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Abstract-Forster’s theory of energy transfer in condensed systems is re-examined in the light 
of recent criticisms. It is concluded that his approach is correct and holds for a wide range 
of donor and quencher concentrations as long as there is no transfer among donor molecules. 
In contrast, the modified result of Tweet, Bellamy and Gaines, holds only for complete de- 
localization of the excitation among the donor molecules. 

1 .  INTRODUCTION 
THE resonance transfer of excitation energy theory of Forstercl) states that the rate of 
transfer (probability of transfer per unit time) from an excited donor molecule, D*, to an 
unexcited quencher (or acceptor) molecule, Q, is dependent on the inverse sixth power of 
the distance, R,  between the two molecules: 

70 

Here r,, is the mean lifetime of D* in the absence of quenching and R ,  is the ‘critical transfer 
distance’, determined primarily by the overlap of the fluorescence spectrum of D* and the 
absorption spectrum of Q. A number of tests of this theory, using molecular ‘sticks’@) or 
thin filmd3) to hold the donor and quencher molecules a fixed distance apart, have been 
made, and these indicate the theory is essentially correct. Frequently, however, the donor 
and acceptor molecules are randomly distributed in a solution or in a two-dimensional 
film. In these cases, energy can be transferred from each excited donor to any one of a 
number of surrounding quencher molecules. 

A number of methods have been used to estimate the total transfer or quenching in 
such systems. In some, the transfer only to nearest neighbor and next nearest neighbor 
molecules has been considered. (4) Duysens,@) particularly, has discussed the case of 
transfer among the chlorophyll molecules in the chloroplast in these terms. 

A more general approach has been taken by Forster,@) by Galanin(’) and by Rozman,(B) 
who average over all molecules in the system. Although each of these authors uses a 
different approach, their final expressions are identical, at least in the three-dimensional 
case of a solution. In a recent paper, however, Leibowitz(e) discusses the correctness and 
incorrectness of the three approaches and concludes that FGrster’s approach is incorrect 
while Galanin’s and Rozman’s are correct. Since Forster’s procedure was followed by 
Tweet, Bellamy and Gaines(*O) in estimating the transfer in two-dimensional monomolecular 
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films of chlorophyll, it appeared important to determine whether the results of the three 
approaches differ in the two-dimensional case. In contradiction to Leibowitz’s conclusion, 
I will show in section 3 that Forster’s ‘incorrect’ and Rozman’s ‘correct’ approaches are 
exactly equivalent for all distributions of molecules, either in two or three dimensions. 
Thus FGrster’s method, which’is somewhat simpler, can be used to obtain the desired 
results. Galanin’s method, as Leibowitz points out, contains an integral identical to 
Farster’s and, in the approximations used, yields the same result in two or three dimensions. 
Galanin’s method will not be examined further in this paper. 

Another criticism of Forster’s approach has been made by Tweet, Bellamy and 
Gaines. (lo) They claim his equation applies only when the donor concentration, [D], 
is less than the quencher concentration, [Q], and attempt to modify it for the case [D] z [Q]. 
Actually, Fiirster’s result holds for the cases where [D*]< [Q] or [Q*]< [Q] and where 
there is no transfer among the donor molecules. The modified equation of Tweet, Bellamy 
and Gaines(lo) holds only for the limiting case where transfer among the donor molecules 
is so rapid that there is complete delocalization (exciton formation) among the donor 
molecules surrounding a given acceptor. This will be shown in section 4. 

2. GENERAL 
We consider an excited donor molecule, Di*, surrounded by NQ quencher molecules 

in a finite volume, V.  The rate of change of the probability , pt, that Di is excited is 

NO c (2)”. 1 I 1 
pa - - pi - - p1 c- - - -  d P i  

dt 7 e  T d  7 0  
k = l  

where I / T e  is the rate constant for fluorescence and 1 /~ , j  is the rate constant for intersystem 
crossing and other non-radiative processes (excluding transfer). T~ is the mean lifetime of 

1 1  1 
the excited molecule in the absence of quenching and - = - + - Equation (2) is 
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essentially that given by Fbrster.(e) Integrating and taking p~(0) = 1, we obtain 

I .  

The average probability, 

(3) 

where n* is the number of donor molecules excited at t = 0, is used to calculate the fluores- 
cence yield : 

m 
1 

7. 
q(Q) = -sx) dt. 

0 

(5) 
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The effect of energy transfer on the donor fluorescence is measured by comparing q(Q) 
with v0, the fluorescence yield in the absence of transfer: 

and 

or 

with 

m 

770 = exp (+/To) dt = 

0 

0 

3 .  THE CALCULATION OF BY FORSTER A N D  BY R O Z M A N  

Instead of equation (4), F6rstd8) writes 

J( t )  = 1 exp [ - ;(x)'] t RoQ w(R) dR . 
0 

(9) 

Here, RB is the radius of the sphere of volume V containing the NQ quencher molecules 
and w(R) dR is the probability of finding a given quencher molecule in the region between 
R and R + dR from the excited donor. This approach has been criticized(O) on the grounds 
that instead of interchanging the sum (or integral) and product in equation (4), it is necessary 

to use the distribution function for the product fi exp [ - ;(2)"] since different 
k = l  

donors may have different distributions of quenchers around them. Denoting 

and letting @( W)d W be the probability that W lies in the range between W and W + d W, 
with 

@ ( W ) d W = l ,  (1 1) 

where the integration is taken over all accessible values of W, we obtain, from equation (4), 

- 
p(t)  = e f d  WQ @( WQ) exp( -1 WQ). (12) 
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This is the expression obtained by Rozman(*), who evaluates @( W)d W and p by the 
Markov procedure outlined by Chandrasekar@l). He obtains 

In order to demonstrate the equivalence of Rozman’s and FBrster’s procedures, instead 
of evaluating Q, (WQ) further as does Rozman, we insert it directly into equation (12) and 
obtain, after some rearranging, 

Using the Fourier integral theorem, 

+-m 

we obtain 
--m 

r 

which is the same equation obtained by Farster [equation @)I. It will be noted that in 
obtaining equation (S), by either method, we put no restrictions on w(R). Thus Farster’s 
procedure(6) for calculating the quenching from equation (8 or 8‘) is generally applicable. 

4. THE RANGE OF APPLICABILITY OF FORSTER’S EQUATION 
Tweet, Bellamy and Gaines(lo) criticize Farster’s final result on the basis that he “expli- 

citly assume(s) that the quenching centers are more abundant than the fluorescent centers, 
Kchl < KQ” where, in their notation, Kc,,, is the concentration of all the donors (not 
just the excited ones) and KQ is the quencher concentration. However, an unexcited 
donor molecule should not be considered to be a fluorescent center, and in most experi- 
ments (excluding perhaps flash photolysis and work with lasers) the concentration of 
excited donors is a small fraction of the total donor concentration, even when considered 
over a time interval several times 7 0 .  Moreover, it does not appear necessary to restrict 
the volume Y (see section 2) to non-overlapping spheres of a diameter equal to the distance 
between two excited donor molecules. As long as the number of excited quenchers is 
small compared to the total number of quenchers, so that the quencher concentration, 
[Q], and the distribution function, w(R) are independent of light intensity and time, Y can 
be taken as the volume of the entire solution or at least some useful macroscopic fraction 
thereof. It is these restrictions on w(R) and [Q] which limit the range of applicability 
of Farster’s h a 1  expressions. 
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It is useful to examine the modified result of Tweet, Bellamy and Gaines(lo) more closely 
and determine its range of applicability. In contrast to our approach in section 2, they 
consider the case of a single quencher surrounded by a random distribution of ND donors 
in the volume VD. In this case, from equation (2), we would obtain, with only one quencher 
near an excited donor, 

assuming no interaction among the donors. 

that a given donor molecule is excited is 
However, Tweet, Bellamy and Gaines write that the rate of change of the probability 

where they have “assumed that all donors have an equal probability of being excited.” 
equation (16) indicates that the probability of transfer from a given donor is affected by 
neighboring donors or that the transfer of excitation among the donor molecules is so 
rapid as to preclude its localization on any particular donor. Thus all donors have the 
same probability of being excited, not only at the instant of light absorption, but at all 
times t 2 0. This is equivalent to complete delocalization of the energy over the N D  donor 
molecules. Thus the range of concentrations in which the result of Tweet, Bellamy and 
Gaines is applicable is restricted by this delocalization requirement. [In integrating 
equation (16) Tweet, Bellamy and Gaines assume p (0) = 1. While there might be some 
question regarding the correctness of this assumption, it can easily be shown that as long 
as p(0) is a constant, the final result will be no different from what they obtain. Similarly, 
by proceeding as in section 3, one can show that they do obtain the correct results, even 
though following FBrster’s method.] 
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