T HE UNIVERGSITY O F MICHIGAN

Memorandum 20

AN ASSEMBLY LANGUAGE SYSTEM FOR DEC MINICOMPUTERS

V. Michael Powers

David L. Mills

Neal L. Laurance (Scientific Research Staff,
Ford Motor Company,
Dearborn, Michigan)

CONCOMP: Research in Conversational Use of Computers
ORA Project 07449
F.H. Westervelt, Director

supported by:
DEPARTMENT OF DEFENSE

ADVANCED RESEARCH PROJECTS AGENCY
WASHINGTON, D.C.

CONTRACT NO. DA-495-083 0SA-3050
ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

May 1969

ABSTRACT

A collection of programs, running in The University
of Michigan Terminal System (MTS) on an IBM 360/67 computer
system, accomplish assembly and linkage editing of relocatable
programs written for DEC's PDP-1, PDP-5, PDP-8, PDP-7, and
PDP-9. A 1link editor program can be used to merge the out-
puts from several different runs of the assembler and pro-

duce a single relocatable or absolute load module.

-iii-

PREFACE

This memorandum describes the PDP-5/8 and the PDP-7/9
language assemblers and the PDP-8 Link-Editor/Loader which
are currently running on the duplex IBM 360/67 system at
the Computing Center of The University of Michigan under
MTS (Michigan Terminal System). The programs are written
in IBM System/360 0OS Assembly Language, Level G. The mem-
orandum serves both as a manual for the system user as well
as a report on the system development.

Tim Swanson, of the Geophysics Laboratory, Institute
of Science and Technology, effected the changes necessary

to realize the PDP-1 version, and wrote the appendix.

V. Michael Powers
David L. Mills

Neal L. Laurance

PREFACE
1. INTRODUCTION
2. ASSEMBLING IN MTS
3. ASSEMBLY LANGUAGE

5.1 Language Structure

3.2 Fields

3.3 Terms

3.4 Expressions

3.5 Relocatable Expressions
4, DOCUMENTATION AND DEBUGGING AIDS
5. PREDEFINED SYMBOLS

5.1 Pseudo-ops

5.2 PDP-8 Opcodes

5.3 PDP-9 Opcodes
6. RELOCATION

6.1 Definitions and Methods

6.2 Implementation: Logical Object Deck.

6.3 *8LINK: The Link Editor
7. WRITING RELOCATABLE PROGRAMS
8. OBJECT MODULE FORMAT
REFERENCES

TABLE OF CONTENTS

APPENDIX: A VERSION OF THE ASSEMBLER FOR

THE PDP-1

-vii-

.22

.23
.31
.34

.36

.36
.40
.42

.49

.53

57

58

TABLE 1.

TABLE 2.

LIST OF TABLES

Examples of Constant Conversion

Operators in Order of Decreasing Precedence

-1X-

10

11

1. INTRODUCTION

Within the last few years, several assemblers have
been developed at The University of Michigan to service
the ever-increasing number of PDP-8s located on the campusl’2
These assemblers were designed to be run on a large machine
and produce code which was executed on the PDP-8. Such sys-
tems also served the PDP-5s, which are logically identical
to the PDP-8. The recent addition to the PDP-8 family, the
PDP-8S, the PDP-8I, the PDP-8L, as well as the PDP-8 part
of the LINC-8 and LAB-8 computers can also be served by such
assemblers.,

The present assembler represents several departures in
construction from earlier systems. In the first place, it
is designed more for a timesharing environment both in its
facilities and its record formats. It takes advantage of
the virtual memory of the IBM 360/67 for intermediate file
storage, thereby greatly increasing its speed and reducing
the cost of assembly. But a more important difference is
in the language structure itself. An assembly language state-
ment is composed of three fields, a label field, an opera-
tion field, and an operand field. (We neglect comments
since they play no role in the language structure.) The
difference between this assembler and conventional machine
assemblers arises from the fact that the operation field and
the operand field are both sentences in a language which can
be described by a modified operator precedence grammar.

-1-

-2-

This means that the operation or the operand part of an
assembly input line, or both, can be complex ekpressions,
much in the style of a compiler language. 1Indeed, the syn-
tax used in the expression analyzer is quite similar to the
syntax in the MAD/I compiler la_nguage3

Another major departure from the earliest PDP-8 assem-
blers is the inclusion of relocatability within the language
structure. To effect complete relocatability, a link-editor
and synthetic loader have been written which run within MTS,
as well as several loaders which load relocatable code with-
in the PDP-8. Relocation has been carefully implemented
so that an absolute assembly is a simple subset of a re-
locatablelassembly, which is otherwise compatible with re-
locatable assemblies. The relocation structure used was
described in an earlier memorandum4, but the interpretation
of some terms has been somewhat modified from the descrip-
tion in that document.

The assembler has also been enlarged to include assem-
blies for the PDP-7 and PDP-9 class of computers, but relo-
cation facilities have not been implemented for these machines.
Throughout the report we will be discussing the PDP-8 assem-
bler, but most remarks, except those specific to relocation,
apply also to the PDP-7/9 assembler. A minor modification
of the assembler has produced a version which assembles for
the PDP-1; pertinent details are included as an appendix to

this report.

2. ASSEMBLING IN MTS

The assembler can be invoked in MTS by the $RUN command
(see the MTS manual for a full description), with the object
module specified as *8ASR (for PDP-8 assemblies), *9ASR (for
PDP-9 assemblies), and *1ASR (for PDP-1 assemblies). Logi-
cal I/0 units used are:

SCARDS assembly input file (defaults to *SOURCE*)

SPRINT assembly printed listing (defaults to *SINK*)

SPUNCH binary object module

SERCOM (optional) error listings
In addition, the programmer may specify a set of print op-
tions by means of the PAR=(string) specification. The op-
tions availabie are identical to the options described under
the OPTIONS pseudo-op below.

The input lines to the assembler are variable-length
records in standard MTS format. The lines may be frorm 1
to 256 characters in length. Because of this long line
available within the system, no continuation card convention
was implemented within the assembler; each input line is
processed by itself. The assembler has the ability to inter-
pret lines containing tabulation characters, and to expand
a compressed line for output. The expansion is not per-
formed until the line is to be printed, thereby saving
storage space in most source files.

The assembler scans the input line for three fields:

-4-

the label field, the operation field, and the operand field.
If the first character of the line is an asterisk "*", the
entire line is treated as a comment; it is printed but other-
wise ignored. Fields are separated from each other by one

or more blanks or by a single tabulation character. If the
first character of the line is a blank or a tabulation char-
acter, the label field is considered empty; otherwise the
label field is collected. The operation field of the line
is then scanned. The result is used to determine how to
interpret the label field and whether or not to scan the
operand field. After the operand field is scanned (or the
operation field, if an operand field is not present) the
remainder of the line is treated as a comment,

The result of the operation field scan may be a machine
operation code or an assembler pseudo-operation indicating
that some fixed procedure is to be executed. If the result
is a machine instruction, the label is defined to be the
current value of the instruction location counter; other-
wise the interpretation depends on the pseudo-operation.

The printer listing 1is produced in one of two formats
depending on the setting of a print options switch. One
of these formats 1is designed for a 128-column line printer
while the other is designed for a 72-column teleprinter or
similar device. For control of this option, refer to the

OPTIONS pseudo-op below.

-5-

The binary output is produced in variable-length
records designed for MTS internal storage. They can be
copied onto paper tape, but more usually they are used as
the input to some utility program which alters their for-
mat for the need at hand. A binary card format has been
specified for this language4, but is not produced by
the assembler directly.

3. ASSEMBLY LANGUAGE
3.1 LANGUAGE STRUCTURE

Besides being a working tool for the many users of
PDP-8s within the academic community, the assembly language
also represents the results of some experiments in applying
the techniqueé of operator precedence grammars to the con-
struction of assemblers. The grammatical analysis involved
within the assembler is very similar to that used in the
construction of the MAD/I translator, and the syntax of
the expressions allowed within the assembler is very nearly
a subset of the syntax found within the MAD/I system. The
assembler syntax is not properly an operator precedence
grammar, but is transformed into one by means of terminal
context transformations. For example, the minus sign(-),
when found in a unary context, is "transformed" into the
unary negation operator. In this way one variously inter-
prets the asterisk (*) as the ILC, the multiplication oper-
ator, or the indirect addressing flag. The operator prece-

dence grammar has many processing advantages including speed

-6-

of parsing and excellent error recovery. For a further
discussion of the syntactic structure of the assembler as
well as that of MAD/I, the reader is referred to a previous

technical report, The Syntactic Structure of MAD/IBo

3.2 FIELDS

An input line may have four fields, delimited by one
or more blanks or by a horizontal tab character. The first
field, or label field, may contain a single symbol. This
field must begin with the first character of the input line.
If this first character is blank, the label field is con-
sidered empty. The operation field (which is always present)
is an expression formed according to the grammar mentioned
above. The basic terms involved in this expression are
machine operation code mnemonics or assembler instructions
(pseudo-ops) and constants, The resulting value of this
expression is used to determine whether or not to expect
a third field, called the operand field, to follow on the
input line. The operand field, if present, is also an
expression formed in the assembler grammar, which is normally
interpreted as the machine address to be combined with the
operation code which resulted from the evaluation of the
instruction field. (If the instruction field contained a
pseudo-op, the interpretation of the operand field varies
with the pseudo-op.) The last part of the input line is
the comment field and is printed on the assembly listing.

If the input line begins with an asterisk as its first

character, the entire line is treated as a comment field.
3.3 TERMS

As the expressions in the instruction and operand field
are analyzed, the assembler attempts to compute some result
which it ascribes as the '"value'" of the expresssion. We
are using the word value here in a broad sense as being
the result of some computation. This result is obtained
by combinations of the '"values'" of the primitive terms

within the expressions. A term in an expresssion may be

a variable, a constant, or the special term * (asterisk)

which stands for the indirect flag in the operation field,
or the ILC in the operand field.

Each variable is a string of one to eight letters and
digits, the first of which must be a letter. A label is
a variable which is defined by its appearance in the label
field of an input line; 1ts value, unless the instruction
field is one of certain pseudo-ops, is the value of the
ILC corresponding to the line in which it appears. An
opcode is a variable which represents a machine instruction,
such as JMP or CLA. Many opcodes are predefined by the
assembler, and others may be defined by the user through
the use of the OPD or OPDM pseudo-ops. A pseudo-op, or
assembler instruction, is a variable predefined by the
assembler, which represents a call on a procedure internal

to the assembler, such as setting the value of the ILC (ORG)

-8-

or performing some formatting operation (EJECT) or definition

(EQU). Lists of predefined pseudo-ops and opcodes appear

in Section 5. An external symbol is a variable, appearing
within the current assembly, which names a value which may
be defined or used in another assembly; it is intended as

a means of communication among the assembler and programs
which operate on the assembled object module, such as a
linkage editor or a loader. Definitions of variables are
separated into three internal tables by the assembler:

the labels in one, the opcodes and pseudo-ops in another,
and the external symbols in a third. Thus, the same alpha-
numeric string can variously represent three different
labels: ﬁ label, an opcode or pseudo-op, and an external
symbol., The value of an expression containing one such
label is unambiguous, since a variable in the instruction
field must be an opcode or pseudo-op, a variable in the
operand field must be a label, and external symbols are not
used in expressions.

Constants can be numeric or alphabetic. A string of
decimal digits 1s converted as a number with the appropriate
radix (8, if none other is specified). If the numeric con-
stant is immediately followed by the letter B, K, D,or X,
then the radix is taken as 2(B), 8(K), 10(D), or 16(X).

A string of characters between apostrophes may be a numeric
or an alphabetic constant, depending on what letters immedi-

ately follow the last apostrophe. An A means the last

-9-

character of the string is converted to its ASCII equivalent;
if an N immediately follows the A, the high-order (parity)
bit is forced to 0. A P immediately following the term's
final apostrophe forces 6-bit packed ASCII conversion: the
low-order 6 bits of the ASCII translation of the last two
(or three, for PDP-9) characters of the constant are packed
in order to form the value of the constant. If no letter
appears after the last apostrophe, an A or P is assumed,
respectively, depending on whether or not the constant con-
tains fewer than two characters. (In order for the con-
stant to contain an apostrophe, the character string must
contain two adjacent apostrophes.) If the letter trailing
the character’string is B, K, D, or X, the string is taken
as a numeric constant (of radix 2, 8, 10, or 16, respectively).
Table 1 lists some possible constants and their corresponding
octal PDP-8 conversions.
3.4 EXPRESSIONS

The productions governing the analysis of the expres-
sions found in the assembly language are fully described in
Reference 3. We can summarize the language here by de-
scribing an expression as a term or a combination of terms
separated by operators which obey certain straightforward
precedence relations. The assembler scans an expression
from left to right, associating terms in the expreésion
according to the precedence table given in Table 2. Expres-

sions may be parenthesized as required to an indefinite

-10-

Table 1. Examples of Constant Conversion
character string converted value (octal)
1 0001
101B 0005
10D 0012
"A' 0101
'C! 0303
'"E'A 0305
"F'AN 0106
"G'AN 0107
'cc! 0303
rre 0047
e 4747
'"FFF'X 7777
'1'K 0001
27X 0002
"11C'X 0434

'11'D 0013

-11-

Table 2. Operators in Order of Decreasing Precedence
Operator Semantics
-y unary logical inversion
€ bitwise logical AND
bitwise inclusive OR

- bitwise exclusive OR

- unary negation
*/ arithmetic multiplication, division

arithmetic addition, subtraction

-12-

degree. Two's complement arithmetic is used in all cal-
culations.

Although all the operators listed in Table 2 are recog-
nized syntactically by the assembler scan, not all combina-
tions of operators are semantically valid. Within the
instruction field, especially, the only operators recog-
nized are the plus sign +, and the * which signifies in-
direct addressing. The plus sign is taken as meaning the
logical OR function of two opcodes. The assembler checks
to see that operate group operation codes belonging to dif-
ferent subgroups are not combined. Thus, for example, a
line containing an IOT instruction ORd with a micro-
instruction will be flagged as having an operator error.

Within the operand field, any of the operators listed
in Table 2 may be used with the semantics indicated. 1In
order to implement relocatable code, each term and each
expression is associated with two numbers, one called the
value and another which will be called the CSID. The
instruction field also has these two values, but the CSID
component is not used. A discussion of the CSID is deferred
until the next section; here we merely remark that the
value is computed to 18 bits and the CSID to 9 bits, re-
gardless of target machine. These values are further
truncated, depending on the target machine, when the
binary records are produced.

The assembly of the machine word is governed by the

-13-

result of the operation field. If the operation field 1is
such that it did not require an operand field, then its
value is the final machine word. If the operation requires
an operand, then the value of the operation is ORd with some
appropriate subfield of the operand value to form the final
machine word. Which subfield is used is dictated by the
operation field. In the PDP-8 case, four types of operand
fields are recognized. For an adcon (DC), the low-order
12 bits of the operand value become the machine word. For
a memory reference instruction, the low-order 7 bits of
the operand value are used. The '"same page' bit is also
inserted if necessary, or a page flag may be generated if
the operand value differs in page from that of the ILC.
Two new instructions, IDF and IIF, have been added to the
repertoire. They have the same operation codes as CDF and
CIF respectively, but they require operand addresses. For
these instructions, the high-order 3 bits of the 15-bit
address are selected and ORd into bits 6-8 of the machine
word. This allows some very convenient code. For example,
if one wishes to refer to a location TAB which is in core
bank 1, one may write the instruction

CDF+10
which will change the data field to core bank 1. More
transparently, one can now write

IDF TAB

which changes the data field to correspond to TAB. Note

-14-

that the CDF (like other micro-instructions and IOTs) does
not use an operand field; the entire instruction must be
described in the operation field. Finally, two instructions
peculiar to the 338 display are predefined within the PDP-8
assembler because they also require the 3 high-order bits
of the 15-bit address. These instructions are PJMP and JUMP.
For these instructions, the 3 high-order bits of the oper-
and value are ORd into the low-order bits of the instruction.
3.5 RELOCATABLE EXPRESSIONS

It is sometimes convenient to be able to assemble a
program before it is known what addresses the program will
occupy when it is loaded. In the loading of such a progranm,
the adjusting of its contents to specify the correct addresses

is known as relocation; the assembled object module of such

a program, containing the information necessary for such

adjustment, 1s known as a relocatable object module. Con-

struction and use of relocatable programs are discussed in
Section 5. Here, we will make use of a few concepts, which
are more fully explained later, in order to discuss relo-
cation information as it relates to expressions.

Any term whose value is an address within a relocatable
segment of a program is a relocatable term; such a term has
assigned to it by the assembler not only the value of the
address but also a second, nonzero number known as the CSID,
which indicates something about its relocation properties.

In fact, it is convenient to regard every term as having a

-15-

complex value which has two parts: CSID and (simple) value.
Those terms which are not relocatable (called absolute terms),
such opcodes, pseudo-ops, alphabetic and numeric constants,
and terms whose values are not addresses in relocatable pro-
gram segments, have assigned a special CSID value, zero.

Operationally, then, a term is relocatable iff its CSID is

nonzero; it is absolute iff its CSID is zero.

Every expression also has two numbers, CSID and value.
An expression consisting of a single term has the CSID and
value of that term. An expression with more than one term
has a CSID and a value each formed by combinations of the
CSIDs and values of the terms, as determined by the operators
of the expression.

The value of the expression is determined straight-
forwardly as the sum, difference, negation, inclusive OR,
etc. of the individual term values. The CSID of the result,
however, is calculated differently in some cases. In con-
trast to some assemblers (see Reference 5, especially p. 22),
the PDP-8 Assembler allows liberal mixtures of relocatable.
and absolute terms in its expressions. Thus, for example,
division of a relocatable term by an absolute term is allowed
without complaint, but with full warning that the relocated
value of the expression may not be the relocated address
divided by the constant. In this vein, the CSID of the
sum or difference of two terms is the sum or difference,

respectively, of their CSIDs. Any number of relocatable

-16-

and absolute terms are allowed in an expression. (Note
that the CSID of the difference of two relocatable terms
with equal CSIDs 1s zero; this implements the convention that
the difference of two relocatable terms from the same program
segment is absolute.) For the other binary operations (&,
|, =, *, /), the CSID of the result is formed in the follow-
ing, not entirely arbitrary, manner: if both operands are
absolute, the result is absolute; if only one is relocatable,
the result is relocatable and has the nonzero CSID of the
relocatable one; if they are both relocatable, the result
has a zero CSID (absolute), a flag is generated indicating
a probable relocation error, and evaluation of the expression
continues.
4, DOCUMENTATION AND DEBUGGING AIDS

As mentioned above, the assembly listing contains much
useful! information. The basic format, constructed for a
128-character printer, lists assembly flags, ILC (address)
value, machine word value, pseudo-op parameter value, MTS
source file line number, and input line image for each line.
The assembly flags, as discussed below, are single characters
denoting probable errors in the input line. The three value
fields are different sizes for the PDP-5/8 and 1/7/9; although
the PDP-8 is a 12-bit machine, the assembler treats addresses
as 15 bits (5 octal digits) to allow for assemblies spanning
more than one core bank. The machine word value is the width

appropriate for the target machine (4 or 6 octal digits), and

-17-

displays the value of the text word which appears in the
object module, and which corresponds to the address value.
Certain pseudo-ops which do not produce machine words may
be associated with an important value, such as a number of
storage locations, an address, or the value of an ekpres—
sion; such a value is displayed in the third field, whose
width is the same as the ILC value field. Some different
language processors assign line numbers to statements arbi-
trarily; this assembler uses the file-device line number
obtained from MTS. Maintenance and change of source text
from indexed files can thus be immediately effected by use
of the line numbers appearing on the assembly listing. The
text of the input line is reproduced following the line
number, except that horizontal tabulation occurs at tab
characters, if the TAB pseudo-op has appeared.

Section 5 lists and discusses pseudo-ops, among them
TAB, SPACE, EJECT, and TITLE, which affect space and page
control of the listing; and OPTIONS which can, among other
things, cause an alternate, short-line format suitable for
teletype listing, or force the production or omission of
the reference tables described below.

The operand cross-reference table is normally printed
after the last source line. It contains, for each label
appearing in the program, information about every definition
and use of the label. Any assembly flags assigned to the

label appear”at the left, followed by the 8-character label.

-18-

Next are the CSID and value assigned to the label (both

zero for undefined labels). The line number of the defini-
tion (if any) appears next, followed by a list of references,
or occurrences of the label in expressions. Each reference
is given as two numbers, the CSID and value of the ILC be-
fore the processing of the line in which it appeared. One
special label, #ERROR, appears in the operand cross-reference
listing only 1f an assembly flag appears in the listing;
references listed under #ERROR indicate the locations, in

the assembly listing, of the offending lines.

An operator cross-reference listing can be produced,
if desired. This table lists the occurrences of each of
the opcodes and pseudo-ops, in the same format as that of
the operand cross-reference listing (the line number is
omitted for predefined variables).

A relocation dictionary appears next. For every ex-
ternal symbol in the assembly, an entry appears, containing
the name, type code (CSECT, EXTRN, or ENTRY type), CSID,
value or address, and length of the symbol, along with a
list of "RLD items." An item appears for each time a relo-
catable symbol occurred in a relocatable operand expression
in such a way as to force the generation of relocation infor-
mation. The item contains a relocation flag (one digit)
and the CSID and address of the occurrence.

In all tﬂfee of these tables, the operand and operator

cross-reference listings, and the relocation dictionary,

-19-

variables which are not defined, and variables which are
not used in the input text do not appear. Variables which
acquire assembly flags are forced to appear, even though
the rest of each table may be suppressed.

The alternate short format suppresses printing of
much of this information. Any sections of the listing which
would otherwise appear as above are printed in an abridged
format which reduces line length by suppressing such things
as multiple assembly flags, CSIDs, line numbers, and the
high-order digit of PDP-8 addresses. The short format was
designed with slow-speed, narrow-carriage printers such as
teletypes in mind.

The assembly flags mentioned above are produced in those
cases where the input text presents the assembler with an
anomaly which cannot be resolved simply and unambiguously,
These flags are usually said to refer to "assembly errors,"
although the assembler may occasionally produce, except for
the flag, exactly what was intended by the programmer. A
list of the assembly flags and some typical interpretations
follows. Any or all of these flags may appear for an input
line.

M - multiply defined symbol.
1. A variable (label, opcode or pseudo-op, or external
symbol) is defined more than once.
2. The value to be used in the definition of the symbol

results from an expression containing a symbol already

-20-

flagged with M.
In any case, the most recent definition establishes

the value of the symbol used in an expression.

U - undefined symbol.

1. A variable appears in an expression, but has no
definition. The variable in this case is assigned
the value 0. (Note that some pseudo-ops require

that all variables in their expressions be prede-
fined.)
2. The expression defining a variable contains a

variable marked U.

S - syntax error.
1. A name (usually a variable name) is more than 8
characters long.
2. A syntax error has been detected in an expression,
such as:
A+*B

or incorrect parenthesization.

C - invalid character
1. A character found in an expression cannot be inter-
preted, at least in the given context.
2. The character string of a constant is too long, is
not terminated by an apostrophe, or is followed by
a letter which does not denote one of the permissible

modes of conversion.

0

-21-

invalid operation code

1. The opcode expression includes at least one variable
which is not defined as an opcode or pseudo-op.

2. The expression is an illegal combination of opcodes
and/or pseudo-ops. (For example, in the PDP-8, RTL
from microinstruction group 1 cannot be combined

with SZA from group 2.)

page reference error

1. For the PDP-8, the direct address of a memory-
reference instruction is neither in the current
page nor in page 0.

2. The direct address of a memory-reference instruction

1s outside the current core bank.

relocation error

1. Some information about the relocating of the value
of an expression is being lost (i.e., in division
of a relocatable term by another relocatable term).

2, A CSECT (relocatable program segment) seems to have
a negative length; part of the CSECT is being

assembled at an address below the declared start.

missing or invalid label
The label field is blank or contains an invalid char-
acter string when it probably should have a legal vari-

able name.

-22-

The final line of the assembly listing contains decimal

numbers for the following quantities:

ERRORS - the number of input lines which caused genera-
tion of at least one assembly flag. Multiple
flags on a line are counted as one, and appear-
ances of flags in the reference tables are
not counted.

SCARDS - the number of input lines read.

SPRINT - the number of lines of assembly listing printed.

SPUNCH - the number of records (lines) written as the
object module.

STORAGE - the maximum number of virtual pages (4096 bytes
per page) acquired for storage of tables and
text.,

5. PREDEFINED SYMBOLS

There are several classes of symbols which are defined
within the assembler. Two special symbols have been men-
tioned before: *, which serves either as a multiplication
sign, as an indirect addressing flag (in the instruction
field), or as the name of the ILC (in the operand field),
depending on context; and #ERROR, a symbol used as a label
to reference occurrences of assembly flags. The rest of
the predefined symbols are pseudo-ops and opcodes. The
PDP-8, PDP-1, and PDP-9 all use the same set of pseudo-ops,

but need different sets of opcodes.

23

5.1 PSEUDO-OPS

The pseudo-ops of the assembler are used for such
purposes as setting and changing the ILC value, setting
and changing global assembly parameters, defining internal
and external symbols, controlling the format of the object
module, and controlling the format of the assembly listing.
In the list below, the pseudo-ops will generally be dis-
cussed with reference to the format,

LAB CODE EXP,

where LAB is a label (optional, except where noted), CODE
is the mnemonic for the pseudo-op, and EXP is the designa-
tion for the contents of the operand field. Wherever the
format of thelpseudo—0p shows a field enclosed in apostrophes,
e.g., LAB ORG 'EXP' it means the expression in that field

must be a predefined expression; the terms of the expression

may only be constants and predefined symbols such as opcodes
pseudo-ops, the special symbol *, and variables which have

been defined in the assembly before their appearance.

ORG set instruction location counter (ILC)
format: LAB ORG 'EXP'
procedure: Set the ILC to the value of the expression EXP.

If there is a label, define it with this new
value. (The ILC is zero at the start of an
assembly.) Set the CSID of the ILC to the

CSID of EXP.

-24-

DC define constant
format: LAB DC EXP
procedure: Form a machine word from the value of EXP, and

define LAB, then increment the ILC, in the nor-
mal manner. If EXP is relocatable, the word

is an adcon and references are entered in the

RLD.
DS define storage
format: LAB DS 'EXP'
procedure: Define LAB with the current ILC value, and

increase the ILC by the value of EXP. Even
if EXP is relocatable, only the '"absolute"
value is used. Any locations skipped by
means of DS contribute to the length of the

current CSECT.

PAGE start a new memory page
format: PAGE
procedure: Update the ILC value to the next PDP-8 page

boundary address (no change if the ILC is al-

ready at a page boundary).

RADIX set global radix
format: RADIX KW
procedure: If the keyword, "KW'", is '"OCTAL", "DECIMAL",

or "BINARY'", set the radix appropriately for

OPD

format:

procedure:

OPDM

format:

procedure:

EQU

format:

procedure:

CSECT

format:

procedure:

-25-

converting numeric constants which have no

modifier. The radix is initially 8.

opcode definition
OP OPD 'EXP'
OP is defined as an opcode, whose value is

determined by the opcode expression EXP, and

which can be combined in subsequent opcode
expressions with opcodes of operate group 1,
operate group 2, extended arithmetic group,

or IOT group.

memory-reference opcode definition
op OPDM 'EXP'
The memory-reference instruction OP is defined

from the opcode expression EXP.

label definition
LAB EQU 'EXP'
Define the label LAB with CSID and value from

EXP.

define a CSECT

LAB CSECT 'EXP'

Define LAB to be an external symbol of type 4
(CSECT) whose CSID is one more than the pre-
vious external symbol defined. 1Its address

(the start of the CSECT) has the value of EXP.

EXTRN

format:

procedure:

ENTRY

format:

procedure:

BREAK

format:

-26-

The CSECT defined extends from this address
to the highest address which is either filled
with data or reserved by the pseudo-op DS, up
to the start of the next CSECT or DSECT. At
the appearance of the CSECT pseudo-op, the
symbol, *, for the ILC becomes relocatable
and is assigned the CSID at the CSECT. The
CSECT object record is produced in pass 2 at

the occurrence of this definitional pseudo-op.

define an EXTRN

LAB EXTRN LAB2

Increment the current CSID for use in defining
LAB2 as an external symbol of the type 6 (EXTRN).
Define LAB as a label (an internal symbol) whose
value is zero, with the CSID of the external
symbol LAB2. The address and length of LAB2

are 0.

define an ENTRY

LAB ENTRY EXP

Define LAB as an external symbol of type 5
(ENTRY), with its address and CSID taken from

EXP.

write a BREAK record

LAB BREAK EXP

procedure:

PCS

format:

procedure:

START

format:

procedure:

END

format:

procedure:

-27-

Define the label LAB at the current ILC value,
and produce a BREAK record in the object module,

using the value of EXP.

write checksum

PCS
Produce a checksum record, and start accumu-
lating a new checksum, starting with the first

byte of the next record.

write transfer record
START EXP
Produce an END record with its address taken

from the value of EXP, but continue the assembly.

end assembly

END EXP
End the assembly. Print the reference listings
and summary line, and write RLD, checksum,and
END records to finish the object module. If
EXP ends with a comma, the address of the END
record is zero; if not, the address is the
value of EXP (or zero, if EXP is empty). If
no END pseudo-op appears at the end of the
assembly the object module ends with a check-

sum but no END record.

DESIST
format:

procedure:

RESUME
format:

procedure:

ICTL
format:

procedure:

-28-

cease object code production

DESIST
Suspend object code production. Continue to
define labels and other symbols and to process
pseudo-ops, but refrain from scanning operand
fields of memory-reference instructions. This
pseudo-op allows inclusion of dummy sections
which are assembled in another assembly, some
of whose internal symbols are needed in the
current assembly. The code processed under
the influence of this pseudo-op may be regular
assembly language lines, but no flags are
generated for such conditions as undefined
symbols in memory-reference instruction oper-

ands.

resume normal assembly processing
RESUME

Cancel the DESIST command and resume assembling.

input format control

ICTL 'C1','Cc2! where 'C2' is optional
Use the values of the two expressions to set
limits on the scan of the input lines. From
now on, the assembler will only scan from byte

Cl through C2 of each input line.

COPY

format:

procedure:

OPTIONS

format:

procedure:

LONG

SHORT

ON

OFF

REF

-29.-

copy from another source

COPY FDNAME
Start taking input lines from the MTS file/
device FDNAME (starting and ending line numbers
may be given). COPY is recursive, in that
FDNAME may contain a COPY giving some other
file/device, and so on. As each such file/
device is exhausted, the assembler resumes
reading input from the next most recently named

""copy source."

set optional parameters

OPTIONS P1,P2,...
If any of the character strings P1,P2,...match
the following key words, set flags to accom-
plish the appropriate formatting:

-Print long format: 128-character lines, with
full 15-bit addresses (PDP-8) and reference
listings containing CSIDs.

-Print short format: 72-character lines, with
short 12-bit addresses (PDP-8) and condensed
reference listings, omitting CSIDs and MTS
line numbers.

-Resume printing of assembly listing.

-Suspend printing of assembly listing.

-Print normal reference listings; predefined

symbols other than #ERROR do not appear.

-30-

FULREF -Print full reference listings: all referenced

symbols appear.

NOREF -Omit reference listings.

ERR -Write on SERCOM a copy of each assembly listing

line which has assembly flags.

NOERR -Inhibit the SERCOM output mentioned above.

NODECK -Suspend output of object code to logical

device SPUNCH.

DECK -Resume SPUNCH output.

BATCH -The current assembly may be one of many. After

the END card is processed, begin assembling

again.

The initial assembler format flag settings are equivalent

to the result of:

OPTIONS LONG,ON,REF,NOERR,DECK
from a batch stream or

OPTIONS LONG,ON,REF,ERR,DECK
from a terminal. (Unless SERCOM is specified,

output appears on *MSINK*.)

the ERR

TAB set tab stops

format: TAB T1,T2,...

procedure: Set the values of each of the expressions
T1,T2,... as horizontal tab stops. When a

tab character is found in an input line it

terminates the field being scanned and causes

-31-

spaces to be inserted, in the assembly listing image of

the input

SPACE

format:

procedure:

TITLE

format:

procedure:

EJECT

format:

procedure:

line, up to the position of the next tab stop.

skip

SPACE EXP
Insert the proper carriage control character
in the next assembly listing line to effect
a line skip. The expression values which work
properly are empty, 0 and 1, skip 1 line; 2,

skip 2 lines; 3, no skip.

set new title

TITLE TE ... XT
The first 69 characters following the first
blank after the TITLE pseudo-op are saved as
part of the page header line. A new page 1is
not forced at this time, but the next new page
will be headed by this title, unless the pseudo-

op appears again before the new page is started.

skip to new page
EJECT
The next line of assembly listing will appear

at the top of a new page.

5.2 PDP-8 OPCODES

The following opcodes are predefined for the PDP-8

-32-

corresponding to the codes listed in Reference 5 except
where noted:

Memory Reference Instructions

AND 0000
TAD 1000
ISZ 2000
DCA 3000
JMS 4000
JMP 5000

Floating-point Mnemonic Pseudoinstructions

FEXT 0000
FADD 1000
FSUS 2000
EMPY 3000
EDIV 4000
FGET 5000
FPUT 6000

FNOR 7000

Operate Group 1 Microinstructions

IAC 7001
RAL 7004
RTL 7006
RAR 7010
RTR 7012
CML 7020
CMA 7040
CIA 7041 (CLA+CMA)
CLL 7100
STL 7120 (CLL+CML)
GLK 7204 (CLA+RAL)
STA 7240 (CLA+CMA)

Operate Group 2 Microinstructions

HLT 7402
OSR 7404
SKP 7410
SNL 7420
SZL 7430
SZA 7440
SNA 7450
SMA 7500
SPA 7510

LAS 7604 (CLA+0OSR)

-33-

Operate Extended Arithmetic Element Microinstructions

MUY 7405
DVI 7407
NMI 7411
SHL 7413
ASR 7415
LSR 7417
MQL 7421
SCA 7441
MQA 7501
CAM 7601 (CLA+MQL)

Combined Microinstructions

NOP 7000
OPR 7000
CLA 7200
Note: Microinstructions from different groups may not be

legitimately combined, but any of the "Combined
Microinstructions'" may be used with a set from any
group above. For example,
CML+HLT is incorrect, but
SNA+HLT+CLA 1is legitimate.

Input-Output Microinstructions

Processor I0T 6000
ION 6001
I0F 6002
SMP 6101
SPL 6102
CMP 6104
33ASR Keyboard KSF 6031
KCC 6032
KRS 6034
KRB 6036
33ASR Printer TSF 6041
TCF 6042
TPC 6044

TLS 6046

-34-

High-speed Tape Reader RSF 6011
RRB 6012
RFC 6014
High-speed Tape Punch PSF 6021
PCF 6022
PPC 6024
PLS 6026
Memory Extension CDF 62nl
IDF 62nl
CIF 62n2
IIF 62n2
RDF 6214
RIF 6224
RIB 6234
RMF 6244
Note: IDF and IIF generate the same instructions as CDF

and CIF, respectively, except that n, the new data
or instruction field is taken as the core bank of
the expression, rather than its value.
338 Display PJMP 2010
JUMP 2000

5.3 PDP-9 OPCODES

The following opcodes are predefined for the PDP—9:6
Memory Reference Instructions

LAC 200000

DAC 040000

DZIM 140000

ADD 300000

TAD 340000

AND 500000

XOR 240000

SAD 540000

1Sz 440000

JMP 600000

JMS 100000

CAL 000000

XCT 400000

LAW 760000 (treated as a memory reference instruc-

tion to allow assembly of the '"immediate"
portion of the word from an address ex-
pression.)

-35-

Operate Group Microinstructions

OPT 740000
NOP 740000
CMA 740001
CML 740002
0AS 740004
RAL 740010
RAR 740020
HLT 740040
XX 740040
SMA 740100
SZA 740200
SNL 740400
SML 740400
SKP 741000
SPA 741100
SNA 741200
SZL 741400
SPL 741400
RTL 742010
RTR 742020
CLL 744000
STL 744002
CLL | 744002} (CLL+CML)
RCL 744010 (CLL+RAL)
RCR 744020 (CLL+RAR)
CLA 750000 '
CLC 750001 (CLA+CMA)
LAS 750004
LAT 750004) (CLA+OAS)
GLK 750010 (CLA+RAL)
LAM 777777 (LAW 17777)
Extended Arithmetic Element Microinstructions
0SC 640001
oMQ 640002
CMQ 640004
LACQ 641002
LACS 641001
CLQ 650000
ABS 644000
GSM 664000
LMQ 652000
EAE 640000
LRS 640500
LRSS 640500
LLS 640600
LLSS 660600
ALS 640700

ALSS 660700

-36-

NORM 640444
NORMS 660444
MUL 653122
MULS 657122
DIV 640323
DIVS 644323
IDIV 653323
IDIVS 657323
FRDIV 650323
FRDIVS 654323

I/0 Group Microinstructions

CAF 703302

(more may be added later)

6. RELOCATION

6.1 DEFINITIONS AND METHODS

The basic concepts of PDP-8 program relocation, and
their implementation,were discussed previouslya4 This
section describes the current implementation of the relo-
cation machinery in the assembler and link editor. At the
present writing, relocation facilities are implemented only
for the PDP-5/8; some modification will probably be needed
for efficient relocation with PDP-7/9 programs. PDP-7/9
programs will not, at the present time, assemble properly
unless they are absolute. Further discussion in this section
will be in terms of PDP-5/8 programs, and sizes and addresses
will be in octal notation.

The present system centers around page-relocatable
programs. In the PDP-8, direct memory reference instruction
addresses refer to locations by using an offset from a page

boundary. PDP-8 pages are blocks of 200 locations, beginning

-37-

at page boundaries 0, 200, 400, 600, 1000, ... 7600 in each

core bank. A section of programs containing only direct
memory references, IOT instructions, operate instructions,
and numeric constants can thus be placed in almost any page
of a given bank without changing its operation, if each word

1s placed at its proper page address, or offset from the

page boundary. However, if one program segment contains

an indirect reference to a second segment and the second
segment is moved, the adcon (address constant, effective
address value, or pointer) which appears in the first seg-
ment and which contains an address in the second segment
must be changed to the proper 12-bit address. A program
segment which‘can be loaded on any page within a core bank,
while keeping 1ts page addresses fixed and changing only
the (relatively few) values such as adcons, is known as a

page-relocatable segment. Because of the special proper-

ties and usages of page 0, regular page-relocatable program
segments are usually to be loaded on some other page, while
page O information such as pointers and constants are usually
assembled specifically for page O.

Programs typically consist of a number of segments,
each of which may be relocated differently. A CSECT (control
section) is such a program segment; it is a contiguous block
of assembled instructions and/or data. A CSECT is up to a
core bank in length and may start at any address in a core

bank, but must end within the same bank. A module is an

-38-

assembly of some number of CSECTs. An object module is a

loadable collection of data defining the structure and con-
tents of a module, including text, CSECT definitions, relo-
cation information, and other information, as will be men-
tioned shortly. The binary information written by *8ASR

on SPUNCH during one assembly is an object module; several
object modules can be merged to form a single one by use
of the 1link editor.

Linkages between modules are maintained through the
use of CSECTs, ENTRYs, and EXTERNs. They are three differ-
ent types of external symbols; each has a name which is
lexically a variable, an address, a length, and an identi-
fication number or CSID. The address of a CSECT is the ILC
value at which the assembly of the program segment started,
and the length is the number of locations it occupies. An
ENTRY, or entry point, is the definition of an external
symbol which can be used by other modules to refer to a
location within a CSECT. Its address is the assembled
address within the CSECT in which the definition appeared,

and its length is zero. An EXTRN or external symbol refer-

ence is an external symbol, presumably defined outside the
current module, whose relocated value might be used within
the current module. Its address and length are zero. Any
name appearing as an EXTRN in one of a loadable collection
of modules should supposedly appear (be defined) as the name

of a CSECT or ENTRY in another module of the collection.

-39-

The process of merging several modules and resolving
the definitions of, and references to, external symbols is

known as link editing; the link editor program described

later in this section does this task and more. It produces,
given the proper modules as input, a single output module
with EXTRNs resolved and removed.

A page-relocatable program or module includes a number
of CSECTs. Typically, most of the contents of these CSECTs
will be insensitive to relocation, as mentioned early in

this section. Such absolute text need merely be placed by

the loader, without change, at the appropriate spot. Fre-
quently, however, a value appears which must change depending
on where the several CSECTs are loaded (an adcon, for example).

Such relocation is enabled through use of a relocation diction-

ary, or RLD, produced by the assembler near the end of each
load module. This dictionary lists, for each CSECT, every
occurrence of a label from that CSECT in a context which
implies relocation 1is necessary (this is essentially the
same information as is contained in the relocation diction-
ary of the assembly listing). CSECTs are identified, for
loading purposes, by identification numbers, or CSIDs,
assigned by the assembler. The special CSID of zero is
used for absolute segments. These segments are recognized
by the assembler from the input assembly language when

the ILC 1s set by means of an absolute expression and no

CSECT is defined. Such segments are to be loaded at the

-40-

addresses where they are assembled, and occurrences of labels
from these segments in expressions within other segments do
not cause generation of relocation (RLD) items. Relocatable
adcons appearing in such a section are properly referenced,
however.

An absolute segment of a relocatable assembly might
typically be used to specify the positions and contents
of pointers and constants in page zero. Indeed, an absolute
assembly consists entirely of absolute program, with no
CSECTs, ENTRYs, or EXTRNs defined, and no RLD produced.

6.2 IMPLEMENTATION: LOGICAL OBJECT DECK

Each load module consists of a number of records,
written as binary MTS lines. There are eight types of
records. The detailed format of these records varies
depending on the target machine, but their logical format,
i.e., their order and the meaning of their contents, is as
described below. Each record type is identified in the
load module by a single octal digit in the first byte of
the record.

0 - Checksum record, containing the two's complement
sum, masked to the memory word size of the target machine,
of every byte since the last checksum record.

1 - TXT or text record, containing an address for the
loading of the first word in the record, followed by text
words to be loaded in successive locations.

2 - END record, containing a starting address for the

-41-

object module. If this address is 0, the program is not
to be started when loaded.
3 - BREAK record, reserved for special communication

to the loader concerning the loading address.

4 - CSECT
5 - ENTRY
6 - EXTRN

These records define respectively external symbols of
type CSECT, ENTRY, and EXTRN and give a CSID, an address, a
length, and a name for each,

7 - RLD or relocation dictionary record, giving the
relocation information as described above.

CSECT, ENTRY, and EXTRN records are produced by the
assembler in the order in which the pseudo-ops of the same
names appear in the input text; therefore, a CSECT record
appears before any TXT record with text for that CSECT.
BREAK records and checksum records also appear in the order
prescribed by the text. TXT records appear in the order
assembled; text is buffered and punched when the record
length apprecaches 255 bytes, when the ILC is reset by ORG
or DS, or when a CSECT is defined. The END pseudo-op forces
the production of RLD records, a checksum record and, usually,
an END record,

A typical relocatable load module may therefore have
the following records: a number of TXT records with CSID=0

for an absolute portion; a CSECT record, followed by EXTRN,

-42-

ENTRY, and TXT records pertaining to that CSECT; a few more

sections of CSECT, EXTRN, and ENTRY records, each set con-

cerned with the programming within a single CSECT and per-

haps a number of checksum records anywhere among these; a

block of RLD records, detailing the linkages and references

among the external symbols; a final checksum record; and

an END record giving the starting location for the module.
An absolute load module will have only TXT records,

a checksum record, and an END record.

6.3 *8 LINK: THE LINK EDITOR

The PDP-8 Link Editor is an MTS program which serves
to link edit programs assembled with the relocatable PDP-38
assembler. The link editor performs the tasks of resolving
external references between two or more relocatable assemblies
and producing an output which can be handled by a loader
within the real PDP-8. Facilities are also provided for
the maintenance and alterations of programs, some of which
may prove useful even for absolute assemblies.

In order to allow the possibility of absolute code
within a relocatable assembly, as well as to allow the
possibility of absolute assembly, the convention is estab-
lished that code written without CSECT definitions is in
a special CSECT whose name is blanks and whose assigned
number is zero. References to this CSECT never appear with-
in the binary records, but the number zero as a CSECT identi-

fier is always taken to mean absolute code.

-43-

Relocation (presently) does not apply to core banks;
the core bank specified in the assembly is the core bank
in which the code will be loaded. This core bank value,
however, is available as part of the address value of an
external symbol and it may be symbolically referenced.
Actual relocation of code is based on page relocatability;
that is, a given instruction is assumed to lie in the same
word relative to a page boundary after it is loaded, as
when it was assembled. This assumption greatly reduces
the relocation problem, necessitating only the relocation
of adcons. This page boundary loading may be suppressed
when appropriate, as may be required for tabular data or
display files.

The link editor is driven by a sequence of MTS-1like
commands; indeed, the MTS command interpreter is actually
used. The initial commands are taken from *SOURCE*, not

SCARDS, which implies that the program is normally inter-

active. The first command to the program must be an initial-
1zation command. This serves to establish program mode
and to preset certain tables. Also in continuing operation,

it serves to discard any intermediate file storage left
from some previous link editing operation. In describing
the program, we will focus on the first mode of operation,
relocatable link editing. Other modes will be discussed

later.

-44-

To establish the link edit mode, the first command must
be $RELOCATABLE. There are no parameters to be specified
with this command. Note that, like most MTS commands, only
the first three characters are required. The link editor,
to avoid confusion with MTS, uses % as a prompting character,
and its input commands, like those for MTS, must begin with
a §.

At this point, the link editor is ready to receive
input. The principal command for this purposes is the
LOAD command

$LOAD SOURCE=Fdname (ROUND=(ON,OFF))
The LOAD command has several effects. First, it sets the
link editor to accept as input, *8ASR-produced binary files
which it reads and processes. Second, it establishes the
source of these records as the Fdname specified in the
SOURCE parameter. Third, an optional parameter ROUND may
be specified which effects the setting of a binary switch.
If ROUND is ON, then each succeeding CSECT is forced to
begin on a PDP-8 page boundary. The setting of this switch
remains in effect until reset by another ROUND parameter.
Note that if, while reading binary records from the indicated
file-device, a record which begins with a § is read, the
link editor reverts to command mode and proceeds to execute
the command. In this way, files may be constructed which
are sequences of commands for the link editor. The link

editor keeps track of all files read (within one link edit

-45-

operation) so that if it is asked to reread a certain file,
it ignores the command and simply proceeds. The nesting

of files which reference other files is arbitrary and Iimited
only by an internal stack. By properly interspersing binary
files and link-editor commands, one can construct a well-
structured library so that a call for one specific routine
will cause the automatic inclusion of all dependent routines
in the program.

Other commands available during the input phase include
the REPLACE function and the BREAK function. The first has
the form $5§ELACE add numl num2 num3
The parameters to be specified are the starting address of
the replacement and the values to be stored at that and
succeeding locations., The parameter '"add'" may be one of
two forms., The first form is NAME.000O, where NAME is the

name of some CSECT or ENTRY which has been previously read

by means of a $LOAD command, and 0000 is four-digit octal
number specifying a displacement from that symbolic location.
Note the occurrence of the period separating the two parts of
the address. The NAME field must conform to the rules for
CSECT names, one to eight characters in length, alphanumeric,
of which the first character must be alphabetic. The second
form of this parameter is a five-digit octal number which

is treated as an absolute address. The symbols '"numl",

"num2", etc., refer to four-digit octal numbers used to

-46-

specify the value to be written in the memory locations
specified by '"add." Note that to be effective, these com-
mands must appear after the $LOAD for the code they are
intended to override. Examples

$REPLACE ALPHA.0230 7540 3615 2310

$REPLACE 21375 2310 6201 6212
The link editor assumes that the relocatable code will all
be loaded into memory starting at location 200 within each
core bank. Although this assumption is not used in the
generation of output files, it is used in the memory maps
produced. In order to change these values, one specifies
a value fpr the program break for each core bank by means
of the $BREAK command.

$BREAK add
Here add is a five-digit octal number which specifies the
value of the break field for the core bank indicated. If
the break field is to be changed in more than one core
bank, several such values may appear on this command. The
link editor produces a break record for each core bank in
which code appears for use of the relocatable loader. These
break values come either from explicit specification of a
break field by the command described above, from binary
break records contained within the loaded programs, or
from the default value of 200 built into the link editor.

In any case, the last read value is effective.

-47-

The output phase is initiated by the $OUTPUT command.

$OUTPUT MAP=FD1 FILE=FD2 TAPE=FD3 ESD=FD4
Up to four file-device names may be specified as parameters
as indicated above. If any of these names is omitted, the
corresponding output is not produced (the default for all
is *DUMMY*). 1In addition, the link editor produces certain
error comments on SERCOM, principally if it finds references
to an undefined external symbol within the programs loaded.
The MAP parameter specifies the production of a loading
map listing all the CSECT and ENTRY names loaded and their
values. In addition, the internally assigned numbers for
each of the CSECTs are given along with the length of the
CSECT. ENTRYs are assigned the same number as the CSECT
in which they are found. It is possible that an ENTRY be
assigned the CSECT number 0, if its assembled value 1s
absolute. If any unresolved externals still remain after
the link-editing process, these will also be listed so
that they can be identified by the programmer.

The file device specified by FILE will contain an out-
put binary file which represents the link-edited records
which have been input. This is a suitable form for contain-
ment within MTS files. The file produced by the TAPE com-
mand is like that of FILE except that it contains leader,
trailer, and a checksum record. This file is suitable for
punching on paper tape for direct input to the PDP-8 relo-

catable loader. Finally, the file produced as a result of

-48-

the ESD parameter is a file containing only the CSECT and
ENTRY records produced. Such a file may be useful for later
link editing with other files in which the symbol definitions
are required (similar to the LCSYMBOL facility of the MTS
loader).

One may switch freely between the input and output
phases within a program run; thus, for example, it is
possible to load several files, to produce output with
only MAP specified to see what external symbols require
inclusion, to load those files which define the necessary
symbols, and to again generate output. The memory of all
the files previously read is erased only by a new appearance
of an initialization command, i.e., $REL.

In addition to this mode of operation, the link editor
may be run in absolute mode. Absolute mode is established
by the initialization command

$ABSOLUTE (no parameters)

In this mode, all the other commands have exactly the same
form but some of them take on slightly different meaning.
In particular, the break field now specifies the absolute
locations for the relocatable loader which is an integral
part of the program. The map produced by the MAP parameter
also contains a relocation factor for each symbol. This
factor, when added to the compiled address of the symbol

gives the loaded address. (A1l values are octal.)

-49-

The FILE specification produces a file which is in relo-

catable format but contains only absolute records. The

TAPE parameter, however, produces a file which is PAL

format binary tape, and, if punched on paper tape, can be

read directly by the BIN loader. The ESD file is as before.
7. WRITING RELOCATABLE PROGRAMS

In this section we will try to give some idea of how
the relocatable machinery which we have described can be
used in the construction of programs. One can imagine
many configurations of programs and equipment to which re-
locatable programming could be applied; we will confine
ourselves here to a very specific example of a systen,
and describe two different ways in which it could be pro-
grammed,

The system we envision contains a hard core of routines
which comprise the operating nucleus, such things as inter-
rupt processors, basic conversion subroutines, etc. To
this, for a specific application we want to add some very
particular routines, possibly to act like a desk calculator
in one case, to service a Calcomp plotter in another, etc.
We will construct the basic system as an absolute assembly.
It will contain allocation for all the shared constants on
page 0, and moreover, it will have an entry definition for
every symbol within the system to which other programs must

refer. For example, if the constant 7000 is contained on

-50-

page O with the symbolic name K7000, we would include the
code

K7000 DC 7000

K7000 ENTRY K7000
The second statement defines K7000 to be an external symbol
whose value is the same as the internal symbol K7000. 1In
this fashion, every label within the system which must be
referred to by other programs would be made an entry.

The other program segments would be assembled as relo-
catable programs. For example, if we have a program segment
which we call 'HSR', it may start with the lines

ORG 200

HSR | CSECT *

The first instruction sets the ILC to 200 to begin the
assembly. One normally begins relocatable assemblies at

a page boundary other than 0 so that the assembler will
insert the '"this page'" bit properly into the machine in-
struction. The second statement defines HSR to be an ex-
ternal symbol whose value is the current value of the ILC,
and it simultaneously sets the CSID of the ILC to the CSID
value of HSR. Note that the instructions ORG and CSECT
interact in that both change the ILC. In the example
given above, the ILC is relocatable with the CSID of HSR
and the value 200. If we invert the instructions

HSR CSECT 200

ORG 200

-51-

the ILC is now absolute since the ORG pseudo-op changes both
its value and its CSID to agree with the operand, 200, which
is absolute.

Within this assembly we may refer to symbols in memory
reference instructions which we know to be on page 0 although
not in this assembly, by listing these symbols as EXTRNs.
For example, if we wish to refer to the constant K7000 which
is assembled in the main program, we could write

K7000 EXTRN K7000

TAD K7000
The first statement declares that K7000, an internal symbol
in this program, is the same as the external symbol K7000.
The assembler will assume an address 0 for the instruction,
and the link editor must insert the proper value.

When both programs have been assembled, the link editor
can be called to link edit these programs into a running
program. Assume that the files MAIN and HSR contain the
binary object module associated with these assemblies.

Then the following instructions will serve to produce a
BIN format tape which can be loaded on the PDP-8 with the
BIN loader.

$RUN *8LINK

o

$ABSOLUTE

o

$LOAD SOURCE=MAIN

o

$LOAD SOURCE=HSR

-52-

0,

oX

$OUTPUT TAPE=BIN MAP=*SINK*

o

$ENDFILE

This technique can produce large object modules be-
cause of the large number of symbol definitions involved.
Another way of assembling these programs, which avoids this
problem, is to use the copy facility. In this technique,
we place all common code such as that found in page 0 in
a separate file. By way of example, let us call this file
LOWC. In the main program we will have a set of instructions

as follows:

ORG 0
MAIN ENTRY *
COPY LOWC
ORG 200
(etc.)

This will result in the contents of LOWC being assembled
into the MAIN program as normal. MAIN becomes an external
symbol defined as location 0. In the relocatable program

HSR we write

MAIN EXTRN MAIN
DESIST

DUMMY CSECT MAIN
ORG 0
COPY LOWC

RESUME

-53-

ORG 200
HSR CSECT *
(etc.)

The DESIST pseudo-op causes the assembler to stop producing
code until the appearance of RESUME. This means that all
the code read will result in symbol definitions but no
code will be produced. The ORG 0 instruction appearing
immediately after the CSECT sets the ILC to 0 absolute
so that the code read in by the COPY pseudo-op will re-
sult in absolute definitions. In this way a common file
can be shared by two components of a system. This method
results in much smaller object decks because there are
fewer EXTRNs required, but it means that any change in the
LOWC file necessitates reassembling all components of the
system that use it,
8., OBJECT MODULE FORMAT

Each record of a load module, as described in Section
6, is written as a binary MTS line of fewer than 256 bytes.
Data are written in the low-order 6 bits of a byte only.
The high-order 2 bits have 10 in the first byte of a record
only; the high-order 2 bits have 00 in the rest of the bytes
of the record. The data are therefore suitable for direct
copying to paper tape. The rest of this description of

the physical format of object modules will refer to char-

acters, which, in this section only, means the low-order 6

-54-

bits of the bytes.

Every load module record begins with two (6-bit characters
identifying the record. The high-order 3 bits of the first
character form the octal digit, mentioned in Section 6, iden-
tifying the record as being of type Checksum, TXT, END, BREAK,
CSECT, ENTRY, EXTERN, or RLD. The low-order 3 bits of the
first character, followed by the second character, comprise
the 9-bit CSID known as the record CSID. In the code for
the PDP-5 and -8 only, the convention has been adopted that
the first 3 bits of the CSID (the low-order half of the first
character) define the core bank of the CSID. Here, the assem-
bler inserts the high-order 3 bits of its internal, 15-bit
PDP-8 address.

The rest of the contents of a record vary depending
on its type and the identity of the target machine. Each
can be specified, however, in terms of four types of frames.
A frame is the contents of several characters. An address

frame is 12 bits (two characters) for the PDP-8 and 15 bits

(the low-order 15 bits of three characters) for the PDP-7

and PDP-9. A data frame is similarly 12 bits (two characters)

or 18 bits (three characters) for the different machines.

A name frame is eight "trimmed EBCDIC" characters; each

character consists of the low-order 6 bits of the corres-
ponding EBCDIC character of an external symbol name. Finally,

an RLD frame has a 3-bit relocation code and a 9-bit CSID

as its first two characters, followed by an address frame

-55-

as described above, and comprises four characters (PDP-8)

or five characters (PDP-7,-9).

After the first two characters, the various records

contain:

0

Checksum (CSID=0)

A data frame, containing the sum of all bytes of
the module since the last checksum, up to but not
including the checksum data frame.

TXT

An address frame, giving the assembled address of
the first data word on the record, followed by a
sequence of data frames containing machine words
to be loaded in sequential locations. The record
CSID identifies the CSECT in which the text belongs.
END

An address frame containing the assembled address
of the starting location for the module (if the
address frame is 0, no transfer is to be made after
loading). The record CSID identifies the CSECT

in which the transfer address appears.

BREAK

An address frame.

CSECT

ENTRY

EXTRN

Two address frames, followed by a name frame. The

-56-

first address is the starting address of a CSECT,
the address within the most recently defined CSECT
of an ENTRY, or 0 for an EXTRN. The second address
is the length of the CSECT, or 0 for ENTRY or EXTRN.
The name frame contains the name of the external
symbol identified by the record CSID.

RLD

An address frame, followed by several RLD frames.
The record CSID identifies the external symbol
(CSECT or EXTRN) to which an adcon referred. The
RLD frames identify the positions of adcons which
referred to that external symbol. Each frame has
a 3-bit relocation flag, a 9-bit position CSID,
and a position address. The loader is instructed,
for example, to add the relocation factor of the
external symbol whose CSID is the record CSID to
the adcon which was loaded at the location given
in the address portion of an RLD frame, relocated
by the relocation factor of the CSID given in that

RLD frame.

REFERENCES

"PDP-8 Simulator System,'" University of Michigan
Executive System for the IBM 7090 Computer, Vol. 2,
Computing Center, University of Michigan, Ann Arbor,
September 1966.

Powers, V.M., PDP-8 Assembler, Memorandum 12, Concomp
Project, Unviersity of Michigan, Ann Arbor, November
1967,

Mills, D.L., The Syntactic Structure of MAD/I, Technical
Report 7, Concomp Project, University of Michigan,
Ann Arbor, June 1968.

Mills, D.L., and Powers, V.M., PDP-8 Program Relocation:
Concepts and Facilities, Memorandum 17, Concomp
Project, University of Michigan, Ann Arbor, February
1968.

IBM System/360 Operating System Assembler Language, IBM
Systems Reference Library Form c28-6514-4, San Jose,
Calif., February 1968.

"PDP-8 User's Handbook," in Part 3 of The Digital Small
Computer Handbook, Digital Equipment Corporation,
Maynard, Mass., 1967.

PDP-9 User Handbook, Digital Equipment Corporation,
Maynard, Mass., 1967.

-57.-

APPENDIX: VERSION OF THE ASSEMBLER FOR THE PDP-1

The following is a list of the instruction op-codes
for the PDP-1. The following points should be borne in mind
when programming this machine:

(a) The PDP-1 is a one's-complement machine, whereas

the Assembler does its arithmetic in two's complement.

(b) The shift-group instructions contain a shift

field which specifies the shift count as the number

of 1-bits in the field. For example, a 5-bit shift

can be specified by any of the binary numbers 000011111,
101010101, 110011001, etc. There are nine predefined
symbols for use in shiff instructions:

000000001

#1 =

#2 = 000000011
#8 = 011111111
#9 = 111111111

Thus the instruction SCL #4 causes a 4-bit left shift
of the AC and IO.

(c) There is only one operate-group, but many of

the IOT instructions can be ORed together. The same

three equivalence classes are used to partition var-

ious groups of instructions. For example, the class

OPR1 contains both the operate-group and such IOT

instructions as DRS, DLA, and DCF. Two instructions

-58-

-59-

of the same class and the same functional category

may be combined meaningfully, but the Assembler will

not flag such meaningless combinations as CAL+DLA

(clear accumulator 760200 and display load address

720015) .

Memory-Reference Instructions (Require operands) Operate Class

LAC
DAC
DAP
DIP
LIO
DIO
DZM
XCT
JMP
JSP
JFD
CAL
JDA
SAD
SAS
ADD
SUB
MUS
MUL
DIS
DIV
IDX
ISP
AND
XOR
I0R

200000
240000
260000
300000
220000
320000
340000
100000
600000
620000
120000
160000
170000
500000
520000
400000
420000
540000
540000
560000
560000
440000
460000
020000
060000
040000

Note that MUS/MUL and DIS/DIV are all
meaningful to the Assembler, but only
one out of each pair can be hardware
implemented.

Augmented Instructions (Require operands)

LAW 700000
Shift Group

RAR 671000
RAL 661000
SAR 675000
SAL 665000
RIR 672000
RIL 662000
SIR 676000

-60-

Operate Class

SIL 666000

RCR 673000

RCL 663000

SCR 677000

SCL 667000

Skip Group

SKP 640000 11
SZA 640100 II
SPA 640200 II
SMA 640400 II
SZ0 641000 II
SPI 642000 I1I
SZS 640000 II
SZF 640000 II

Operate Group Instructions

CLI 764000 I
EAT 762000 I
LAP 760100 I
CMA 761000 I
HLT 760400 I
XX 760400 I
CLA 760200 I
CLFn 76000n* 1
STFn 76001n* I
NOP 760000 I

Input/Output Transfer Instructions

10T 720000
RPA 720001
RPB 720002
RRB 720030
PPA 720005
PPT 720006
TYO 720003
TYI 720004
ESM 720055
LSM 720054
CBS 720056
CKS 720033
EEM 724074
LEM 720074
DSC 720050
ASC 720051
ISB 720052
CAC 720053

*Note: n may be 1,2,3,4,5,6,7

-61-

Operate Class

SCW 720057

SCI 720157

SRB 720021

RKY 720035

RLS 720026

DRS 720115 I
DLA 720015 I
DCF 720215 I
DRA 720016 11
DRC 720116 11
DSE 721417 E
DSV 720417 E
DSH 721017 E
DSS 720217 E
DSP 720117 E
MRD 720501

MWR 720601

MSE 720301

MLC 720401

MRS 720701

RCV 720031

CAD 720040

SMC 720047

IMC 720060

LDK 720216

RDK 720037

RSK 720316

CSK 720616

ECB 720416

LCB 720516

The production of character constants, e.g., DC 'ABC'P, is
governed by a special translate-table which produces FIO/DEC
8-bit or 6-bit (concise) codes.

The following diagram gives the (rather arbitrary)
correspondence that this table sets up between graphics and
control functions peculiar to the FIO/DEC hardware and TTY
graphics with their representations as System/360 "EBCDIC"

codes.

-62-

FIO/DEC CODE TTY MTS
Graphic Meaning FIO/DEC Concise Graphic "EBCDIC'" Code
(octal) (hex)
~ ("not') 203 03 ! SA
) ("implies"') 004 04 $ 5B
v ('or') 205 05 # 7B
e ('and') 206 06 & 50
0 211 11 4 AA
- (non-spacing
overbar) 256 56 C-S-K 27
(non-spacing
vertical) 256 56 C-S-K 27
(non-spacing
dot) 040 40 e 7C
_ (non-spacing
underline) 040 40 _ 6D
X (multiplication) 073 73 * 5C

Control characters:

lower case 072 72 ; S5E
upper case 074 74 : 7A
backspace 075 75 N\ (S-L) BA
tab 236 36 TAB (C-I) 05
carriage return 277 77 RETURN 15
tape feed 000 00 LINE FEED 25
stop code 013 13 EOM (C-C) 03
black --- 34 CN FM 2B

red -—- 35 ALT MODE 22

UNCLASSIFIED -63-

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classilication of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1 ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION

THE UNIVERSITY OF MICHIGAN
CONCOMP PROJECT

2b. GROUP

3. REPORT TITLE

AN ASSEMBLY LANGUAGE SYSTEM FOR DEC MINICOMPUTERS

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
Memorandum 20

& AUTHOF(S) (First name, middle initial, last name)
V. Michael Powers
David L. Mills

Neal Laurance

6 REPORT DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS
May 1969 62 yi

8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBERI(S)
DA-49-083 0SA-3050 Memorandum 20

b, PROJECT NO.

c. : 9b. OTHER REPORT NO(S) (Any other numbers that may be as~igned
this report)

d.

12 DISTRIBUTION STATEMENT

Qualified requesters may obtain copies of this report from DDC

1Y SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

R SR Y PR PR

3 ABSTRACT

This memorandum describes the PDP-5/8 and the PDP-7/9 language
assemblers and the PDP-8 Link-Editor/Loader which are currently
running on the duplex IBM 360/67 system at the Computing Center
of The University of Michigan under MTS (Michigan Terminal System).
The programs are written in IBM System/360 OS Assembly Language,
Level G. The memorandum serves both as a manual for the system
user as well as a report on the system development.

RSN Y S

e TLE

iz

JOr VUSRI NS

R 3k 2 L i e A MLk .

DD "%"..1473 Unclassifieg

Security Classificaticon

F
Unclassified I'l! m M@ ﬂlﬂlﬂ"

Security Classification 3 9015 o 695 5 53

T ——

KEY WORDS

LINK A

LINK B

LINK C

ROLE

wT ROLE wT

ROLE

assemblers

small computer assembler

PDP-1

PDP-5

PDP-38

PDP-7

PDP-9

linkage editing

relocatable assemblies

assembling DEC machine programs on
an IBM system

Security Classification

