 
significant susceptibility carriers and do not account for 
processes occurring in natural rocks like recrystallization, 
pressure solution, or grain interference. However, they are 
well-established strain response models that are applicable 
in specific circumstances (Oertel 1983), but certainly not in 
every case. With these limitations in mind I think the model 
calculations can be used (i) to show principal relationships 
between magnetic anisotropies and strain, (ii) to dem- 
onstrate the effects of initial fabric, grain shape, and single 
particle anisotropy on quantitative correlations, and (iii) to 
determine finite strain magnitudes from magnetic fabric data 
if the assumptions of the model are fulfilled. 

The model offers the possibility to simulate the 
deformation of a rock with an initial distribution of mineral 
axes and consisting of rigid particles with different magnetic 
properties. The initial grain distribution was achieved by a 
random function of the computer. To produce initial fabrics 
with gridle or point distribution patterns, the strike or dip 
was limited to selected values. The fabric development is 
shown in lower hemisphere, equal area sterographic 
projections of the produced grain distribution, i.e. the 
tensor orientations. 

A DYNAMIC APPROACH:  THE STRAIN 
RESPONSE O F  MAGNETIC FABRICS 

The effect of strain on AMS is simulated by considering 
single grains that are represented by their susceptibility 
tensor (kij)P. The principal directions of (kij) ,  are 
determined by grain shape (magnetite) or by the 
crystallographic lattice. For simplicity, the following 
considerations are restricted to prolate ellipsoids of 
revolution. The orientation of a single grain, hence, is 
determined by the polar coordinates 8 and @ of its 
symmetry axis. For a prolate grain with the principal 
susceptibilities k ,  2 kb = k ,  the complete susceptibility 
tensor with respect to the reference frame is written 

(4) 

where for a prolate grain, since (kij),, is a symmetrical tensor 
(Owens 1974; Hrouda et al. 1985); 

k , ,  = (k ,  - kh) sin’ 8 cos2 @ + k b  

kZ2 = ( k ,  - kh)  sin’ 8 sin’ 9 + k ,  

k , ,  = k,,  = (k ,  - k h )  sin% sin @ cos @ 

k,, = k,, = (k, - k b )  sin 8 cos 8 sin 4 

k,3 = (k, - kb) C O S ~  8 -+ kh 

k , ,  = k , ,  = (k, - kh) sin 8 COS 8 COS @. 

This set of equations is used to calculate (kij)P for a grain 
with the orientation 8, @. The total AMS of a polycrystal is 
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formulation of the motion of individual particles during 
strain, the strain response model, is the critical problem 
when simulating the behaviour of magnetic fabrics during 
strain. Though advances have been made in the 
formulation of strain response (Jeffrey 1923; March 1932; 
Bhattacharyya 1966; Gay 1966, 1968; Owens 1973, 1974; 
Reed & Tryggvason 1974; Ramberg 1975; Hrouda 1980), a 
realistic approach is difficult to obtain. 

The approach of Artur March (1932) has been commonly 
applied for a quantitative interpretation of phyllosilicate 
fabrics (e.g. Oertel 1983). More sophisticated models that 
take the ductility contrast between the matrix and minerals 
into account were first proposed by Einstein (1896) for 
spherical particles and extended to  the case of ellipsoidal 
particles by Jeffrey (1923). The general equations of Jeffrey 
were modified by Gay (1966, 1968a). who considered the 
case of an ellipsoid of revolution in a pure shear field. 

After the selection of a strain response model and the 
magnitudes and geometry of strain, the determination of 0', 
4' for each individual grain is carried out by calculating the 
new single mineral tensors. Summation of the (k i j ) ,  yields 
the total magnetic fabric. The eigensystem of the total 
tensor provides orientation and magnitude data from the 
strain magnetic fabric. I wrote a computer program to 
simulate the strain response of magnetic fabrics for 
individual grains using different strain response models (see 
flowchart Fig. 1). The development of multiparticle systems 
is shown in lower hemisphere equal area projections of the 
xy-plane, with z vertically and x oriented to  the north. The 
particle motion is thus visualized and can be compared with 
strain and the magnitudes of the magnetic fabric. The  axes 
x ,  y, z of the coordinate system were selected so that e l ,  is 
parallel to x ,  e2? parallel to  y,  and e33 parallel to  2. 

obtained by summing up the individual tensors. In the 
following model calculations, a set of 200-300 grains was 
used. The initial orientation 8, 4 for each grain was 
produced using the random function of the computer. After 
calculation of the individual grain susceptibility (kzl)p and 
summation of the tensors, the initial magnetic fabric was 
obtained by the calculation of the eigensystem of the total 
tensor. This yields the orientation and the principal 
magnitudes of the resulting magnetic fabric. The flowchart 
in Fig. 1 shows the schematic procedure of the calculations. 

Strain has the effect of modifying the orientation 0, 4 of 
each particle into a new direction O ' ,  4'. The mathematical 
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Figure 1. Generalized flow chart of the calculation of the resulting 
magnetic fabric before and after the modification of the individual 
grain orientation by a given strain tensor (e,)). 

The March model 

March's model (March 1932) of the rearrangement of thin 
tabular or rod-shaped grains in a strained rock is not 
concerned with the behaviour of real crystal grains in a rock 
matrix with different properties, but with the geometrical 
consequences of homogeneous strain affecting all com- 
ponents of the material uniformly. Grains are assumed to  be 
mechanically indistinguishable from the rock matrix in 
which they are embedded and only play the role of markers. 

Homogeneous deformation in an orthogonal reference 
frame is described by a linear equation set, that 
characterizes the translation of a material point ( x ,  y,  z )  
prior to  deformation to  the point (x', y ' ,  2') after the 
deformation (e.g. Means 1976): 

x = e, ,x '  + e,,y' + e13z', 

y = eZ1x' + e,,y' + e2,z', 
z = e3,x' + e3,y'  + e33z' .  

Considering a line (the normal of a tabular grain or the 
long axis of a rod-shaped grain) in a Cartesian coordinate 
system with the usual polar coordinates (13, @), the strained 
line has the coordinates ( O ' ,  4'). Using trigonometrical 
relations between polar and Cartesian coordinates (e.g. 
Bronstein & Semendjaev 1987) the above equations are  
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modified to (March 1932): 

r* sin 0 cos @ 

=r’[sin ~ ’ ( e , , c o s ~ ‘ + e , , s i n @ ’ ) + e , ~ c o s  87, 

r’ sin 0 sin 4 

r* cos @ = r‘[sin 0’(e3 ,  cos 4’ + e32 sin 0’) + e33 cos 8’1, 

where r is the length of the line before deformation and r ’  
the length of the deformed line. Introducing the quadratic 
elongation A = (r‘ /r)’ ,  the equations transform t o  

sin 0 cos @ 

sin 8 sin @ 

= r‘(sin 8‘(e,, cos @’ + e22 sin @’) + eZ3 cos 8’1, (7) 

= [sin 0’(e , ,  cos @ ’  + e l ,  sin 4’) + eI3 cos 8’]/A = A,/A, 

= [sin 8‘(e2,  cos @ ’  + e22 sin @‘) + eZ3 cos 8 ’ / A  = AJA, 

= [sin 0’(e3, cos @’ + e3? sin @’) + e33 cos @ ‘ / A  = AJA. 

These equations are solved to  find the relation between 
(8, 4) and (0’, @‘) for any given eij:  

(8) 

cos @ 

strain from the linear path. This behaviour is caused by the 
magnetic properties of the considered prolate particles, for 
which the Mmin cannot exceed a value of -0.187, whereas 
the M,,, can reach values up to  0.373. The slope cr of the 
correlation lines is a function of the degree of anisotropy 
(kmaX/kmin) of the single particles. The  inset of Fig. 3(b) 
demonstrates that the slope systematically increases with a 
decreasing degree of anisotropy. 

The correlation between the two magnitudes as it was 
found in natural examples (e.g. Hirt 1986; Ruf el al. 1988) is 
thus confirmed numerically. It is valid for the case of a 
monomineralic plycrystal with uniformly distributed 
particles that deforms under conditions obeying the March 
model. 

Influences of the imposed initial fabric were investigated 
with the deformation of two synthetic fabrics with a 
preferred orientation of 300 grains. The  first one is a 
preferred orientation of grains inside a 4.5” cone around the 
z-axis, referred t o  as a z-point distribution (Cheeney 1983), 
and the second is a girdle distribution in the xy-plane. The 
initial fabric and three stages of deformation under coaxial 
plane strain are shown in Fig. 4. The strain magnitudes and 
the calculated susceptibility values are  given in Table 1. 

The initial magnetic anisotropy of the point distribution is 
strongly prolate (Fig. 5a) reaching nearly the single particle 
anisotropy. The initial preferred orientation is parallel to  the 

-compressional axis and during strain the points move into 
parallelism with the stretching direction. The prolate fabric 
thus first decreases (Fig. 5a) and when the points attain a 
girdle pattern, the magnetic fabric becomes oblate. The 
points, however, rotate during higher strains into parallelism 
with the stretching direction and finally reach a total 
geometry that is quite similar t o  the initial fabric but with a 
90” rotated orientation. The  geometry of the magnetic fabric 
during increasing coaxial deformation thus moves along a 
nearly straight line between a perfect prolate shape and a 
perfect oblate shape (shown in Flinn diagram). The 
quantitative correlation between strain and magnetic fabric 
(Fig. 5b) is strongly influenced by this phenomenon. The 
magnetic parameter Mi of the initial fabric (c i  = 0) is high, 
becomes successively lower until the fabric is oblate and 
increases again, when the particles commence to cluster 
around the stretching direction. A log-linear or nearly 
linear correlation is revealed for the increasing and 
decreasing branches of the maximum values. Magnetic 
parameters are ambiguous and can be caused by different 
strain magnitudes. Minimum axes rotate nearly parallel to  
the y-axis and hardly change their orientation. Hence, 
minimum susceptibilities show no correlation to  strain. 

The magnetic fabric development of the strained xy-girdle 
distribution is shown in Fig. 6(a). The initial oblate fabric 
evolves t o  a prolate geometry at a strain of 120 per cent. 
The maximum ci - M, values show a log-linear correlation 
(Fig. 6b) for strains under 300 per cent. The correlation line, 
however, does not pass through the origin. The minimum 
values are linearly correlated up  to 60 per cent strain. If this 
value is exceeded the Mmi, value is close to  its maximum 
and cannot further increase because the minimum axes of 
most minerals are oriented in the yz-plane and the total k,, 
(compare Table 1) only slightly changes its magnitude. The 
k , ,  axes, on the other hand, still scatter in the xy-plane and 
get more aligned with increasing strain. 

0’ = arctan {sqrt [ (A,) ’+ (A2)*] /A3},  

@’ = arctan (A2/A,) .  

Results from the March model 

I first describe the influences of coaxial plane strain on an 
initially isotropic distribution ( P  = 1.01) of 300 particles 
(Fig. 2). Each point represents the polar coordinates 8, @ of 
the maximum susceptibility axes. Since kint = kmin this 
suffices to  describe the orientation of the total tensor in the 
reference frame. The assumed degree of anisotropy of the 
single grains is P = 1.75 and is on the order of measured 
single mineral values (e.g. Borradaile et al. 1987). Fig. 2 
illustrates the change in the distribution pattern for various 
strain magnitudes. Table 1 gives the magnitudes of strain 
and the calculated principal susceptibilities. 

The observed particle path reflects the establishment of 
perferred orientation with increasing deformation. The 
semi-major axes rotate away from the compressional axis 
towards the stretching direction. For a given deformation 
increment, grains with steep dips have a small rotation angle 
compared to  the grains with an intermediate dip. 

Fig. 3(a) traces the magnetic fabric path in a Flinn-type 
(Flinn 1962) diagram. The initial isotropic geometry is 
overprinted during the first deformation step and con- 
tinuously evolves to  increasingly prolate forms. 

One method to investigate the relationship between 
magnetic fabric and strain is to  plot the natural strain E ,  

versus the corresponding magnetic parameter M, (Fig. 3a), 
where 

M, =In ( k , / ( k ,  . k, . k3)”’] .  

The maximum susceptibility axes are correlated t o  the 
maximum strain axes in the upper right quadrant of Fig. 
3(b) and the minimum axes are independently correlated in 
the lower left quadrant. The intermediate axes are omitted. 
Both show a log-linear correlation with a characteristic 
slope cr for strain magnitudes up t o  200 per cent. The  
minimum axes, however, deflect already at  80 per cent 
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Figure 2. Fabric diagrams, for 300 initial randomly distributed particles deformed under coaxial plane strain with the March model. The 
shortening direction is vertical and the extension direction along the x-axis. The numbers are the magnitudes of the elongation e , , ;  lower 
hemisphere equal area projections. 

The effects of uniaxial flattening and uniaxial construction 
(equal volume deformations) on the initial random fabric 
are investigated in Fig. 7. Both strain geometries show The mathematical formulation of the motion of rigid, 
almost the same characteristics as the plane strain ellipsoidal particles embedded in a viscous fluid matrix 
deformations with an essentially identical slope of the during coaxial deformation was derived by Gay (1968a). 
correlation lines (compare Fig. 3b). The AMS ellipsoid Gay uses the general equations of Jeffrey (1923) to  
shape for the oblate strain geometry is strongly oblate in all formulate the strain response of ellipsoids of revolution with 
cases, and prolate for the prolate strain geometry (Table 2). length of the semi-major axis termed a and the length of the 

The viscous fluid (Jeffrey,Gay) mode, 
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Table 1. Principal strain magnitudes and susceptibilities for initial 
isotropic, point, and xy-girdle distributions deformed after the 
March model under coaxial plane strain (ezz = 0) conditions. 

strain random point xy-  g i rd 1 e 

e l l  e33 k l l  k22 k33 k l l  k22 k33 k l l  k22 k33 

March mode( 

0.0 0.00 5.03 5.00 4.98 6.46 4.28 4.26 5.24 5.11 4.65 

0.2 - 0 . 1 1  5.20 4.97 4 .82  6.23 4 . 4 4  4.34 5.37 5.18 4.45 
0.1 -0.09 5.11 4.99 4.90 6.35 4.34 4.31 5.29 5.17 4.54 

0.3 -0.23 5.28 4.96 4.75 6.11 4.52 4.36 5.46 5.16 4.37 
0.4 -0 .29 5.37 4.94 4.69 6.00 4.62 4.39 5.55 5 . 1 4  4.31 
0.5 -0.33 5.44 4.92 4.64 5.90 4.70 4 .40  5.62 5.12 4.27 
0.6 -0 .37 5.50 4.91 4.59 5.78 4.80 4.42 5.68 5.09 4.22 
0.7 -0 .41 5.57 4.89 4 .55  5.68 4.89 4.43 5 . ~  5.06 4.19 
0 .8  -0.64 5.62 4.87 4.51 5.59 4.97 4 . 4 4  5.80 5.04 4.17 
0 .9  -0 .47 5 . 6 8  4.85 4 . 4 8  5.50 5.05 4 . 4 4  5.85 5.01 4.14 
1 . 0  -0.50 5.72 4.83 4.45 5.26 5.22 b.52 5.91 5.01 4.08 
1.2 -0.54 5.81 4.80 4 .39  5.28 5.27 4 .45  5.97 4.93 4.10 
1 . 4  -0.58 5.89 4.76 4.35 5.39 5.15 4 .46  6.04 4.89 4.07 

1.8 -0.64 6.01 4.70 6.29 5.60 4.95 4 .45  6.15 4.80 4.05 
1.6 -0.62 5.95 4.73 4.32 5.51 5 .04  4.45 6.10 4 . 8 4  4 .06  

2.0 -0.67 6.07 4.67 4.26 5.69 4 . 8 6  4 . 4 4  6.20 4.76 4.04 
2.5 -0.71 6.17 4.61 4.22 5 .88  4.70 4.42 6.30 4.68 4.02 

semi-minor axis termed b. The derivation of the equations is 
rather involved and will not be given in detail here, but can 
be obtained from Gay (1968a). 

The equations derived by Gay (Gay 1968a; equations 14 
and 15), that describe the change in orientation of a particle 
R ( 8 ,  4) (see Fig. 8 for 8, $ definitions) due to  a given 
coaxial plane strain, defined by the principal quadratic 
elongations of the strain ellipse A,, A,, to  R ’ ( B ’ ,  $) are: 

in (cot $’) = In (cot $1 + [(a’ - b2)/(a’ + b’)] in [V(A,&)] 
(11) 

(12) 

(13) 

and 

cot B’lcot 8 = V(sin 2$/sin 2$‘), 

8’ = a  tan {tan @[.\/(sin 2@/sin 243‘)]}. 

which solves to 

The equation for $‘ is not defined for azimuth angles of 
43 = 0, 90, 180, 270, 360”. If $ is parallel to  one of the 
principle coordinate axes, $ remains unchanged and only 8 
changes its value according to  

In (cot 0‘) = In (cot 0) f 0.5[(a2 - b’)/(a2 + b2)]  In [V(A2/A1], 
(14) 

where the sign of the second part of the equation is positive, 
when $ is 0” or 180” and negative when $ is 90” o r  270”. 

Using these equations under the assumption that the 
principle susceptibility axes are parallel t o  the ellipsoid axes, 
as it was derived for magnetite grains (Uyeda et af. 1963), it 
is possible to simulate the strain response of the magnetic 
fabric. 

Results from the viscous fiuid model 

The viscous fluid strain response model was applied t o  
deform the synthetic fabrics of an initial random 
distribution, and a girdle distribution in the xz-plane. The 
influences of coaxial plane strain on the resulting magnetic 
fabric were investigated in Flinn diagrams and magnetic 
fabric-strain magnitude correlation curves. 

The application of this model is, in contrast to  the March 
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Figure 3. The strain response of the magnetic fabric of the initial 
randomly distributed grains during progressive March deformation 
under coaxial plane strain (compare fabric diagrams Fig. 2). (a) 
Flinn diagram (Flinn 1962), and (b) a correlation diagram between 
the natural strain c, and the magnetic parameter M, = 
In [ k , / ( k m a x  . k,,, . km,n)”3]. Squares correlate the maximum axes 
(positive values) and circles the minimum axes (negative values) 
separately. The correlation line of the maximum axes is log-linear 
for strain magnitudes up to 200 per cent; the minimum axes deviate 
from a log-linear correlation at strain magnitudes much lower than 
200 per cent (prolate particles). Inset shows the dependence of the 
slope a on the particle anisotropy; numbers are values of kmax/kmln. 

model, suited to  simulate the behaviour of different shaped 
ellipsoids during deformation. The strain geometry, 
however, is restricted to  plane strain deformations. To 
investigate the relationship between grain shape, strain, and 
magnetic fabric a multiparticle system with 300 randomly 
distributed grains (Fig. 9) was deformed at  various strain 
magnitudes. Three different axial ratios a : b = 2 :  1, 5 : 1, and 
10: 1 were used for the simulations to  study the effect of 
particle shape on the strain response of magnetic fabrics. 
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F i r e  4. Fabric diagrams showing the behaviour of initial point (45" cone around z )  and xy-girdle distributions during deformation with the 
March model. The numbers are the magnitudes of the elongation e , , ;  x is the extension direction. 
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Figure 5. The magnetic fabric path of the point distribution (45" cone around z) during strain (a) in a Flinn diagram, and (b) in a strain versus 
magnetic fabric diagram. The ellipsoid shapes are ambiguous and can be correlated to different strain magnitudes. The minimum axes rotate 
approximately parallel to the y-axis with little change in their orientation. They reveal no correlation with the applied strain magnitude. 
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Figure 6. The magnetic fabric traced by the xy-girdle distribution during increasing strain (March model). (a) Flinn type diagram; numbers 
indicate the elongation e, ,; and (b) strain versus magnetic fabric correlation diagram. The minor axes have an initial preferred orientation and 
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Figure 7. Strain versus magnetic fabric diagrams for equal-volume deformations with (a) uniaxial flattening, and (b) uniaxial constriction 
geometries calculated with the March model. Both diagrams show almost the same characteristics and are comparable with the results obtained 
by plane strain deformations. 
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Table 2. Principal strain magnitudes and susceptibilities for initial isotropic and xz-girdle distributions 
deformed after the March model and the Jeffery/Gay model under different strain geometries. 

March model 
flattening (ell=e22) constriction (e22=e33) 

Jeffery/Gay model 
randm (e22=0) xz-girdle (e22.0) 

ell e33 kll k22 k33 ell e33 kll k22 k33 ell e33 kll k22 k33 k l l  k22 k33 

0.00 0.00 5.03 5.00 4.98 0.0 0.00 5.03 5.00 

0.10 -0.17 5.20 4.97 4.82 0.2 -0.09 5.22 4.90 

0.19 -0.29 5.37 4.94 4.69 0.4 -0.15 5.39 4.83 
0.22 -0.33 5.44 4.92 4.64 0.5 -0.18 5.47 4.79 

0.30 -0.41 5.57 4.89 4.55 0.7 -0.23 5.61 4.n 
0.34 -0.44 5.62 4.87 4.51 0.8 -0.25 5.67 4.70 
0.37 -0.47 5.68 4.85 4 .48  0.9 -0.27 5.72 4.68 
0.41 -0.50 5.72 4.83 4.45 1.0 -0.29 5.78 4.65 
0.47 -0.54 5.81 4.80 4.39 1.2 -0.33 5.89 4.60 
0.54 -0.58 5.89 4.76 4.35 1 . 4  -0.35 5.96 4.57 

0.05 -0.09 5.11 4.W 4.90 0.1 -0.05 5.12 4.95 

0.14 -0.23 5.28 4.96 4.75 0.3 -0.13 5.31 4.86 

0.26 -0.37 5.50 4.91 4.59 0.6 -0.21 5.54 4.76 

0.62 -0.62 5.95 4.73 4.32 1.6 -0.38 6.04 4.53 
0.67 -0.64 6.01 4.70 4.29 1.8 -0.40 6.11 4.50 
0.74 -0.67 6.07 4.67 4.26 2.0 -0.42 6.16 4.47 
0.86 -0.71 6.17 4.61 4.22 2.5 -0.47 6.29 4.41 

Though P of shape anisotropic minerals is directly related to 
the grain shape (Uyeda et af. 1963), the magnetic properties 
of the particles were kept constant at P =  1.75 to study 
particle shape influences exclusively. 

Five deformation steps of the multiparticle system 
containing grains with an axial ratio of a : b = 5: 1 are shown 
in Fig. 9, the strain and anisotropy data together with the 
corresponding data of the xz-girdle are given in Table 2. 

Comparing the particle distributions obtained from the 
March model (Fig. 2) with the results from the Jeffrey/Gay 
model (Fig. 9), a difference is not apparent. The 
establishment of preferred orientation takes, depending on 
the ellipsoid shape, a slightly different path. Consequently, 
the magnetic fabric reaches different final magnitudes. Fig. 
10(a) shows the magnetic fabric path that was followed by 
the resultant principal magnitudes of all simulations, 
regardless of the various grain shape ratios. The isotropic 
initial magnetic fabric evolves to a prolate shape when the 
semi-major axes rotate into the extensional direction 

I 

X 
Figure 8. A prolate ellipsoidal particle in the Cartesian reference 
frame. 

4.98 
4.94 
4.88 

4.79 
4.74 
4.70 
4.66 
4.63 
4.60 
4.57 
4.51 
4.47 
4.43 
4.40 
4.36 
4.30 

4.83 

0.0 0.00 5.03 5.00 
0.1 -0.09 5.09 5.02 
0.2 -0.17 5.13 5.01 
0.3 -0.23 5.27 5.00 
0.4 -0.29 5.35 4 . 9 9  
0.5 -0.33 5.43 4.97 
0.6 -0.37 5.49 4.96 
0.7 -0.41 5.55 4.95 

0.9 -0.47 5.66 4.93 
1.0 -0.50 5.70 4.92 

0.8 -0.44 5.61 4.94 

1.2 -0.54 5.81 4.86 
1.4 -0.58 5.88 4.84 
1.6 -0.62 5.94 4.82 
1.8 -0.64 5.99 4.80 
2.0 -0.67 6.04 4.79 
2.5 -0.71 6.13 4.79 

4.98 5.11 
4.90 5.59 
4.86 5.70 
6.73 5.80 
4.66 5.89 
4.60 5.97 
4.55 6.05 
4.50 6.12 

4.41 6.24 
4.46 6.18 

4.38 6.29 
4.32 6.38 
4.27 6.46 
4.24 6.52 
4.21 6.57 

4.13 6.70 
4.18 6.61 

5.38 
5.30 
5.19 
5.09 
5.00 
4.92 

4.77 
4.71 
4.65 
4.60 
4.52 
4.45 
4.39 
4.34 
4.30 
4.22 

4.83 

4.11 
4.11 
4.11 
4.11 
4.11 
4.11 
4.11 
4.11 
4.11 
4.11 
4.11 
4.10 
4.10 
4.10 
4.09 
4.09 
4.08 

(compare Fig. 3a). Multiparticle systems containing grains 
with a higher axial ratio reach a better alignment of grain 
axes at the same strain magnitude. Hence, their 
development on the magnetic fabric path is more advanced 
compared to systems containing particles with lower axial 
ratios. The reason is the faster rotation of the long axes of 
rod-shaped particles than of nearly equidimensional 
particles. The stars on the curve (Fig. 10a) represent the 
final ellipsoid shapes reached after a strain of 250 per cent in 
the systems containing grains with various axial ratios. 

The relationship between Mi and the natural strain is 
shown in Fig. 10(b). A simple mathematical formulation for 
the curves is not apparent, but it is best approximated by a 
straight line. The correlation curves are similar in magnitude 
and shape to those calculated with the March model. Again 
the maximum axes behave in a linear fashion whereas the 
minimum values, especially of the rod-shaped particles, tend 
to deviate from the log-linear correlation when Mmin 
approaches the maximum of -0.187 determined by the 
particle anisotropy. Fig. 10(b) also demonstrates that the 
slope of the curves is a function of the axial ratio of the 
grains. Elongate grains react faster to strain than spherical 
grains. Consequently, they are more perfectly aligned than 
the spherical ones, and the total multiparticle system reveals 
a stronger magnetic fabric for a given strain magnitude. 

The deformation of the xz-girdle is shown in Fig. 11. The 
data are given in Table 2. The girdle was selected to cover a 
40" area between two small circles. It disperses during 
progressive strain and the points rapidly commence 
clustering around the x-direction. The oblate initial fabric 
changes successively into a prolate magnetic fabric (shown 
in the Flinn-type diagram Fig. 12a). Only the long axes of 
the particles and, hence, the maximum susceptibility axes 
rotate in the xz-plane and move towards the extensional 
direction. The intermediate/minimum axes are nearly 
parallel to the y-direction and therefore hardly change their 
orientation. This behaviour is reflected in the strain-magnetic 
fabric correlation curves in Fig. 12(b). The maximum values 
reveal a nearly log-linear correlation. However, due to the 
high initial M,,, the maximum possible magnetic parameter 
is rapidly reached and deflection from the linear correlation 
commences at 150 per cent strain. The magnitudes of the 
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X X 

X X 

X X 

Figure 9. The distribution of 300 random points prior to the deformation with the Jeffrey/Gay model and five calculated deformation stages. 
The numbers are the magnitudes of the elongation e l l .  

minimum axes are not a function of strain, because they do 
not change their orientation in the reference frame. 

ticle systems. The simulations revealed a strong dependence 
of the final magnetic fabric on the distribution pattern of the 
initial fabric and on the single particle anisotropy. The 
effects of different strain geometries were investigated with 
the March model and appeared to be negligible for the 
correlation diagram. The comparison between the March DISCUSSION 

Numerical modelling was used to investigate the effects of and the Jeffrey/Gay model shows that the calculated grain 
initial grain distribution, single particle anisotropy, grain orientations are quite similar in distribution and the 
shape, strain magnitude and geometry, and the assumed magnitudes of the magnetic fabric of comparable order. 
strain-response model on the magnetic fabric of multipar- Both models use ellipsoids of revolution as carriers of the 
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1.1 

= 10 ,.-.' 
a/b = 5 

random distribution 

(b) 1.5 
initial fabric: 

0.5 - 

3 

F i r e  10. Magnetic fabric path of three different shape ellipsoids (a) in a Flinn type diagram. The final magnetic fabric after a strain of 250 
per cent for the different ellipsoid forms is marked with a star. (b) M, versus E,  graph for the variously shaped ellipsoids. The numbers indicate 
the axial ratios alb.  for large ratios and grain rotation is faster than for small ratios and the magnetic fabric is more evolved. 
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X 

Y 

X 

\ . I * .  
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Figure 11. Fabric diagrams for the reorientation of an xz-girdle distribution with the viscous fluid model. Numbers are the magnitudes of 
elongation e , ,  . 
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(a) 1.7 I initial fabric: 1 

'1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 

ki nt h i  n 

(b) 
1.5 

initial fabric: 
1 .O - xz-girdle distribution 

0.5 - 

Mi 

-0.5 - 
-1.0 - 

.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 

Fire U. The magnetic fabric path followed by an initial xz-girdle 
distribution during coaxial strain calculated with the Jeffery/Gay 
model (a) in a Flinn type diagram, and (b) in a E;  versus M, 
diagram. Major axes reveal log-linear correlation, whereas the 
minor axes are unaffected by strain. 

magnetic fabric. Hence, the intermediate and the minimum 
axes of a nearly perfectly aligned multiparticle system are 
equal and the maximum axis is longer, which results in a 
prolate magnetic fabric. The ellipsoid shapes for 0, 50, 100, 
and 200 per cent strain of the magnetic fabrics of all 
investigated systems are plotted together in a Flinn diagram 
in Fig. 13. The 200 per cent strained examples all (except 
the uniaxial flattened) have a prolate anisotropy, whereas 
lower strains produced partly oblate and partly prolate 
forms depending on the initial fabric. The shape of the 
magnetic fabric alone, hence, is not an indicator of the 
strain geometry or magnitude. The quantitative correlation 
between the magnitudes of the maximum natural strain and 
the magnetic parameter M,,, yielded a nearly log-linear 
correlation for most initial distributions and strain 
geometries provided that the strain magnitudes are  5200 

1.61 

1.5 P 
\ $1.41 A 

E 31 
Y 

1 

1 

I 

. I  I A 1.0:0:-.7! .1 - *,' 0 

: * 
It 111 1:2 

kin t /k mi n 
Figure W. The results of all magnetic fabric-strain response models 
in a Flinn type diagram. With the exception of the particle mixture, 
all multiparticle systems were made up of particles with an 
anisotropy of 7 : 4 : 4 .  

p.er cent (Fig. 14). The slope a = Aei/AM, of the correlation 
curves (Fig. 14) decreases with increasing single grain 
anisotropy and with increasing ellipsoid ratio (Jeffery/Gay 
model). It is characteristic for a given mineralogy, initial 
grain distribution, and strain response and, hence, can be 

' i  

j single grain anisotropy I 7) ' 
ellipsoid ratio 

..__ _.____ 
I 

, preferred orientation 
51 , of z-point distributions 

" I /  / ; t E I  
I I minimum axes j 

I 1 

M i  
Figure 14. Schematic diagram of the magnetic fabric path of prolate 
particles for strains below 200 per cent. The slope of the linear 
segment of the correlation curves is a function of the anisotropy of 
the particles present and their shape, that influences the velocity of 
particles motion. Dashed lines represent initially anisotropic 
z-parallel clustering; the maximum values for the M, parameter are 
determined by the particle anisotropy. For prolate particles the 
maximum M, value of the minimum axes is lower than the 
corresponding value of the maximum axes. Therefore the maximum 
axes are log-linearly correlated to strain magnitudes up to 200 per 
cent, whereas the minimum axes deflect already at lower strain 
magnitudes from a linear correlation. 
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anisotropy. For rocks containing prolate particles the 
maximum axis in general is a good strain indicator. 

(5) One-mineral dominated magnetic fabrics can be used 
for a finite strain estimate, if the initial magnetic fabric is 
known, the magnetic carriers can be characterized and a 
passive rotation is demonstrated. 

used for an estimation of strain, if all the variables are 
known and the assumptions of the models are fulfilled. If 
200-300 per cent strain is exceeded, the M, value starts to  
approach the maximum value defined by the single particle 
anisotropy asymptotically and the relationship is no longer 
log-linear. Point clusters and other preferred orientations 
lead to an initial M,. The magnitudes of the initial Mi 
depend on the degree of the preferred orientation (compare 
Fig. 5b, 6b and 7b). The dashed lines in Fig. 14 symbolize 
this pattern for initial z-parallel clusters. 

The minor axes in general show a different behaviour, 
because the limiting absolute values of M,,, for prolate 
particles are lower than the limiting M,,, values. This 
means that a divergence from the log-linear behaviour occurs 
at lower strains than for the maximum axes. An initial 
preferred orientation has a stronger influence on the M,,, 
behaviour and often leads to  non-correlation to the strain 
magnitudes. The major axes of the xz-girdle, for instances, 
correlate log-linear to strain, whereas the minor axes d o  not 
noticeably rotate (Fig. 12). 

The final consequence from the model calculation for the 
quantitative correlation between the magnetic fabric and the 
strain in natural rocks is that a correlation exists with several 
configurations of the initial fabric, provided that the 
magnetic properties of the contributing minerals are known. 
For magnetite-dominated rocks, remanent anisotropies, or 
other one-mineral dominated anisotropies, the strain 
magnitude can be determined if modification of the 
magnetic fabric results from a passive rotation of the 
magnetic fabric carriers and these carriers can be 
characterized. Magnetite or ilmenite is likely not to  
recrystallize at lower temperatures and strain estimates were 
obtained from rocks that lack conventional strain markers 
using computer modelling of one-mineral dominated 
magnetic fabrics (Housen, Richter & von der Pluijm 1991). 

CONCLUSIONS 

The strain-response modelling of variously distributed 
multiparticle systems and the effect of initial fabric patterns 
and coaxial strain geometries and magnitudes on the final 
magnetic fabric demonstrates the following. 

(1) The magnetic fabric path at  different amounts of 
coaxial strain is a function of the orientation and distribution 
pattern of the initial fabric, the applied strain, and the 
strain-response model. The influences of the strain geometry 
are subordinate. 

(2) A log-linear correlation between the natural strain 
and an associated magnetic parameter M, = 

In [ k , / ( k ,  . k ,  . k3)1’3] exists for initially random distributions 
and strain magnitudes 5200 per cent. The slope (Y of the 
correlation line is characteristic for the mineral composition 
of the magnetic phase. 

(3) For strain magnitudes >200 per cent the M, values 
asymptotically approach the single mineral Mi and the 
correlation is no longer log-linear. 

(4) When initially anisotropic fabrics are strained, one of 
the principal magnetic axes correlates well with strain, 
whereas the others may not be affected. This is the 
consequence of preferred orientation and single particle 
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