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SUMMARY Canalization may play a critical role in molding
patterns of integration when variability is regulated by the
balance between processes that generate and remove
variation. Under these conditions, the interaction among
those processes may produce a dynamic structure of
integration even when the level of variability is constant. To
determine whether the constancy of variance in skull shape
throughout most of postnatal growth results from a balance
between processes generating and removing variation, we
compare covariance structures from age to age in two rodent
species, cotton rats (Sigmodon fulviventer) and house mice
(Mus musculus domesticus). We assess the overall similarity
of covariance matrices by the matrix correlation, and compare
the structures of covariance matrices using common

subspace analysis, a method related to common principal
components (PCs) analysis but suited to cases in which
variation is so nearly spherical that PCs are ambiguous. We
find significant differences from age to age in covariance
structure and the more effectively canalized ones tend to be
least stable in covariance structure. We find no evidence that
canalization gradually and preferentially removes deviations
arising early in development as we might expect if canalization
results from compensatory differential growth. Our results
suggest that (co)variation patterns are continually restructured
by processes that equilibrate variance, and thus that
canalization plays a critical role in molding patterns of
integration.

INTRODUCTION

Canalized developmental processes yield consistent pheno-

types regardless of variation in genotypes or environmental

conditions encountered over the course of development

(Waddington 1942, 1952). Canalization is usually regarded

as a process-limiting variation, but it also influences the

structure of variation for two related reasons. First, the struc-

ture is determined by the balance between processes gener-

ating and reducing variance; were variance generated but not

also removed, it would accumulate over developmental time.

However, at least in the case of rodent skull shape, variance

diminishes by 50% early in postnatal growth and then re-

mains nearly constant (Zelditch et al. 2004; Zelditch 2005).

Second, the structure of variance is determined by the spatial

distribution of the processes that produce and remove var-

iance; as long as the processes removing variance differ in

spatial structure from those generating it, the interaction be-

tween the two classes of processes, rather than either of them

separately, determines the spatial structure of variation. The

structure of variation is usually analyzed in terms of mor-

phological integration or modularity. The first connotes the

interdependences among parts because of developmental and/

or functional interactions among them (e.g., Olson and Miller

1958; Cheverud 1982; Zelditch 1988); the second refers to the

independence among internally cohesive, integrated units

(Shlosser and Wagner 2004). To the extent that processes

canalizing form interact continually with those generating

variation, canalization not only reduces variance, it also plays

an ongoing role in structuring integration.

The developmental basis of integration (and modularity)

has long been of interest to evolutionary biologists because

complex morphologies such as the mammalian skull comprise

multiple functionally interdependent units. Should function-

ally interdependent parts be disproportionate, their ability to

perform tasks essential for survival might be compromised, as

would be the case if a very long upper jaw is associated with a

very short lower jaw. Not surprisingly, canalization and mor-
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phological integration (and/or modularity) are thought to

evolve by stabilizing selection. In theory, the pattern of

(co)variation is expected to evolve to match the fitness sur-

face (e.g., Cheverud 1984, 1996), and alleles whose pleio-

tropic effects cause interdependent parts to attain

appropriate proportions will generally be favored by nat-

ural selection. At genetic equilibrium, we therefore expect

that individuals with atypically long lower jaws would have

atypically long upper jaws because of adaptive pleiotropy.

Because pleiotropy would ensure that jaw proportions are

normal, jaw shape would not vary, so shape is canalized.

Stabilizing selection, however, might not be necessary for

the evolution of canalization; in theory, it can evolve even in

the absence of stabilizing selection (Siegal and Bergman

2002) and epigenetic interactions, by themselves, could ex-

plain the covariation among phenotypic traits. Such covar-

iation would be expected when two or more skeletal traits

develop in response to the same soft tissues (e.g., brain,

muscles). Epigenetic interactions may also reduce the var-

iance of skeletal shape, the hypothesis we advanced to ex-

plain the early postnatal reduction of variance in skull shape

(Zelditch et al. 2004). That reduction would require com-

pensatory differential growth, which corrects for prior dis-

proportionate growth. According to this hypothesis, rather

than growing at coordinated rates, bones attain normal

proportions by compensatory differential growth.

Given that the level of variation is constant over much of

postnatal skull development in all rodents examined to date

(Zelditch et al. 2004; Zelditch 2005), it might appear that

compensatory differential growth plays an important role

only early in the developmental process, that is, during the

interval in which variance decreases by 50%. Additionally,

previous studies have found that the structure of integration

changes significantly only during that same interval (Zelditch

1988; Zelditch and Carmichael 1989). Thus, it would appear

that compensatory differential growth has a minor role in

structuring adult patterns of integration beyond that initial

phase of postnatal growth. However, compensatory differen-

tial growth reduces variance only if the rate at which new

variance is generated is lower than the rate at which variance

diminishes. If new variance is continually generated, at the

same rate as variance is compensated, the level could be con-

stant. That balance between processes generating and remov-

ing variance could maintain variance in dynamic equilibrium

but nevertheless alter its structure. The primary question ad-

dressed herein is whether the constancy in variance exhibited

by rodent skulls following the initial reduction in variance

results from coordinated growth that forestalls new variation

from being generated, or instead from a balance between

processes generating and removing variation.

To distinguish between these two hypotheses for the con-

stancy of variance, we examine the ontogenetic dynamics of

(co)variances, testing two hypotheses: (1) the structure of

variation is constant throughout postnatal development; (2)

disproportions arising early in development are gradually

corrected, leading to a progressive departure from either the

structure of variation characteristic of the youngest sample

(prior to the reduction of variance) or from the next youngest

(the youngest age at which variance has attained its minimum

level).

MATERIALS AND METHODS

Samples
We examined samples of cotton rats (Sigmodon fulviventer) and

house mice (Mus musculus domesticus) from the age at which skulls

are well enough ossified to measure reliably to the age of sexual

maturity (Fig. 1). More complete information about these samples,

including the comparability of developmental ages between species

and the number of litters contributing to each sample, are given in

Zelditch et al. (2004). Briefly, our samples of cotton rats comprised

offspring of wild-caught parents reared in the Michigan State Uni-

versity Museum and sacrificed at the day of birth (N518), and 10

(N518), 20 (N517), 30 (N518), 40 (N511), and 50 (N512)

days after birth. Our samples of house mice comprised offspring of

laboratory-reared parents of the out-bred Hsd/ICR strain, ob-

tained from Harlan Sprague Dawley; mice were bred, reared and

sacrificed at the University of Wisconsin-Madison under the su-

pervision of T. Garland. Sampling was carried out at 5-day inter-

vals during the phase of high growth rates and rapid changes in

form, and at 10-day intervals thereafter; the samples comprised 10

(N525)-, 15 (N521)-, 20 (N515)-, 25 (N515)-, 30 (N513)-, 40

(N525)-, and 50 (N529)-day-old mice. Based on previous anal-

yses, we found 1-day-old cotton rats to be comparable with 10-day-

Fig. 1. Skulls of Mus musculus domesticus (top) and Sigmodon
fulviventer (bottom) in ventral view at selected ages; the age of each
individual, in days postnatal, is shown below the skull.
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old house mice in degree of maturity; 10-day-old cotton rats are

approximately comparable with 15-day-old house mice. From 20

days on, the two species are nearly equal in degree of maturity at

any given age (Zelditch et al. 2003).

Morphometric methods
To examine the ontogenetic dynamics of covariances of skull

shape, we used landmark-based geometric shape analysis. Land-

marks for skulls of cotton rats and house mice are shown in Fig. 2,

A and B; the landmarks differ between species because some could

not be reliably located in both. The subset of landmarks common

to both includes all those sampled on house mice skulls, with the

exception of the zygomatic landmark (ZA). Even though the subset

of landmarks common to both species enables comparing them, it

lacks some of the landmarks needed to capture important features

of skull shape, most notably the most lateral braincase landmarks

(GL and ZA) and the several anterior palatal landmarks and oc-

cipital landmarks available only for cotton rats. For that reason,

our analyses were carried out using both the complete set of skull

landmarks available for each species and the reduced set of land-

marks common to both.

Landmarks were digitized on both sides of the skull but the data

for one side were then reflected across the midline and coordinates

of bilaterally homologous landmarks were averaged. This proce-

dure precludes analyzing both directional and fluctuating asym-

metry but allowed us to include individuals that were damaged or

visibly deformed on one side. The configurations of half-skulls were

geometrically scaled (to unit centroid size (CS)) and superimposed

using Generalized Least Squares Procrustes superimposition, which

preserves all information about shape, removing only that related

to scale, position, and orientation (Rohlf and Slice 1990). To ease

interpretation of the graphical results, skulls are depicted after re-

flecting them back over the midline.

Although geometric scaling removes variation in size, it does

not eliminate the impact of that variation in size on shape. We

removed that allometric variation so that samples would not be

judged different solely because they differ in static allometry,

although comparisons were also carried out without removing

that variation to ensure that samples would not be judged dif-

ferent if they are similar with that component included. To re-

move the within-age variation correlated with within-age

variation in size, we estimated the expected shape at the aver-

age size for each age by multivariate regression of shape on size.

The dependent variable (shape) comprised the full set of partial

warp scores (including scores on the uniform component); the

independent variable (size) was measured by CS, which is the

square root of the squared distance between each landmark and

the centroid of the landmark configuration, summed over all

landmarks. To the expected shape at the average size for each

age-class, we added the residuals from the regression.

Informal comparisons of variation patterns were performed by

visual inspection of the principal components (PCs) of variation

within each age-class; these components represent statistically in-

dependent dimensions of variation. Formal comparisons were per-

formed by statistically comparing covariance matrices, testing the

hypothesis that these are either equal or proportional from age to

age, and by comparing the dimensions in which variance is con-

Fig. 2. Landmarks sampled on skulls of both species: (A) Sigmo-
don fulviventer; (B) Mus musculus domesticus. S. fulviventer: Junc-
ture between incisors on premaxillary bone (IJ); premaxilla–maxilla
suture where it intersects outline of the skull in photographic plane
(PML); lateral margin of incisive alveolus where it intersects outline
of the skull in photographic plane (IN); anteriormost point on the
zygomatic spine (ZS); suture between premaxillary and maxillary
portions of palatine process (PMI); premaxilla–maxilla suture lat-
eral to incisive foramen (PMM); posteriormost point of incisive
foramen (IF); medium mure of first molar (MI); posterior palatine
foramen (PF); posterolateral palatine pit (PP); junction between
squamosal, alisphenoid and frontal on squamosal-alisphenoid side
of suture (AS); midpoint along posterior margin of glenoid fossa
(GL); anteriormost point of foramen ovale (FO); lateralmost point
on presphenoid-basisphenoid suture where it intersects the spheno-
palatine vacuity in the photographic plane (SB); the most lateral
point on basisphenoid-basioccipital suture (BO); midpoint of ba-
sisphenoid-basioccipital suture (BOM); hypoglossal foramen (HG);
juncture between paroccipital process and mastoid portion of tem-
poral (OC); midpoint of foramen magnum (FM); juncture of mas-
toid, squamosal and bullae (MB); juncture between mastoid and
medial end of auditory tube (AM). M. m. domesticus: a subset of
the landmarks described above, with the interior corner formed by
intersection of zygomatic arch with braincase (ZA). The set of
landmarks common to both species include all those visible on M.
m. domesticus with the exception of ZA.
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centrated. To determine whether covariance matrices differ, we

estimated the matrix correlation (RM) between successive ages;

RM is a conventional metric of similarity between covariance

matrices (e.g., Mantel 1967; Cheverud et al. 1989; Klingenberg

et al. 2003). It is calculated as a Pearson product–moment cor-

relation across equivalent entries of two covariance matrices. For

these landmark coordinate data, an entry is the covariance be-

tween a pair of coordinates, such as the x-coordinate of land-

mark BO and the y-coordinate of landmark FM in one sample;

elements along the diagonal of the matrix are the variances of

each coordinate, which are omitted from the analysis. The cor-

relation is thus calculated over the covariances between homol-

ogous coordinates in two samples. RM can be interpreted like a

standard correlation coefficient; it ranges from � 1.0 to 1.0.

When two samples have equal or proportional covariance ma-

trices, RM 5 1.0, if the two matrices are unrelated, RM 5 0.0, and

if they are maximally dissimilar, RM 5 � 1.0.

Those expected values for RM presume that sample sizes are

large and because ours were small, we could obtain correlations

lower than 1.0 even if samples were drawn from the same pop-

ulation. Although our samples were above the size regarded as

minimally sufficient for comparative studies of vertebrate skulls

(Polly 2005), they were small enough that correlations lower than

1.0 could be expected even if samples were drawn from the same

population. To estimate the correlation between two samples

drawn from the same population, which is the maximum we would

expect in comparisons between samples, we calculated RM between

each matrix and itself, resampling the data from a single age-class

1000 times (resampling is performed with replacement). The aver-

age correlation obtained from those 1000 bootstrap samples can be

taken as a measure of the repeatability of the matrix. The same

procedure is applied to both covariance matrices being compared,

yielding the bootstrap distribution of values for the correlations

between matrix A and itself, RMðAAÞ , and between matrix B and

itself, RMðBBÞ . When the correlation between two matrices is within

the 95th percentile range of the bootstrap distribution, we conclude

that two matrices differ no more than expected by chance, that is,

by no more than could be explained by sampling. We note that

most studies test a different null hypothesis, namely, that the two

matrices are more similar than expected by chance but we are

asking whether samples, drawn from the same laboratory colony

and separated by only 5 or 10 days in age, differ by more than

expected by chance.

Using the repeatabilities for the two matrices, RMðAAÞand RMðBBÞ,

we can adjust the observed values of between-age matrix correlations

(RM) to take the impact of sampling into account. Following

Cheverud (1995), the adjusted correlation RMðadjÞ is computed as:

RMðadjÞ ¼ RMðobsÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMðAAÞRMðBBÞ

q
where RMðobsÞ is the matrix correlation between the observed covar-

iance matrices for two age-classes.

Two covariance matrices could differ significantly, as judged

by RM, but still be similar in their dimensions of variation, so a

method comparing those dimensions offers an important supple-

ment to comparisons based only on a measure of overall similarity.

It is possible that samples differ significantly, but only in the rel-

ative amount of variability allocated to the same combinations of

traits. For example, in one sample, the width of the braincase

relative to the face might be the most variable feature, with rostral

width relative to palatal width the next most, whereas in another

sample, it might be that rostral relative to palatal width is the most

variable feature, with braincase width relative to facial width the

next most. In such cases, variance is reapportioned. A method for

comparing structures of variation is particularly necessary when

comparisons are based on covariances among coordinates of in-

dividual landmarks because the superimposition procedure deter-

mines the variance allocated to individual landmarks. To test the

hypothesis that samples differ solely in the amount of variability,

we examined the structure of variation using a method related to

Common Principal Components Analysis (CPCA; Flury 1988).

CPCA is now widely used to compare covariance or correlation

matrices (Steppan 1997; Marroig and Cheverud 2001; Polly 2005).

Using this method, a series of hypotheses, defined by Flury are

tested: (1) the two matrices are equal; (2) the two matrices are

proportional; (3) the two matrices have the same PCs; (4) the two

matrices share some but not all PCs; and (5) the two matrices are

unrelated. CPCA assumes that the ordering and identify of PCs is

unambiguous (Flury 1987), meaning that PC1 accounts for statis-

tically significantly more variance than PC2, and PC2 for statis-

tically significantly more variance than PC3, etc. When axes instead

are statistically equal in length, designating one as PC1 is effectively

arbitrary because the sample does not have a unique major axis.

Under those conditions, the distribution is more nearly hyper-

spherical than hyperelliptical, which is evident in the equality of the

eigenvalues of the matrix. Under those conditions, sampling from a

single hyperspherical distribution multiple times could yield a va-

riety of apparently different PC1s. Thus, apparently large differ-

ences between samples could be due simply to chance. To test the

null hypothesis that the first eigenvalue is equal to the second, we

used Anderson’s (1963) test for the distinctness of eigenvalues; that

null hypothesis could be rejected only for one sampleFthe 10-day-

old house mice. Consequently, for our comparisons, we used an

alternative to CPCA also developed by Flury (1987), based on one

approach devised by Krzanowski (1979, 1982).

This alternative method, common subspace analysis asks

whether the variance within the samples is contained within a

common subspace. The basic idea is graphically depicted in Fig.

3, where we show two samples compared with respect to two

dimensions (defined by PC1 and PC2) within a three-dimensional

space. In this example, only the proportion of variance along

those two dimensions differs thus the samples occupy the same

two-dimensional subspace. More technically, the method asks

whether samples differ significantly in the set of eigenvectors

spanning a given number of dimensions. The difference between

those sets of eigenvectors is measured by the minimum angle

through which one subspace must be rotated to align it with the

other (the method for making that determination is given in Ap-

pendix A). The approach used by Krzanowski (1979) was to use

the sum of the squared cosines of the angles between the indi-

vidual pairs of eigenvectors as a measure of the difference be-

tween subspaces, rather than the more intuitive magnitude of the

total rotation used here (see Equation (A6)).

To determine whether that angle is larger than expected by

chance, we compared it to the range of angles that could be ob-
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tained were the null hypothesis true. More specifically, we resam-

pled within each individual age-class, randomly subdividing each

into two groups. The sample sizes for each subdivision are deter-

mined by the sample sizes of the two age-classes being compared;

when those differed, the larger sample was divided into two un-

equally sized samples, one having the sample size of the larger

sample, the other the sample size of the other subdivision. Both

subdivisions of the smaller sample have that smaller sample size to

avoid generating bootstrap sets with sample sizes larger than the

sample from which it is drawn. The PCA is then carried out for

each subdivision within an age-class, and the angle between those

two subdivisions is estimated (the same procedure is applied to the

other age-class as well). Repeating this 400 times gives the boot-

strap distribution of the within-age angles. When the observed an-

gle between the subspaces of two age-classes exceeds the 97.5%

range of the within-group angles generated by the bootstrap pro-

cedure, we concluded that the observed angle could not have arisen

by a random subdivision of a single group. We use the 97.5%

rather than 95% range because we also tested the hypothesis that

the two samples are no more similar than expected by chance. To

test that other null hypothesis that the samples are no more similar

than expected by chance, we compared subspaces of randomly

generated data (i.e., variation at landmarks is independent, iden-

tical, and uniformly distributed) of the same dimensionality and

sample size as the actual data. The minimum angle between ran-

domly generated samples provides an estimate of the angle expect-

ed for two unrelated samples. By using the 97.5% range for each

test we maintain the Type 1 error rate of 5% over both.

To choose the number of axes to include in the comparison we

used two criteria. The first was the minimum number of axes re-

quired to reduce the within-age angles below that expected for

random data. That gives the smallest subspace that can be com-

pared meaningfully (limiting it still further would result in sub-

spaces that can be differentiated only if they are significantly more

different than unrelated samples). The second criterion was the

number of axes required to account for 80% of the variance within

each sample. We consider only 80% because PCs accounting for

the last 20% are individually trivial (each accounts foro1% of the

variance). Rather than asking if subspaces defined by those trivial

axes are the same, we ask whether variance is concentrated in the

same dimensions.

Procrustes superimposition and the calculation of CS were per-

formed in CoordGen, removal of the variation related to size was

performed in Standard6, PCs analysis and Anderson’s test of the

distinctness of eigenvalues were performed using PCAGen, and the

comparison among subspaces was performed using SpaceAngle; all

programs are part of the Integrated Morphometrics Programs

(IMP), produced in Matlab6 (Mathworks 2000); compiled stand-

alone versions running in Windows are freely available at http://

www2.canisius.edu/ � sheets/morphsoft.html. The calculation and

bootstrapping of matrix correlations were performed using Mace

(Marquez 2004).

RESULTS

PCs of variation

For each age-class in both species, half or more of the var-

iance is explained by the first three PCs, although it usually

takes five or six to explain 80% of the variance in samples of

cotton rat skulls and up to seven in samples of house mice

(Figs. 4, 5). Variation appears to be evenly distributed over

the first few dimensions, as expected in light of our inability to

reject the null hypothesis that the first two eigenvalues are

equal. Even when PC1 appears to account for much more of

the variance than PC2, as in samples of 10-, 20-, and 25-day-

old house mice, that difference is not statistically significant.

At most ages, in both species, the proportions of the brain-

case relative to the face are highly variable, as shown by the

lateral displacements of the landmark at the base of the

zygomatic arch (GL or ZA in cotton rats and house mice,

respectively) or by a shortening of the braincase relative to the

face, which is indicated by a posterior displacement of that

Fig. 3. Two distributions occupying the same two-dimensional
subspace of a three-dimensional space. In this case, comparisons
between the distributions could not be made by comparing indi-
vidual principal components (PCs) to each other; the first and sec-
ond PCs of the circle are not distinct because the axes are equal in
length. Instead, comparisons are made between planes, testing the
hypothesis that the difference between axes spanning the two-di-
mensional subspaces is no greater than expected by chance.
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zygomatic landmark (Figs. 4, 5). Another feature seen at sev-

eral ages in both species looks like a localized constriction of

the skull in the region where the alisphenoid, frontal and

squamosal intersect (AS), or in the region of the foramen

ovale (FO); rather than indicating a change in shape of the

skull (making it appear either like an hourglass or bulging in

those regions), this is likely because of variability in the lo-

cations of those foramina. Similarly, variation at the posterior

end of the incisive foramen (IF), which might suggest changes

in proportions of the maxilla, could be because of variation in

the length of that foramen within the bone.

In cotton rats, there is considerable variation in the length

of the IF, especially early in postnatal growth; later, the var-

iation does not seem localized to the length of that foramen

but rather it lies in the relative lengths of the premaxilla and

maxilla (PMI) (Fig. 4). The width of the palate across the

tooth-row also varies, as does the occipital region (in multiple

directions). At most ages, there is also an interesting sugges-

Fig. 4. The structure of variation
for each sampled age of cotton
rats. Shown are the first five prin-
cipal components (PCs) of the
variation of the complete set of
landmarks after removing the ef-
fects of size. Each PC is depicted
as a deformation by the thin-plate
spline. Age of the sample is indi-
cated above each row; the per-
centage of variation explained by
each PC is indicated below.
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tion of asymmetry in the anterior palate; only asymmetry

along the midline could be detected because the coordinates

are averaged across both sides and reflected over the midline

to yield the bilaterally symmetric skulls shown in Figs. 3 and

4; consequently, the coordinates of the two sides cannot differ.

The midline points are not mathematically constrained to lie

along the midline of the skull and some evidently do not,

suggesting deviations from symmetry substantial enough to

be visible, especially in the palatine process at the suture be-

tween PMI.

Two or more PCs may describe conflicting patterns of

variation within the same region of the skull; for example,

PC1 of 15-day-old house mice (Fig. 5) suggests that much of

the variation within that age-class lies in the relative width of

the cranium and the width of the cranial base relative to the

lateral braincase, whereas PC3 and PC4 both describe var-

iation in relative width of the posterior cranial base. Individ-

uals with high scores on PC1 but low scores on PC3 have

wide basicrania, especially across the sphenoid anteriorly,

whereas individuals with high scores on both PC1 and PC3

have wide basicrania, with a more posterior widening of the

cranial base. That several components describe variation

within the basicranium indicates the multiplicity of directions

in which basicranial shape varies.

Variation in house mice appears to be generally smoother,

less often limited to a single landmark (which would look like

a large and very local contraction or expansion of the grids).

That apparent smoothness could be due partly to the sparser

sampling of the house mouse skull, but the consistency across

ages, especially in the dominant components of variation, is

striking. At most ages we see variation within the braincase,

albeit complicated by what might be local variation of AS

within the orbit, and variation in the landmark at the

zygomatic spine (ZS), which could indicate either a localized

variation in width at the premaxillary–maxillary suture or a

more localized variation in the orientation of the spine. An-

other striking feature that is found repeatedly is the variation

in width at the sphenooccipital suture (SB), suggesting that

the area occupied by the bullae varies among individuals. The

sharp crimping of the grid in this region does not indicate that

some individuals are remarkably narrow and others are ex-

tremely broad at that suture. Rather, as discussed above,

scores on these latter components must be interpreted in con-

junction with components describing a more generalized

broadening of the cranium.

Comparing covariance matrices

The correlations between each covariance matrix and itself are

fairly low, and the confidence intervals around these corre-

lations are quite broad (Table 1). Consequently, even low

correlations would not be sufficient statistical grounds for

deciding that age-classes differ by more than expected by

chance. However, the correlations between age-classes are

generally very low, even after adjusting them upwards to take

into account the impact of sampling (Table 2). Most corre-

lations are lower than 0.25, and the maximum is only 0.475

(for the comparison between 30- and 40-day-old house mice

based on the complete set of landmarks for that species). Even

the highest correlation is statistically significantly much lower

Fig. 4. (B). Continued
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than 1.0. Removing the allometric component of shape

has very little impact on the results; for example, when that

component is included, the correlation between the 10- and

15-day-old house mice is 0.205 (compared to 0.228 when that

component is excluded). We can thus reject the hypothesis

that the covariance matrices of successive age-classes are ei-

ther equal or proportional. Each comparison suggests a sig-

nificant (and large) change in covariance matrices from age

to age.

The correlations between the youngest age-class and all

older ones are typically low, as are the correlations between

the youngest age-class in which variance has reached its equi-

librium value and all older samples (Fig. 6). In the case

of cotton rats, a progressive decrease would be unexpected

Fig. 5. The structure of variation
for each sampled age of house
mice. Shown are the first five prin-
cipal components (PCs) of the var-
iation of the complete set of
landmarks after removing the ef-
fects of size. Each PC is depicted as
a deformation by the thin-plate
spline. Age of the sample is indi-
cated above each row; the percent-
age of variation explained by each
PC is indicated below.
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because the initial values are so low that they cannot decrease

much further without resulting in correlations lower than ex-

pected from randomly related samples. In the case of house

mice, a decrease is possible but not found.

Comparing the structure of variation

Comparisons limited to the smallest subspace that can be

meaningfully compared suggest that the dominant features of

variation are fairly stable (Table 3). In general, when com-

parisons are made in a three-dimensional space, age-classes do

not differ significantly, a finding consistent with the patterns

depicted in Figs. 3 and 4. Variance may be reallocated from

one component to another, but the space defined by the three

components does not change. When comparisons span larger

subspaces, successive age-classes do tend to differ significant-

ly. Most comparisons of successive age-classes of cotton rats

require comparing subspaces of four or more dimensions, so

they typically differ. In contrast, comparisons between suc-

cessive age-classes of house mice often consider only three- or

four-dimensional spaces, and with the exception of the com-

parisons involving the 20-day-olds, these do not differ. In-

cluding the component of shape variation correlated with size

has very little impact on these conclusions; when that com-

ponent is included, the angle between the two youngest age-

classes of mice (for the complete data set) is 101.581 (com-

pared with 109.641 with the allometric component excluded).

Interestingly, even a comparison of five-dimensional subspac-

es (i.e., between the 30- and 40-day-olds) indicates no statis-

tically significant difference between these ages in house mice.

Comparisons encompassing 80% of the variance of cotton

rats reveal significant change in patterns of variation (Table

4). In comparisons based on the reduced data set, the com-

pared age-classes are sometimes no more similar to each other

than would be expected by chance. House mice also undergo

a restructuring of variance, although some age-classes do not

differ statistically significantly. In the case of comparison be-

tween 20- and 25-day-olds, the difference is significant if the

zygomatic landmark (ZA) is included, but (marginally) non-

significant when that landmark is excluded. The oldest sam-

ples do not differ in pairwise comparisons, but they do when

30-day-olds are compared with 50-day-olds; for that compar-

ison, the between-age angle is 132.821 and within-sample 95%

ranges are 121.211 and 129.861, respectively. In all of these

comparisons age-classes exhibit more similarity than expected

by chance.

The angle between the youngest age-class and all older

ones is typically high, and so is the angle between the young-

Fig. 5. (B). Continued
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est age-class in which variance has reached its minimum and

all older samples (Fig. 7). In neither species do we see a pro-

gressive increase in the angle. In the case of cotton rats, we

cannot reject the null hypothesis that the angle between the

two youngest samples is equal to that between the two oldest;

the confidence interval on the difference in angle, which rang-

es from � 11.121 to 21.711, includes 01. Similarly, compari-

sons with the youngest sample in which variance has reached

its minimum suggests no progressive compensation for the

variation present at that stage; the confidence interval on the

difference between the angle between the two youngest and

two oldest samples ranges from � 10.931 to 271, which in-

cludes 01. However, as when comparisons were made between

successive age-classes, many of the angles lie within the range

expected for five-dimensional subspaces of randomly gener-

ated data. In the case of house mice, the angles between the

10- and 15-day-old samples are numerically almost identical

to that between the 10- and 50-day-old samples, hence it is not

surprising that the difference between them is not significant;

the confidence interval for the difference between the angles

ranges from � 21.081 to 18.961, which includes 01. Similarly,

the comparison with the youngest age at which variance has

reached its minimum indicates no progressive change in

Table 1. Correlations between each covariance matrix

and 1000 bootstrap versions of itself ðRMðselfÞÞ, 95%
confidence intervals (CI) on ðRMðselfÞÞ: The complete data

set comprises all landmarks sampled on each species; the

reduced data set comprises only landmarks common

to both

Age

Complete Reduced

RMðselfÞ 95% CI RMðselfÞ 95% CI

Sigmodon fulviventer

1 0.768 0.597–0.895 0.778 0.555–0.912

10 0.766 0.613–0.893 0.744 0.579–0.888

20 0.748 0.583–0.880 0.735 0.537–0.878

30 0.752 0.562–0.891 0.738 0.519–0.891

40 0.735 0.547–0.891 0.732 0.543–0.883

50 0.704 0.473–0.917 0.764 0.509–0.941

Mus musculus domesticus

10 0.860 0.674–0.942 0.862 0.693–0.945

15 0.747 0.595–0.875 0.743 0.569–0.88

20 0.792 0.545–0.928 0.796 0.554–0.933

25 0.794 0.566–0.923 0.790 0.571–0.923

30 0.783 0.614–0.917 0.772 0.615–0.908

40 0.803 0.657–0.904 0.798 0.652–0.901

50 0.789 0.656–0.878 0.785 0.664 –0.878

Table 2. Matrix correlations between covariance matri-

ces of the complete and reduced skull landmarks from

samples of samples of successive ages; correlations based

on the data ðRMðobsÞÞ and adjusted to take into account the

impact of sampling error ðRMðadjÞÞ

Age

Complete Reduced

RMðobsÞ RMðadjÞ RMðobsÞ RMðadjÞ

Sigmodon fulviventer

1–10 0.142 0.186 0.189 0.248

10–20 0.101 0.134 0.136 0.185

20–30 0.096 0.128 0.153 0.208

30–40 0.047 0.063 0.092 0.125

40–50 0.162 0.225 0.091 0.122

Mus musculus domesticus

10–15 0.228 0.284 0.279 0.349

15–20 0.300 0.390 0.318 0.414

20–25 0.019 0.023 0.021 0.026

25–30 0.050 0.063 0.008 0.011

30–40 0.377 0.475 0.307 0.391

40–50 0.371 0.466 0.296 0.374

Fig. 6. Similarity between covariance matrices measured by matrix
correlations, RM. (A) Comparisons with the youngest sample (1-
day-old cotton rats, 10-day-old house mice); (B) comparisons with
the youngest sample in which variance has reached its minimum
value (10-day-old cotton rats, 15-day-old house mice). A trend
away from the covariance structure of the youngest age would be
evident in a continuously decreasing RM.
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structure of variation; once again, the values for the compar-

isons between youngest and oldest are nearly numerically

identical and the confidence interval on the difference in an-

gle, which ranges from � 25.901 to 16.01, includes 01.

DISCUSSION

The strikingly low matrix correlations between ages, plus the

significant differences in structure of variation, indicate that

patterns of integration are temporally and spatially dynamic.

Whereas the level of variation is constant from age to age, the

structure continually changes. Those dynamics argue against

the hypothesis that constancy of variance is due to processes

preventing new variance from being generated in the first

place. If that were the case, the patterns of variation would

not differ from age to age by more than expected by chance.

That stability in the structure and even relative amount

of variance appears to be characteristic of the most highly

variable features, which are presumably the least effectively

Table 3. Differences in structure of variation, measured by the angles (in degrees) between the smallest subspaces that

can be meaningfully compared

Age

Complete Reduced

No. of PCs B W(1)/W(2) No. of PCs B W(1)/W(2)

Sigmodon fulviventer

1–10 3 114.72 113.08/116.74 4 114.62 115.86/123.61

10–20 4 121.14 125.07/125.64 5 131.68 122.70/126.91

20–30 4 147.17 129.43/129.11 5 138.11 126.02/131.84

30–40 4 138.32 129.63/134.05 5 138.41 132.09/136.69

40–50 5 140.87 136.12/135.31 4 126.61 120.46/122.36

Mus musculus domesticus

10–15 4 109.63 112.43/120.31 4 107.40 111.18/121.56

15–20 5 131.73 128.62/120.29 4 128.20 118.47/120.49

20–25 4 122.09 118.26/120.86 3 106.72 107.16/109.08

25–30 3 103.80 107.81/111.89 4 118.24 113.98/120.60

30–40 5 126.86 128.92/131.88 4 109.68 115.09/122.10

40–50 3 99.01 106.03/110.19 3 103.54 105.03/106.19

Given are the number of principal components (PCs) compared (No. of PCs), between-age angle (B), within-age angles (W(1)/W(2)). When B exceeds
both W(1) and W(2), the difference between the two subspaces is statistically significant (indicated by a bold font).

Table 4. Differences in structure of variation, measured by the angles (in degrees) between the subspaces encompassing

80% of the variation

Age

Complete Reduced

No. of PCs B W(1)/W(2) Random No. of PCs B W(1)/W(2) Random

Sigmodon fulviventer

1–10 6 148.26 131.26/134.13 161.59 6 147.30 122.82/127.13 149.49

10–20 6 153.83 137.78/134.10 161.44 6 150.27 127.10/126.30 148.05

20–30 6 156.16 137.72/140.12 161.84 6 149.69 128.53/131.85 149.99

30–40 5 153.36 135.87/140.05 150.41 5 138.41 130.22/135.42 140.21

40–50 5 140.87 135.57/132.42 148.46 5 148.99 129.53/125.72 138.67

Mus musculus domesticus

10–15 6 126.82 124.16/124.73 152.63 6 136.53 124.27/124.48 148.98

15–20 5 131.73 120.68/124.81 142.65 5 131.63 122.05/126.82 139.72

20–25 5 131.42 123.08/123.94 142.49 5 125.08 123.05/125.57 140.21

25–30 5 137.59 121.61/125.88 141.37 5 140.11 118.57/126.45 140.87

30–40 6 133.20 130.95/137.14 142.48 6 135.51 128.61/135.71 148.54

40–50 7 110.83 127.6/125.73 160.51 7 115.63 128.15/130.99 156.69

Given are the number of principal components (PCs) compared (No. of PCs), between-age angle (B), within-age angles (W(1)/W(2)). When B exceeds
both W(1) and W(2), the difference between the two subspaces is statistically significant (indicated by a bold font).

56 EVOLUTION & DEVELOPMENT Vol. 8, No. 1, January^February 2006



canalized. Not only are the three most dominant features

generally similar in structure, they also account for similar

proportions of variance (50–60%) at nearly all ages, includ-

ing that stage prior to the initial reduction in variance. The

less variable features are the ones that appear to be restruc-

tured, but there is no evidence of any progressive trend away

from the structure of variation present early in ontogeny, as

might be expected if errors are gradually corrected. Rather,

variation appears to be continually altered but not preferen-

tially in any particular direction, suggesting that errors are

corrected as rapidly as they are generated. Thus, our data

more strongly support the hypothesis that constancy of var-

iation results from a balance between processes that generate

and remove variation.

Although our data argue against the hypothesis that the

constancy of variance is due to processes that forestall any

new variation from being produced, we cannot conclusively

reject it because we measured different individuals at different

ages and our samples are small. It is possible that our samples

do not adequately represent the range of variation present at

each age and that even statistically significant differences are

artifacts of sampling. Convincing evidence for the hypothesis

that variation is continually generated but fails to accumulate

because it is equally rapidly removed, requires larger samples,

or ideally, measurements made on the same individuals re-

peatedly throughout growth. Such evidence is provided by

one longitudinal analysis of variation of cranial shape of lab-

oratory rats (Rattus norvegicus), sampled in sagittal view (data

published in Bookstein 1991, Appendix A.4.5., available

electronically at http:life.bio.sunysb.edu/morph). In that

population, individuals who are most deviant at one age, lat-

er approach the mean, whereas those who are near the

mean, later depart from it, and the same individuals deviate

in different features at different ages (Zelditch 2005). Because

only a few landmarks were sampled, and the variation is too

nearly random to allow for comparisons of its structure, this

is not convincing evidence that the processes responsible for

maintaining the level of variance in dynamic equilibrium also

restructure it. However, one crucial element of that hypoth-

esisFthe balance between generation and removal of vari-

ance, is well supported. Moreover, compensatory differential

growth has been detected in longitudinal studies of fluctuating

asymmetry, suggesting that it is also important in regulating

developmental noise, although in that case, compensatory

differential growth is not balanced by processes generating

new variance (Kellner and Alford 2003).

Variance, overall, restructures, but the most poorly canal-

ized (hence most variable) features tend to be temporally sta-

ble, and qualitatively similar between cotton rats and house

mice. They even resemble features found to be highly variable

in other mammals, suggesting that their variability is due to

developmental processes shared by mammals in general. For

example, one of the most highly variable features in both

cotton rats and house mice is the location of the juncture of

three bones: the alisphenoid, squamosal, and frontal (AS).

Studies of primates also find high variability of lengths of

orbital traits (which would include lengths measured from

AS), and these are negatively correlated, suggesting that or-

bital landmarks vary randomly in their locations around an

invariant-length orbital rim (Cheverud 1995). In effect, the

space occupied by the orbit is canalized but the proportions of

the bones filling that space are not. In such cases, adjacent

bones (or regions within bones) may evince a spatial form of

compensatory growth in that any deficit of one is balanced by

an excess of another. The high variability of the landmark at

the FO may have a similar explanationFthe location of the

foramen is unconstrained so long as it lies within the al-

isphenoid. Similarly, the width of the cranial base, another

consistently variable feature, may be determined partly by the

space to be filled between bullae. As that space diminishes, the

Fig. 7. Similarity between covariance matrices measured by angles
between subspaces, measured in degrees (1). (A) Comparisons with
the youngest sample (1-day-old cotton rats, 10-day-old house mice);
(B) comparisons with the youngest sample in which variance has
reached its minimum value (10-day-old cotton rats, 15-day-old
house mice). A trend away from the covariance structure of the
youngest age would be evident in a continuously increasing angle.
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absolute variability of these features diminishes, but their rel-

ative variability does not.

Notwithstanding the stability of the least canalized fea-

tures, the overall structure of variation differs notably from

age to age. The matrix correlations between age-classes that

are separated by only 5–10 days are remarkably low, espe-

cially in context of other studies that also use geometric

methods of shape analysis. They are similar to values reported

for comparisons between covariance matrices of skull land-

marks of two distantly related species, rhesus macaques and

house mice (RM50.127, 0.169 for females and males, respec-

tively; Hallgrı́msson et al. 2004). They are sometimes exceeded

by matrix correlations between patterns of variation and

fluctuating asymmetry (RM50.12, cichlid pharyngeal jaws,

Klingenberg et al. 2002; RM50.37, mandibles of house mice,

Klingenberg et al. 2003; and RM 0.030–0.220, for skulls of M.

m. domesticus, M. m. musculus, and hybrids, Debat et al.

2000) even though such low correlations are taken to mean

that the underlying processes of canalization and develop-

mental stability differ.

The low correlations between ages might result from con-

tinual changes in the processes generating variance, perhaps

because of differential gene expression (Atchley et al. 1981), or

changes in the spatial organization of bone deposition and

resorption because of changes in the forces generated by

growth and muscle activity. Both the magnitude and orien-

tation of masticatory forces change over time because of in-

creasing muscle strength, differential bone growth, or both

(Sun et al. 2004). Those changes in forces can even evoke

changes in gene expression because mechanical forces induce

the expression of some growth-related genes (Fitzgerald and

Hughes-Fulford 1999; Hatton et al. 2003). The spatiotempo-

ral dynamics of these forces may explain the changes in the

spatial distribution of variation over the skull. However, the

temporal behavior of variance cannot be explained solely by

the processes generating variance because as much variation is

removed as is generated. It is possible that the processes re-

moving variance are spatially uniform and therefore have no

impact on the structure of integration. That, however, seems

unlikely.

The continual restructuring of (co)variation found in cot-

ton rats directly contradicts the conclusions of a prior study of

this same population (Zelditch and Carmichael 1989). In that

study, a significant change in integration was detected prior to

weaning; thereafter the pattern was constant. However, our

present study analyzed different parts of the skull in that we

exclude the mandible, but include more details of palatal

morphology and analyze the face together with the braincase.

Also, we use geometric rather than traditional morphometric

methods, and perhaps more importantly, we use a different

method to compare patterns of integration. In the previous

study, models of integration were evaluated for their good-

ness-of-fit to the data, and samples were compared by testing

the hypothesis that the samples were drawn from a single

homogeneous population with the factor structure predicted

by the model. Prior to weaning, the best-fitting model pos-

tulates only a size factor with the remaining variation being

randomly distributed around it; shortly before weaning, a

second factor emerges, indicating integration between man-

dible and upper jaw (and teeth). That one masticatory factor

might indeed be stable, but our present analysis argues against

such a simple model of skull integration.

The hypothesis of compensatory differential growth im-

plies that skull shape is actively monitored, with deviations

from the norm actively corrected, either by up-regulating

bone growth where too little bone was previously deposited,

or by down-regulating it, or both. An alternative explanation

is that shape is not directly regulated at all but rather some-

thing else is, such as bone strain. Bone is modeled in response

to physical forces so that bone does not bend when loaded by

muscles, primarily by modulating rates of periosteal apposi-

tion (Chamay and Tchantz 1972; Lanyon 1984; Lieberman

and Pearson 2001; for a review of the biomechanics of bone

growth, see Skerry 2000). The processes canalizing skull shape

may be unresponsive to deviations in shape, reacting instead

to present levels of strain. The restructuring of subtle features,

such as the tapering of the ZSs and the relative growth rate of

the premaxilla relative to maxilla (within the palatine process)

may be less a matter of error correction than overwriting old

deviations with new ones.

The ontogenetic dynamics of (co)variance structure sug-

gests that morphological integration does not require coor-

dinated growth of parts but can instead arise via

compensatory interactions that correct for locally dispropor-

tionate growth. This is a developmental analogue to a pattern

commonly seen in phylogenetic studiesFcharacters may be

correlated within species, but they need not have undergone

correlated evolutionary transformations. Our analysis does

not dispute the idea that pleiotropy is an important source of

integration but rather it argues that that coordinated growth

caused by pleiotropy does not explain either the constancy of

variance or details of skull integration. We suggest that com-

pensatory differential growth, balanced by newly generated

variance, explains both. Whether shape is actively regulated,

or instead it is strain that is regulated so that deviations from

the normal shape are incidentally corrected when bone adapts

to local strains, is an important question that we cannot an-

swer. However, our results suggest that (co)variation patterns

are continually restructured by processes that equilibrate var-

iance, and thus canalization plays a critical role in molding

patterns of integration.
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APPENDIX A

To determine the angle between subspaces defined by the first

L principal components (PCs) of each group, we construct the

matrix VA such that its N columns are the PCs (eigenvectors)

of the variance–covariance matrix for sample A and the

equivalent matrix, VB, for sample B.

The projection matricesQ andR are operators that project

an arbitrary vector X in the original M�M variable space

onto the subspace defined by the first L eigenvectors of A and

B, respectively, and are calculated

Q ¼ VAPV
�1
A ðA1Þ

R ¼ VBPV
�1
B ðA2Þ

where P is the matrix:

P ¼ I 0
0 0

� �
ðA3Þ

such that I is a L� L identity matrix; the zeros are necessary

to make P anM�Mmatrix. P serves to extract only the first

L vectors of A and B.
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The operator J is defined as the difference between Q

and R

J ¼ Q� R ðA4Þ

and an eigenvector decomposition determines the angular

change implied by J. The eigenvalues of J are paired positive

and negative values of the form (J1, � J1, J2, � J2, J3, � J3
. . .), expressing the angles of rotation (in orthogonal two-

dimensional subspaces) that produce the smallest rotation of

one L dimensional subspace into another. To compute the

total angular distance we compute the square root of the

summed squared angles of rotation

ADistance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
arcsinðJ1Þ2 þ arcsinðJ2Þ2 þ arcsinðJ3Þ2 þ � � � þ arcsinðJKÞ

q

ðA5Þ

where all angles are in radians (when reporting angles, we

convert them into degrees).

Krzanowski (1979) measured the difference between sub-

spaces by the summed squared cosines of the angles

KDistance ¼
X

cos2ðarcsinðJiÞÞ ðA6Þ

a metric that ranges from 0 (when all angles are 901) to L

(when all angles are 01).
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