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I. INTRODUCTION

The elimination or effective control of objectionable transients
in the operation of fluid systems is becoming an increasingly important
consideration in the design of hydroelectric generating stations, water
supply systems, cyclic components of otherwise continuous flow processes,
and hydraulic systems developed for industrial and commercial applications.
With the ever-increasing utilization of the modern high-speed digital com-
puter for rapid analysis and feedback operations, eventual on-line computer
control of large and complex hydraulic systems is rapidly becoming a dis-
tinct possibility. Historically, transient control has proceeded on the
basis of analysis rather than design; within the past decade, however,
procedures have been developed which permit a design, or synthesis, approach.
These procedures not only permit a more formal and systematic treatment but
also result in more elegant and sophisticated control techniques than were
previously attainable.

This study attempts to identify underlying principles that govern
any design approach, to formalize the existing valve-stroking theory, and
to extend this theory to include a greater number of boundary conditions

in simple and complex piping systems.

l.1 Literature Review

The control of undesirable transient pressures and velocities
in fluid systems has been the subject of intensive study by all investi-
gators of the waterhammer phenomenon. This phenomenon has been analyzed
by arithmetic methods since the twrn of the century, by graphical methods

developed about forty years ago, and starting about l960,\by numerical

-1~
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methods particularly suited for solution on the high-speed digital
computer.

With a few notable exceptions, prior to the early 1960's control
of objectionable transients was achieved by utilizing the avallable analysis
procedures, In general, changes of the appropriate positions of the valves
and other boundary control devices are assumed as functions of time; the
system is analyzed for those assumed controller motions; and if the hypothe-
sized motions prove to be inadequate, other, presumably slg)wer(8 .
boundary motions are assumed. The analysis process is continually repeated
until a satisfactory solution is obtailned. Even for relatively simple sys-
tems, reliance upon such tedious and restrictive procedures ranges from
being cumbersome and inconvenient at best to totally inadequate at worst.

Because of the severe limitations imposed by the analysis-
oriented procedures, investigators have attempted to develop a synthesis,
or design, approach to the determination of proper control-valve operation
in transient pipe flow. It would appear that Streeter (26,27,28,30,31)
has been the greatest single contributor to the development of suitable
synthesis procedures, and he has called this area of study "Valve Stroking".
In its most general form, valve stroking may be defined as the synthesis
of external boundary conditions to create a desired transient. Hence the
term also refers to controi by means other than a valve -- for example,
the specified variation in elevation of the free surface in a reservoir.
Tmplicit in this definition is that the desired transient is subject to
one or more elements of control: i.e., the extreme values of pressure are
limited to physically acceptable ones, the period of the transient may be

arbitrarily determined, residual transients are eliminated or reduced in

magnitude, etc.



The earliest reference in the available literature to the funda-
mental distinction between the analysis and synthesis procedures appears
to be in an article written by Knapp.(lh) Considering the design
of automatic shutoff valves installed in distribution systems to terminate
the flow of water in case of a sudden rupture of the pipeline, he was the
first to enunciate this distinction: "It is the usual practice to assume
the time and closure law of the valve and then to check the maximum surge
caused by the valve closure. It is the purpose of this paper to determine
the characteristics and the hydraulic design of self-acting shutoff valves
in such a rmanner that the waterhammer,..., remains within permissible
limits."

His solution was to provide a large quick-closing main valve
vhose control mechanism could be of extremely simplified design. It
would be closed in no more than 2L/a seconds following the rupture, where
L is the distance from the valve to the upstream constant-head reservoir
and g is the speed of the pressure pulse., To contrel the rise in pressure
that would occur when the negatively-directed low pressure wave reflects
bacx to the valve as a positively-directed normal pressure wave accom-
panied by a significantly higher velocity of the fluid, he proposed the
installation of a smaller bypass valve with a more complex control mecha-
nism. Directing hls attenticn to the design of the control motion for
this bypass velve and using the graphical method developed by Allievi,
he was able to limit the resulting pressuwre rise to a predetermined
maximum value,

The only possible criticism of his procedure is that upon

complete closure of the bypass valve an undesirable residual transient
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still exists in the pipeline. However, it would be more than twenty-five
years before it was recognized that this residual transient could be
eliminated, and considering the state of the art at that time (1937),
Knapp's contribution was both remarkable and significant.

In his classical study first published in France in 1949,
Bergeron(e) considered the comparatively more familiar problem of
the complete closure of a valve at one end of a pipeline which terminates
in a constant-head reservoir at the other end. His solution was similar
to Knapp's in that he was able to limit the resulting pressure rise to a
predetérmined maximum value. Again, after the liquid column in the pipe
has been brought to rest, a significant pressure gradient still exists in
the fluid which results in the creation of an undesirable residual tran-
sient. Nevertheless, he demonstrated that the resulting transient pres-
sures are less severe than would be created if either of two other
technigues are used to determine the valve motion for the same time of
closure: valve closure such that (1) the fluid velocity at the valve is
reduced linearly from its initial steady-state value to zero, and (2)
the effective area of the valve is reduced linearly from the initial
open position to zero.

With regard to this latter closure, perhaps it should be men-
tioned that linear valve-closure studies are abundant in the literature
(Ref. 2,18,19); by their essential character, however, such studies
are analysis oriented and generally only provide useful standards for
comparison with the results of comparable synthesis investigations.

Kerr(lo’ll’l2) also studied the problem of valve closure in

a simple system (a single pipeline with a valve downstream, a constant-head



reservoir upstream). He concluded that the valve closure motion ideally
should be such that the fluid velocity at the valve reduces linearly from
its initial steady-state value to zero. In one of his studies he compared
the maximum pressure rise created by a closure according to his suggested
criterion with that created by a closure in which the stem position of the
valve is changed linearly in the same time. He reported that for a flow
reduction from 5 feet per second to zero in a time of closure equal to
10L/a the maxirum pressure rise created in the former case was 60 feet
and in the latter case was 210 feet.

Such disparate results are understandable when one recognizes
that, for the majority of valves usually installed in water distribution
systems, during the first 50% of the stem motion the reduction in flow is
negligible and that for even T75% of the stem motion reduction in the flow
generally is on the order of only 10%. Kerr suggested that one practical
solution would be the design of valves utilizing a two-speed closure: a
rapid initial lincar stem motion to some intermediate partially closed
position followed by a much slower linear stem motion to full closure.

Kerr also studied the effect of valve closure from a partially
opened position using the same valve motion and rate of closure for the
valve that are determined by the linear velocity-reduction criterion. He
noted that under some circumstances the maximum pressure rise resulting
from the partial closure is worse than that created during the corres-
ponding full closure condition.

Other investigators who also recognized that valve closure in
a simple pipe can be achieved without exceeding a predetermined maximum

(2k) (20,21)

pressure rise were Streeter and Ruus, with the
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latter's goal being the development of a theory for the optimum closure
of hydraulic turbine gates. Their methods are identical to the proce-
dures developed earlier by Knapp and Bergeron: in one round-trip wave-
travel time the head at the valve is increased linearly from its initial
steady-state value to the prescribed maximum value; that maximum 1s then
maintained until the required fluid deceleration occurs and the valve is
closed. As in the earlier studies cited above, upon complete closure of
the valve a residual transient still exists in the pipeline.

Zéruba(35)

referred to a "perfect" relationship for clos-

ing a valve and credited it to the work of Krivgénxa. Although this
reference is unavailable for review, it is evident that Krivcenka's clo-
sure method is identical to those of Knapp, Bergeron, Streeter, and Ruus.

(21)

Ruus appears to be the first investigator who attempted

to modirfy his procedure to accommodate the effect of fluid friction. He
was able to arrive at a solution by utilizing the existing techniques
(Ref. 2,18) for incorporating frictional effects into the graphical method
of analysis.

The first study which succeeded in eliminating the objectionable
residual transient described above was that of Streeter.(26) Again
considering a simple frictionless pipe and aided by the visual insight
afforded by utilization of the dependent variable graph (Allievi's graphi-
cal method), he presented a procedure by means of which the downstream
valve motion can be determined which would create a controlled transient
between any desired initial and final steady-uniform flow conditions.

The essential features of his procedure are as follows:

1. During the first one round-trip wave-travel time



in the pipe, the flow is organized such that the
velocity is uniform and a predetermined straight
hydraulic grade line is established, sloped posi-
tively or negatively depending upon whether the
flow is being decreased or increased.

2. During the second phase, the uniform grade line
is maintained and the flow is decelerated or
accelerated uniformly.

3+ During the final one round-trip wave-travel time,
the hydraulic grade line and velocity are brought
to their final steady-uniforn values.

As a consequence of this procedure, the transient condition
created is a nighly controlled one. The extreme values of pressure can be
predetermined and will not be exceeded, all pressures and velocities are
linear Tfunctions of time and distance, the velocities ars not permitted
to reverse, and the transient ceases vhen the valve motion ceases.
Included in that work were techniques by which friction corrections
could be spplied to the preceding solution and also a study which epplied
the basic procedure to several reaches of pipe of constant diameter but
with a varying wall thickness.

In that study Streeter explicitly restricted the time of valve
closure to a dwration of hL/a or greater. For situations involving com-
plete closure of the valve, the time of closure tc can be related to the
maximun prescribed head rise at the valve AHm by the following relation-

ship:

=

L
= )
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where V, represents the initial steady-uniform velocity in the pipe and
g 1s the acceleration of gravity.

Considering the earlier procedure which prescribes the maximum
head rise at the valve but which also results in the creation of residual
pressure fluctuations, the following relationship between valve closure

time and maximum head rise can be obtained:
VL
o

=L,
t.=a* (t, >

gAHm c

@Ig

).

Comparing the two methods for the same time of valve closure,
the ratio of the maximum pressure rise created by closure according to
the older procedure to the maximum pressure rise sustained during closure

according to Streeter's suggested technique is given by

-2
%:1' (B > 4),

where the common time of closure is tc = BL/a. Thus the older procedure
has the advantage of creating a lesser maximum rise in pressure, whereas
the newer procedure succeeds in eliminating the objectionable residual
fluctuations in pressure.

When compared to a closure predicated on the linear velocity-
reduction criterion studied by Bergeron and suggested by Kerr, Streeter's
recommended closure procedure is clearly superior. Not only does it
eliminate the residual transient, but also the ratio of the maximum pres-
sure rise created by closure according to the former procedure to the
maximum pressure rise sustained during closure according to Streeter's

procedure may be shown to be

e-g (8 > ),

which has a value equal to or in excess of 1.0.
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Streeter subsequently broadened his procedure when he

presented a study demonstrating that in one round-trip wave-travel time any
known unsteady condition in a frictionless pipe can be organized into a
condition of uniform velocity and predetermined straight hydraulic grade
line. Once this condition is established, the procedure is identical to
that described above. This concept was applied to the control of the
transient condition created following the failure of power to a centrif-
ugal pump. While the problem of transient control in centrifugal pump
systems has long intrigued numerous investigators of the waterhammer
phenomenon, Streeter's study appears to be the only existing one to sug-
gest a suitable synthesis procedure. Other studies (e.g., a recent
investigation by Kinno(l3)) are generally restricted to the develop-
ment of guidelines for valve operation that have been obtained using the
existing analysis techniques.

(28)

Streeter further extended‘these early valve-stroking
ccneepts to include the control of decreasing or increasing flow in
frictionless series pipe systems.

In the latest and most significant study reported to date,
(30)

Streeter substantially broadened the scope of the valve-stroking
principle by developing a .theory which provides for an exact solution
when frictional effects are included. This method supérseded the earlier

(26,28)

technique which was only an approximation and which yielded
poor results when the effect of fluid friction was significant. The pro-
cedure developed was first applied to the problem of changing from some

initial to some final steady-uniform flow condition in a simple pipe.

The essential features of the suggested procedure are identical to that
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of the earlier study(26’28)

for the frictionless case: in one round-

trip wave-travel time the flow is organized such that the velocity is
uniform and a straight hydraulic grade line is established; these condi-
tions are maintained during a central phase of the transient; during the
final one round-irip wave-travel time the velocity and grade line are
brought to their final steady-uniform values. Again the transient condi-
tion created is highly controlled: extreme values of pressure are identi-
fied and not exceeded, pressures and velocities are nearly linear functions
of time and distance, the velocities are not permitted to reverse, and the
transient ceases when the valve motion ceases. As in his earlier study,
Streeter ressricted the time of valve closure to a duration of 4L/a or
greater,

The method was then readily extended to complex systems by
apportioning the flow changes among the branches as a linear relation of
the initial to the final steady-uniform values in each pipe. By combining
these two vrocedures, values of head and velocity may be determined at
cach external boundary in the system. Thus, motion of the valves or other
adjustable boundary ccnditions can be determined at those control points
to create the desired transient. This general procedure was formulated
by considering the manner in which the method-of-characteristics solution
of the unsteady flow equations prcceeds on the independent variable graph
(the x-t plane). Essential to this procedure was the realization that if
gnown values of velocity and head exist for a specified period of time
along one boundary, the characteristics equations can be employed to

determine the history of the transient throughout the x-t plane.
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Streeter also presented a suggested valve-stroking procedure
for a single pipeline where one boundary condition is a Known constant
relationship between velocity and head, and he concluded the study with
a description of experimental verification of the valve-stroking principle
applied to a simple system.

Streeter and Wylie(3l) incorporate much of the preceding
work in their discussion of the topic; in addition, they provide explicit
procedures for the application of the valve-stroking concept to series,
branching, parallel, and complex piping systems,

(34,35)

Zarube appears to be the only other recent investi-
gator who has attempted to develop suitable synthesis procedures, and his
work parallels some of Streeter's studies. He suggested a procedure for
determining the proper control-valve closure motion to create a predeter-
mined maximum pressure rise in frictionless series pipe systems, and that

(28)

procedure is identical to Streeter's. In his study Zaruba

restricted the time of valve closure to a duration of

N _.
t, > I E%
i=1%
where N represents the number of pipes connected in series. (Although
Streeter didn't explicitly restrict the valve closure time in his treat-
ment of the same vroblem, that restriction is at least implicit in his
procedure alsc.)
Zé;uba's most recent effort was the development of a closure

procedure for a simple pipeline where frictional effects are important;

again, the procedure that he suggested is identical to Streeter's.(30’3l)
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1.2 Scope of Investigation

This study of valve stroking has been divided into two major
phases. The first phase includes: (1) an examination of the fundamental
equations that form the foundation of all modern computer-oriented tran-
sient analysis and synthesis investigations, and (2) the development of
additional synthesis procedures to supplement the existing valve-stroking
theory for simple and complex piping systems. The second phase concerns
a description of the laboratory experimental system and the subsequent
laboratory studies which verify some of the new concepts presented 1in
this thesis,

The method-of-characteristics solution of the transient flow
equaticns is examined in Chapter II. A fundamental property of the charac-
teristic equations -- that their application is not restricted to advancing
the resulting numerical solutions forward in time only -- is presented, and
this property is demonstrated to be of essential importance in the formula-
tion of the valve-stroking theory.

The existing valve-stroking procedures for simple piping systems
are evaluated in Chapter III. It is demonstrated that, theoretically at
least, the minimum time for control valve motion in such systems is 2L/a.
The consequence of this significant development relative to the control
of a system consisting of a single pipe with an upstream constant-head
reservoir is presented. A suitable valve-stroking procedure for a pipe
in which a constant velocity forms one boundary condition is developed.
The chapter concludes with an examination of a third type of simple
system, a single pipe in which one boundary condition is a known constant

relationship between head and velocity. A valve-stroking procedure is
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suggested that permits a predetermined extreme value of pressure to be
developed and maintained at the valve during a central phase of the tran-
sient.,

In Chapter IV attention is directed to the development of valve-
stroking procedures for elementary complex systems. The existing method
for a series system is evaluated; it is demonstrated that this procedure
rarely allows the extreme value of pressure encountered in the system to
be identified a priori. An alternative technique is suggested that over-
comes this disadvantage. Branching systems are next considered and the
same disadvantage is found to exist in those systems. Again, an appro-
priate alteraative procedure is suggested. The chapter concludes with

the introduction of the concept of passive valve stroking and the applica-

tion of this concept to the development of a suitable valve-stroking pro-
cedure for a representative branching system.

Chapter V concerns a description of the laboratory experimental
system, and the discussion of the results of the various laboratory studies
are included in Chapter VI. Experimental verification of the applicable
valve-stroking theory has been obtained and is presented for a simple
system (a closure and an opening, both in 3L/a), a series system (two
closure studies), and a passive branching system (two closure studies).

In Chapter VII the principal conclusions derived from this

investigation are summarized.



II. BASIC CONCEPTS AND EQUATIONS OF THE TRANSIENT PHENOMENON

The basic partial differential equations describing the unsteady
flow of liquids in elastic closed conduits are presented in this chapter, and
their solution by the method of characteristics is indicated. Fundamental
uniqueness properties of the characteristic solutions are examined relative
to the concept of domain of dependence and to selected characteristic
initial-value and boundary-data problems in the solution plane,

The basic equations are then reduced to g simplified form and
a second-order finite-difference solution of the simplified equations is
proposed. Computational schemes suitable for execution on a high-speed
digital computer are presented for both transient analysis and synthesis
procedures. The manner in which the existing initial conditions influence
the transient sclution is discussed, and the singular fashion by which the
Tinal steady-state solution may be established without residual transient

fluctuations is indicated.

2.1 Fundamental Equations

The fundamental partial differential equations governing the

unsteady flow of liquids in rigid closed prismatic circular conduits have

(31)

been developed from considerations of mass conservation and the

equation of motion ané are, respectively

2

8 .

E—VX+WX+Ht+V31na=O (1)
tvlv| _

VVx +V+ ng *>5—=0. (2)

The independent variables t and x represent time and distance
along the pipe, respectively, and when used as subscripts denote partial

differentiation. The dependent variables V and H are the velocity and the

=1k~
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elevation of the hydraulic grade line above some fixed datum. The pressure,
P, and H are related by the expression P = y(H-2), Z being the elevation of
the centerline of the pipe above the datum and Y the specific weight of the
fluid. The variable f represents the Darcy-Weisbach friction factor, D

the pipe diameter, and o the angle between the horizontal and the center-
line when measured positively downward.

In these equations the pipe is assumed to be full with the minimum
pressure always greater than vapor pressure. The velocity is assumed to be
one-dimensional with a uniform distribution across the cross-section, and
pressure is considered similarly with a value equal to that existing at the
centerline. The licuid and pipe walls are assumed to be perfectly elastic,
and the friction is evaluated assuming that the instantaneous value of wall
shear stress is equal to the shear stress sustained during the correspond-
ing condition of steady flow. 1In the friction term the absolute value cof
V is intrcduced to maintain the direction of the shear force opposite to

that of the velocity.

2.2 The Method oif' Characteristicc

Fquations (1) and (2) are two simultaneous quasi-linear partial
differential equations of the first order. They are of the hyperbolic
type and are amenable tc solution by the method of characteristics
(Ref. 1,6,16,22). These solutions are

av  gdi  gvlv] g - (3)
attaat T ap ty Vsima =0

[}

—=V+a
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&y _gan  fvlv] gy

% " adt T 2p " g /sinc =0 (%)
c.

ax _ )

it V- e (ka)

Thus, the original two simultaneous partial differential equa-
tions have been transformed into four ordinary differential equations.
The significance of’these equations may be explained as follows: along
a curve in the x-t planevdefined by Equation (3a) -- the C+ characteristic
curve -- Equation (3) is valid, and along a curve defined by Equation (La) --
the 0- characteristic curve -- Equation (4) is valid. According to the
derivation, every solution of the original system of Equations (1) and
(2) satisfies this characteristic system of Equations (3) to (ka). It
may be shown that the converse is also true.(6)
Before proceeding further with a discussion of the techniques
that can be developed to construct numerical approximations to the solu-
tion of these equations, attention is now directed to a summary of some
fundamental uniqueness properties of' the characteristic solutions. For
a thorough discussion of these properties and proofs of the corresponding
uniqueness theorems, the reader is referred to the work of Courant and

(6)

Friedrichs.

2.2.1 Domain cf Dependence

With reference to Figure 1, let a curve 6 be given in the x-t
plene and along © continuous values of V(x,t) and H(x,t) are arbitrarily
prescribed. It is assumed that the curve @ with its prescribed values of
V and H has nowhere a characteristic direction. The C+ characteristic
which intersects the curve 6 at A and the C- characteristic which inter-

sects © at B intersect at point P. Then it may be shown that the values

of the solutions V, H at the point P depend only upon the initial values
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Figure 1.

Domains in the x~t plane in
which the solution of the initial-
value problem can be established.
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of V and H on the section of 6 intercepted by the two characteristics
through P. This interval on the curve © intercepted by the two character-

istics 1s called the domain of dependence of the point P.

From this notion, the uniqueness of the solution of Equations
(1) and (2) in the region ABP bounded by the two characteristics through
the point P and the domain of dependence AB cut out by them from the
initial curve 6 may be demonstrated.

In the preceding discussion no side of the initial curve @ 1is
distinguished. Therefore, the interval AB on the curve © is also the
domain of dependence for the point P', and the solution of Equations (1)
and (2) in the region ABP' bounded by the two characteristics Ci and C:
and the interval AB also exists and is likewise unique. Therefore, a
unique solution of the initial-value problem exists on both sides of the
curve o,

Intrinsic to the validity of this concept is the recognition
that in formulating Equations (3) to (4a) from Equations (1) and (2) no
explicit or implicit constraints relative to time exist. Thus, solutions
may be advanced forward or backward in time, as the case may be, and the
only consideration relative to the existence of unigue solutions is the
orientation of initial-value curves in the solution plane and the nature

of the initial data existing on those curves.

2.2.2 Characteristic Initial-Value Problem

In the preceding section, the initial-value problem of a non-
characteristic curve was considered. In this section the characteristic
initial-value problem is examined. With reference to Figure 2, suppose
© is a C+ characteristic. Then Equation (3) demonstrates that along 6
the values V(x,t) and H(x,t) cannot both be prescribed arbitrarily since

Equation (3) is an ordinary differential equation in V and H along @ and
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Figure 2.

Domains in the x-t plane in which
the solution of the characteristic
initial-value problem can be
established,

Y
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establishes a relation between the dependent variables. Consequently, only
one function may be prescribed along © and, at a single point, the value
of the other function.

In many applications the initial-value problem is posed not for
a non-characteristic initial curve but for initial data along two inter-
secting characteristic arcs., This characteristic initial-value problem 1is
formulated for the characteristic differential equations as follows. Let
one assume that compatible values of V(x,t) and H(x,t) exist along two
characteristic segments, a C+ characteristic 6 and a C- characteristic ¢,
as in Figure 2, The C+ characteristic which intersects the curve g at A
and the C- characteristic which intersects the curve © at B intersect at
point P. Then it may be shown that the values of the solutions V,H
at the point P depend only upon the intial values along AOB intercepted
by the two characteristics through P. Again, this interval AOB is
called the domain of dependence of P and the uniqueness of the solution
of Equations (1) and (2) in the region AOBP can be démonstrated.

As before, no side of the intersection of 6 and @ is distinguished.
Therefore, 1if compatible values of V(x,t) and H(x,t) exist along © and g,
then the interval B'OA' is the domain of dependence of the point P! and the
solution of Equations (1) and (2) in the region B'OA'P' also exists and is

likewise unique.

2.2.3 Boundary-Data Problems

In this section uniqueness properties relative to problems in
which the initial data are prescribed on two or more non-characteristic
arcs are exarined. Referring to Figure 3(a), 6 and ¢ are two non-
characteristic arcs meeting at point O and enclosing an angular region R
of the x-t plane., Assigning an arbitrary direction to each of the two

families of characteristies (in this example both directions are assigned
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Figure 3.

Domain of dependence on (a) a
space-like and a time-like arc,
and (b) a space-like and two
time-like arecs.
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as positive, where positive and negative are associated with increasing
and decreasing values of time, respectively), it is seen that two charac-
teristics issuing from points on @ enter region R while only one charac-
teristic issuing from points on ¢ enters R. Then it may be stated that

two data on 6 -- both V(x,t) and H(x,t) -~ and one datum on ¢ -- either
V(x,t) or H(x,t) -- determine the solution in R. If the data are pre-
scribed in this manner, then it may be shown that the solution of Equations
(1) and (2) in the region R is unique. Again, the designation "domain of
dependence of the point P" for the segment AOB is justified.

Before further characterizing these problems which possess a
unique solution, it becomes convenient to introduce the concepts of space-
like and time-like directions. A direction is called space-like if both
characteristic directions with dt > O lie on the same side of it; a direc-
tion is called time-like i it separates the characteristic directions
with 4t > 0 . In this last example, for instance, © is space-like and
¢ is time-lixe.

Essential to the formulation of these boundary-data problems is
the following observation: the number of initial data prescribable on an
arc depends upon the number of characteristics which, when drawn from a
point on the arc in the arbitrarily assigned directions of the character-
istic families, enter the region of interest.

Tne fashion in which these concepts may be extended to three
boundaries is demonstrated in Figure 3(b). Arbitrarily assigning posi-
tive directions to each of the two families of characteristics, then for
a unique solution to exist in the region R two data must be prescribed on
the space-like arc © and one datum each on the time-like arcs ¢ and ¥,

Again the segment AOO'B is designated as the domain of dependence of the

point P. It is pertinent to note here that when the arcs @ and ¥ are
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parallel to the t-axis and the arc © is parallel to the x-axis, then the
region R assumes the familiar configuration encountered in the conven-
tional transient analysis solutions.

A central concept in the consideration of such boundary-data
problems is that the assigned directions of the two families of charac-
teristics are arbitrary. If, as in Figure L(a), the positive direction
is assigned to the C+ characteristic family and the negative direction to
the C- characteristic family, ;hen it is observed that two characteristics
issuing from points on the time-like arc ¢ enter R while only one charac-
teristic issuing from points on the space-like arc © enters R. Again, it
may be shown that if two data are prescribed on ¢ and one datum on © the
solution of Equations (1) and (2) in the region R exists and is unique.

As before, the segment AOB is designated as the domain of dependence of
the point P.

In Figure 4(b) a limiting case of the last problem is considered,
As before, two data are prescribed on the time-like arc ¢ and one datum
(or two compatible data) on the space-like arc © which now is a character-
istic curve. Again, the solution of Eguations (1) and (2) exists in R and
is unique,.and the segment AOB is the domain of dependence of the point P.

A particularly significant consequence of this latter type of
boundary-data problem is.illustrated in Figure 4(b) and is that along any
other time-like arc in R (for example, the arc W') no datum may be pre-
scribed. Arc V¥ lies within the region of' the unique solution of the given
boundary-data problem, and hence the solution along ¥ is unique and depen-
dent upon the data prescribed on ¢ and ©,

When ¢ and y are parallel to the t-axis and @ coincides with a
characteristic curve, this last boundary-data problem will be shown to be of

fundamental importance in the formulation of the valve-stroking theory.
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Figure L4, Domain of dependence on (a) a
space-like and a time-like arc, and
(b) the limiting case of a space-
like and a time-like arc.
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2.3 Simplified Equations and Finite-Difference Solutions

In Equations (1) and (2) the nonlinear convective terms and the

(31) to have a negligible effect upon the

V sin o term can be shown
consequent solutions and are often deleted. (At least one justification
1s that these terms do not include time derivatives and yet are not com-
monly incorporated into the corresponding steady-state solutions.) The

simplified continuity equation and equation of motion are then obtained and

are, respectively

2
E’._.v +H =0 (5)
g x t
vl _ (6)
Vt + ng + o) =0.

The corresponding characteristic ordinary differential equations
obtained from the solution of Equations (5) and (6) by the method of char-

acteristics then become

av g ad + fVlVl =0 (7)
dt a dt 2D +

C
dx _
E{_-{-a (Ta)
ﬂ_&ﬂ.;-—l—l.fv =0 (8)
dt a dt 2D

o
ax . -8 (8a)

at ~

Aguin, the significance ol these equations parallels that of the
earlier set: along a straight line of slope dx/dt = a in the x-t plane
Equation (7) is valid, andé along a straight line of slope dx/dt = -a Equation
(8) is valid. (In this development and throughout the remainder of this
investigation, unless otherwise indicated, the wave speed a will be con-

sidered to be constant for a given pipe.)
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Numerical approximations to the solution of Equations (T) to

(8a) may be constructed by utilizing either the linear first-order or the

(16)

trapezoidal second-order finite-difference approximations. Although

the first-order approximations are widely used and have been demonstrated to
be generally adequate,(3l) for reasons to be explained later some

motivation does exist for the employment of the second-order approximations.

The formula for this approximation is

X

~ 1 -
I f(x)dx =3 [f(xo) + f(xl)] (xl xo).
X
0

With reference to Figure 5, it is assumed that all conditions
are known at points A and B. The C+ characteristic through A and the C-
characteristic through B intersect at point P where conditions are unknown
and are to be determined. Equations (7) to (8a) are now multiplied by dt

and integrated utilizing the second-order finite-difference approximation.

The results are

B i S fAVAIVALfPVP’Vﬂ -t =0 ()
p- At TE Y3\ T 2D Pt .
c
xP-xA=a(tP-tA) (9a)
H_-H e v |v.| £V |v
v.-v -2 8,1 BBJB|+PP|P| (t_ - t.) =0 (10)
P~ B~ "B ‘2| T @ 2D P~ s
‘ c
Xp = Xp = -a(tP - tB), (10a)

where the subscripts are used to define the location of the known or
uninown quantities, and the constant B = a/g. Since the friction factor f
may ordinarily be determined as a function of veloeity, f = £(V), then

these four equations are sufficient to determine the values of the four
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X

+ -
Figure 5. Intersection of the C and C
characteristics in the x-t plane.

———t——f

Adx dx

Figure 6. Notation for finite-difference
equations.
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unknowns VP, HP, xP, and t

P-

There are several ways(16a22,3l)

of employing the set
of Equations (9) to (10a) to obtain an orderly approximate numerical
solution to the original set of simplified partial differential equations.

One possibility is to use a double-staggered grid of characteristics.

Such a grid is particularly simple in this case and, in fact, is identical
with a grid of specified-time intervals. Since Equations (9a) and (10a)
are independent of V and H, the grid can be immediately determined and 1is
independent of the repeated solutions of Equations (9) and (10). If a
pipe of length L is considered to be divided into N equal reaches, then

p X TX - %
tp -ty = tp - tp = At = Ax/a = L/(aN). Therefore, for a particular pipe

]

Ax = L/N. From Equations (9a) and (10a),

P
and an arbitrarily selected value of N, the grid assumes a rectangular

shape with a constant mesh spacing defined by Ax and At above.
As a convenience in reducing the friction term in the finite-

difference equations and in order to better appreciate its significance,

£,V IV
. . AAl'A .
one such term is now examined, for example 5D (tP - tA). Since

ty -ty = L/(all), this term now becomes
VIV TR/
2D al ~ B
) where Ah_(V.) 1is the corres-

A £ A
ponding steady-state head loss sustained over a section of pipe of length

Thus, this term reduces to %Ahf(v

L/N when the velocity of the fluid flowing is Vy+ The variable F may be
defined to represent this function which, for a specific pipe, can be

determined as a known function of velocity only:

F = Ahf(V).
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As has already been observed and demonstrated with regard to the
characteristic ordinary differential equations, no constraints relative to
time exist. Therefore, in addition to Equations (9) and (10) a set of
companion equations that are the result of finite-difference integrations
along the negatively-directed characteristic lines also exist. These
equations are virtually identical to the respective equations associated
with the positively-directed characteristics, differing only in the signs
of the friction terms. With reference to Figure 6 and incorporating the
notation for the friction term as proposed above, these four final finite-

difference equations are

<H,_  F_+F
V, -V +Hp A, 2 A_, ¥ (11a)
P~ A B 2B

HP-H F_+F
_ _ B P'B _ - (11v)
VooV -"F tmo=0  CX

- +
V.-V +HPHE_FPFE=0 W (11c)
P-'E B 2B

Ho-H)  F+F

D_"P D _ = (11d)
p- V-3 28 -0 O

These equations and the corresponding grid arrangement for which
they are valid will be used throughout the remainder of this investigation

to numerically model and evaluate the transient phenomenon.

2.4 Interior-Point and Boundary-Condition Equations

In Section 2.2 uniqueness properties of the characteristic
solutions were discussed, and selected characteristic initial-value and
boundary-data problems were examined. In this section attention is
directed to the fashion by which Equations (1la) to (11d) may be util-
ized to obtain the desired numerical solutions to such problems, Dis-

cussion of the particular computational procedures involved in these
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solutions will be deferred until the need for a specific procedure is

encountered in subsequent phases of this investigation.

2,4.1 Points Interior from a Space-Like Arc

In Figure 7 the double-staggered grid of characteristics is
established in the solution plane. Arbitrarily assigning the positive
direction to both characteristic families, it is assumed that the required
values of V(x,t) and H(x,t) are known or prescribed along the space-like
line t = % (or at least at the N+l intersections of the vertical grid
lines with the linec t = to). Then Equations (1la) and (1lb) may be com-
bined to solve for the desired valucs of V and H at all interior (non-
boundary) grid points situated on the line t = t_ + At, as in Figure 7(a).

Subtracting Equation (11b) from (1lla) and rearranging, the

resulting expression for the desired value of HP is

ity (VyVg) Ry (12a)
Hp 2 T2 Lo
This value of HP may then be substituted into Equation (lla); after

rearrangement, the desired expression for VP is

H,~-H F_+F
- __P A P A 12b
VP VA R ~ 2B ° ( )

Since FP is a function of V?, this latter equation must be solved by

iteration. By basing the first value of FP upon the value of V existing
at point A (i.e., initially evaluating VP utilizing the first-order finite-
difference approximation), and successively improving this value using the

previously calculated value of Vf, the solution is readily convergent.

(See Appendix A.)
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~ ~ -~ ~ o~ “ - .
2.4.c Lelit=-Enad boundary Conailtions

If the positive direction is arbitrarily assigned to both charac-
teristic families, then it has been observed that one datum along each of
the two time-like boundary arcs is essential to the existence of a unique
solution in the region of interest. This datum may be either a known value
of velocity or head, or it may be some known relationship between these two
variables. However the case may be, this auxiliary condition must be deter-
mined exterior tc the pipe and must always reflect the pnysical behavior of
the particular terminal boundary device under consideration.

With reference to Figure 7(b), for example, let one consider that a
constant-head reservoir is located at the upstream (left) boundary of the

(29) may be applied to a

pipe. The unsteady form of the energy equation
control volume of fluid between the reservoir surface and the pipe entrance.
By assuming that the time rates of change of mass and internal energy exist-

ing within this control volume are negligible, the resulting expression

obtained for flow from the reservoir into the pipe is

\rP2 vP2
Hr = HP * 2g * keEET"

in which Hr is the elevation of the reservoir surface above the arbitrarily
selected datum and Ke is the minor-loss coefficient for the entrance. (This
coefficient is evaluated aésuming that its value is the same as would exist
during the corresponding condition of steady flow; this assumption is com~
pletely analogous to that concerning the unsteady value of the wall shear
stress.)

The above rclationship may be further simplified, since quite fre-
quently the kinetic-energy and minor-loss terms are inconsequential and

therefore not incorporated into the corresponding steady-state solutions.
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Then this simplified boundary condition for the time-like line x = 0 is

p = H, (13a)
and has been experimentally verified in numerous studies.(5’15’3o’3l)
This value may then be substituted into the only available finite-difference
equation, Equation (11b); the consequent expression for V? is

-H F_+F
HP B P B (13b)
P B B 2B ’

This latter equation must be solved by iteration; the same technique that was
outlined for the solution of Equation (12b) is equally applicable here.

For flow from the pipe into the reservoir, Equations (13a) and
(13b) are still valid; this is true even if the kinetic-energy and minor-loss
terms are significant, since for this situation Ke = -1,

If the elevation of the reservoir, instead of being constant, varies
as a known function of time, the only modification required is to incorporate
this variation into Equation (13a): i.e. Hy = Hr(t).

Another example of a typical upstream boundary device would be that
of a fixed orifice located just inside the entrance of the pipe from a con-
stant-head reservoir. As with the previous example, a quasi-steady relation-
ship may be developed to model its behavior. Again assuming that the time
rates of change of mass and internal energy existing within the adjacent fluid
are negligible and that the orifice discharge coefficient is the same as would

(5,31)

exist for the corresponding steady-state condition, the result is

for flow from the reservoir into the pipe or

Vp = -Ko vHp-H
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for flow from the pipe into the reservoir; the parameter Kb’ assumed to be

constant in this investigation, must incorporate the areas of the pipe and

orifice, the discharge coefficient of the orifice, and other constant terms.
Solving these relationships simultaneously with Equétion (11b),

the resulting expressions for Vé are

2 2
ot «61 + b(C, - K,F,/2)

(1k4a)
p 5
or
2 - 2
- €, - /61 - b, - K Fp/2) (1kb)
P 2 ®

in which C, = X 2B ané C, =K e (BV, + H -H_-F_/2): i.e., the C's represent a

l“ o (&8 2“ o B r-B-B M oy o p

collection of constant terms that are dependent only upon known values existing

at the previous time step. As before, these equations must be solved by itera-
tion. Equation (14%a) is valid for flow from the reservoir into the pipe and is
uced vhenever the expression C?-KOQFD/Z has a positive value; Equation (14b) is

valid for flow from the pipe into the reservoir and is used whenever C -KOQFP/Q

2
is negative. This determination must be made during each successive trial of
the iteration procedure.

The ultimate value of Vf may then be substituted into Equation (11b)

to obtain the desired valuc of HP:

F_+F.

= P B (1ke)
Hy = Hy + B(V, - V) + —5— .

2.4.3 Right-End Boundary Conditions

Again assigning the positive direction to toth characteristic
families and referring to Figure 7(c), consider that a control valve is
located at the downstream (right) boundary of the pipe. The valve may be

analyzed as an orifice,(15’18’29’3°’31) and as with the previous example, a



quagl-steady relationship may be developed to model its behavior. Again
assuming that the time rates of change of mass and internal energy exist-
ing in the adjacent fluid are negligible, that the valve discharge coef-
ficient is the same as would exist for the corresponding steady-state
condition, and that the kinetic-energy of the fluid within the pipe is
small, the result is

VP = Kv Jﬁ; ?
and is valid if the valve discharges into the atmosphere, if the centerline
elevation of the valve is selected as the arbitrary datum, and if the value
of HP is always greater than zero (gage), thus eliminating the possibility
of air backflow through the valve., The parameter Kv is assumed to be a
known function of time (or at least knowm at every intersection of the hori-
zontal grid lines with the time.like line x = L), and it must incorporate
the areas of the pipe and valve, the discharge coefficient of the valve,
and other constant terms.

This relationship may be solved simultaneously with the only

available finite-difference equation, Equation (1lla), with the result that

2 2
v - -C, + /cl + h(c2 - K, FP/2) (15a)
P 2 ?
. 2 L2 , ,
in which C; = X B and C, = K (BV , + H, - FA/2)’ as with the previous

examples, an iteration solution is required. Substitution of the resulting

value of Vé into Equation (lla) yields the desired value of H :

F_+F
- __P A 15b
HP—HA-B(V-V) . (15b)

If, instead of a control valve, a fixed orifice is located at
the downstream boundary of a pipe discharging into the atmosphere, the

preceding analysis must only be modified to the extent that Kv must be
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replaced by the fixed-orifice parameter Ko.
Another possible downstream boundary condition would exist if the
velocity is some known function of time (for example, at a dead end in which

the pressure is always greater than vapor pressure, V(L,t) = 0); then
Vo = V(L,t). (16a)

From Equation (lla) the desired expression for H, is

F_+F
P A 16b
- B(VP - VA) - ( )

H, = .
2

P HA

In a similar fashion, if the downstream head is a known function of t
(an obvious example is provided by the presence of a downstream reservoir,

in which case H(L,t) = Hr)’

Hy = H(L,t) ; (17a)
and

V.=V, - P Pty (170)

P~ A B 2B

Once again, an iteration procedure is utilized in obtaining the desired

solution for V?.

2.4.4 Points Interior from a Time-Like Arc

In Section 2.2 it was observed that no constraints relative to
the characteristic directions exist. With reference to Figure 7(d) for
example, if the positive direction is arbitrarily assigned to the ct family
of characteristics and the negative direction to the C™ family, then it was
noted that both V(x,t) and H(x,t) must be known or prescribed along the

time-like line x = 0 in order for a unique solution to exist in the region
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interior from the left-end boundary. Assuming that these values are
known along that line (or at least at every intersection of the hori-
zontal grid lines with the boundary), then Equations (1la) and (11d) may be
combined to sclve for the desired values of V and H at all grid points
located along the line x = Ax.

Adding Equations (1la) and (11d) and rearranging, the result-

ing expression for the desired value of V_ is

P
+ - -
v oaVp By PRy ' (18a)
P~ 2 2B B

This value of Vf may then be substituted into Equation (1la); after

rearrangement, the desired expression for HP is

FotFy (18b)
2 $

Scrutiny of these equations reveals at least one motivation
for the utilization of the second-order finite-difference approximations:
unlike the corresponding solutions involving space-like points, neither
solution requires an iteration procedure. This is in direct contragt to
the situation encountered when the first-order approximations are
utilized, as was the case in the previous valve-stroking investigations.(30’3l)

Similarly, if values of both V(x,t) and H(x,t) are knowm or
prescribed at all grid péints along the line x = L, then the desired
values of V and H at all grid points located on the line x = L - Ax may
be determined, as in Figure T(e). Adding Equations (11b) and (1llc)
and rearranging,

+ - -
v o 3e Fgly Py (19a)
P 2 2B~ L4 °

Again, after substitution of this value of Vp into Equation (11b),
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FptFy (19b)

Hp = Hy + B(Vp - V) + —5—=

These latter two pairs of equations will be of fundamental

importance in the formulation of suitable transient synthesis procedures.
Since in this system of equations the computation of the desired values
of the dependent variables originates at one time-like boundary and pro-
cedes across the grid to the other boundary, the necessity for the develop-
ment of auxiliary boundary-condition equatiéns analogous to those developed
in Sections 2.4.2 and 2.4.3 is eliminated.

In the discussion of relevant boundary-data problems presented
in Section 2,2.3, the general case of this latter type of problem was con-
sidered. There it was observed that, in addition to the two data pre-
scribed along a time-like arec, the knowledge of one datum along a space-like
arc is usually essential to the existance of a complete solution. However,
as will be demonstrated subsequently in this investigation, the space-like
bounding arcs encountered will be characteristic lines along which two
compatible data will always exist. Therefore, the necessity to develop
supplementary equations essential to the determination of the desired solu-

tion is likewise eliminated.

2.5 Complex Systems

Although the preceding discussion has been restricted to the develop-
ment of transient-calculation techniques suitable for a single pipe, the
transient response of more complex piping systems can be readily analyzed

as well.

The transient calculations for each component pipe of a system
involve the solution of interior-point equations and boundary-condition

equations. As has been demonstrated, at every computational time step the
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determination of both dependent variables at all interior points is
independent of conditions existing at each boundary at that particular
instant. Furthermore, if one end of the pipe terminates in an external
boundary, i.e., one in which none of the other piping components of the
system are connected, then conditions at that boundary may be determined
using either the appropriate set of equations developed in Sections 2.4.2
or 2.&.3, or similar equations developed to model the behavior of the
specific external boundary device under consideration. What remains,
therefore, is merely to consider the analysis of conditions existing at
internal boundaries - - interior junction points at which two or more of
the system component pipes are connected. In the following sections two
typical internal boundary situations are analyzed, and the necessary bound-

ary-condition equations are developed.

2.5.1 Series-Junction Boundary Condition

With reference to Figure 8, let one first consider the analysis of
conditions existing at the junction of two pipes connected in series. (Although
in the figure the pipes are depicted as having dissimilar diameters, the
following analysis is equally applicable to any combination of discontinuity
of diameters, head-loss properties, or wave speeds.)

Assigning the positive direction to both characteristic families
and assuming that all conditions are xnown along the line t=t0, two equa-
tions, Equation (1la) for pipe 1 and Equation (11b) for pipe 2, are avail-
able to relate the four unknowns VPl, V?E’ HPl’ and HP2‘ The two additional
necessary relationships may be developed by application of the unsteady
continuity and energy equations to a control volume of fluid adjacent to

the junction. Again assuming that the time rates of change of mass and
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internal energy existing within this small volume are negligible and that
the kinetic-energy and minor-loss terms are inconsequential, the resulting

equations are

AV, =AYV
1P 2'P,

and

where A1 and A.2 are the respective areas of pipe 1 and pipe 2.

Combining these four relationships to first eliminate the unknown

velocity terms, the result is

C3'Ch‘01FPl/2+C2FP2/2
H = > (20a)

P Cl+C2

; - / = & -
where C,~ A, /By, Cy = A, /By, c3 = A VAl i cl(HAl FA1/2), and
C, = A, V}32 - CQ(H}32 + FBQ/2). This value of Hp may then be substituted
into the respective finite-difference eqguations; the results are

C3-Cl(HP+FP /2)

20b
v, = . 1 (20p)
1 1
and
| Ch+C2(HP"FP2/2) (20c)
v = L
Py Ay
Since the FP'S are functions of the respective V?'s, the above set of three
equations must be solved by iteration. By initially evaluating FP at Vp
1 1
and FP at VB (again, basing the initial evaluations upon the first-order
2 2

finite-differcnce approximations) and successively improving these values

using the previously calculated values of V? and VP , the solution of
1 2

Equations (20a) to (20c¢) is readily convergent. (See Appendix A.)
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One final observation is relevant at this point; this boundary-
condition calculation now imposes a restriction upon the heretofore arbitrary

grid spacing, since Atq must equal At,. Therefore, it follows that

L b
a N &l

In order for N1 and N, to be suitable integer numbers, minor adjustment of

L4

the pipe lengths and /or wave speeds may be required. In reality, however,
this presents no real problem, since in most applications wave-speed values

generally are not precisely Known.(30)

2.5.2 Branching-Junction Boundary Condition

Now consider the analysis of conditions existing at the branching
junction of Figure 9. Again assigning the positive direction to both
characteristic families and assuming that all conditions are known along
the line t = to, three equations, Equation (1la) for pipe 1 and Equation
(11b) for both pipe 2 and pipe 3, are available to relate the six unknowns

V? B V? » V? P HP , Hp , and HP . The three additional necessary relation-

1 2 3 1 2 3
ships may be obtained from the simplified continuity and energy equations,

as before, and are

AV, =AV, + AV
1 Pl 2 P2 3 P3

and

Combining these six relationships to first eliminate the unknown

velocity terms, the result is

ch-cs-c()-chPl/2+CgFP2/2+C3Fp3/2 (21a)
H = )
P Cl+02+C3
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where C) = A) /B) , Cp = A, /By, C3 = A, /B3, C) = A VAl + Cl(HAl - FA1/2),
05 = 'Ag VB2 - (JE(HB2 + FB2/2): and Cg = A3 VB3 - C3 (HB3 + FB3/2)'
Substitution of this value of HP into the respective finite-difference equa-
tions yields:

ch-cl(npwP /2)

o)
Vp = n 1 5 (21b)
1 1
C.+C.(H -F_ /2)
5 72V P P, (21c)
V? = n J
2 2

C6+C3(HP~FP3/2)
V. = .
Ps A3

Again, this set of four equations must be solved by iteration; the same

(218)

technique that was outlined for the solution of Equations (20a) to (20c)
i5 equally applicable here.
Boundary-condition equations for other internal boundary config-

urations can be readily developed in a comparable manner.

2.6 Initial and Steady-State Conditions

In concluding this examination of the basic concepts and equations
of transient flow, attention inevitably turns toward a consideration of two
somewhat related topics: initial conditions and steady-state conditions.
The first topic is of interest because of the fashion by which the initial
conditions influence and restrict the subsequent transient analysis or
synthesis solutions; the second is important because of the dependence of

one of the criteria of valve stroking -- elimination of residual transient
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fluctuations =- upon a thorough understanding of the steady-state phenomenon,

2.6.1 Initial Conditions

With reference to Figure 10, consider that the values of both depen-
dent variables are initially known along the space-like line t = ts ( or at
least at the N + 1 intersections of the vertical grid lines with the line
t = to). Then from the discussion in Section 2.2.1, the line t = to 1s the
domain of dependence of the region bounded by the positive characteristic line
extending upward and to the right from the point t =t , x = O and by the
negative characteristic line extending upward and to the left from the point
t = ty, x = L. Therefore, a unique solution exists within this region and
is independent of subsequent control-device operation at either boundary.

In addition to the initial existence of both variables along the line
t = ty, it 1s possible that one of the boundary relationships may be invarient.
Again referring to Figure 10, suppose that along the left-end boundary one of
the two dependent variables (or a relationship between the two) has a constant
value. Then from the discussion in Section 2.2.,3, a unique solution exists within
the triangular region bounded by the line t = ty, the left-end boundary, and
the negative characteristic line which extends upward and to the left from
the point t = t;, x = L and intersects the line x = 0 at t = tN. As before,
the solution is unaffected b& subsequent control-device operation at the right-
end boundary.

Although not intrinsic to the preceding discussion, the consideration

of initial steady-state conditions is also of interest. With reference to

Figure 10(a), let one assume that steady-state conditions exist along the line
t = to. Then Vy = Vg = Vo = V,, where Vo 1s the initial steady-uniform

velocity in the pipe; HA = HC - F, and Hp = HC + Fo’ where F, is the function
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F evaluated at Vb. (These latter relationships follow directly from the
elimination of the time-derivatives from Equations [5] and [6] and from
the basic definition of F.)

Incorporation of the above relationships into Equation (12a) and

subsequent elimination of canceling terms yields

Since the function F is a strictly monotone-increasing function(3) of
the velocity V, the only possible conclusion to be derived from this latter

equation is that

Therefore, the point P has been demonstrated to be an initial steady-state
point. Since the selection of points A, B, and C was completely arbitrary,
then every point within the domain of dependence of the line t = %4 is an
initial steady-state point.

If, in addition to the initial existence of steady-state conditions
along the line t = to, one of the boundary relationships is invarient, then
the entire region within the'domain of dependence of that boundary and the
line t = tj is a region of initial steady-state conditions. For example,
assume that a constant-head reservoir is located at the upstream boundary
of the pipe. With reference to Figure 10(b), Vy =V, , Hy = H, - Fo» and

HP = Hr' After substitution of these identities into Equation (13b),
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As before, the only possible conclusion is that

Therefore, from these interior-point and boundary-point evalua-
tions, it is evident that the region of initial steady-state conditions is
bounded by the line t = t_, the left-end boundary, and the negative charac-
teristic line which extends upward and to the left from the point t = t,
x = L and intersects the left end boundary at t = tN. Coincidentally, this
last example also demonstrates a second interpretation of the characteristic
lines: 1lines along which disturbances in the flow are physically propogated

(Ref. 1,6).

2.6.2 Final Steady-State Conditions

As indicated previously, a most significant criteria of valve strok-
ing is the establishment of the final steady-state conditions in a piping
system without the existence of residual transient fluctuations. Initially,
of course, the transient flow condition originates when either one or both
boundary conditions compatible with some initial steady-state condition are
altered. Only upon cessation of these boundary modifications (that is, only
after these boundary conditions have attained their final steady-state
character) will the transient phenomenon subsequently begin to asymptotically
(both mathematically and physically) approach the final steady-state solution
Jdue to the combined physical processes of reflection of the transient pressure
vaves and the action of viscous effects.

The singular fashion by which the final steady-state solution may
be established without this asymptotic process is indicated in Figure 1l.
Assuming that one has the freedom to arbitrarily select the characteristic

directions (in Chapter III the validity of this assumption is verified), the
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positive direction is assigned to the C* family and the negative direction

to the C™ family., Recalling that both variables must then be known or pre-
scribed along the left-end boundary, the velocity is arbitrarily prescribed

to be Vos the desired final steady-uniform velocity in the pipe, and the head
as Hp, the final steady-state value compatible with Ve and either the boundary

condition existent at that boundary or other known flow conditions. Then VA =

V, =V,

¢ V=V

r and EA = HG = HD

Incorporation of these relationships into Equation (18a) and subse-

= Hf.
quent elimination of canceling terms yields

VP = Vf .

After substitution of this result into Equation (18b),

where Ff is the function F evaluated atv Vi, Thus, the point P has been demon-
strated to be a final steady-state point. Since the selection of points A,

D, and G was completely arbitrary, then final steady-state conditions must
exist at every grid point located along the line x = Ax on or above the posi-
tive characteristic line which extends upward and to the right from the point

t =t., x =0 and intersects the right-end boundary at t = tN.

O,
This latter argument being true for the line x = Ax, then the same

reasoning must hold Ior the line x = 2Ax, and so on. Therefore, every grid

point within the domain of dependence of that section of the left-end boundary

for which t >t must be a point of final steady-state conditions, ultimately

including every point located on the right-end boundary beginning at t = tN'



2.7 Chapter Summary

The transient synthesis procedures developed in subsequent phases
of this study will draw abundantly upon the concepts presented in this
chapter. As will be demonstrated, an unusual amount of flexibility exists
relative to the arbitrary selection of the directions of the two characteristic
familles. It is possible, for example, to specify both directions as positive
during an early stage of the controlled transient and then to arbitrarily
assign the negative direction to one of the families during a later stage.

In this investigation a valve-stiroking synthesis will refer to the

determination of the unknown dependent variables at the two boundaries (and,
therefore, the boundary control adjustments required to produce the desired
transient condition) either when both variables are specified at one boundary

or one variable is specified at each toundary. A characteristics analysis

will refer to the determination of the complete history of the transient con-
dition when the unsteady boundary conditions determined by the valve-stroking
synthesis are imposed upon the system, and as such it will demonstrate
the validity of the valve-stroking computations.

Two broad classifications of valve stroking will be considered in

this study. Active valve stroking refers to the synthesis and subsequent

operation of a system in which the period of the entire transient may be

arbitrarily selected. In a passive valve stroking synthesis and operation,

a similar degree of control over the period of the transient is not possible.
The digital computer programs essential to this investigation were

executed on the IBM T7090/1410 system at the University of Michigan Computing

Center.



III. VALVE-STROKING CONTROL OF SIMPLE PIPING SYSTEMS

Having presented the fundamental properties and suitable tech-
niques for numerical evaluation of the characteristic solutions in
Chapter II, consideration is now given to the application of these con-
cepts and equations to the control of the transient phenomena in simple

piping systems.

3.1 System with an Upstream Constant-Head Reservoir

Attention is first directed to the mocst frequently encountered
of the simple systems: a single pipe originating at an upstream constant-
head reserveir and terminating at a downstream contrcl valve. With refer-
ence to Figure 12, ccnsider that it ic desired to modify flow conditicns
in the system from some initial steady-uniform condition (SSO) to some
final steady-uniform condition (sz) such that at time t = tf the final
steady-unifornm conéition is established without the presence of subsequent
residual transient fluctuations.

From the discussions presented in Sections 2.2.3, 2.6.1, and
2.6.2, and with reference to Figure 12(t), the following observations
are relevant: (1) Because of the presence of the invarient upstream-
boundary relationship, H{ 0 ,t) = H the region of the initial steady-
vniform condition is as indicated. (2) If the positive direction is now
arbitrarily assigned tc the ¢t cheracteristic family and the negative
direction to the C~ characteristic family, then both data must be pre-
scribed along the time-like upstream boundary for a unique solution to
exist in the regica of interest (recognizing that the requisite compati-
ble data do cxist along the space-like characteristic line bounding the

initial steady-state region). (3) If the velocity Vr(t) is prescribed

-52-
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along the upstream boundary such that at time t>t.-L/a, V.(t) = V,,
then the final steady-uniform condition will be established as desired.
(4) Lastly, no datum may be prescribed along the downstream boundary
since it lies within the region of the unique solution of the given
boundary-data problem. Therefore, the solutions V&(t), Hv(t), and thus
Kv(t) of the valve are solely dependent upon the initial conditions and
the data prescribed along the upstream boundary.

Having established the essential element of this problem -~
the necessity of specifying the upstream velocity as some function of
time =-- the next logical step would be to speculate about how best to
specify this transient boundary velccity in order to produce the most
orderly anc controlled transition between the initial and final steady-

uniform conditicns.

3.1.1 OSpecification of the Varieble Upstream Velocity

Recognizing that along the upstream boundary the hydraulic
rrade line has a constant value (thus Ht(O,t) = 0), one may investigate
the consequence of requiring that Ht(x,t) = 0 throughout the {low.

With reference to Equation (5), if H_ = 0, then VX = 0. Conse-

t
quently H = H(x) + C and V = V(%) +K are the most general relationships
that H and V may satisfy (C and K are constant terms). Then H = H(x)
and V, = V'(t). Subsequent substitution into the simplified equation of

moticn, Equation (6), yields

vie) « o )
Since for a given pipe and fluid f = f£(V), the left-hand side
of the above equation contains only time-dependent terms while the right-

hand side centains only distance-dependent terms. Thus, each side must
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be equal to a constant and the above expression is now identified as the
incompressible surge equation where H'(x) is the slope of the hydraulic
grade line. I the extreme permissible value of head desired at the

valve is designated as Hm (maximum for closure situations, minimum for
situations involving valve openings), this constant slope of the hydraulic
grade line becomes H'(x) = (Hm-Hr)/L. Thus

av BBy (22)
at = & T, 2D

1s suggested as the technique for specifying Vf(t) along the left-end
boundary.

One may next investigate the consequences implied by utiliza-
tion of Equation(22), With reference to Figure 13, assume that the
velocity at every grid point alcng the left-end boundary has been speci-
fied according to the second-order finite-difference approximation to

Equation (22):

- +
— (H -8 ) i Fi+Fi 0 (22a)

iv1 - Y NB 58

(This approximation follows fronm the definition of the function F and
from B = a/g, L/Ax = N; it is completely analogous to the comparable
finite-difference approkimations of' the characteristic equations and
1s solved utilizing the same iteration technique outlined for soluticn

of the equations of Chapter II.)

Thus H, = H, = H_ = Hr and

A G D
- (Hm-Hr) ) FA+FG
G A NB 2B

(H-H_) F_+F
m r
D G NB 2B
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Incorporation of these relationships into Equation (18a) and subsequent

elimination of canceling terms yields

After substitution of this result into Equation (18b),

(H -H )
Hp = H. + "E%Fl;' ’
Therefcre, conditions at the point P have been demonstrated
to satisfy the incompressible surge conditions: VX = 0, Ht = 0, and
Hx = a constant. Since the selection of points A, D, and G was com-~
pletely arbitrary, then surge conditions must exist at every grid point
located along the line x = Ax on or above the positive characteristic

line which extends upward and to the right from the point t =t , x =0

¢
and intersects the right-end boundary at t = tN'

This latter argument being true for the line x = Ax, then the
same reasoning must hold for the line x = 2Ax, and so on. Therefore,
every grid point within the demain of dependence of that section of
the left-end boundary over which the velocity has been arbitrarily pre-
scribed using Equation (22a) must be a point of incompressible surge
conditions., This ultimately includes every point along the right-end
boundary lying within the aforementioned domain of dependence, beginning

at t = tN’ and the head at the boundary must then have the prescribed

extreme value H .
)

3.1.2 Study of the Frictionless System

For a system in which viscous effects are so insignificant

that they may be safely neglected, the concepts investigated atove nay
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be extended and equations describing the entire history of the transient
condition throughout the system may be developed. Although such a study
would appear to have limited value, ultimately it will be demonstrated
that the basic history of the transient condition is only slightly modi-
fied by the presence of significant viscous effects; therefore, a
thorough analysis of the functionless system provides valuable insight
into the nature of the transient condition developed in the system in
which viscous effects are important.

For a given situation (all physical properties and initial
and final steady-uniform conditions specified), the time of the complete
transient tf is a function of the arbitrarily selected value of Hm. For
the frictionless system, Equation (22) may be integrated. The initial
condition is V = V_ when t = L/a, the final condition is V = V, when

t =t - L/a, ané the result is

L (vo—vf) . (23)

tf=2L/&+EW

In view of the fact that tf 2_2L/a, the quantity(Hm-Hr)must have the
same sign as(Vo—Vf).

The basic pattern of the transient condition imposed upon the
system is congiderably different for values of tfz_hL/a than it is for
values of t. between 2L/a and 4L/a. Referring to Figure 1l4(a), one may
first consider the pattern for tf_>_l+L/a.

Since conditions in Zone II already have been demonstrated to
satisly the incompressible surge equations, for the frictionless system

these equations, after integration and evaluation with the appropriate

initial conditions, are
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(Hm—Hr)
V(t) = VOl -g _—i—_ (t - L/a,) . (2)4-3.)
(1,5 )
H(x) = HI‘ + 1 X (24p)

Next by solving Equations (18a) and (18b) for a point (x,t) in Zone I
simultaneously with Equation (2Lka) evaluated at time t. and the condi-

tion that t = t, - x/a,

T
(H -H_)
e v, - § U o E) @t
(H -H_)
H(x,t) = H_+ %——-P-‘-L—-r- (t + X—;I—Ii) . (2ha)

Equations describing the history of the transient condition throughout

Zone III may be developed in a similar fashion. These equations are

(H -H_)
= & m I x-L
Vix,t) Vf +3 T (tf -t + =) , (2he)
H(x,t) =H +2 (Hm-Hr) (t. - t + Xk (2ht)
] = r 2 L f - a .

Evaluation of these equations at the right-end boundary
enables one to explicitly determine the time-dependent value of the
valve coefficient required to produce the desired transition between

the initial and final steady-uniform conditions:

(H_-H_)
m r
K(t)-v°—% L °
. _J( . 0 <t<2L/a, (25a)
a m r
r +'§ L t
(H -H_)
v -8 er (t - L/a)
K (t) = ./ﬁ; 2L/a <t <t, - 2L/a , (25b)
(H -H_)
v, + 8B T (v _¢)
K (t) = 2L £ tp - 2L/a <t <t . (25¢)
A+3M(t t)
r 2 L £
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These valve equations are the dimensional equivalents to Streeter's
dimensionless valve equations.(26’3l)

The limiting case for which the preceding analysis is valid
is for tf = hL/a. This case is of especial interest; the apex of the
surge zone (now a triangle) just extends to the right-end boundary at
t = 2L/a. The value of H necessary to produce this situation is

Hm=Hr+B-(-vi;f-)-, (26)
One may now consider the transient pattern that develops for
values of t, between 2L/a and 4L/a. As may be readily seen from Figure
14(b), an analysis of the conditions developed in Zones I, II, and III
performed in an identical fashion as before would yield the same results.

Thus, Equations (2La) to (24f) are still valid. Then solving Equations

(18a) and (18b) for a point (x,t) in Zone IV, the results are

V= V°;Vf , (2kg)
(v -v,)
H=Hr+}3—-%—t:— . (2ln)

The Zone I and Zone III valve coefficient equations previously
developed are still applicable, except that for this situation Equation
(25a) is only valid during Og_tfj%a2L/a, and Equation (25c) is only
valid during 2L/a <t iﬁf. The constant valve coefficient that obtains
during the central phase of the transient condition is then

V0+Vf
K = 2 t, - 2L/a<t<oL/a, (250)

VARNSE f
+ B ..._...0__.._..
r

2

In concluding this examination of the frictionless system,
one last observation is relevant. One recognizes that Equations (2Lh)

and (26) are identical. Thus, Equation (24h) represents the maximum
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(or minimum) value of head that can possibly be developed throughout the
system when the proposed valve-stroking control procedures are utilized.
Even if an Hm vere selected in excess of the value prescribed by Equation
(26), thereby resulting in a value of t, less than UL/a, the extreme
value of head developed throughout the system would still be in accordance
with Equation (24h). This immediately implies that if the systenm can
physically accomodate that extreme value, then the minimum possible time
of valve-stroking control in a simple system is 2L/a, not the 4L/a restric-
tion of the previous investigations cited in the literature review.
Finally, it is also pertinent to note that most discussions
(Ref. 18,19,31) of the waterhammer phenomenon conclude that for "rapid" valve
closures in a frictionless system (i.e., tff_Z‘L/a) the maximum value of

head rise developed at the valve is given by

AH = = AV

® o

This is the so-called "Joukowsky surge". Yet by using a closure procedure
predicated upon the concepts of this section, it is theoretically possible
to close a valve in exactly 2L/a seconds, while at the same time restrict-

ing the subsequent head rise in the system tc only one-half of that value.

3.1.3 Study with Friction Included

For a system in which viscous effects are not negligible,
explicit equations describing the entire history of the transient condi-
tion can nct be developed and one must resort to numerical solutions
utilizing vhe appropriate equations of Chapter II. For the valve-stroking
analysis, for example, the left-end boundary velocity at each grid point

is specified according to Equation (22a), and Equations (18a) and (18b)
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are used to advance the resulting solutions across the double-staggered
grid of characteristics to the right-end boundary; the value of the valve
coefficient of each right-end boundary grid point can then be calculated.
For the characteristics analysis used to confirm the valve-stroking
analysis, interior-point conditions are evaluated with Equations (12a) and
(12b), the left-end boundary conditions with Equations (13a) and (13b),
and the right-end boundary conditions with Equations (15a) and (15b).
Specific details of these solution procedures ére described in Appendix B.

A considerable amount of flexibility exists relative to Bquation
(22a). Either a value of H cen be arbitrarily prescribed and the corres-
ponding value of t, numerically evaluated, or tp can be prescribed and Iy
then evaluated (see Appendix C). In either case the central surge zone
will develop within the domain of dependence of the left-hand boundary as
discussed in Section 3.1.1.

For values of tf beitween 2L/a and LL/a this zone will be of
triangular shape, as in the cormparable frictionless systen. Designating
as H& the value of head createc at the apex of this zone and developed
at time tf/2, then from Equation (2kb)

(H -H)

——— (t, - 2L/a) (27)

a
H' =H + =
m r 2
since x = % (t--2L/a). In situations involving valve closures (i.e.,
[ -
VO>'V0), trhe above expression for'Hi represents the maximum value of
&
head cdeveloped in the system. The maximum value of head encountered at
the valve occurs at t = 2L/a and 1is marginally less than the above value.

(Recall that in the frictionless case the head developed at the apex of the

urge zone and the constant head obtained in Zone IV were identical; in

[£]
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this case, however, wall shear stresses accentuate the fluid deceleration,
thus permitting somewhat lower values of head to exist in Zone IV.) 1In
similar situations involving valve openings, the minimum value of head
does occur at the valve at t = 2L/a and is marginally less than H& .

Yet another possibility should be mentioned relative to the
arbitrary selection of tf. One can always specify tf and then specify

that the upstream velocity vary linearly between Vo and V_, during the

f
time L/a < t St - L/a. Such a strategy results in a very simple and

straightforward computational procedure; for values of t_ between 2L/a

T
and 4L/a, valve-stroking control following this procedure may be pre-
ferred because of the simplicity of the procedure and because the extreme
value of head developed in the system is essentially the same in either
case. For values of tf significantly greater than LL/a, specification
of the upstream velocity according to Equation (22a) is probably

preferred because, for the same value of t_, the extreme value of head

f,
developed in the system is less than is obtained utilizing the linear
specification.

As previously indicated, the minimum time for valve-stroking

control of this simple system is t_ = 2L/a. Although of doubtful practi-

f
cal interest because of the instantaneous valve motions required, it does
provide valuable insight into the one restriction inherent in the valve-
stroking theory. In closure situations the maximum head (H& ) develops

at a point just inside the left-end boundary at t = L/a. (In this case

the entire transient zone is a Zone IV triangle.) Conditions at this point
may be evaluated with Equations (2hg) and (24h), since the distance over
which the friction terms of the finite-difference equations have to be

integrated is negligibly small. To create this one-half reduction in

velocity at the reservoir at t = L/a, a greater velocity reduction has to
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occur at the valve because of the line-packing (9,31) phenomenon that

exists in any real fluid system. In extremely long pipelines these vis-
coug effects could be sufficiently significant to require that negative
velocities develop at the valve during a central period of the transient
condition. These negative velocities would be incompatible with the
physical operation of a simple control valve and could only be produced
by other control devices (i.e., an accumulator) operated in conjunction
with the valve.

A computer program which included both the valve-stroking
analysis and the confirming characteristics analysis was written to
illustrate the elfect of system operation according to the principles
suggested in the preceding secticns. Results of several representative
valve-closure studies are illustrated in Figure 15. For convenience, the
valve relationships illustrated are the dimensionless tau relationships
(Ref. 18,31), obtained by dividing the instantaneous value of the valve coef-
ficient by the initial steady-state value. The pertinent system para-
meters are: Hr = 100 feet, VO = 5 Teet per second, V., =0, L = 4000 feet,
a = 3200 feet per second, f = .025, and D = 1 foot; thus L/a = 1.25
seconds, H, = 1.2 feet, and Hp = 100 feet.

The significant values of head prescribed or developed in the
system are summarized in Table I.

These results illustrate remarkably well the fundamental dif-
ferences in the transient condition developed for various values of tf;
especially vwell illustrated is the distinction between system control in
closure times less than 4L/a and control in times greater than L1/a.

In summarizing the results of this section, the valve-stroking

procedure proposed creates an extremely controlled transient condition
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TABLE I
RESUME OF ANALYTICAL COMPUTER RESULTS

sezgnds fggt fgét e gezt vatve
2.50 - 348.4 k2.7
3.75 58k,2 3k2.1 339.8
5.00 336.0 336.0 336.0
T.50 212.3 -- 212.3

throughout the system: all velocities and pressures are nearly linear
functions of time and distance, an arbitrarily selected extreme value of
pressure is maintained at the valve during a central phase of the transient
condition, and the final steady-uniform condition is established without
the development of residual transient fluctuations.

Lastly, it is pertinent to note that although the preceding
treatment has been predicated on the assumption that steady-uniform
conditions originally exist in the system, the theory developed here is
not necessarily restricted to such situations. With reference to the
discussion of Section 2.6.1 and Figure 12(b), if the values of both
dependent variables are initially known along the line t = 0, then a
unique solution does exist within the region labeled "SSO" (regardless
of whether or not it is a steady-state region). Hence, the velocity
V}(L/a) has an established value and Equation (22) or (22a) may then be
utilized to prescribe v;(t) along the left-end boundary. Again the surge
condition is established throughout the domain of dependence of the
left-end boundary, the extreme value of head is maintained at the valve
during the central phase of the transient condition, and the final

steady-uniform condition can be established as desired.
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3.2 System with a Downstream Constant-Velocity Condition

As another example of a system for which a valve-stroking pro-
cedure may be developed, consider the system illustrated in Figure 16.
Assume that it is desired to modify the upstream reservoir elevation
from an initial elevation Hio to a final elevation Hrf while maintaining
a constant velocity V, at the downstream valve. As in the first study
it will be assumed that steady-uniform conditions originally exist in
the system (although, as in the former case, that restriction is not
essential to the development of the theory) and that at time t = tf the
final steady-uniform condition is to be established without the presence
of subsequent residual transient fluctuations. It will be assumed that
the elevation of the reservoir can be precisely controlled to satisfy
any arbitrary function of time.

From the discussions referred to in Section 3.1 and with
reference to Figure 16(b), the following observations parallel those of
Section 3.1: (1) Because of the presence of the invarient downstrean-
boundary relationship, V(L,t) = Vs the region of the initial steady-
uniform condition is as indicated. (2) If the negative direction is now
arbitrarily assigned to the C+ characteristic family and the positive
direction to the C- characteristic family, then both data must be pre-
scribed along the time;liﬁe downstream boundary. (3) If the head Hv(t)
is prescribed along the downstrean boundary such that at time ‘c_>_*t.f - L/a,
Hv(t) = Hf, then the final steady-uniform condition will be established
as ¢esired. (4) No datum may be prescribed along the upstream boundary
since the solutions V}(t) and Hf(t) are solely dependent upon the initial
conditions and the data prescribed along the downstream boundary.

Having again established the essential element of this problem--

the need to specify the downstream head as some function of time -- one
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again can speculate about how best to do this in order to produce an

orderly and controlled transition between the two steady-uniform conditions.,

3.2.1 BSpecification of the Variable Downstream Head

Recognizing that along the downstream boundary the velocity has
a constant value (thus Vi (L,t) = 0), one may investigate the consequence
of requiring that V{(x,t) = 0 throughout the flow.

If V. =0, then V = V(x) + C is the most general relationship

that V can satisfy (C is a constant). Then v = V'(x) and from Equation (6),

gH'(x) = . -flm .

2D

It is apparent that H'(x) is also a function of x only, since f = £(V).
This equation may then be integrated with respect to x and the result is
some function involving only x, F(x). Therefore the most general rela-
tionship that H may satisfy is H = F(x) + G(t) + K (K is a constant).
Thus H, = G'(t) can be a function of t only.

The continuity equation, Equation (5), then has the form

23 V' (x) = -G6'(t) «»

g
Again, for a function involving only x to be equal to a function involv-
ing only t, the two functions must be equal to a constant. Since G'(t)
must thus be constant and represents the rate at which the hydraulic

grade line changes elevation,

U (28)
dt tf-2L/a

1s suggested as the technique for specifying Hv(t) along the right-end

boundary.
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Again, one may now investigate the consequences implied by

utilization of Equation (28). With reference to Figure 17,

Vo=V, =V, =V and
o

B~ = Vg
(H,~H )
=H +—0—2 _ 2t
HH A th~2L/a$ >
(H_-H )

f

(o]
g = it (t,-2L/a) At .

==
|

Incorporation of these relationships into Equation (19a) and subsequent

elimination of canceling terms yields

1 (Hf'Ho)

vP = vo * ﬁ'itf-2L7a5 At .

After substitution of this result into Equation (19b),

FP+Fo

P H 2

A\

Therefore, conditions at the point P have been demonstrated to
satisfy the restrictions of the preceding analysis: Vt =0, Vx = g constant,
and Ht = a constant. Since the selection of points B, E, and H was com-
pletely arbitrary, these results permit a conclusion analogous to that of
Section 3.1.1: every grid point within the domain of dependence of that
section of the right-end boundary over which the head has been arbitrarily
prescribed using Equation (28) nust be a point at which the specified uni-

form transient condition is established.

3.2.2 Study of the Frictionless System

As in the first system considered in this chapter, equations

describing the entire history of the transient condition throughout a
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frictionless system may be developed. Again, they provide insight into
the transient condition developed in the system in which viscous effects
are important.

As before, the basic pattern of the transient condition imposed

upon the system is considerably different for values of t > 4L/a than it

f

is for values of t, between 2L/a and LL/a. Referring to Figure 18(a),

one may first consider the pattern for t, > LL/a.

£
Since conditions in Zone II already have been demonstrated to

satisfy the specially restricted forms of Equations (5) and (6), for

the frictionless system these equations, after integration and evaluation

with the appropriate initial conditions, are

(Hf Ho) (L-x)

_ ’
f 2L/a) a

V(x) = LA %-( (29a)

(Hf-H

(t ~3r/a) (¢ - L/a) . (29b)

Next by solving Equations(19a) and (19b) for a point (x,t) in Zone I

H(t)

simultaneously with Equation (29b) evaluated at time tv and the condition

that t = t, - (L-x)/a,

L1 (Hf -H )
V(x,t) = + 58 l¥_—§f7§7 (t - s (29¢)
(H.-H_)

f

%m (t - —) . (294)

Equations describing the history of the transient condition throughout

H(x,t)

Zone III may be developed in a similar fashion. These equations are

(H -H
V(x,t) = Vo + .];___f;_(L)._

B (t,-21/a) (bp ™t - 2 (29e)
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(a) te > 4L/a, and (b) t, < LL/a.



1 (Hf-Ho) X
£~ 2 (%,-20/a) (bp -t -2). (291)

Evaluation of these equations at the left-end boundary enables

H(x,t) = H

one to determine the time-dependent value of Hr required to produce the
desired transition between the initial and final steady-uniform conditions:

1 (Hf-Ho)
I%+§ﬁ¥ﬁmﬁt 0<t<2L/a, (30a)

H_(t)

(H-H )

[o]
Hr(t) = HO + m (‘t - L/a) 2L/a <t < tf - 2L/a, (30b)

(t.-t) t.-2L/a<t<t

¢ (30¢)

B, (t)

n

=
H

i
o)
ot

™
&
o

)

f o

One may now consider the transient pattern that develops for
values of tf between 2L/a and LWL/a. As may be readily seen from Figure
18(b), an analysis of the conditions developed in Zones I,II, and III
performed in an identical fashion as before would yield the same results.
Thus, equations (29a) to (29f) are still valid for their respective zones.

Solving Equations (19a) and (19b) for a point (x,t) in Zone IV, the results

are
(H -H )
VeVo+ ——éé;il- , (29g)
H +H,
B 2L, (29n)

The Zone I and Zone III equations previously developed for Hr(t)
are still valid, except that for this situation Equation (30a) is only
valid during 0 < t < te - 2L/a, and Equation (30c¢) is only valid during
2L/a < t 5'tf; The constant value of H that obtains during the central

phase of the transient condition is then given by Equation (29h):



-T6-

5 t, - 2L/a <t < 2L/a, (29h)

Lastly, the time-dependent right-end boundary valve coefficient
may be determined by evaluating Equation (29b) at x = L:

\')
K (t) = ° L/a<t<t,-L/a, (31)

g
VRSN
o * Te-/ay (t - L/e)

Since the boundary velocity is invarient and the method of specifying the
transient elevation of the hydraulic grade line at the valve is independent
of viscous effects, Equation (31) is perfectly general and is not res-

tricted only to the frictionless system.

3.2.3 Study with Friction Included

For a system in which viscous effects are not negligible, one
must again resort to numerically-oriented solutions. For the valve-
stroking analysis, the right-end boundary head at each grid point is
specified according to Equation (28), the unsteady valve relationship is
computed with Equation (31), and Equations (19a) and (19b) are used to
advance the solutions across the grid to the left-end boundary. For the
characteristics analysis, interior-point conditions are evaluated with
Equations (12a) and (12b), the left-end boundary conditions with Equations
(13a) and (13b), and the right-end boundary conditions with Equations
(15a) and (15b).

A computer program which included both the valve-stroking
analysis and the confirming characteristics analysis was written to illus-
trate the effect of system operation according to these principles. Re-
sults of several representative studies are illustrated in Figure 19,

Again, the dimensionless valve relationships are presented. The pertinent
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system parameters are: Vo = 3.5 feet per second, Hr = 100 feet, Hr = 200
o f
feet, L = 3200 feet, a = 4000 feet per second, f = .035, and D = 0.5 feet;

thus L/a = 0.8 seconds, H = 5T.4 feet, and H_, = 157.4 feet.

f
The results again confirm the theory; in every case the down-
stream velocity is maintained at a constant 3.5 feet per second throughout
the history of the transient condition and the final steady-uniform condi-
tion is established as desired. Of particular interest is the leading
case of tf = 2L/a. This is analogous to the one round-trip valve-stroking
control of the previous study. Again, the instantaneous control motions
required by the theory would appear to exclude most practical applications.
In summary, the proposed valve-stroking procedure creates a
highly controlled transient condition throughout the system: all velocities
and pressures are nearly linear functions of time and distance, the tran-
sient elevations of the hydraulic grade line are everywhere bounded between
the initial and final steady-state grade lines, and the final steady-

uniform condition is eatablished without the development of residual

transient fluctuations.

3.3 System with an Upstream Constant-Relationship Condition

As a third example of a simple system for which a valve-stroking
procedure may be developed, consider the system illustrated in Figure 20.
Instead of the simple upstream boundary relationship provided by the
presence of the constant-head reservoir, the upstream boundary condition
is now the constant-relationship condition of the fixed orifice:

Vr = Ko /ﬁ;:ﬁ; :
(Before proceeding further, it should be emphasized that any other
boundary condition involving a fixed relationship between the dependent

variables could be considered, and furthermore the relationship need not
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be in equation form; a tabular relationship would be entirely acceptable,

The H-V relationship of a centrifugal pump provides an obvious example.)
Again consider that it is desired to modify flow conditions in

the system from some initial steady-uniform condition (SSO) to some final

steady-uniform condition (SS_.) such that at time t = t_ the final steady-

f) f

uniform condition is established without the presence of subsequent resid-
ual transient fluctuations. (Again, the assumption of an initial steady-
uniform condition is adopted for convenience; it is not intrinsic to the
theory.)

With reference to Figure 20(b), it is evident that the analysis
of the similar boundary-data problein presented in Section 3.1 is equally
applicable here; it will not be repeated. Again, the crucial element in
the development of a suitable control theory would appear to be that of
specifying either of the upstream dependent variables as some arbitrary

function of time; the other variable would then be completely specified

by the prescribed fixed-orifice relationship.

3.3.1 Specification of the Upstream Variables

An examination of the governing partial differential equations
conducted in a similar fashicnto those of the previous studies fails to
provide any meaningful criteria for upstream variable specification for
this system. 1t is impossible, for example, to establish and maintain
a uniform hydraulic grade line throughout the system during a central
phase of the transient because of the variable head condition that pre-
vails on the downstream side of the orifice. However, one can arbitrarily
specify either of these upstream variables as some prescribed functicn of
time. Following this direction, let us specify that the upstream velocity

):

vary linearly between the initial steady-uniform value (Vf
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(Vo-v,)

V() =V + 1;;;55337-(t - L/s) Lla<t<t,-Lia. (32
(Recall that in the frictionless constant-head reservoir system the
upstream boundary velocity is a linear function of time.)

As with the previous studies, equations describing the entire
history of the transient condition throughout a frictionless system may
then be developed. While again providing insight into the condition
developed in the system in which viscous effects are important, these
equations are rather lengthy and will not be presented here. Relative to
the extreme value of head developed throughout the system, these equations
demonstrate that for t_, > LL/a the extreme value occurs at the valve at

f

t =ty - 2L/a; for values of te

to Zone IV of Figure 14(b) is developed throughout which the extreme

between 2L/a and 4L/a a zone analogous

condition is constantly maintained.

For a system in which viscous effects are not negligible, one
must again resort to numerically-oriented solutions. For the valve-
stroking analysis the left-end boundary velocity is specified according to
Equation (32), the corresponding head is computed from the prescribed
fixed-orifice relationship, and Equations (18a) and (18b) are used to
advance the solutions across the grid to the right-end boundary; the
value of the valve coefficient at each right-end boundary grid point can
then be calculated. The confirming characteristics analysis is identical
to those previously discussed, except that the left-end boundary conditions
are evaluated using Equations (1llka) to (1lc).

Scrutiny of typical results generated by a program written
to illustrate this suggested valve-stroking procedure reveals that when-
ever tf 2.hL/a the extreme vélue of head encountered throughout the system

does develop at the valve at t = t_ - 2L/a. For situations involving

f
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rapid valve closures in times less than 4L/a, the maximum value of head
developed in the sysﬁem occurs at the apex of Zone IV at time tf/2. As
in the earlier study, the maximum value encountered at the valve is
marginally less than the system maximum. Pertinent system parameters
and results of a typical study are presented in Section 3.3.2.

Scrutiny of these results also reveals a significant deficiency
in this procedure: wunlike the procedure developed in Section 3.1, speci-
fication of the upstream boundary velocity according to Equation (32) does
not permit an arbitrarily selected extreme value of pressure to be developed
at the valve. If a predetermined extreme value is not to be exceeded, then

the appropriate value of t_ and the consequent valve motion required to

f
produce the desired transient condition can only be determined by numerical
experimentation. The alternate procedure suggested in the next section

overcomes this obvious disadvantage.

3.3.2 Preferred Solution

Recall that in the constant-head reservoir system of Section 3.1
the suggested valve-stroking procedure resulted in the following head-time
variation at the valve: (1) a nearly linear transition from Ho to Hm
during the first 2L/a seconds; (2) the prescribed value of H maintained
at the valve during the central phase of the controlled transient condi-

tion; (3) a nearly linear transition from H to H, during the last 2L/a

f
seconds. ‘This results suggests the following alternate strategy to the
procedure outlined in Section 3.3.1.

From the discussion presented in Sections 2.2.3, 2.6.1, and
2.6.2, and with reference to Figure 21, if the positive direction is

arbitrarily assigned to each characteristic family, one datum must be

prescribed on each of the time-like boundaries. The fixed-orifice
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relationship provides the upstream datum. One may arbitrarily specify
that the downstream head change linearly during the first 2L/a seconds to
an arbitrarily selected extreme valve Hm and that it be maintained at

that value during the central phase of the transient condition:

(£ -H_)

- m o
H(t) =H_ + 7 b 0<t<2L/a, (33a)
B (t) =8 2L/a <t < t, - 2L/a . (33b)

A unique solution then exists in the region enclosed by the time-like
boundaries, the space-like line t = 0, and the negative characteristic

line extending from the right-end boundary at t = t_ - 2L/a and inter-

f

secting the left-end boundary at t = t_, - L/a.

f
This constant value of Hm is prescribed along the right-end

boundary until such time that the corresponding value of velocity obtained

L/a seconds later at the left-end boundary equals the final steady-uniform

velocity (V_.). At that point one may now arbitrarily assign the positive

f
direction to the C+ characteristic family and the negative direction to
the C- characteristic family and specify that along the upstream boundary
Vr(t) = Vf. Thus the final steady-uniform condition will be established
as desired, and a unique solution will exist in the traingular region
bounded by the negative characteristic line (the dashed line illustrated
in Figure 21) and by the positive characteristic line bounding the final
steady-state region.

The necessary numerical solutions again utilize the appropriate
equations of Chapter II. The downstream head is prescribed according to
Equations (33a) or (33b); the downstream velocity is determined from

Equation (17b). Interior point conditions are then evaluated diagonally

along a C- characteristic utilizing Equations (12a) and (12b), and the

left-end boundary conditions are evaluated using Equations (1lka) to (1lke).
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This solution procedure is terminated when the left-end velocity equals
Vf. The velocity along the boundary is then specified to be Vf and
Equations (18a) and (18b) are used to advance the solutions in the upper
triangular region of the transient zone across the grid to the valve
boundary. Specific details of the solution procedure are described in
Appendix B. The confirming characteristics analysis is identical to that
described in the preceding section.

A computer program which included both the valve-stroking analy-
sis and the confirming characteristics analysis was written to illustrate
the effect of system operation according to these concepts. Results of
two typical studies are illustrated in Figure 22; results of several
studies are summarized in Table II and compared with the results of the
computer studies described in Section 3.3.1. The pertinent system para-
meters are: H_ = 165 feet, v, = 4 feet per second, Ve =0, L = 3220 feet,
a = 3220 feet per second, f = .025, KO = .8, and D = 0.5 feet; thus L/a =

1.00 second, H; = 140 feet, H; = 165 feet, H =100 feet, and Hy = 165

o] f
feet.
TABLE II
COMPARISON OF ANALYTICAL COMPUTER RESULTS
Upstrean Velocity Specification Dowvnstream Head Specification
ilax. ¥ at Max. H in Max. H Max. H
te Valve System Ly Specified  Obtained
seconds fect feet seconds feet feet
3.00 3hh,2 3L6.2 3.96 34k, 2 340.2
1,00 340.2 340.2 3.99 340.2 340,90
.00 258.7 258.7 5.50 258.7 258.7
8.00 226.8 228.8 0.97 228.8 228.8
10.00 213.4 213.4 3.07 213.4 213.k
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These results illustrate in a most remarkable way the differences
in the transient conditions obtained utilizing the two procedures. This
1s particularly true for the slower valve closures since the head developed
at the valve by the procedure outlined in Section 3+3.1 continually rises
during the central phase to a maximum value 2L/a seconds before the cessa-
tion of the valve motion, whereas the maximum value developed by the pre-
ferred procedure proposed in this section is maintained at the valve during
the entire central phase of the transient condition. Thus it is not
unexpected that, for the same maximum value obtained, the time of valve
operation required by the preferred procedure can be considerably less
than that required by the former one.

The distinction between system control in closure times less than
LL/a and control in times greater than 4L/a is again illustrated rather
well, Note that in the preferred solution technique, a direct analogy
exists with the control procedures developed for the constant-head reser-
voir system. In either case an extreme value of downsiream head is
selected that may not be attained if, for the specific system conditions

that obtain, the consequent value of t_. is less than Li/a. Since the

f
maximum value cf head developed in the system is essentially the same
for control times between 2L/a and 4L/a, valve-stroking control following
the upstream-velocity specification procedure is probably preferred
(because of the simplicity of the computational procedure) for systems
that can physically accomodate such rapid closures.

In summary, the proposed valve-stroking procedure creates a
highly controlled transient condition throughout the system: unlike the

(30,31)

previous studies of constant-relationship boundary-condition

systems, a predetermined extreme value of pressure can be developed and
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maintained at the valve during a central phase of the transient condition;
again, the final steady-uniform condition is established without the

presence of subsequent residual transient fluctuations.



IV, VALVE-STROKING CONTROL OF COMPLEX PIPING SYSTEMS

The valve-stroking concepts and procedures essential to the
deterministic control of the transient phenomenon in the simple piping
systems of the last chapter may be readily extended to develop suitable

control techniques for the elementary complex systems as well,

L.1 Series System

Attention is first directed to the most frequently encountered
of the elementary complex systems: a system of two pipes connected in
series with the upstream pipe originating at a constant-head reservoir and
the downstream pipe terminating at a control valve. With reference to
Figure 23, again consider that it is desired to modify flow conditions in
the system from some initial steady-state condition to some final steady-
state condition such that at time t = tf the final steady-state condition
is established without the pfesence of subsequent residual transient
Tluctuations. (Throughout this chapter, as before, the assumption of an
initial steady-state condition is adopted for convenience only.)

Recall now that in the development of the control techniques
for the simple systems of Chapter III, the essence of the problem -- the
really cruciel element -- was the necessity to specify one of the boundary
dependent variables as an arbitrary function of time. It is instructive
to note that a generalized criterion exists relative to either transient
analysis or synthesis investigations of all complex systems: if there
are m unknown boundary dependent variables and n available equations,
then m-n of the variables must be specified to obtain the desired solu-
tion. The only restrictlon is that such specification may not violate

one of the governing equations: i.e., specification of all of the

-89-
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velocities at an interior junction would violate the junction continuity
equation. In the series system of Figure 23, for example, there are a
total of six unknown variables (the velocity at the reservoir, two
velocities and the head at the junction, and the velccity and head at

the valve) and only five available equations (two characteristic equations
for each pipe and the series-junction continuity equation). Therefore,
specification of one of the unknown variables completely specifies the

transient condition imposed upcn the system.

4,1.1 Evaluation of the Existing Technique

From an extension ol the discussions presented in Sections
2.2.3, 2.6.1, and 2.6.2, and with reference to Figure 24, the following
observations are relevant: (1) Because of the presence of the invarient
reservoir-boundary relationship, Hl(O,t) = Hr’ the regions of the initial
steady-uniforn conditions are as indicated. (2) If the positive direc-
ticn is now arbitrarily assigned to the C+ characteristic family and the
negative direction to the C- characteristic family, then both data must
be prescribed along the time-like reservoir boundary for a unigue solu-
tion to exist in the region of interest of pipe 1l; since bcth data are
thereby established at the upstream boundary of pipe 2 (the existence of
the commcn boundary head and the series-junction continuity equation), a
unigue solution likewise exists in pipe 2. (3) If the velocity Vr(t) is
prescribed along the reservoir boundary such that at time t Z'tf-Ll/al
-L2/a2, Vf(t) = Vl , then the desired final steady-state condition will
be established thr;ughout the system as illustrated. (L) Again, no datum
may be prescribed along the downstream boundary since it lies within the

region of the unique solution of the given boundary-data prcblem. The
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solutions Vv(t), Hv(t), and Kv(t) are solely dependent upcn the initial
conditions and the data prescribed along the upstream reservoir boundary.

Streeter and Wylie(BI)

suggest that the reservoir-boundary
velocity be specified according to Equation (22), except that the extreme
permissible value of head desired of the value (Hm) is replaced by the
extreme permissible value of head desired at the junction (Hm ). Since
the discussion presented in Section 3.1.1 is equally applicabie here, the
existence in pipe 1 of a central zone of incompressible surge conditions
is assured.

While the strategy 1is recasonable and certainly acceptable,
experience indicates that during most transient conditions the extreme
value of pressure sustained in the system cbtains at the valve, not at
the junction, and as before it would be desirable to identify and limit
that value a priori. Recognizing that at the junction the head developed
during the central phase of the transient condition is the constant
value Hm, -- thus conditions during that time are identical to those pro-
vided bthhe presence of a constant-head reservoir -- one may speculate
about whether a central surge zone is propagated into pipe 2. If this
be the case, then the incompressible surge equations for each pipe can
be related to permit the selection of Hm, in terms of Hm and the dilemma
is favorably resclved. ’

If a surge zone is propagated into pipe 2, then conditions in

each pipe must satiscfy Equation (22). Each equation may be multiplied

by the respective area of the pipe and equated, since Ql = Q2:

A A
dQ 1 2
== = g ==H - H +h(V)=-—g-—-H-—H + h, (V) .
dt Ll mJ T fl 1 L2 m mJ f2 2

The friction term takes the indicated form since

L Vv _
z op - helV) .



-9k~

After rearrangement,

A A A

Lh, (v)-L2n (v.)=-2(H -& )-ﬁ-(ﬁ H) . (34)
Ll fl 1 L2 f2 2 L2 i mJ Ll mJ r’

Since the right-hand side of the above equation must be a constant, then

A
! Q 2 QE)
— h (—-) - = h =] = .constant.
L1 fl Al L2 f2 (A

But this constant must be zero, since h, (0) = ho (0) = 0. Therefore
1 2
a
L £ \A) L, fo\A 35

is the necessary relationship between the viscous resistance properties
of each pipe essential to the establishment of a zone of incompressible
surge conditions in pipe 2,

If the Darcy-Weisbach friction factors can be considéered to

have a constant value for each pipe, then the above criterion becomes

f f

1 2
—3=—3 - (35b)
b,” D,

One immediately recognizes that either of the above criteria
rarely would be satisfied. If they are, however, then the desired
relationship vetween Hm and Hm may be obtained by rearrangement of the

right-hand side of Equation (3k):

A A
Ly + 2y

Ll r L2 m (36)
J 2,2
L 5L

One does recognize that a frictionless system satisfies the

=)
=
>

criterion of Eaquation (35b) and thereby does permit extreme system
pressures tc be limited to arbitrarily established values. Relative to

the frictionless system, equations describing the entire history of the



transient condition throughout the system may be developed analogous to
those of the simple system of Section 3.1.2. These equations are so
lengthy (because of the several parameters involved) and numerous
(vecause of the compound possibilities of values of tf and relative
values of L/a in each pipe) that they have diminished utility for pro-
viding insight into the controlled transient condition developed in the
viscous system; they will not be presented here.

For a system in which viscous effects are not negligible, one
must again depend upon numerically-oriented solutions. For the valve-
stroking analysis the reservoir-boundary velocity 1s specified according
to Equation (22) (modified only to the extent that Hm. replaces Hm)’ and
Equations (18a) and (18b) are used to advance the sol&tions across the
grid of pipe 1 to the junction boundary. The common junction-boundary
head and continuity equation egtablish the junction boundary solutions
for pipe 2, and Equations (18a) and (18b) again permit the calculation
scheme to advance to the valve boundary; the value of the valve coeffi-
cient at each grid point can then be determined., The confirming charac-
teristics analysis is virtually identical to that of the simple systems,
except that Equations (20a), (20b), and (20c) must now be utilized to
evaluated all conditions at the junction.

A computer program was again written to illustrate the
effect of system operation according to the principals suggested in
this section. Pertinent system parameters and results of a typical
study are presentcd in Section 4,1.2. In yet ancther study the friction
factors were selected according o Equation (35b); the validity of that
criterion was confirmed and a central surge zone did develop in pipe 2

as illustrated in Figure 2L,
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4,1.2 Preferred Solution

Having demonstrated the inherent deficiency of the existing
technique for control of the series system, attention is now directed
toward the following alternate strategy: recalling the preferred solution
technique developed in Section 3.3.2, and with reference to Figure 25,
the positive direction is arbitrarily assigned to each characteristic
family and the dowmstrecam head is specified to change linearly from Ho
to Hm during the first 2Ll/al+2L2/a2 secoends and maintained at that

value during the central phase of the transient condition:
p

U fo)t (37a)
= a
Ho(t) = B+ 5T T2 0Lt <2l /a) + 2Ly/e, ,
1771 2/ %o
H(t) = H_ 2L /a;, + 2L,/a, < t <t - 2L /a, - 2L,/a, . (37b)

A unique solution again exists in the lover reglons of the itransient
zones cunclosec by the time-llke boundaries, the space-like line t = 0,
and the nepative (dashed) characteristic lines extending from the valve
to the reservoir.

Again, the constant value of Hm is prescribed alcng the valve
boundary until such time that the corresponding value of velcecity
obtained Ll/al+L2/a2 sec&nds later at the reservoir boundary equals the
final steady-uniform velocity (Vl ). At that point cne may agein assign

f

the positive direction to the C+ characteristic family and the negative

direction to the C- family, specify that along the upstream boundary

“n
+

vV (%) = Vl , established the [inal steady-state condition as desired,
11

and obicin unique sclutions in the upper triangular region of the

transicnt zone of pipe 1 and the upper trapezoidal region of pipe 2.
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The necessary numerical solutions are patterned after those of
Section 3.3.2. The head at the downstream valve is prescribed according
to Equations (37a) or (37b); the downstream velocity is determined from
Equation (17b). Interior point conditions are then evaluated diagonally
along a C- characteristic as before, and the series-junction boundary
conditions are cvaluated using the appropriate equations. Again the
computations proceed diagonally along the C- characteristic of the up-
stream pipe, and the reservoir-boundary conditions are evaluated using
Equations (13a) and (13b). This solution procedure is terminated when

the reservoir-boundary velocity equals V The velocity along the

1’.-
b

boundary is then specified to be V and the remainder of the solution
o l bl
-

is obtained in the upper regions of the transient zones in a fashlon
identical to that of the preceding series-system valve-stroking analysis.
Specific details of the solution procecures are described in Appendix B.
The confirming characteristics analysis is identical to that described

in the preceding secticn.

A computer program which included both the valve-stroking
analysis and the confirming characteristics analysis was written to
illustrate the effect of system operation according to these concepts.
Results of two fypical studies are illustrated in Figure 26; results of
several studies are summarized in Table III and compared with the results

of the computer studies described in Section 4,1.1. The pertinent system

parancters arc: H, = 125 feet, VOl = 2.56 feet per second, V02 = 4,00

feet per second, Vfl = Vf2 = 0, Ly = 3500 feet, L, = 4800 feet, A, = 3500
feet per second, a, = L4000 feet per second, f; = .022, £, = .020, Dl = 1.25
feet, and D2 = 1,00 feet: thus Ll/al + Le/a2 = 2,2 seconds, Hjo = 118.7

feet, H = 94,9 feet, and Hj = H_ = 125 feet.
O i‘ &
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TABLE III

COMPARISON OF ANALYTICAL COMPUTER RESULTS ~-- SERIES SYSTEM

Junction Head Specification Downstream Head Specification
Max. Hat Max. H at Max. H Max. H
t Junction Valve te Specified Obtained
seconds feet feet seconds feet feet
8.80 189.2 315.2 8.76 315.2 313.3
10.00 172.7 273.2 9.99 273.2 273.2
12,00 159.6 232.9 11.96 232.9 232.9
14,00 152.0 209.k% 13.78 209.4 209. 4
16.00 147.0 193.9 15.72 193.9 193.9

These results again confirm the theory and illustrate the
differences in the transient conditions cbtained utilizing the two
procedures. The somewhat more rapid closure times permitted by the
valve-nead specilfication technique (for the same ultimate maximum
value of head developed in the system) are obtained for the same reasons
as they were in the system of Section 3.3.

Especially noteworthy is the obvious extension of the rapid
control concepts of the simple systems to the series system as well.

As 1llustrated by the first case presented in Table III, an extreme
value of head was selected that was not attained since the consequent
value of t, was less than Ly /ey + bLs/an.

In summary, the proposed valve-stroking procedure creates a
controlled transient condition throughout the system and permits the
final steady-state condition to be established without residual transient
fluctuations. Unlike the previous procedure, the solution technique
proposed in this section permits a predetermined extreme value of

pressure to be developed and maintained at the valve during a central



-101-

phase of the transient condition. Furthermore, the procedure does not
depend upon the presence of a constant-head upstream reservoir; it is
perfectly general and could be applied to any series system with a xnown
constant-relationship upstream boundary condition., ZLastly, it may be
applied to any number of pipes in series. In such cases the minimum
value cf tf is I2L/a, and all other values of valve operation time

discussed in this section must be modified accordingly.

4,2 Branching System

Another example of an elementary complex system for which a
valve-stroxing procedure may be developed is provided by the branching
system illustrated in Figure 27. Again consider that a controlled
transient condition is to be develcped between known initial and final
steady-state conditions in the system such that residual transient fluctu-
ations are eliminated.

An analysis of the system indicates that a total of nine unknown
toundary dependent variables exist, whereas only seven equations are
available. Thus, specification of two of the unknown variables will be
required to completely specify the transient condition imposed upon the

systen.,

4,2.1 Evaluation cf the Existing Technique

With reference to Figure 28, the existing solution technique
(Ref. 30,31) for this system is first examined.

Because of the invarient reservoir-boundary relationship,
Hl(O,t) = Hr’ and the subsequent procedure for specification of velocities
at the junction, the regions of the initial steady-uniform conditions are

as illustrated, Arbitrarily assigning the positive direction to the C+
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characteristic family and the negative direction to the C- family, the
reservoir-boundary velocity 1is spegified according to Equation (22)
exactly as it was for the series system: an extreme permissible value
of head desired at the junction is specified. Thus a unique solution
exists in pipe 1, and by specifying that at time

t2t, - Ll/al - Le/ae’ v.(t) = vlf, the final steady-uniform condition
in the pipe is established as desired.

Directing attention now to the branching junction, three of the
four essential boundary data are now established; the fourth must there-
fore be specified (the second of the two permissible boundary-data speci-
fications). The flow distribution at the junction is determined by
arbitrarily specifying that the change in flow in pipe 2 is to be pro-

portional to the change in flow in pipe 1:

Q (6 -8 9 (1) -9
. -q - ' (38)
2f 20 lf 10

(Application of the continuity equation at the junction demonstrates that

the change in flow in pipe 3 is similarly proportional to the change in
flow in pipe 1.) Since both data are thereby established at the upstream
boundaries of each pipe, unique solutions exist, and the solutions of the
dependent variables and unsteady valve coefficients may be determined at
each downstream valve boundary. Agein the final steady-uniform condi-
tions will be cstablished as cdesired, since at‘t > tf - L2/a2 the head
- and velocity at the upstreanm boundary of each pipe is the final steady-
uniform value.

As with the existing technique for the series system, the same
objection to this strategy may exist because the extreme values of

pressure sustained in the system usually develop at the valves, not the
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junction; again it would be desirable to identify and limit those values
a priori. Since conditions in pipe 1 of this system are identical to
those encountered in the series system, one may speculate about the possi-
ble propagation of surge zones into the downstream pipes as before.

If a surge zone is propagated into pipe 2, for example, condi-
tions in each pipe must again satisfy Equation (22). Equation (38) may

be reduced to the form

where

A Ay
C — (H -H +h_(V,)) =—(H - H + h,_ (V.))
Ll mj r fl 1l L2 m, mJ f2 2

since dQO/dt C - an/dt ng is the extreme value of head desired at

valve 2. After rearrangement,

! 2 (v = 2 ) _ e ) . (39)
C—nh (v ) - =—h Vv = — (H - H - 0= (H - H .
Ll fl 1 L2 f2 2 o m, mJ Ll mJ r

Since the right-hand side of the above equatlion must be a constant, then

A A CQ,+K
C L h ?_]:. .2 h 1 = constant,
L, f.\ A L, f A

1 "1\ 1 2 "2 2

This constant may be evaluated, since the first term above is zero when

Ql = 0., Therelore

ROEAC/RO NN
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1s the necessary relationship between the viscous resistance properties
of each pipe essential to the establishment of a zone of incompressible
surge conditions in pipe 2.

In terms of the Darcy-Weisbach friction factors, the above

criterion becomes

T f
1 _"2 2K

3 3\t (4ob)
1 2

One again recognizes that the above criteria would probably
never be saticlied by flow conditions prevailing in a real system. A
systen in which viscous effects are so insignificant that they may bte
safely neglected would satisfy the criteria, of course, and the desired

relationship between Hm and Hr can be cbtained by rearrangement o the
J k

right-hand side of Equation (39):
A A
1 2
C—H_+ H "
H = UL e B (k1)
m'j Cil.‘..pf.?.
L L

1
Since flow conditions in pipe 2 are similar to those in pipe 2, a surge
zone woulé also be propagated into pipe 3; a similar relaticnecnip involv-

ing H and I  likewise would exist. The lesser of the two computed
n T,

Cie

values of Hn could then be used to specify the reservoir-boundary

L) e

velocity.

b

re.2  Alternate Solution

Let oue assume that system parameters are such that it would
be desirable to limit the extreme value of head developed at one of the
valves to a predetermined value. Again with reference to Figure 28,
assune that the extreme value permitted at valve 2 is to be H‘ . Then

if the velocity Vj (t) at the junction is specified by means of the
2
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incompressible surge equation over the interval L2/a2 St St 2/a2,
and not by Equation (38), then the discussion presented in Section 3.1.1
assures the propagation of a central zone of incompressible surge condi-
tions into pipe 2 as illustrated (assuming, of course, that the surge
zone is of sufficient duration to propagate to the valve boundary). Thus

3—3 _ f2V2 V2 (12)
is suggested as an alternate procedure for specifying the flow into
pipe 2 at the Jjunction.

Each of the surge equations can then be integrated to determine
the duration each is utilized to specify the appropriate boundary
velocity, and the results may be equated since the time of specification
at the reservoir is 2Ll/a1 seconds less than the time of specification

et the junction:

<i
<3

2L, ) L ; f — d‘:lh — -L, ; f — dvi N (43)
al g \'s m r T 1 g v m m f 2
1, 3 1 2, 2 3 2

Since every parameter of Equation (43) is known except Hm B Hm, may be
determined. (The solution is a numerical one -- see Appegdix c.)

A computer program was written to illustrate the effect
of systern: operation according to either of the suggested techniques. For
the valve stroring analysis the reservoir-boundary velocity is specified
according to Equation (22) (again ty replacing H, with Hm_)’ and Equa-
tions (182) and (18b) are used to advance the solutions across the grid
of pipe 1 to the junction boundary. Either Equation (38) or (42) is
utilized to specify the junction~boundary velocity in pipe 2; the

Jjunction-boundary velocity in pipe 3 is then determinable from the
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continuity equation. Equations (18a) and (18b) again advance the solu-

tion schemes to each valve boundary, permitting the value of both valve

coefficients to be determined at the respective boundary grid points.

The confirming characteristics analysis is identical to that of the

series system, with the exception that Equations (21la), (2lb), (21c),

and (21d) must now be utilized to evaluate all conditions at the junction.

Results of a study comparing the two techniques are illustrated

in Figures 29 and 30. The pertinent system parameters are: Hr = 100

feet, V°1 = 3.52 feet per second, V02 = 5.00 feet per second, V03 = Vf3 =

2.00 feet per sccond, Vfl = .32 feet per second, Vf2 =0, Ll = 3600 feet,
3 = 1800 feet, a, = 3600 feet per second, a, = 4000 feet

per second, as = 3000 feev per second, fl = ,018, f2 = ,020, f3 = .025,

Dy = 1.25 feet, Dy = 1,00 feet and D3 = 0.50 feet; thus Ll/al+ L2/a2 =

L, = 3200 feet, L
o

1.8 seconds, Hy =90.0 feet, H, = 65.2 feet, Hy = 84,k feet,
o

c e}
H, =H, =99.9 feet, and H, = 94.3 feet,
Jdp 2, 3f

The study was arranged to compare the results of the two
techniques for the same value of Hm (and thus the same value of tf).
"J
This value was determined by establishing H = 175.0 feet; Hm was then

J

deternined to be 136.7 feet and t_ was subsequently found tc be 12.52

T
seconds,

These results again confirm the theory and illustrate the
differences in the transient conditions obtailned utilizing the two pro-
cedures. Control according to the existing technique results in a maxi-
rum head developed at valve 2 of 187.6 feet; control according to the
alternate technlique suggested here permits the maximum value to be

limited to the preselected 175.0 feet. One should note, however, the

considerable difference in conditions imposed upon the valve boundary



Head at Valve in Feet of Water

Tou

-109-

200

/// 1 - \\<:——”"'DQHVG‘2

/50 /
/ \ -Valve 3
-

100 <

2.00

150

T Valve 3

1.00 —
\\' —-q-——/-— —t /

\ /»— Vae 2

pran cmms ooes e

50 N \<

\$

0 4 8 2 /6 20

Time in Seconds

Figure 29. Valve-stroking control of a branching system with
upstream constant-head reservoir -- existing procedure.
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of pipe 3. (The constant head and velocity developed there by the exist-
ing technique during a central phase of the transient condition 1is only
a circumstance of the data. Sincé V30 = st = 2.00 feet per second,
specification of the junction flows according to Equation (38) results in
V& (t) being 2.00 feet per second throughout the entire transient condi-
tign. Since the head at the junction is the prescribed constant Hm
during the central phase, these two constant variables combine to pgopa-
gate a zone of steady-uniform conditions into pipe 3.)

In summary, either valve-stroking procedure creates a con-
trolled transient condition throughout the system and again permits the
final steady-state condition to be established without the presence of
residual transient fluctuations. Unlike the existing technique, the
alternate technigue proposed in this section does permit a predetermined
extrene value of pressure to be developed and maintained at one valve
curing a central phase of the transient condition. The technique does,
however, impose a less orderly condition of operation upon valve 3 and
thereby demonstrates what would appear to be a fundamental axiom of
transient control in complex systems that must always be appreciated:

the more sophisticated and elegant the desired control techniques are,

the more sophisticated the control devices will have to be.

-
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As an instructive example of the concept of passive valve

strorking, consider the following: assume that it is desired %o develop
a controlled transient condition between known initial and final steady-
state conditions in the branching system of Figure 27 subject to the

additional operational constraint that a constant outflow be maintained
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through valve 3 during the entire history of the imposed transient con-
dition. (Recall that in the example reported in the last section both
the initial and final steady-uniform velocities through valve 3 were
2.0 feet per second; however, that value was not maintained throughout
the entire transient.) This imposed constraint now reduces the number
of unknown boundary dependent variables to only eight, while the seven
original cquations are still available. Here, specification of only
one of the unknown variables will be required to completely specify the
controlled transient operation of the systen.

With reference 1o Figure 31, the initial steady-uniform regions
of each pipe arc as indicated due to the presence of the invarient
reservoir-boundary relationship, Hl(O,t) = I ,end the invarient valve-

boundary relationship, V3(L3,t) = V3 . Arbitrarily assigning the positive
o
direction to the C+ characteristic family and the negative direction to

the C- fenily, the reservoir-boundary velocity cculd then be specilied
according to Eouation (22) following the existing procedure for complex
syotems: an extreme pernissible value of head desired at the juncticn
is specified. Again, a unique solution exists in pipe 1, and denoting
as tr the time at which V}(t) becomes thereafter equal to V1 , the final
T

steady-uniforn zone in pipe 1 iz as illustrated in the figure.

Attention is now directed to pipe 3. One boundary datum has
now been established at each boundary -~ the junction-boundary head,
Hj(t), available from the solution in pipe 1 and the steady valve-

btoundary velocity, V3(t) =V Thus, a unique solution exists in pipe

30
3. After t =%t + 1L /a the junction-boundary head becomes the final
° A L J

£

steady-state value (Hj ). Note, however, that unlike the situations

1

considered in the previous examples or pipe 1 of this example, in which
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a final steady-state zone is forced by the creation of two steady-state
boundary data at one boundary, no final steady-state zone is immediately
created in pipe 2. As discussed in Section 2.6.2, only after

t = tr + Ll/a.l will the transient condition subsequently begin to
asymptotically approach the final steady-unifrom conditions in pipe 3.
Unlike the previous situations considered, the duration of the transient
condition imposed upon pipe 3 (and thereby pipe 2) can not be arbitrarily
specified and can only be determined by the appropriate numerical evalua-
tions advanced upward on the double-staggered grid of characteristics
(see Appendix B). The caiculations may be halted thereafter, and the
valve coefficient-time relationship may then be determined from the
solutions V3(t) and H3(t) computed at the right-end boundary.

With reference to pipe 2, both data are thereby established at
its upstream boundary (the existance of the common boundary head and the
branching-junction continuity equation), and thus a unique solution
exists in the pipe; the valve coefficient-time relationship may then be
computed from the known sclutions V2(t) and }{2(t).

Therefore, the entire transient condition for this system has
been prescribed and valve motioﬁs determined that would create the
desired condition. Of the system, pipe 1 and its transient condition
would be considered as active elements; the period of the transient zone
may be arbitrarily selected ané the nature of the transient itself can
be predetermined. Pipe 3, its prescribed transient condition, and the
valve would te considered as passive elements; the period and nature of
the controlled transient are not readily predictable. 1In addition, the
valve, instead of creating a transient condition, merely reacts to that

condition in order to maintain the required constant outflow (hence the
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term "passive"). Pipe 2, its transient condition, and valve would have
to be considered as passive elements also; the period of the transient
is dependent upon the transient condition in pipe 3, its nature is not
readily predictable, and the valve, even though it creates the initial
disturbance, must necessarily respond to the passive character of the
transient created in pipe 3.

It is pertinent to note that although the passive condition
of tnhis example was a consequence cf an arbitrarily imposed operational
constraint, any constant-condition boundary constraint at the downstrean
end of pipe 3 would have created the same condition; the presence of a
constant~head reservoir, a fixed orifice, a centrifugal pump, or a dead
end are all cormonplace examplec,

Also note that the pascive condition of the example is inde-
pendent ol the speciiication of the cne free unkrown boundary variable.

the

[&2]

It would nave been possible, for example, to select pipe 3 a

X

.L

active pipe by specifying the transient head at the valve according to
Equation (28) of Section 3.2.1., That strategy would alier the seguence
cZ calculations, of course, but would not change the essential, passive
charactier ol the system.

An exarmple of a system that is inherently passive is provided
by the last ol the elementary complex systems, the parallel systen of
Fipure 32. Analysis of this system indicates that a total of eleven

(Y

unknown boundary dependent variables exist, whereas only ten equations

are available (two characteristic equations for each pipe plus the two

(31)

branching-junction continuity ecuations). The existing technique

W

valve-stroking control of the system is to specify the reservoir-

—

beundary velocity according to Zquation (22) by again selecting the
g J g J ag
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extreme value of head to be developed at the upstream junction. The
transient condition in pipe 1 is then completely specified and the pipe
is an active element of the system. With reference to pipes 2 and 3,
the number of unknown boundary variables and available equations now
both equal five; therefore unique solutions exist in these pipes, and
as with the preceding example, the duration of the transient conditicn
imposed upon the remainder of the system -- the passive elements -- can
only be deternined by subsequent numerical evaluation.

Relative to the more extensive complex systems, the following
generalized observation can be made: all multiple series systems are
active systems; multiple branching systems may e active if a constant-
relationship boundary condition exists at only one of the external
boundaries of the system, and all other multiple branching systems must
neccssarily be passive; all multiple loop systems must be passive
cystene.

Experimental confirmation of the concept of passive valve-
stroking control of a branching system is provided in Chapter VI, and
a discussion of proposed alternate valve-stroking techniques for the
elementary passive systems is included in the recommendations for

further study discussed in Chapter VII.



V. LABORATORY EXPERIMENTAL SYSTEM

In order to obtain experimental confirmation of the previously

published valve-stroking theory,(30'3l)

an experimental system had been
constructed in the G. G. Brown Fluids Engineering Laboratory of the
University of Michigan. This system was used to obtain additional veri-

fication of some of the valve-stroking concepts presented in this

investigation.

5.1 General Description of System

The laboratory system (see Plate I) was comprised of three
principal elements: the reservoir and piping systems, the control valve
and servo systems, ané the various instrumentation devices essential to
system calibration and transient operation.

A schematic of the flow system is illustrated in Figure 33.

One of the building open-channel floor drains was utilized as the sump;

its dimensions were approximately 1l&4 inches wide, 18 inches deep, and 36
feet long. Watcer was supplied to the reservoir frcm the sump by means of

a Worthington Type 1 T4 O turbine pump. The bypass valve on the downstream
side of the pump permitted the water level in the reservoir to be main-
tained at an essentially constant level over the intended range of systenm
operating conditions.

The high-pressure reservoir was constructed from e 2-foot
diameter, 5-foot high welded galvanized steel tank. This reservcir was
about half Iilled with water, and compressed air occupied the space above

the water surface. The air pressure in the tank was regulated utilizing
a Fisher Type 98LD low pressure differential relief valve; the pressure

on the upper side of the valve diaphragm was regulated using a Bellofram

-118-
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Type 10A pressure regulator (see Plate II).

Of the piping system, the upstream pipe consisted of 2000 feet
(nominal) of .95-inch ID copper tubing; the wall thickness was 1/16 of
an inch. An identical pipe formed one of the downstream branching pipes,
~and tvhe other downstream pipe consisted of 400 feet (nominal) of 1.00
inch ID copper tubing. The wall thickness of this pipe was 7/64 of an
inch., The 2000-foot pipes were each constructed from 100-foot segments
carefully joined together by soldered sleeve connections and loosely
coiled in a double helix (a 1000-foot inner coil, followed by a 1000 foot
outer coil) on a 6-Toot diameter frame constructed of "Unistrut" steel
members. The 400-foot pipe vas similarly constructed from 100-foot seg-
ments and coiled in a helix on a 5-foot diameter wooden frame. Earlier
studies(ls’QS) had demonstrated that this configuration would produce no
significant distortion of the transient pressure waves.

At the downstream end of the 400-foot pipe, a 3/h-inch Crane
needle valve was installed at the same clevation as the control valve
(the arbitrary datum) to provide the function of a fixed orifice.

The system was very versatile: by closing a valve in the 400-
foot pipe at the branching junction, a simple system could be obtained.
(Tne actual length of tbis system, including all connector pipes, was
determined to be 4030 feet. That value was used in the simple-system
analyses reported in Chapter VI. The nominal lengths were used, hovever,
in the series and branching systenm analyses, because of the heretofore
mentioned Ax-At computational constraint.) Finally, by connecting the
L0o-foot pipe between the reservoir and the two 2000-foot pipes, a

series system was obtained.,
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Plate II. Pressure regulator and relief valve.
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A schematic of the control valve and low-pressure pneumatic
servo system is illustrated in Figure 34. A Minarik Model TF-633J6 speed
controller was used to regulate the speed of a l/SO-horsepower Bod1ine
motor. This motor in turn rotated the 5.5-inch diameter cam platform on
vhich was mounted a plastic card (cee Plate IV). The variable vertical
displacement of this card was converted by a Fisher Type 3561 motion
transmitter into an equivalent air-pressure signal. Based upon this
signal, a Fisher Series 3560 valve positioner would then appropriately
position the Fisher Series 6STA diaphragm control valve (1/4-inch micro-
flute type). (See Plates IV and V.)

Four sets of 2-inch diameter piezometer rings were attached to
the piping system. The first ring was attached to the downstream 2000-
Toot pipe about 15 inches upstreanm from the control valve (see Plate I1I);
the second was located at the branching junction; the third was placed
Just downstream from the reservoir; and the fourth was positioned on the
L00-foot pipe about three fee* tpstrean from the needle valve. 100-inch
reservoir-type differential manometers were then connected to these rings
and used in the various system and instrumentation calibrations. The
manometer fluid was mercury; by connecting the other leg of each manometer
to the building constant-head tank (at a measured elevation of 42.2 feet
above the datum), somevhat higher pressures were capable of being recorded
than would have been possible otherwise.

Two Dynisco APT25-3C strain-gage type pressure transducers were
used to monitor the transient pressures at the control valve angd Junction,
The valve transducer was located about 12 inches upstream from the contrcl
valve and the junction transducer on an auxiliary 30-inch pipe suspended

Trom the junction. (The length of this pipe was so negligible compared to
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Plate III. Pressure transducer, transducer
mounting block, and piezometer ring.
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- v oy g .

Plate IV. Speed controller, motor, plastic cam, motion
transmitter, and valve positioner.
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Plate V. Control valve, diaphragm actuator, micrometer,
and displacement transducer.
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the rest of the system that no subsequent buffering of the imposed tran-
sient condition resulted.) Each transducer was mounted nearly flush
with the inside wall of the pipe (see Plate III). Sanborn Model 31l
transducer amplifier-indicator units were used to supply the input volt-
age needed to activate the Wheatstone bridge circuit of each transducer
and to amplily the response signal. The output of the amplifier was then
recorded on photosensitive paper utilizing a Sanborn ModelvhSOO direct-
writing optical oscillograph.

Finally, a micrometer and Sanborn Model 24DCDT-050 displacement
transducer (LVDT) were mounted to measure and record, respectively, the
vertical stem motion of the control valve (see Plate V). An H-Lab Model
620LA pover supply was used to supply the input voltage to the transducer,

and 1ts signal was also recorded utilizing the Sanborn optical oscillograph.

5.2 System Calibration

Calibration data essential to establish the frictional-resist-
ance characteristics of the piping system, the discharge coefficients of
the control valve and orifice, and the relationship between plastic card
height, control-valve stem position, and valve coefficient vere obtained
“or the full range of anticipated system operation. The differential
manonmeters were used to measure the heads, weigh-tank observations were
used to determine the flow velocities, and a calibrated metal cam template
ané the nmicrcmeter vere used tc establish the essential valve and servo
relationships. The [low-resistance relationships for the 2000-foct pipes
and the 400-Toot pipe are illustrated in Figures 35 and 36, respectively;

the card height-stem position-valve coefficient relationships are illus-

trated in Figures 37 and 38.‘ The crifice calibration data for the two cases

presented in Chapter VI are summarized in Table IV. Since no apparent trend
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exists in either set of data, the average values were used in the respec-
tive theoretical studies of the next chapter.
Earlier studies had established the wavespeed in the L40O-foot

pipe as being between 4250 and 4350 feet per second; values in this range

TABLE IV

RESUME OF ORIFICE CALIBRATION DATA

Case I Case II

Velocity Head KO Velocity Head Ko
ft./sec. Tt. ft.l/g/sec. *t. [sec. ft, ft.l/g/sec.
1.834 2.1k 2024 348 136.8 .0298
1.822 80.99 2024 .338 136.4 .0290
1.812 80.83 .2015 343 136.6 .0294
1.792 80.52 1997 .31 136.4 .0292
1.786 19.68 .2001 337 136.1 .0289
1.775 T7.84 2011 .34 135.0 .0294
1.750 75.308 L2016 337 133.2 .0292
1.713 2.3k L2001k .330 130.8 .0289
1.686 69.09 .2029 .331 127.0 029k
1.618 75.17 200k .326 122.6 .0294
1.588 61.13 .2031 .315 116.7 .0292
1.5€2 58.906 .2033 2314 113.4 .0295
1.510 56.73 .200h . 305 110.k4 .0290
1,484 54.58 2009 .302 106.3 .0293
1457 52,40 .2012 .299 102.9 .0295
1,448 51.3%  .2020 .297 100.5 L0296

AVe. = 02015 A_'Ve. = 10293
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were used accordingly. Previous evidence had indicated that the wave-
speed in the 2000-foot pipes was somewhat pressure-dependent, probably
due to the presence of small amounts of free gas in the water and to the
fact that the relatively thin-walled pipe was slightly out-of-round at
lower pressures. By timing the advance of a small disturbance from the
valve transducer to the junction transducer, at various static pressure
levels, this relationship was established (as illustrated in Figure 39),
and was used as a guide in the selection of wavespeed values for the

theoretical studies reported in Chapter VI.

5.3 Experimental Procedures

The calibration data of the last section was entered into the
pertinent computer programs of Chapter VI in tabular form; essential
information was then computed from this tabular data as necessary util-

izing the technique of parabolic interpolation.(29’31)

Program output
included computer (Calcomp) plots of the theoretical head versus time
relationships at the valve and junction, ﬁhe control-valve stem position
versus time relationéhip, and a drawving of the plastic card profile.
This profile was traced on a sheet of plastic and cut with a scissors
to the required shape. A short lead-in sectlon was provided to allow
the turntable to accelerate to its uniform rotational speed before the
control action was to be initiated; a similar run-out section was also
provided.

After an elaborate and systematic procedure to bleed the
entire system and manometers of entrapped air was completed, the signals

from the two pressure transducers were then calibrated utilizing the

respective manometers, and conveniently scaled using the gain and zero
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adjustments of the recorder; the signal from the displacement transducer
was calibrated using the micrometer and similarly scaled. The plastic
card was then mounted on the turntable, and the speed controller was
adjusted to establish the proper time of valve operation. After all
instrumentation had been calibrated and checked, the setting of the
pressure relief valve was modified, if necessary, to establish the
desired value of reservoir head. (In every study of this investigation,
a value of 140 feet - corresponding to 93.3 inches manometer reading --
was used. )

The speed controller would then be activated, causing the
valve to initiate the transient condition. After the cessation of the
transient, the recorded data woculd then be inspected. Of particular
interest was the control-valve stem position versus time relationship.
Since the card height versus stem position relationship was not alto-
gether stable, and was also unable to account for the dynamic lag in
the servo equipment, subsequent modification of the plastic card profile
usually vas necessary. The above procedure would then be repeated
until the cam profile had been modified such that the desired stem
position versus time relationship was truly obtained. The head versus
time relationships thus obtained are the onesreported in the several
studies of Chapter VI. After the desired valve closure relationship
was obtained, several more runs were usually made, and in every case

the results were highly repeatable,



VI. COMPARISON AND DISCUSSION OF THEORETICAL AND EXPERIMENTAL RESULTS

This study of valve stroking culminates in a comparison between
the theoretical results derived from the appropriate mathematical models
and the experimental laboratory results obtained in the system described
in Chapter V. Experimental verification of the pertinent valve-stroking
theory has been obtained and is presented for a simple system, a series

system, and a passive branching system.

6.1 Simple System

Since the recognition that the minimum time for the valve-
stroking contrcl of a simple system is 2L/a, not the previously reported
LL/a, is one of the new concepis presented in this investigation, experi-
mental verification was deemed to be a desirable addition to the previously
reported confirming laboratory studies.

Because of the presence of the upstream pressure transducer at
the approximate midpoint of the L030-foot pipe (the juncticn of the basic
system), it waz decided to investigate a closure situation (Case I) and an
opening (Case II), with tf for each being exactly 3L/a. (Recall from the
discussion of Section 3.1.3 that in the closure case the maximum value of
head created in the system should then be developed at the midpoint.)

The essential elements of the computer analysis are icdentical
to thosc discussed in Section 3.1.3. Initial and final steady-uniform
velocities were arbitrarily selected for each study, and the value of Hm
necessary for tf to be equal to 3L/a was determined by utilizing the pro-
cedure described in Appendix C. Pertinent system parameters for each

case are summarized in Table V.

~137-
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TABLE V

RESUME OF PERTINENT DATA -- SIMPLE SYSTEM

Case I Case II

ts (sec.) L,y L.50
a (ft./sec.) 2125 2685
v, " 1.10 0.10
' " 0.10 1.00
H, (ft.) 140.00 140.00
o, " 123.45 139,51

JO
H, " 139.51 126.30

Jr
) " 106.90 139.02
H. " 139.02 112.60
H " 212,68 53.00
B " 176.34 96.50
Extreme H in System (ft.) 176.34 86.60

A comparison between the theoretically predicted and experi-
mentally cbtained results for Case I are presented in Figure 40. Again
for conveni~nce, the dimensionless tau-time relationship of the valve
1s illustrated. Note that during the central L/a seconds the value was
required to open slightly,’a requirement readily attainable on the labora-
tory control system. Considering the assumptions implicit in the de-
velopment of the basic theory (especially the assumption of a one-
dimensional velocity uniformly distributed across the cross-section,
and the assumptions relative to the instantaneous values of wall shear
stress and valve coefficient), the probability of slight experimental
error in the various system calibrations, and that somewhat inexact

values of wavespeed were utilized in the theoretical analysis, the
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results are considered to be excellent. Because of the response charac-
teristics of the transducers and the opportunity for slight error in

the transducer calibration and scaling operations, the experimental

data is estimated to be accurate within 0.50 feet. Computer results of
a comparable linear valve closure in the same time are illustrated in
Figure Ll; Figures 40 and 41 provide a most remarkable comparison of the
results of the two closure strategies.

Comparison between the theoretical and experimental results
Tor Case II are presented in Figure 42. Again, good agreement is
obtained for much of the duration of the transient condition; only at
the end do the experimentally obtained pressures at the valve and mid-
point overshoot the final steady-state values. Since the same computer
program was utilized in the theoretical analyses for both Case I and
Case II, and the experimental studies were conducted concurrently, the
discrepancy between the predicted and observed results can not be attrib-
uted to program or system calibration errors.

Tnere iz, however, consicderable evidence to suggest that the
observed discrepancy is due to the effect of gas liberaticn during the
time that system pressures are suvstentially below the initial static
level. ne net effect of such liberation is a lower value of wavespeed;(3l)
a lesser average wavespeed persisting during the latter phase of the

(5)

transient would produce the observed conditions. Contractor observed

ané repcrted the same phenomenon accompanying a sudden reduction in
pressure conditions in an earlier study,

Because of the limitations on time available for the leboratory
investigations, the probable difficulty in readily developing an improved

mathematical model of the phenomenon, and the fact that such an effort

would have been decidedly tangential to the stated objectives of this
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investigation this aspect was not pursued further. One should recognize,
however, that the minimum system pressures were held within established
limits and that, in the case of valve openings, residual transient fluctu-

ations are usually of negligible magnitude and duration.

6.2 Series System*

Experimental verification of the existing technique for valve-
stroking control of a series system has also been obtained. The essential
elements of the computer analysis are identical to those discussed in
Section 4.1,1. Initial and final steady-uniform velocities in the up-
strean (400-Toct) pipe were arbitrarily selected for each study, and
the prescribed values cf Hm. were similarly established; velocities 1in
the dcunstream (hOOO-foot) gipe and all steady-state values of piezo-
metric heac were then obtained from the appropriate steady-state equa-
tions. The ratiocs of length to wavespeed for each pipe were such that
Nl was selected to be 1 and N2 to be 16, Other pertinent system para-
meters for each case are summarized in Table VI.

Comparisons between the theoretically predicted and experi-
mentally obtained results for these two cases are presented in Figures L4
end 45, respectively. Again, the results are considered to be excellent.
The scmevhat better agreement cbtained in Case II motivated the use of
the Case II wavespeed vaiues in the theoretical analyses reported in the

next section,

*  The theoretical and experimental studies of this section are the
worg cf Mr. Joel L. Caves, and the author is indebted to him for these

results.



-1k45-

‘I 38®8) -~ Wa9SAS SOTJISG ‘SWIJ SNSIIA SATBA 1B DBSH ‘4 =2anITy
spuoaas u ewyy
o/ 6 g Z 9 S 4 £ o
06
\ oo/
/Divawiadx 3z
pajndwo2

ol

ocl/

18/DM 40 4984 UI POBY

ot/

ot/

osl

o9/




-146-

*II 9S8) --w93SAS S3TISG 'SWI[3 SNSISA SATBA 3B PBIH °Gf aInd1y
S$pU02ds Ul dull f
9 (9 v £ 4 / o
o8
\56\
[DjudWI19dx 3
PaInawn)
oc/
) o~
28 §06G= ¢
bpm\ y A S )
oS/

. o8/

2DJOM JO 4894 Ul PD3K



~1L4T-

TABIE VI
RESUME OF PERTINENT DATA -~ SERIES SYSTEM

Case I Case II
to (sec.) 8.28 5.08
a, (£t./sec.) 43k 4262
8, " 2709 2664
v " 1.10 1.10

%

V. & 0.10 0.10

1
v " 1.22 1.22

e
'

15 " 1 .11
Hr (ft.) 140.0 140.0
HO " 95.3 95.3
Hf " 138.7 138.7
H, " 141.5 145.5

J

6.3 Branching System

X

“

Since the introduction of the passive valve-stroxing ccncept
is one of the original contributions of this investigation, experimental
verification was also desired.

The essential elements of the computer analysis are identical
to those discussed in Section L4.3, except that the fixed-crifice boundary-
condition equations (Equatione (15a) and (15b), modified) must be utilized
at the right-end boundary of pipe 3 (the 400-foot pipe). Initial and
final steady-uniform velocities in the upstream (2000-foot) pipe were
arbitrarily selected for each study, and the prescribed values of Hm,
were similarly established. Both velocities and all steady-state vaiues
of plezometric head were then obtained Tor pipe 3 by solving the appro-

priate steady-state equations utilizing the method of interval halving.
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(For references and a brief discussion of this method, see Appendix C).

All steady-state conditions in pipe 2 were then directly determinable.

N, ‘and N, were selected to be 8, N3 to be 1. Pertinent system parameters
for each case are summarized in Table VII.

Comparisons between the theoretically predicted and experi-
mentally obtained results for these two cases are presented in Figures 46
and 48, respectively. Computer results of the comparable linear valve
closures are illustrated in Figures 47 and 49, respectively, and again
provide interesting comparisons of the results of the two closure
strategies. 1In each case, the slight discrepancy between the theoretical
and experimental initial conditions results from the frictional-resistance
calibrations. Since the time lapse between system calibration and the
subsequent experimental studies was frequently several days, changes in
ambient leboratory temperature within that periocd of time undoubtedly
contributed to changes in the resistance properties of the system.

Nevertheless, the results are considered to constitute excel-
lent verification of the passive valve-stroking concept. Considering
the significant viscous effects encountered in this system, particularly
in the high-throughflow situation of Case I (eighty-odd feet of loss
sustained in pipe 1 alone), these results parenthetically demonstrate
the intrinsic accuracy of the characteristic equations in the analysis

of the transient phenomenon in viscous liquid piping systems.



RESUME OF PERTINENT DATA -- BRANCHING SYSTEM
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TABLE VII

Case I

5.T2
2664
266
L262
2.60

2.10

.96

Gase I
7.13
2664
2664
4262
1.70
.50

1.37

.30
.3
140.00
103.80
135.98
78.80
135.35
105.35
135.46

148.00



-150-

‘I 988D —- waysAs Juryousdg *SWI] SNSISA saTqeTIeA Wa3sAg  °9fy aanITg
Spuodes ul awly
&/ 9/ v/ 2/ o/ & 9 14 o
o or
k4
216 4 — ™~
(-4 os
W. GAIDA 4O NDf — — — /
JOJUBWIIIBOXD “UOIJIUNS |D DD} eosmarme o
os paindwoa “‘uojjounf jo posy — o9
JONBUWI 180X ‘DAIDA JD PDO} e
painadwos ‘eAloa o pody, —
o Ho.
oo/ / 08
Jhﬂmm}
™S 06
oo/

on

J3JOM 40 }89 Ul PDBH



-151-

‘I °S®) U3TM 9a8dWOD O3 JINSOTO SWI3-NBY JIBIUIT B
Jo s3ytnsax pajndwo) -weqshs Furyousag *OWT] SNSJISA SITQBTJIBA Wa1SAS

SpU02as ur auwry
&g/ 9/ v/ c/ o/

8 9

"Ly emFrg

I

woryounf o pooH
BA/DA D pD3EY

os

09

oL

o8

o6

0o/

o/l

13/OM 40 4934 UI pPDBK



*II @s®8) -- wa3sks Juryouslg °SW[3 SNSJISA SOTQBTIBA wa3sfg ‘g sanIryg
SpuoIBs uw ewry
8/ 9/ v/ é/ o/ 8 9 4 4 o
o (>4
—
L4 u ~~
ves gl =% ~
N
[~~4 > // o6
/,
l
e 8A/DA JO NOf ~—m — —— N
/oyuswiedx 3 ‘voyounl o  poayy — /
05’ painduwd ‘woiyaunf o poay —_— so/
[DJpWIIdXS ‘9AIDA 4D pOIY .W
Paindwoa “‘aapA JD poay Y
w'
. n
o G4 oz
7 \[ 2
S
| s
2 e—— —~ y 2
P — T
/ a—— )Il
< os/
<9/

o8




-153-

8/

9/

*II @sB) Y3ta o2I8dmWoOd 09 3INSOTO SWIF-NBY JIBIUTT ® JO
s3Tnsax pajndwo)y ‘wajsAs FuTyousdg *SWIF SNSISA SOTQETIBA Wo3SAgG ‘6n anITy

spuosas us awiy

t/ e/ a/ g 9 b 4 4 o
(4

06

wyounl 4o posay
MDA JD pD3BH

\ A—— g0/

N

X

/
\/ oc/
~

/ W

\ os/

/
/

o\

os/

I9/0M 4O 1884 Ul DD3H



VII. SUMMARY AND CONCLUSIONS

The primary objective of this study was to interpret and evaluate
the existing valve-stroking theory in terms of the basic principles gov-
erning the transient phenomenon in liquid piping systems and to modify
and extend the theory to include a greater number of operational constraints
in the desired control of the simple and elementary complex piping systems.

The fundamental property of the characteristic equations relative
to the arbitrary selection of the characteristic directions was shown to
be of essential importance in the formulation of the pertinent theory.

Three unique classes of problems--one datum at each boundary, two data at
one boundary, and the mixed boundary-data problem--were each demonstrated
to be instrumental in the development of procedures appropriate to the
desired control action and system configuration.

Valve-stroking control of the three types of simple systems was
considered in detail; the recognition that the duration of the transient
condition imposed upon such systems may be arbitrarily selected has been
presented, and the minimum time for control valve motion in such systems
was demonstrated to be 2L/a, not the 4L/a previously reported. The con-
sequence of this development relative to the control of a system consisting
of a single pipe with an upstream constant-head reservoir has been discussed.
A valve-stroking procedure for a pipe in which a constant velocity forms
one boundary condition has been developed that permits complete control
of the transient pressures developed in the system. The third type of
simple system, a single pipe in which one boundary condition is a known
relationship between head and velocity, has been examined and a valve-stroking

procedure has been developed that permits a predetermined extreme value of

~15k4-
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pressure to be developed and maintained at the valve during a central
phase of the transient condition.

The deficiency of the existing control procedure for the active
complex systems has been demonstrated, and alternate techniques have been
proposed that do allow the extreme system pressures to be established
a priori. Finally, the concept of a passive system has been introduced
and its implications in the control of the more extensive complex systems
has been discussed.

Specifie conclusions which can be drawn from this study, and which
hopefully contribute to the development of systematic control procedures
in transient pipe flow, are summarized.

1. A considerable amount of flexibility exists relative to

the determination of valve-stroking procedures for the simple
systems. Either the duration of the transient or the extreme
system pressure may be arbitrarily selected. TFor systems
which can physically accomodate the rapid closures (tf < kL/a),
control following the duration-specification procedures is
preferred because of the relative simplicity of the computa-
tional procedures; for systems in which slower closures must
be utilized, the extreme-head procedure is preferred because
of the direct nature of the desired solution.

2. Direct procedures can be established to limit extreme system
transient pressures to acceptable values in the active complex
systems.

3. Valve-stroking control of the passive complex systems is less
direct; the duration and nature of the transient condition
imposed upon the system can only be determined by numerical

evaluation.
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L. Because of the persistent changes in velocity that are
developed in a system controlled by valve-stroking
principles, the second-order finite-difference approxima-
tions to the characteristic ordinary differential equations
are preferred, as they more accurately model the effects of
viscous resistance to the flow. This is, to the author's
knowledge, the first study in which the second-order approxima-
tions have been so extensively utilized. Because of the
unusual circumstance that prevails relative to these solutions—-
iteration solutions (which are shown to be readily convergent)
being required whenever the characteristic directions are both
selected as positive, direct solutions otherwise--the program
execution time of the second-order system is not significantly
increased over the first-order system. (For the programs
written during the course of this study, the maximum increase
in program execution time was less than 25 percent.)
>. The experimental verification of some of the more advanced
valve~stroking concepts presented in this study, together
with the previously reported laboratory studies, demonstrates
the efficacy of the theory and the intrinsic accuracy of the
characteristic equations in the evaluation of the transient
phenomenon in viscous liquid piping systems.
Although no direct consideration of the philosophies or pro-
cedures involved in the eventual on-line feed-forward computer control
of large and complex distribution systems was attempted in this study,
it should be recognized that the ultimate development and application of
on-line control techniques will be dependent upon the procedures dis-

cussed herein and suitable extension of these procedures yet to be



investigated.
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In this regard, the extreme downstream-head specification

technique developed in this study appears to be particularly significant;

further investigation into the application of this technique to the con-

trol of the following elementary complex systems is recommended:

l'

The active branching system discussed in Section 4.2. The
head at each downstream valve could be prescribed to change
linearly from the initial value to the extreme value during
the time the initial disturbance travels to the reservoir
and is reflected back to the valve. The head at each

valve would then remain at its respective preselected value
during the central phase of the transient condition. When
the velocity at the reservoir becomes the final steady-
state value, that final value would then te specified along
the reservoir boundary. The flow distribution at the junc-
tion in the upper region of the transient zone would then
nave to be specified; it appears likely that a technique
similar to the existing procedure could be utilized. The
rerainder of the imposed transient condition would then be
evaluated as before.

The passive branching system discussed in Section 4.3.

The head ét the valve would be prescribed and the transient
condition in the lower region of the transient zone evaluated
in a fashion similar to that for the active case. After
the reservoir velocity becomes the final steady-state
value, the analysis of system conditions in the upper
region are identical to that discussed in Section k4.3.

The parallel system. Again the head at the valve would be

prescribed and conditions in the lower region of the



~158-

transient zone could be evaluated. After the reservoir
velocity attains its final steady-state value, the final
value 1s again specified at the reservoir and conditions
in pipe 1 (the active element) completely determined. Con-
ditions may then be determined in pipes 2 and 3. The solu-
tion advances in a spiral fashion around the two pipes if the
value of L/a in each pipe is not identical; otherwise the
equations must be solved simultaneously. Conditions in
pipe 4 may then be determined.
As with the preferred solution developed for the series system, one should
recognize that the above procedures would be perfectly general and could
be applied to any system with a known constant-relationship upstream
boundary condition.
A recent development that has immediate valve-stroking impli-

(32)

cations is Streeter's study in vhich he was able to avoid the restric-
tion on the grid spacing of complex systems heretofore imposed by the
Ax-At constraint. His solution is to arbitrarily select a value of At
which then establishes the grid spacing for each system element,
Axg = a.At. The last, short reach of each pipe (and the total length
of short pives) are then modeled using either the lumped equations or
the implicit equations, which are then incorporated into the appropriate
boundary-condition equation of the respective pipe. It appears likely
that similar techniques could be developed for the valve-stroking analyses
of complex systems; such an investigation is also recommended for further
study.

Lastly, two other investigations deserve especial mention

since each could be relevant to future extensions of the valve-stroking

theory for liquid piping systens. wylie(33) has developed techniques
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for the control of the transient phenomenon in open-channel systems;

the computational schemes he developed could be applicable to the
analysis and control of piping systems in which the wavespeed is time-
dependent. Compelling evidence exists that this is the case in systems
constructed of such plastic pipes as Polyvinyl Chloride (PVC). With the
ever-expending utilization of these newer materials in iarge distribu-~
tion systems, the analysis and control of undesirable transients in their
operation will become an essential design consideration. Stoner(23) has
studied the application of valve-stroking theory to the control of gas-
distribution systems; he has developed computational procedures for
complex multiple loop systems which could be applicable to the liquid
systems. In either case, however, one must recognize that the physical
aspects of those two systems are decidedly dissimilar to those of the
1iquid system. The relatively minor inertial considerations of the
former differ considerably from the pre-eminent inertial considerations
of the latter, and the effective control of inertiel effects must neces-
sarily be the essential priority in the development of suitable control

strategies for the liquid systems.



APPENDIX A

CONVERGENCE OF ITERATION SOLUTIONS

The interior-point and external boundary-condition equations devel-
oped in Chapter II which can not be solved directly may be readily solved by an
iterative procedure based upon the method of successive approximations.(lT)

As an example, consider the solution for the velocity at a space-

like interior point:

P A P A (12p)

This equation is of the form V = G(V) and its desired solution is unique since
G(V) is a strictly monotone-decreasing function of V. (Recall that the func-
tion F is a strictly monotone-increasing function of V, and that it is the
only unknown term on the right-hand side of the equation.)

The solution procedure is depicted geometrically in Figure 1-A,
with the arrows indicating the pattern of the iterations. The desired solution
V, lies at the intersection of the 45° line with the curve described by G(V).

P

4 trial value of VP is selected, indicated by Vb , and the next value is com=-
’ 1
puted by utilizing this first estimate:

and so on, until the nth approximation (or the nth iterate, as it is often

called) is

-160-
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Figure i-A. Craphical representation of the
method of successive approximations,
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Delaying for a moment the question of rapidity of convergence,
attention is now directed to the more basic question of convergence itself:
i.e., do the Vp converge to the desired solution Vp as n increases? As

n

would appear to be evident from Figure 1-A and can be proven analytically,(l7)

the sufficient condition on G(V) for this desired convergence 1is
0< e (V)| <1. (a-1)

One can investigate Equation (12b) relative to this criterion,

since

F(V) 1 4 (fL
] S et 5 vt g | ep———
oM =%—=F & DN2g>

_1 (2va . LV‘?f'(V)>

DNLg DN2g

JE (2,2
‘213(v+ f)

Since the derivative of f with respect to V is generally a negative number

(the only exception being for flow in the critical zone, and then the value
of the function F is not large), this term can be safely neglected in an
assessment ol the anticipated maximum value of IG'(V)[. Thus

lG* (V)] ”%V . (a-2)

Now consider the following evaluation: for the 2000-ft pipes of the
laboratory experimental system, the maximum head loss that can be reasonably
extrapolated from the calibration data is 92.5 ft at a velocity of 2.8 ft/sec.
For a = 2664 ft/sec, N=8, and g = 32.2 ft/sec?,

' 32.2 x 92,5
&' = s asg =5 »
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which is safely within the criterion established by Equation (A-1).

The only external boundary-condition equations which can not be
solved directly and in which the friction term does not appear in the same
form-as that of Equation (12b) are those involving an orifice or a valve.

In these, the solution of a quadratic in V is encountered. For example, con-
sider the solution for the velocity of flow through a valve located at the

downstream boundary of the pipe:

2 2
LLat £+ u(c, - K, Fp2) (158)
P~ 2

Again, convergence can be demonstrated a priori since

K 2P (V)
IG'(V)I = .
2 2
2/,% + (e, - ¥ %R, /2)
Therefore
K, °F* (V)
' R A
ler (D] < =55
1
since, in order to ensure positive velocities through the valve, 02-Kv2FP/2

can not be a negative number. Finally, since Cy = KVEB,

F'(V)
2B

le'(n)] <

which has already been demonstrated to adequately satisfy the convergence
criterion.

In the event that G'(V) might not satisfy the convergence criterion
established by Equation (A-1), several alternatives are available: (1) reduc-
tion of the time increment At, thus creating an equivalent reduction in Ax and
F, and, therefore, G'(V); (2) treating f as a constant, thus permitting the

direct solution of a quadratic in V; or if neither of the above two alternatives
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are acceptable, (3) the simultaneous solution of two nonlinear equations in
V and f by some suitable numerical procedure.(T’IT)

With regard to rapidity of convergence, that the method of suc-
cessive approximations does not cdnverge as rapidly as other possible solution
techniques is readily acknowledged. Generally speaking, the modified method
of successive approximations, Newton's method, the Newton-Raphson method, or

the method of regula falsi will oftentimes converge more rapidly than the

forwmer. Nevertheless, the method of successive approximations is preferred
because of its relative simplicity and ease in programaing, particularly when
the original estimate is reasonably accurate in any case. (Recall that the
original evaluations are always based upoi. the equivalent first-order finite-
difference approximations.) In the various computer programs essential to
this investigation, a maximum of only eight iterates were necessary to produce
values of head and velocity accurate to two and three decimal places, respec-
tively,

Unlire the interior-point and external boundary-condition equations,
convergence oI the internal boundary-condition equations can not be demonstrated
a priori.

For example, consider the solution for the conditions existing at the

Junction of two pipes connected in series:

C3-Cy=CyFp /24CFp /2

1 2 (20a)
Hp = T %C 2
1772
CB—Cl(HP+FPl/2)
VP = n Py (20b)
1 1
Ch+02(HP-FP2/2)
V = .
P, Ay

(20c)
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Equations (20a) to (20c) are three simultaneous nonlinear algebraic equations
(7,17)

in three unknowns. While several solution techniques have been shown

to be convergent for systems of linear equations, one generally must resort to
numerical experimentation in the case of the nonlinear equations.

| In this investigation, the solution procedure adopted is based upon
the Gauss-Seidel (single step) iteration within successive approximations.
Again, relative simplicity and ease in programming motivated its selection,

and the procedure is as follows: (1) F, and F, are initially evaluated at
1 2

vV, and V_ , respectively; (2) HP is computed from Equation (20a); (3) V. is
Ay B, P
computed from Equation (20b) using the initial value of FP and the previously
1
computed value of Hp; Vp 1is computed from Equation (20c) in a similar fashion;
2
(4) F, and F, are then re-evaluated at the previously computed values of V.

1 Pé Pl
and sz, respectively; (5) the process is then continually repeated until the
desired convergence obtains. As with the interior-point and external boundary-
condition equations, a maximum of only eightv iterations were necessary to

produce values of head and velocity accurate to two and three decimal places,

respectively.



APPENDIX B

SOLUTION PROCEDURES

Orderly and systematic procedures essential to the valve-
stroking and characteristics analyses may be developed and catagorized
according to the particular boundary-date problem and system considered.

With reference to Figure 1-B, assume that initial conditions are
gnown along each grid point on the space-like boundary and one datum on
each grid point of the time-like boundaries. Then conditions at point 1
mey be evaluated by utilizing the appropriate left-end boundary-condition
equation, interior points 2, 3, ... , N-1, N by utilizing Equations (12a)
and (12b), and point N+l by utilizing the appropriate right-end boundary-
condition equation. The cycle is then repeated as indicated; if a total
of I such cycles exist, then the total number of grid points at which
conditions are evaluated is I(N+l). This procedure is intrinsic to all
characteristics analyses, of course, and occasionally is employed in the
valve-stroking analysis of a passive system when complete boundary data
are available prior to the start of the computational scheme (for example,
as they are for pipe 3 of the laboratory branching system). Note that
even though the initial conditions may be steady-uniform, the simple and
direct nature of the procedure eliminates the need to establish the
steady-state zone prior to the beginning of the computations. It will
develop during the computational procedure as discussed in Section 2.6.1.

In the valve-stroking analyses of parallel and multiple loop
systems, necessary boundary data is frequently generated sequentially,
one boundary at a time, as the computation scheme advances around the

loop from one pipe, to the next, etc. Again, if one datum is eventually

=166~
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established at the next grid point on each boundary, the computational
procedure for such a pipe is illustrated in Figure 2-B. The same sequence
and equations are used as before, but the computations advance diagonally
upward along the appropriate characteristic lines. Here it becomes
expedient to establish the initial zone a priori. If the pipe is sub-
divided into N equal reaches, the number of initial calculations is

given by the sum of the arithmetic progression
N+1+N'+DI"1+0|. "’3+2+l'

The sum of this progression is(h) (m+1)(m+2) /2. Again the total number
of computational points in the transient zone is I(N+l) unless the pipe
1s contiguous to a system element of the mixed-boundary data type (see
below); in such cases the total number of points is (I+1)(N+1).

The Tundamental procedure essential to the valve-stroking
analyses of most of the elementary active systems of Chapters III and IV
1s illustrated in Figure 3-B. The necessary data are prescribed along
the appropriate boundary, and again it becomes expedient to establish the
initial and final steady-state zones a priori. Conditions at the time-like
interior points are then evaluated using the appropriate equations --
Equations (18a) and (18b), or Equations (19a) and (19b) -- along each
successive vertical grid line as indicated, ultimately extending the
computations to the other boundary. If I represents the number of grid
points along the boundary at which the transient boundary data are speci-
Iied, then the total number of interior points at which conditions must
be evaluated is given by the sum of the progression

I+2 + I+h + ... + I+2(N-1) + I+oN.
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The sum of this progression is N(I+N+1).

If both data are prescribed along one of the boundaries, as in
Figure 4-B, but the pipe is a passive element of a system (for example,
pipe 2 of the laboratory branching system), then no final steady-state
zone may be arbitrarily established. The solutions along the boundary are
terminated after a given period of time, and the transient zone is estab-
lished on and below the dashed line of the figure as indicated. Again,
if I represents the number of grid points along the boundary at which the
transient boundary cata are specified, then the transient zone consists
of a total of IxN time-like interior points. Note that in this case
computations may either be advanced along successive vertical grid lines
as indicated, or they may be advanced ¢iagonally downward along charac-
teristic lines. (For example, the first diagonal would consist of the
points 1, I+l, etc.) 1In the valve stroking analyses of parallel and
multiple loop systems, this latter technigue must be used if the neces-
sary boundary data are generated sequentially, as is frequently the case.

The solution procedure essential to a valve-stroking analysis
involving the downstream-head specification technique of Sections 3.3.2
and 4.1.2 is illustrated in Figure 5-B. Again the initial zone is first
established. Conditions at point 1 may be evaluated by utilizing the
appropriate right-end boundary-condition equation, interior points 2, 3,
veuy N-1, I again by utilizing Equations (12a) and (12b), and point N+1
by utilizing the apprepriate lef't-end boundary-condition equation. After
a period of time this scheme is fterminated, and both boundary data are
then specified along the left-end boundary; the remainder of the solution
procedure 1is thereafter identical to that of Figure 3-B. (The dashed

characteristic line delineates the boundary between the two zones.) If
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I represents the number of left-end boundary grid points of the transient
zone below the dashed line, and I' the number of boundary grid points
above the line, then the transient zone consists of a total of I'xN +
(N+1) (I+N+1) points at which conditions must be evaluated. One should
reccgnize that conditions must be evaluated twice on the first diagonal
characteristic above the dashedé line; the dashed line would rarely coin-
cide with the grid points immediately above 1t, and its positicn can
only be established after the last cycle of computations along the
diagonal has advanced to the furthest upstream boundary.

The extension of this latter solution procedure to a passive
element of a system is illustrated in Figurc 6-B; it would be intrinsic
to the studies proposed in Chapter VII. The procedure in the lower
region of the transient zone is identical to that of Figure 5-B and in
the upper region to that of Figure 4-B. As with the previous discussion,
conputaticns in the upper zone may advance either along successive
vertical grid lines or dowaward along ciagonal characteristic lines.

The transient zone contains a %otal of I'xN + (I+1)(N+1) points at

which conditions must be evaluated,
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APPENDIX C

TRANSIENT DURATION CALCULATIONS

When the transient condition imposed upon the system is speci-
fied by selection of the extreme permissible value of head desired at
the valve, the duration of the transient (tf) of the simple system of

Section 3.1 may be determined by integration of Equation (22). Thus

\'f
f
I av

. (c-1)
& (4 _ vl
vo L (Hm Hr) * 2D

Since t, > 2L/a, close examination of Equation (22) reveals the following

tf = 2L/a -

restriction on Hm: for Vc>vf’ Hm>Hf; for Vo< Vg, Hp <Hgo

The above integral may be evaluated numerically in the following
manner: With reference to Figure 1-C (G(V) has the indicated shape since
the friction ternm is a strictly-monotone increasing function of V), recall
the seccnd-order trapezoiéal) finite-diference approximation to Equa-

tion (22):

I (H -H_) CFitRig (220)

i+1 V4 NB 2B ’

Beginning at V_, Equation (22a) is solved (by iteration) to establish
Vl such that the approximate area under the curve of G(V) is equal to

Ot, the constant time increment of the solution grid. V2 3
i-1° Vi’ vi+l are established in the same way. (This procedure, of

course, thereby establishes the upstream boundary velocity at each point

, vV

L ]

\/

of the solution grid.) The scheme is terminated when the last velocity
calculated is less than Vf for closure situations, or exceeds Ve for situa-

tions involving valve openings. The time At' then may be approximated by
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V,-V
—v—-i—v—i— At Y (C-«?)
i7'ial

At =

If I represents the number of grid points along the boundary at which the
transient velocity data are thereby specified, then the duration of the

transient condition is

t, = 2L/a + IAL + At' . (c-3)

Even though the upstream velocity at each grid point is estab-
lished using a different technigue, Equation (C-3) is equally applicable
to the downstream-head specification procedure of Section 3.3.2. Of course,
the equation nust be appropriately modified to include the wave-travel
times of the downstream pipes in the series and branching systems of
Chapter IV.

The manner by which t_, may be arbitrarily selected and the

f
appropriate value of H, subsequently determined is now considered. From
Figure 1-C it is evident that a change in the value of H, would merely
raise or lower the curve of G(V) relative to its position illustrated.
Therefcre, the area under the curve between V, and Vi -~ and hence the
value of tf -- must be a strictly-monotone function of Hy. Thus, the
value of 8 that would yield the prescribed value of tf can be readily
determined by the method of interval halving (a7) applied to the solutiocn
procedure outlinecd for the determination of tf. This method (also called
the bisection method<29’3l) or Bolzano's method(T)) permits an exceedingly
simple and direct computer-oriented solution when the desired root may be
isolated in a known interval, as is the case here. (Recall the restric-

tion on Hm cited above. The other bound on the solution interval can be

established without difficulty.)
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A direct extension of this procedure is utilized to determine
the unknown head to be prescribed at the junction (Hm ) in Equation (43)
of the branching system analysis. For closure situatgons, for example,
the left-hand side of the equation is a strictly-monotone decreasing
function of Hm' while the right-hand side is a strictly-monotone increas-
ing function. JFcr any specific i{low situation encountered, the limits on

the solution interval again can be readily established,
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