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CHAPTER I. INTRODUCTION

The study of the behavior of neutrons from a pulsed source is
of great physical interest. The wide use of pulsed neutrons to measure
reactor physics parameters has increased the importance of theoretical
studies., The parameters obtained from these experiments are averaged
over the neutron distribution existing inside the medium. Complete
knowledge of the meutron distribution as a function of space, time and
energy variables is required to analyse and to interpret the results of these
experiments, The measurement of the neutron distribution as a function of
space, time and energy variables in all ranges is a formidable +task. The
rigorous determination of neutron distribution can be obtained analytically
as well as numericelly under certain physical approximations,

A burst of high energy neutrons, when incident on a medium, under-
goes three physical processes in succession: moderation, thermalization and
diffusion. In the first stage, neutrons lose energy by elastic and inelastic
collisions., This stage is called moderation of neutrons. In the second
stage, neutrons gain as well as lose energy during the collisions and
undergo thermalization. When the neutrons are completely thermalized, the
exchange of energy stops, and neutrons acquire an equilibrium energy dis=
tribution. In the last stage, neutrons diffuse in the medium. The diffusion
process is governed by the absorption and the leakage properties of the
medium. During diffusion, the shape of the equilibrium -energy distribution
is maintained. The process of diffusion is terminated by absorption or

leakage of neutrons. Neutrons spend less time during slowing down than



D

during thermalization and diffusion, On the other hand, the distance
travelled is larger while slowing down. It becomes evident, therefore,
that the study of the spatial distribution of neutrons is perferred for
wnderstanding the slowing down process., In order to understand thermali-
zation and diffusion, however, time dependent studies are desirable.
Time~dependent studies of slowing down of neutrons above one
electron-volt have been made by Ornstein and Uhlenbeck<56), Marshak(51>,

(50) (23)

Waller , Kazarnovsky and others. Reference to their work shall
be made in the third chapter. No references for such studies below one
electron-volt exist in the literature.

This thesis dealg with the study of time dependent energy spectrum
below l/helec’cronwvolt° Analytical and numerical methods have been employed
to study these problems. The characteristics of thermalization and diffusion
processes, namely, the thermalization time constant, the thermalization time,
the asymptotic energy spectrum, the decay constant, the average speed and
the diffusion cooling coefficient, have been determined.

We briefly describe pulsed neutron studies undertaken by other

authors, both experimentally and theoretically.

I. Experimental Studies

In 1953, von Dardel(h8) introduced pulsed neutron techniques to
measure tha diffusion parameters: the absorption cross section and the
diffusion constant, A beam of pulsed neutrons is allowed to fall upon
a finite medium, The integrated neutron density is measured as a function

of time, and the decay constant is determined as a function of geometrical



buckling, B2'. The decay constant )\ is fitted as a function of B2 as

follows.

A= Tar +DUR(-cEY) (1.1)
where: Za = absorption cross section

D = diffusion -coefficient

v = speed of neutrons

c = diffusioﬁ cooling coefficient,

E;V and Dv are averaged over the Maxwellian distribution. It
was suggested by von Dardel that the energy distribution is not Msxwellilan
in the case of a finite medium, and that the deviation of the spectrum is
determined by the diffusion cooling coefficient c. In the finite medium,
there 1s a preferential leakage of neutrons of high~enérgy, and, therefore,
the energy spectrum shifts toward the low energy side. This decreases
the mean energy associated with the spectrum, causing a phenomenon termed
"diffusion cooling."

Using pulsed neutron sources, the diffusion parameters of beryllium,
beryllium oxide, graphite and water have been studied. Review articles by

(L49)

Amaldi(l) and. also by von Dardel and Sjostrand Y summarize these studies.
Formula (1.1) is based upon the existence of a fundsmental
spatial mode in a medium characterized by geometrical buckling. The
experiments of Campbell and Stelson(ll) suggest the existence of a single
decaying spatisl mode at long times. However, the need for an experiment
which measures the time dependence ag well as the spatial distributions

as a function of energy has yet to be fplfilled.
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In addition to the non-multiplying mediim experiments, measure-

(11),

ments have been made in multiplying medium by Cempbell and Stelson

(26)

Klovergtrem and Komoto and others.

II. Theoretical Studies

Theoretical studies reported in the literature have been limited
to the determination of the decay constant A and the diffusion cooling co-
effiéient c. In these studies all authors have made the assumption that
at sufficiently long times the decay of the asymptotic energy spectrum in
the pulsed medium can be represented by a single decay constant.

Mathematically, this means:

. . - At
OELY = P(E) e (1.2)

Hurwitz .and Nelkin(gl), using perturbation theory, determined the
diffusion cooling coefficient ¢ for a heavy gas modei. The value of c¢ for
graphite and for beryliium was calculated and found to be lower than the
experimental value.

Nelkin(32>

repeated the calculations for ¢ using a variational
technique, He employed an energy distribution function w(E) given by the

following modified Maxwellian distribution:
- Pt
Oe) = neEe (-3)
In Equation (1.3), M(E) is the Maxwellian energy distribution. The energy
is measured in units of Kﬂm. The moderator temperature is given by Tm

and the neutron temperature by T,. The variational parameter p in the



trigl function is defined as follows:

’5 - Tm-Tnh (1.4)
"‘:?i:"
Nelkin obtained the following result for c:

9 -1
C = @A+¥a) V7T Do (Vo Ma) (1.5)

[ DEE) ME
where: Dj = bjj‘ ?ﬂ EM(d)EqE
» U

M(E) is the Maxwellian distribution

Vs is the speed corresponding to the most probable energy

M2 is the thermalization parameter:
2
)

M, = }o ofo Z, (E »E")M(E)(E'-E

In deriving Equation (1.5), the transport mean free path was

dEdE"

taken as proportional to B,

(1)

Singwi and Kothari also derived a relation similar to 1.5,
using an arbitrary energy dependence for the transport mean free path.
According to them, ¢ is given as follows:
3 -1
CZ T (B-3) (UaMy) (1.6)

- L+l
JAer(€) £ exp-) dE

ktr(E) = +transport mean free path.

where: A;(E)

The above integral has to be determined from a knowledge of
e

For the case of a constant diffusion coefficient, o is equal to
zero, and Al/Ao is equal to two. TUnder these conditions, Equations (1.5)

and (1.6) become identical.



The concept of neutron temperature was used to obtain both
expressions for ¢ given above, This concept of assigning temperature
to neutrons has been criticized on physical grounds because "temperature"
ig defined thermodynamically only for equilibrium distributions.
Considerable advance has been made in neutron thermalization
and diffusion theory by the application of Laguerre polynomials. This
is due to the fact that the eigen functions of the heavy gas model
differential operator are associated Laguerre polynomials of the first
order, A large class of neutron thermalization and diffusion problems

(2k)

in heavy media were solved by Kazarnovsky et al.

(19)

Hafele and Dresner determined the diffusion cooling coefficient
in all orders, for the heavy gas model. Their value of ¢ is 33 per cent
higher than the value obtained using Equation (1.5), for the case of a

(43)

constant diffusion coefficient. Singwi using the Laguerre polynomial
expansion derived the same expression for the diffusion cooling coefficient
as given by the variational method. Singwi's work represents a consider=
able advance in the theory of diffusion cooling, as it is not based upon
the concept of neutron temperature,

All the above results were obtained using the diffusion theory
approximation. A transport correction for the diffusion cooling coefficient

(45) (43) and Nelkin(55),' This

has been considered by Sjostrand , Singwi
correction was determined using single velocity neutrons; and it has been
found to have the opposite sign of the multi-velocity correction mentioned

above, The correction is given as follows:

R o
Crr = TB32 (1.7)

where: Z... = transport mean free path.



The diffusion cooling coefficient has been related to the
thermalization time constant (tth). We define the thermalization time
constant as the time constant with which neutrons reach thermal equilibrium
with the atoms of the moderator.

On the basis of elementary thermodynamic considerations, BeckurtéhJ

gave the following expression relsting the diffusion-cooling coefficient and

the thermalization time constant:

s e

, 92 _—
ty = 3¢ [ 2Tm (*;?M)T ] (1.8)

dD/ AL, represents the variation of the diffusion coefficient with
the neutron temperature.

L8)

von Dardel( gave the following result for tth for the case of

a monoatomic gas of mass M,

_ | /2]
by = = J——J (2 KTM) %(iJrﬁ-) (1.9)
where: m = the mass of the neutron
M = the mass of the moderator

the mean free path of the neutrons for rigidly bound nucleil.

by

Nelkin(32), using the variational method mentioned above, derived

the following result for the thermalization time constant.

o = 3 C (ot £)% (DoY) (1.10)

In Chapter IV, we have derived a relation for the thermalization
time constant which is identical with Nelkin's result, without using the

concept of neutron temperature.



2)

Antonov g£4§£9<' gave a two-energy group theory for the analysis
of their pulsed neutron experiments in non-multiplying media. A theory of
pulsed neutron experiments in multiplying media has been given by Krieger
and Zweifela(29) In their treatment, thermal neutrons have been assumed
to be of a single group. The problem of slowing down neutrons was treated

by using the kernel method. A two=group analysis of the transient behavior

of thermal flux in a suberitical assembly has been made by Fultz(l8) and
6 2
applied to the experiments of Bengston Ez)éio( ), Kirschbaum( 5).and
(ko)
Reynolds.

ITI. Treatment of the Problem

The objective of this thesis is the determination of the time-
dependent low-energy spectrum of a pulse of neutrons, and the study of
the characteristics of neutron thermalization and diffusion. Analytical
and nimerical methods have been employed to carry out this study. The
analytical method involves an eigen=-value technique. In the numerical
method, the time behavior of the neutron energy spectrum is generated for
all times greater than the slowing down time. We describe here, in brief,
both methods and the problems to which they are applied.

A time=dependent problem can be reduced to a stationary problem
by teking the Laplace transform. The transformed problem can then be
solved by the eigen-value method, with the transform variable as a parameter.
The complete determination of the neutron distribution involves the knowledge
of all the eigen-functions and eigen-values. In addition, the initial dis-

tribution at a specified time is needed to determine the amplitudes of the



eigen functions. Each eigen function is expanded as a sum of an infinite
number of associated Lagﬁerre polynomials of first order. (The choice of
the Laguerre polynomial, however, is arbitrary.) By using this method,
we shall determine the first two eigen values for any physical model,
Determination of the higher eigen values involvesa knowledge of energy
transfer moments greater than two. These are not readily available due
to a lack of information about energy-exchange scattering cross sections,
However, for the heavy gas model it is possible to determine all eigen
values, since all of the energy transfer moments are known.

It is not always possible<t6 construct the complete neutron dis-
tribution by using two or three of the lower eigen values. These lower
eigen values, however, help us in the study of the characteristics of the
last stage of neutron thermalization and diffusion., The first eigen value
determines the rate of thermalization and the zeroth eigen value determines
the final decay of a pulse of neutrons in the finite medium. It is of great
physical interest to study analytically the first eigen value and its assoc-
iatgd eigen function,

Practical considerations limit the use of the eigen value method,
although it is rigorous. As far as the analytical method is concerned, we
shall restrict ourselves to the determination of lower eigen values.

A multigroup method has been developed to obtain the time
dependent low energy neutron spectrum in a heavy gas medium., A burst of
neutrons of high energy is followed in time during the thermalization and
diffusion periods. The initial source of neutrons a£ the slowing down

time is determined from Fermi age slowing down theory. Using this source,
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we generate the neutron energy distribution at different times. From
these energy spectra, it 1s possible to study the characteristics of
thermalization and diffusion., To obtain these spectra, the energy
interval between 10 KT' and zero has been divided into groups. The
problem is golved for the heavy gas model, since this requires only
the solution of the differential equation which is easy to handleo The
electric analog computer was employed té generate these distributions,
with time as the comtinuous variable,

Using the nmumerical method, we shall solve the infinite mediim
problem, The thermalization time constant and the thermalization time are
determined from the energy spectrum curves, The results obtained analyti-
cally are compared with those obtsined by the numerical method. The same
numerical method has been applied to the study of the finite medium problem,
Two cases have been dealt with: the constant diffusion coefficient case of
graphite, and the energy dependent diffusion coefficient case of beryllium.
The time behavior of the energy spectrum for a number of geometrical
bucklings has been obtained. From this study, we abttempt to answer the
following guestions,

1., Is there any equilibrium spectrum at the time of
megsurement in the finite medivm?
2. At what time does this equilibrium set in?

In all the previous studies it has been assumed that at suffic-

iently long times the equilibrium spectrim does exist. We test the validity

of this statement at the time of measurement.



-11-

The following characteristics of the equilibrium spectrum for
a given buckling shall be studied.

1. The shape of the equilibrium spectrum.
2. The average speed.

3. The decay constant.

4, The diffusion cooling coefficient,

The numerical method developed here is used for the heavy gas
model., However, by similar use of the multigroup technique, the integral
equation for the crystalline mediim can also be solved., A medium other
than the heavy gas requires the scattering frequency of thermal neutrons
before the integral equation can be solved. The determination of the
scattering frequency, for media other than the heavy gas, is in itself
a laborious task. Thus, it is not undertaken here.

A genergl formulation for treating the multi-velocity problem
in a pulsed, multiplying medium is given. Campbell and Stelson's(ll)
experimental data for water and uranium mixtures are analyzed.

In the following chapters, we shall attempt to study the problems,

and answer the questions, that have been outlined briefly here,



CHAPTER II. THE MATHEMATICAL FORMULATION OF THE PROBLEM

In this chapter we present the mathematical formulation which
is used in the subsequent chapters. The behavior of neutrons in a medium
can be completely described by the classical Boltzmann Equation. This
equation is based upon the neutron conservation principle. We shall write
down the basic equation for the neutron distribution as a function of
energy, space, angle and time variables., We restrict our consideration

here to the non-multiplying medium.

I. The Boltzmann Equation

This equation has been discussed in such great detail Dby

(52) (14), that only a brief

Weinberg and Wigner and also by Davison
discussion need be given here, The physical behavior of neutrons can

bevrepresented by the following equation:

> = N o R
L Bbét(t',tn,, 6L o)+ 5(0)+ R VIPET ) + S(ETRY)
+ [f B R TR D e e (@)

We define the following quantities:
o(E, T, 0, t) dEATA0 is the angular flux, i.e., the number of neutrons
at time t of energy in the interval E to E 4+ dE, having their direction
- — — -
of motion along (I in the solid angle interval O to Q + dQ, in the volume

%
element dr around T, multiplied by their speed v.

-12-
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F(E' > E; 5}' —eg) dEdS_l) is the probebility that the neutrons of
energy E' along the direction Q/shall have the final energy E in the
interval E to E + dE along the direction of motion ﬁ)in the solid angle
interval 5ito 5{+ dﬁi after the collision with the atoms of the moderator.
We shall assume the collisions to be scattering collisions only. The above
guantity is called the scattering frequency.

S(E,‘Ei 0, t) drdQdEdt is the number of newtrons of energy E
between E and E + dE in the volume element dr around ?Z along the direction
5) in the solid angle interval —S‘—z) to Ef_+ dff produced in the time interval
between t and t 4+ dt, due to external sources.

Z,(E) end 2 (E) are the energy dependent macroscopic absorption
and scattering cross sections, respectively., The cross sections are assumed
10 be independent of space and angle variables.

The rigorous solution of Equation (2.1) is in general not possible.
It has only been given for a few special cases. We shall examine the equa-
tion under different approximations.

The derivation of the Boltzmann Equation (2.1) is based upon»the
following assumptions.

a) Neutron- neutron interaction is neglected. Since the volume
occupied by the neutrons is very small compared to the total volume, we
can neglect the mutual interaction between neutrons. Even for the high
intensity sources, the neutron density is of the order of lO7 or 108
neutrons per cubic centimeter.

b) The neutron moves with a constant velocity between two
collisions, along a straight line., A change in velocity occurs only

at the instant of collision,



1

c) The collision of neutrons are instantaneous, and not
delayed. Only in the case of fissionable material do we consider the
delay effects.,

d) The medium is isotropic and homogeneous.

e) The neutron density in the medium is very large, so that

the effect of fluctuations can be neglected,

IT. Angular Distribution

The problems connected with the angular distribution of neutrons
lie in the domain of the transport theory, If the size of the scattering
medimm is large compared to the scattering mean free path of the neutrons,
then diffusion theory can be used, We ghall derive the diffusion theory
equation from the integral Equation (2.1). We expand the angular flux,
the scattering frequency and the external source in series of spherical

harmonics.

G(E,7 Ft)

1
™38
I
0~
=4

Et) P, (1) (2.2)

oQ
CET Rt - J(VEE) P (1) (2.3)
")( e ) Zéo %—:«,& S&(m ) !Zm( )

— ! =, 7 o / - -, —>
f‘(EQE}fl/*ﬂ)—- P‘(E%tjjlofz-)
_ X / 5 o (2
- 2 E(E’>E) iﬁf’—d )
L=0

We make the following assumptions. The external source is isotropiec.

S(ETL fat) = S (FE1L) (2.5)

S
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The scattering frequency is a function of ‘the angle between the initial
and final directions, Ho = 5—2>r 5)‘ This assumption holds good in an iso=
tropic, homogeneous medium,

K = CosB- Cos8’+Sinb SimB Cos () (2.6)

For the sperical harmonics, we make use of the following relations.

- m .y
E'(MQ )= &) P (fl) { ‘lzgnﬂ) = Complex Conjugate

4L m

of P (J) (2.7)

- S R
5(1{;) = ?m_,; Tz.m(fé) 13 (fl) {A%gltlon (2.8)

eorem
— - -2 %, 2
% fer i EMCJ?-) dn = %%_' 844 S (2.9)
{Orthogonality Relation.

Q(E""E JF(E—E; 1) dE (2.10)

We also write down the scelar flux and current.

B(E, T, t)dk= P(EST )

Flux (2.11)

i

J
Vo)
_J; qb(e,?', fi,t)_?z O\ﬁ = T(E,Eb) Current (2.12)
JL

We integrate Equation (2.1) over all angles. Making use of the

above relations, we get

-
L QOELY) = = SF(ETE) 2@ tIe]BETY) (o)
r [ Fo(ERE) SUE) PETEIDE' + SETH)
E’
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—>
In order to determine the neutron current J(E,;,t), we multiply

—_
Equation (2.1) by @ and integrate over all angles. Then we get

= o
L 2IET) = [{zq(m+ES(E)}J<c;rt)+vfm Ry dR]
+j S, (E) FESE) TIETHIE! (2.14)

The external source term is absent, since the source is isotropiec.

We further assume

-
%%(fift) (2.15)

1
o

-7 -
. %:IZ,;.JZO( GEITit)d :.é. ?’wd ¢(Ert) (2.16)

Equation (2.16) is justified because we propose to use only the diffusion
theory approximation, i.e., we will consider only the PO and Pl components

of the angular flux. Then Equation (2.16) follows from the fact that

-7~ -~
jf&,_ﬂd. dn = 9_3?_7 8°d’ (2.17)
and
J s IINASCS a0 (2.18)

When Equations (2.15), (2.16) and (2.17-18) are substituted

into Equation (2.14) we obtain:

—>

5 F(ES E) zs(E)J(E rt) de’ --'5 %’wd ¢<E rt) (2.19)
— { ZalE) + Zs(E)Y T<E,Ct) =0
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If we further assume that Zé(E')J'(E',?,t) Y ZSJ(E,?,t), a basic

assumption in the Selengut-Gortzel(gz) and Fermi Age slowing down models,

we obtain:
- - -1,
TFCETE) = — L [ S(e)+ 2alE)-R5(E)] VHET L) (2.20)
TEVE) = - DE) T PETE) (2.21)

E;, the average cosine of the scattering angle, is given by fEl(E'wéE)dE‘.(Sl)

Equations (2.20) and (2.21) are sometimes referred to as Fick's law.
D(E) is the diffusion coefficient. It depends upon the energy (E) and the
scattering kernel of the medium F(E' uaE;po) through the mean cosine of the
scattering angle ub.

We shall restrict our considergtions to only the diffusion theory
approximation. Equation (2.1L4) reduces to the following expression when

the expression (2.21) for the neutron current is substituted into it.

_\!7_'@%@5,(0 - qu £)+ Zs(E) ~DIE)VIPIEY 1Y) (2.22)

+] 2{(e) F(ESE) QUe/rt)dE +S1ETE)
Ei

It should be remarked that the above expression is exact, except

for the expression of the neutron current, which contains the assumption of

diffusion theory.

III. Space Distribution

It is possible to expand @(E,Eit) into a set of orthonormal func-

tions of space variable. We have to assume that the neutron distribution
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goes to zero at an extrapolated distance from the boundary, The extra-

polated distance is assumed to be constant with enérgy .and given by an

average value. We expand'@(E,;it),and”S(E,Eit) as follows:

o o0 ~ o
DEFPL) = 2 &) B EL)
Nn=0 (2.23)
—> oQ -—
SCETY = 2= () §,EY
2, =
‘ngn(\’) "-B:C#P (7){ = Geometrical Buckling (2.2
~ ‘ 2.2
$,(Y) =0

at the extrapolated boundary (T).
where n represents the number of the spatial mode

Substituting expansion (2.23) into Equation (2.22) we obtain

z ¢ %i%-fsf“ =~ {5(E) 4 Z5(E) 4 DE) Brj h(EL)

(2.25)
+ £: ZS(E/ F(E-E) g%(g/{—)d; + 8 Et)]

For the fundamental spatial mode n equals zero. If we consider

only the fundamental spatial mode, we have the following equation.
, \ 9. .
i %gﬁgw,t) = - @15 1D B JREL)  (e.26)
+ [ SL(E) FEEZE)P(E/E)IE + SIED)
EI

Equation (2.26) is also true for any n-th spatial mode, and can be used to

obtain the neutron distribution for that spatial mode, provided we use the

corresponding B, .



We shall later use the above equation for sﬁudying the time
behavior of the neutron energy spectra in finite media characterized

by a fixed geometrical buckling.

IV. Time Dependent Problem

The time dependent problem can be treated in principle by taking
the Laplace transform with respect to the time variable. The Laplace trans-

form of Equation (2.1) is:as follows:

':—%—_-1- LC)+_$([)+35. Y?]ch(rrJlS)-f-b(E? )
= lf&(£’)¢(£ n’ rS)Ffz:—»r: AR dedn (2:20)
- t $(ETR0)

me

where: o(E,7,0,s) = Laplace transform of angular flux.

o]
-J o(E,7,0,t) ¢St at

-
S(E,r,0) = Laplace transform of source,
= [ et s(8,r,0,t)8(t) dt
(o]
o(E,7,0,t = 0) = ¢(E,7,0,0) = Angular flux at t = O

=0
The solution of Equation (2.27) can be reduced to the equivalent stationary
problem by replacing the l/v absorption term by an effective absorption
term which includes the transform variable 's'. The effective absorptidn

becomes a sum of two terms.
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Though in principle the solution can be obtaine@, yet the prob-
lem of inversion of the transform is not a trivial one, This problem
shell be discussed in the next chapter, for the case of hydrogen.

If the source term is representedvby a Dirac delta function
in energy by equating S(E;z;S) to S(EZE?) 8(E-E,), then for an energy
smaller than E,, Equation (2.27) becomes & homogeneous equation. The
problem redunés to an eigen value problem with s as a parameter. This
gives the solution for the Laplace fransfbrm of the angular flux and the

anguler flux itself, as follows: L)

bleTRs) = z  Am (7675 ($-Am) -3
Amt
¢>’(E,?i72,t) = Z Am cbm(E,-ZfZ)e " (2.29)

Ay is the eigen value associated with the eigen function
@m(;iE,53. We shall apply the eigen value method to Equation (2.26) in
the fourth-and fifth chapters.

We shall assume the N\ correspon&s to an operator half
bounded from above, i.e., setrof eigen values for m = O,1..., the zeroth
eigen value is algebraically larger than any other eigen value, so that
at long times it predominates, In the case of non-multiplying or sub=-
critical systems, thebneutron‘distribution decays in time. Ny is negative

for these cases. Equation (2.29) can be rewritten as follows:

22 2> S —‘Ayaqt
Peliht) = Z Am B rer)e

We shall meke use of the above results in the fourth chapter.
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V. Energy Independent Solution

Upon integrating Equation (2.26) over all energies, it reduces to:

f L 28 Ete= - BE{chc)ch) & | blet) -5 p e
+ jo SLE) PLE t)rce-w)a{e’am (2.30)
f ° f°,s'(r—:t) cAE

For a pulsed neutron source, S(E,t) = 5(t) SO

For time t > O the source term is absent.

J - 5(8) PUEL) dE = fESLE) f;é(Et) F(E>E)dEYE

_79] Ecﬁﬁ) BlEt)FEE)dede’ (2

We further relate the flux @(E,t) with the neutron density n(E,t).
@(EL) = Un(ge) (2.32)

Substituting Equations (2.31) and (2.32) into (2.30)

2 . :
%_Qs_t) = - [ SaE)U + DE)V B]n(y) (233)

The solution of the Equation (2.33) is given by

_{3BU + DU Rt
Nntk) = No e (2.34)

The decay constant is given by:

————

N = T + DO B (2.35)

> 9]
4 NEL) ZalE) UDE

- (2.36)
S niee) dE
0

ZalE)U =
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o0
Nit) = JhnEt) de (2.37)
0

o0
Bf U NCEt)dE

IFit) = (2.38)
J h(Et)dE
_, Ofou*DUZ) B t)dE
:) BIn(E ) dE
DU B = & (2.39)

00
J net) dE
For constant diffusi;n coefficient and 1/v absorption, the decay
constant N reduces to
A= Zaole + DU B* (2.40)
The determination of the diffusion coefficient D and the absorp-
tion cross section Zao from the measurements of the decay constant A in
the pulsed.assémbly requires the knowledge of the average speed ¥, We
shall generate @(E,t) for a few geometrical bucklings, B2, and obtain ¥,
We note that since ¥V is a function of time, there will not be pure expon-

ential decay until n(E,t) [and thus ¥(t)] attains its asymptotic value.

VI. The Scattering Integral

We shall discuss the scattering integral in the next chapter.
Tt must bé pointed out that the complexity of the integral Equation (2.1)
arises from the complexity of the scattering frequency F(E'-aE;53.»2?).
The physics of the problem is determined by this kernel. A detailed

theoretical or experimental knowledge of this kernel is essential for
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the rigorous solution of the Equation (2.1).
For the numerical solution of the problem, we decompose the

scattering integral into two parts.

(0, 0]
j" e (E)cpu:t) F(E=E)dE’

/ (2.41)
20 = 31 ple t)F, SEE)4e +_[ Z<¢F(E+E)d5’
Er thevmal
where: _ET = +thermal cut off energy
F (E’—E) dE = thermal neutron scattering frequency
thermal
Ff(E;f)E)dE = Tast neutron scattering frequency.
as

We shall evaluate the fast neutron scattering integral at the
slowing down time (tg) in the third chapter. We also discuss the thermal

neutron scattering integral in the next chapter.



CHAPTER ITI, FAST AND THERMAL NEUTRON SCATTERING

We shall discuss fast and thermal neutron scattering, in detail,
in this chapter. For the study of the slowing down of fast neutrons, we
can neglect the low energy effects and assume the atoms of the moderator
to be free and at rest. The lower limit for the validity of the slowing
down model is taken to be about 10 KT, which corresponds to 0.25 ev. Below
this energy, one must take into account the thermal motion of the atoms of
the moderator, the crystalline effects and the chemical binding of the
moderator, In the low energy region below 10 KT, the neutrons lose their
energy due to elastic as well as inelastic scattering with the atoms of
the moderator and with the medium as a whole. We shall speak of fast
neutron scatbering as the slowing down process and of thermal neutron
scattering as thermalizstion. These are two distinet processes valid in
two different energy intefvals. In the slowing down process, the neutron
can lose its energy only by elastic scattering with the atoms of the
moderator. Inelastic nuclear scattering is only important for high
energy (Zlev) neutrons, therefore it will be neglected., In the thermali-
zation process, the neutron can lose as well as gain energy due to elastic
or inelastic scattering with the atoms of the medium. The physical state

of the medium plays an important role in neutron thermalization.

I. The Slowing Down Procegs

The slowing down of neutrons in heavy element and hydrogenous

moderators constitute two separate problems. A neutron can lose all of

o) I
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its energy in a single collision with an atom of hydrogeﬁ, but requires
a large number of collisions with an atom of a heavy moderator, before
it can lose all its energy. No attempt is made to review slowing down.
theory here. We discuss two specific problems,

1. Determination of the hesavy moderator fast neutron
scattering integral.

2, Determination of the space-and time-dependent slowing
down solution for hydrogen.

The fast scattering integral will be used in the following way.
A burst of fast neutrons is inserted into the assembly at t = 0, then at
some later time of the order of the slowing down time‘ts, these neutrons
will begin to enter the thermal group. Those last collision slowing
down neutrons arriving at energy E < Ep will serve as a source for the
thermalization problem. Clearly those neutrons will arrive from the .
collisiong at some energy between Ep and ET/a, so we will consider the
fast integral between those limits. Furthermore, this "source" for the
thermalization problem must vanish below E = OEq.

The scattering frequency for the elastic scattering of neutrons

is:
o
F(E—=E)dE = dE_ (3.1)
/(1K)
This scattering frequency is obtained under the following
assumptions:

1. Neutrons lose energy by elastic scattering which is
isotropic in the center of mass system.
2. Atoms of the moderator are free and at rest. Low energy

effects are ignored,
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A. The Heavy Element Scattering Integral (A >> 1)

We determine the following integral encountered in Equation (2.&1).

Stet) = J2(e) ¢et)FEEGE -2

The ranges of energies for E' and E as indicated in the discussion above,

are as follows:

= / - - ‘
€26 EryEnxcs
Substituting the scattering frequency (3.1) into Equation (3.2),
we obtain
Efx |
X ‘g gl L/
Seet) = | so(E) dEr) de (3.3)
Er E'(1-X)

The determination of S(E,t) involves the knowledge of ¢(E',t)
as a function of energy E' at time t. The time dependent slowing down
problem has been studied by Marshak,(51> von Dardel(h8), Svartholm(h6),
Kazarnovsky(EB), Waller(50>, Eriksson(l6), and others, All these authors
have attempted to obtain the velocity distribution of neutrons as a func-
tion of the dimensionless quantity thS in a non=absorbing, homogeneous,
infinite medium of heavy mass. An excellent review of most of these
studies has been made by Amaldi(l), The basic physics of these studies
is the same, but they differ in the methods employed to obtain final
solutions.

We give in Figure 3.1 the velocity distribution curve for a
moderator of mass equal to 12, as given byEriksson(l6> based upon
Waller’s(5o) exact solution, For a very large mass (A >> 1) the velocity

(23)

distribution given by Kazarnovsky reduces to the following distribution.
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ERIKSSON'S CURVE

20.0
GAUSSIAN
DISTRIBUTION
10.0
0
5.0 10.0 15.0
2
X = [T
)

Figure 3.1 Comparison of Time Dependent Distribution
Function ¢(x) for Mass A = 12.

20.0
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tCey = \/3’q exp S,_- 3£ (z-1) ; (3.4)

where: \II(Z) = ’T) 'C 5‘6( u,t) EsU—*Q
- A
V= A
7 = te(ED
if’
u = lethargy corresponding to energy E.
t5(E) = slowing down time corresponding to energy E.

When converted into energy wnits, the above equation reduces to

the following expression.

2
P = 5o LIFFort $ 24l os

We compare the Gsussian distribution with Eriksson's exact curve
in Figure 3.1.

In comtrast with the Gaussian distribution, the Fermi age slowing
down model gives a line distribubion in time. According to this model
o(E',t) can be given as follows:

bty = dE) §(t-tie) ) (5.6)

We determine @(E') by the time independent Fermi age model. The

elementary calculations yield ¢(E') as follows.

| , _ B*c’ o, -1
bce’) = Sy pe Teesi (3.7)

In Equation (3.7) the following terms need to be defined:

1

S(Eo) ‘the source strength of neutrons of energy Ej.
p' = the resonance escape probability for the energy

interval Eo to B!,



2t
~B~T
e = the non-escape probability factor :
§ = logarithmic decrement.
7' = the Fermi age for the energy interval Ej to E.

The Dirac delta function 8(t - t4'(E')) in Equation (3.6) is characteristic
of the Fermi age model.

We evaluate S(E,t) based upon Equations (3.5) and (3.6) for t
equal to %s’ which is defined as the mean slowing down time for neutrons
heving & final energy between Ep and Ep/o.

1. Determination of S(E,%.) by the Fermi Age Model

We obtain S(E,ES) using the approximations given by the Fermi

age model as mentioned above,
- Bk, P
) = s(t-t 5s'e ,b.EOL__ (3.8)

In writing Equation (3.8) we have made one more assumption.

The slowing down time of neutrons having final energy in the interval

between ET and ET/a does not change with energy. It can be represented

-

by t This is valid, provided ET/a does not differ sppreciably from

S,
Et. It is true for heavy elements, for which o is close to unity.

We also assume that the resonance escape and non~escape prob=-

!

2
=BT do not change in the gbove energy interval but

abilities, p' and e
this is an excellent assumption. We integrate the right hand side of
Equation (3.8).

VPN - - - ; —5 E
S(Ets) = 8(t-ts) SE)PE %1“?{‘—-@ (3.9)
é(\"‘?() ET
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2., Determination of S(E,t.) using Geussian Distribution

Substituting the Gaussian distribution, as given by Equation

(3.5), into Equation (3.3) we obtain
i -1

S(ETs) = f ,_m{ex)m 3A (é.z..,,) :)‘g 3Ts (- x)g'ﬁgd,;@ .10)
Et
In order to integrate Equation (3.10) we make the following sub-
éﬁitutions,
ti(ey = 4
sﬁ( 15” ) (3.11)
(& 1) = (3.32)
, x(E/x)
S(E, Ts) = f@(ﬂ) exp(~ A x)dx (3.13)
X(ET)
We use the following formulae to integrate Equation (3.13).
[ -
dx = - Sggr ‘
a x> I
J em o = ) (1-ax®) dx (3.15)
for ax%¢ 1

S(E,ts) = ¢ —9-;@ Q—XP-%L(WL‘M/ 1)

- J S
- exp- ?L(tstﬁ) 15}; ° (3.16)
- 5t5(5/°<)  ts(En)
ts tsz 2
% 3 (ts?iEM _1) - (t:ér) ,%]
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—— FERMI AGE |THEORY
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0.5
0
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E -ENERGY (UNITS OF E,=10KT)

Figure 3.2 Source Distribution S(E,t) for
Graphite (A = 12).
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Values of S(EQ%S) are listed in Table 3.1, for a few values
of energy, obtained by using Equations (3.9) and (3.16). In these calcu-
lations, A was taken equal to 12 and %s equal to the mean slowing down time
between Eq and Ep/a.
TABLE 3,1

THE SOURCE DISTRIBUTION S(E,t).

E S(E’£S)Gaussian S(E, %5 )perm1 age
Ey 1,000 1.000

0.9E4 0.818 0.718

o,.86Et 0.510 0.588

0.8E+ 0.362 0.370

a By 0 0

In Figure 3.2 S(E,'ES)Gaussian and S( are plotted

E’%S)Fermi age
for the sake of comparison. The basic features of the shape of the energy
distribution are almost the same in both curves so that the simpler source,
détermined by the Ferml age model, and given by Equation (5.9), is uped
for the generation of the time dependent spectrum.

It must be pointed out here, that tﬁe behavior of neutrons for
times longer than %s is governed by the physics of the problem and is
independent of the details of the initial source. The neutrbns lose
memory of details of the source after a few collisions.

B, Discussion of the Space and Time Dependent Slowing Down Solution
for Hydrogen

The time dependent slowing down solution in a non-agbsorbing,

infinite homogeneous medium of hydrogen was given exactly by Ornstein and
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Uhlenbeck(36). We modify their solution for the case of a finite medium
having l/v absorption, using the diffusion theory approximation. The

neutron transport equation, as given in the second chapter, is as follows.

- (Za+§s)¢( tt)+;’DV¢(E ft)
J dE $s(E) FLESE) Q& V'i)+;>(E‘ /'G)(

QPIETY L)
dt .22)

H
Ve
Assuming the source to be a delta function in space and time

variables, we get

0 - . e SR
S(ETt) = &(r) 8(t) S(E) (3.17)
We take the Fourier transform of Equation (2.22) with respect to

the space variable, obtaining
T . _ . 7. . .27

1 2BCEKE) = - (Tq+ 2o PE KL -DK PlEKt)
vt Eo , (3.18)

+ ] Ssle) ¢tk t) Flebse) dg !

z
t  8(t) S(&)

= LKY
qS(E Kt) = ‘?S(EY'& e dY  _ Fourier transform
K (3.19)
= Transform variable

On taking the Laplace transform of Equation (3.18) - with respect

to the time variable, we get

L
-

o g - ol y
\L'SE' + S (E)+ s_: E)-*-:D:iKJ! ¢ (E K, S) (3.20)
[ ss'(e) @ (E R3)F(E=E) dE + S(E)
E
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Rearranging Equation (3.20)

N

LS o+ ZalE)+ T(E) +DKE jcp(l: K,S)
v {izschEKS) de’ 4+ S

C.
On differentiating Equation (3.21) we obtain a differential

(3.21)

equation.,
dX(e)- dSE) - ZsX(E) , (5.0
dE dE [s J_zaq—sﬂmﬁajg el
Where X = (53 4 Sp+ i5+a>\<. cj:(c|<s)
\ v
The solution of Equation (5,22) can be glven in a simple manner.
e
[ ¢ "+5at‘ff_?i— '
—_— i . =/ ;\’L‘E .
ig) = S(E) + gus, dE zs _EXP a(uz‘ r2atzst o 9E o
La T J S .1..2,.+5"+J)f<21 (3.23)

We assume the source S(E) equal to 8(E - Ej). Transforming X to

o
7 (E,k,s) we get

@wKSJ-(

T :

R +ES+DK") E E%‘T ZalEo)t Is(Eo) + Tk

oXp - ] °( St + 50 + D KE\ge (5.24)
£ S + 2a * 2. + DY/ B

TS R 5 T SR

For energies E less than E_, Equation (3.24) reduces to the

following equation.

B sies kT

K4
——

GERS) = 25(Ee) xp - m4 v:an.a_} J (3.25)
| - L%° EOH ESLE"H"D“‘%] E$.+Sn(5 +7. (:)+m<?—J
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The following comments about Eguation (3.25) be noted:

l. Tor Za = 0 and K2 = 0 (infinite, homogeneous medium containing
a uniform distribution of source): Equation (3.25) reduces to

the expression given by Ornstein and Uhlenbeckw(36)

2. For the time independent case (S = 0); this equation corresponds
to the solution given by the Selengut-Gortzel model as discussed

by Hurwitz and Zweifel(22) (42)

and also by Simon.

3¢ If the spatial dependent part can be separated from ¢(E,r,t)
then the Fourier transform variable can be shown to be equal
to the geometrical buckling of the medium.

The Fourier Laplace transform of the slowing down kernel is related

with the neutron flux as follows:

Eo
[ J dE z“ €)+)4 D [U
Je(Eo) QP ¢ L S Y TalE) 5E)

qe,<59) = [TE.) 6™ 2 <E°>*—] -

The above equation can be written in words as follows:

% CE,KQ,S) = (First Flight Factor) x (Resonance Captive Escape Factor )

x (Non-leakage Factor) x (Time Dependent Factor) (3.27)
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II. Thermal Neutron‘Scattering

| Nemtbron scéttefing in the thermal energy region depends upon the
low enefgy-effectS'mentioned earlier, nemely, the thermal motion of the
atoms of the moderator, the chemical binding effects, and the crystalline
nature of the medium. In the thermal energy region, neutrons can gain as
well as lose energy., This process is characteristic of the thermalization
phenomenon., If>We~consider'only thermal motion of the atom and neglect
chemical and crystglline effects, then the thermalization is carried out
by means ‘of elastic scattering only. When the chemical bond and crystalline
effects are taken into’account, then Inelastic scattering also becomes im-
portant, The neutrons logse or gain energy through exchange of quantas in
molecules and phonons in crystals. The scattering of‘thermai neutrons is
g bilg subject in itself and covers a wide range of problems. A number of
excellent articles by Amaidi(l), Kothari and Singwi(27), Zemach and Gladber(59

3h)

gnd Nelkin and Cohen( and several othe? authors exist.

We shall congider the effects of low energy neutron scattering
upon the neutron transport problem. TFor L/v absorption,'the total scatter=-
ing cross section and scattering frequency are the only parameters which
are dependent upon the low energy effects. The thermal scattering term
of the transport equation can be given as follows.

;:)“ SE) pE) FCE>E)dE’ - T5(E) P(EL) (3.28)

We express ¢(E,t) as a product of two terms

biEt) = MIE) W(EL) (5.29)

where M(E) is the Maxwellian distribution.
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The total scattering cross section ZS(E) can be given by the

following integral
ZS(E) = g/ s &) Fle=»E") dE/ (3.30)

We make use of the Detailed Balance Theorem of statistical thermo-
dynamics. This theorem gives the balance between two smali energy intervals
for the equilibrium distribution. Accordingly, the following equality holds:

M(E) Zs(EV FLE=><) = M(E) Zs(E) FE~ED (3.31)

We substitute Equations (3.29), (3.30) and (3.31) into Equation

(3.28), then the following result is obtained,

J sEDF (c-+t)cp<a ) dE'- Zg(E) P(EL) S

e’ j M(E) Sq(E) FLE~E) [W(Et)-Mee)} e’
Expanding V(E',t) in a Taylor series about E, we get
.. kK
IO RICORIGD =0 L Ete) 206
dEF

On substituting the above expansion into Equation (3.32), we

obtain the following result for the scattering term.

. ZSLE}(P(EU PU"”’*" de’ - ?s(ﬁ'} f#(fﬁ)
i Y(E L)) K (3.34)

5o j' B ME ) [0 R

\
——
——

‘.u_

K 1
The K-th energy transfer moment is defined as follows

K
A (E) = f(g -E) Fs(E) FEwelide’ (3.35)
’ isﬁe)

In order to determine Ak integrals, we need the energy exchange

(partial) scattering cross section. The physical approximations involved



38-

in the determination of this quantity defines the basic physics of the
problem. We shall discuss briefly the energy transfer moments.

The main interest of the reactor physicist lies in the deter-
mination of»the energy transfer moments represented by the integrals
AK(E), It is these integrals, which appear in the neutron transport
problems Determination of these integrals involve the knowledge of the
partial scattering cross sectiouns. Zemach and Glauber(55) have given
a general formslism for the determination of these cross sections for
a large class of scattering nuclei. Kothari and Singwi(27) have exten-
sively reviewed the inberaction of thermal neutrons with solids. All of
these formalisms are based upon the concept of Fermi pseudo—potential)
introduced by Fermi(l7) to explain the chemical binding effect of the
hydrogen atom bound as a harmonic oscillator. Pseudo-potential is
characterized by the Dirac Delta function. In addition to Fermi,

Vaughn and Gohen(AT) have also determined the scattering cross sections
for the atom bound as an harmonic oscillator. This model has been found
to be adequate for solid zirconium.hydride. The guantum of vibration is
of 0;13 ev. No attempt is made here to discuss the various models
employed to determine the partiél scattering cross sections for liquids,
solids and polyatomic gases.

In the case of a monoétomic gas,Wigner and Wilkins(53) derilved
the partial scattering cross section, assuming that the velocity dis=~
tribution of the atoms of the moderator has a Maxwellian distribution.

They also assumed the scattering cross section to be constant and

independent of relative speed between the neutron and the atom.
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(9) modified the Wigner-Wilins kernel by taking into

Brown and St. John
account the effect of the relative speed upon the scattering cross spection.
A general method for obtaining the thermal neutron scattering frequency
has been given by Osborn.(37) It must be pointed out that, under the
assumptions involved, the Wigner-Wilkins scattering kernel is exacte.
The energy transfer moments can be easily obtained, provided the heavy
mass approximation is made and terms of order (l/A)2 are neglected.
Under this approximation, the integral equation is reduced to the Wilkins(5u)
second order differential equation. In this thesis, we shall deal with
the heavy gas differential equation extensively. An excellent review
article summsrizing the neutron thermélization studies dealing with the
monoatomic gas has been given by Cohen.(l3)

For moderators of greatest interest one integral quantity, defined
by Nelkin(32’33) as the thermalization parameter, has been determined. This
parameter is given by the following integral

A SN

* - . N / . FAN l
Mo = | | Z(B) MEE) (E-E) F(E~Edede (3,36)
o o
It will be shown in the fourth chapter that neutron thermaliza-
tion is governed by Mpo. In the expression for the time constant of

neutron thermalization, M, appears as the basic physical parameter,

which determines the rate of thermalization.



CHAPTER IV, EIGEN VALUE SOLUTION OF THE TIME DEPENDENT PROBLEM

The use of the eigen value method to solve the time dependent
problem was pointed out in the second chapter. A general formalism for
determining eigen values governing the time behavior of neutrons, in any
physical medium, is.presented‘in this chapter. We shall determine the
first two eigen values; the zeroth eigen value governs the decay of a
neutron pulse in the diffusion period, while the first eigen value is

associated with the last stage of neutron thermalization.

I. General Formulation

The neutron distribution given by Equation (2.26) for a single
spatial mode shall be employed to study the time dependent problem. Re-
writing Equation (2.26), we get

L 2PE) = - [ £,(E)+ DE)B] BLEL)
7ot P EE) S FEbn e ()
- Zs(E) (Et) + S(E,¢)
We expand @(E,t) as a product of two functions as follows.

GLEE) = W(E,) MUE) (k.1)

_E
M(E)dE = E & dE Maxwellian distribution(L.2)
The neutron source S(E,t) is pulsed in time and is of the

following form.

S(Et) = S(E) 8(E-Eo) §(t)  (h3)
For energies less than the source neutron energy E,, the source

term disappears. On substituting Equations (4.1) and (L4.2) into Equation

40~
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(2.26) we get:
L w{gw — = ZalE)+ D) 8Y] WEL) ME)
2 o T
+ J F5ED YIELINE) FESDdE ),
E’ ‘
- Zsle)Y(EL) M(E)

Scattering terms can be represented in terms of the energy trans-
fer moment integrals Ak(E)’ which have been defined in Equation (3.35).
Using the results of Equations (3.34) and (3.35), we represent the scatter-

ing terms as follows.

g z;(a) W(E't) M(E') F(CE»E) AE’ - Zs(E) W(EL) M(E)

=/ 50 {4.5)

- EK;— _'Ef {b W(Et)j{M(E) (E)HK(’T—)%

Recapitulating, the definition of Ay(E) is given by Equation

(3.35) as follows.

ek s.ie)FLE=>E)dE’
A (E) JK‘: e)" 25(E) F(_,,,__M,,_)..,_. o o
- TR S (3.35)

We substitute the result given by Equation (L4.5) into Equation

(4.1), getting
iR a;via@, ME) = = L $a(€) + D(E) BT W(EL) M(E)

v _
-‘? B ‘;Et‘ﬁ"“’) j { M §5LE)AK<E)§1*'6)

We make the following ansatz:

. _)\t. -o_o b v ' )
pet) = =& { E ab@mey  wn
4 :

p(0,t) = 0 Neutron distribution for energy zero is
equal to zero at all times.
¢o(w,t) = O Neutron distribution for energy B, is

zero at all times.
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In the above ansatz, the eigen function corresponding to the i-th
eigen value is given by the sum of the associated Laguerre polynomials of
1
first order. Lé )(E) is the n-th Laguerre polynomial of first order. X,

is the corresponding eigen value. Substituting the above ansatz into

Equation (4.6), we get

. =Aite
S -4 &z anti) MUE) S
Tzog Nt T ay [(Zate) + D o* JlnEme) (48

~o

‘ K (1
{2k LS oo zo)l]

1
Multiplying by Lé )(E) and integrating over all energies, we get

o)

-2 Lt )M(E)d&}
{ j(iq(5)+D(E)B‘)Ln MEL d%(i* .9)
5 k[ oo e

We define the following integrals.

T L) ME) L) ge W
4 2 Lot = ~hn (4.10)

o0
(!)‘ o ‘ (i) 9. , 2%
oth(E) MIE) Lm(E) DRAE = (J)B)mn (k.11)

= Cle, (E)MIE) S AE)dE = F. (12)
L % {J >t 1 i )25 Relb)a = £ T
k4 : ;

Sa(E) = __E‘D/z (%.13)

Equation (4.13) is given by the 1/v absorption law.
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U - B U_o (ll-.lh)

Substituting these integrals in to (4.9) we get

z e—ACt [% G, g‘*—%kf‘mn +Zq0L‘Jynn+/D ) —‘ ‘j] 9(x.15)

Es

L
The above set of equations holds good for every coefficient & i
It will have a non-vanishing solution provided the secular determinant of

its coefficients vanishes. The secular determinant is given as:

l% 'LZJ\’S * an) Nn +@Bi‘)mn - Fhml =0 (k.16)

In principle, the above determinant can be solved, provided we
know all the matrix elements involved, Wﬁn for all m and n are known,
However, (DBE)mn end F_ require a detailed knowledge of the scattering
kernels. For a heavy gas model, all the energy moments of the scattering
kernel can be obtained by using the Wigner-Wilkins kernel, therefore, an
can be obtained for the heavy gas model. In the case of crystals and
liquids, extensive numerical calculations using digital computers are
required. Even then, in these cases, the problem is a formidable bne,
because of the lack of experimental déta, and inadequacy of the theo-
retical models used.

It is possible to solve the above determinant for the 2 x 2
case, since the an‘s involved are known. However, the above solutioﬁ
is also possible for a definite energy dependence of the diffusion
%)

coefficient, When D is proportional to va, then (DB can be determined.

For the case of a constant diffusion coefficient, we shall solve the 2 x 2
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determinant and obtain the first two eigen values ko and \.

1
Hurwitz and Nelkin(Zl)

determined Ab for the infinite heavy gas
medium using perturbation techniques. With the help of a variational
principle, using a Maxwellian distribution as a trial function, Nelkin(Bg)
also determined Ay. This method, however, employed the concept of 'neutron
temperature.' The use of this concept has been found objectionable.
Singwi(hs) obtained A, without using the idea of 'neutron temperature.'’
Singwi's expression is exactly the same as that of Nelkin's, and therefore,
represents a considerable advance., H&a¥fele and Dresner(l9) calculated ko
for a heavy gas model with a better approximation.

As pointed out above, the determination of Ay and A involves
the calculation of W . and Fone The first few values of m and n have been
calculated and are given below. A few associated Laguerre polynomials are

also listed.

We define the n-th associated Laguerre polynomial of the first

order as follows:(io) A P \ P
' — E
L()cs‘ = Vhtl [2- ) Ay n- ]
h (E) F=o PI(pt D! (n-p))

' 1
We list the first four Laguerre polynomial L (E)
D

Lo (E) = 1
w

L1 (E)

G _ 3
Lo (E) = m<1—E+%_)
)

)

Lg (E) = VT (1- 36+ E -
) %

\/"9':( 1~ %) (4.17)

3

/

Fﬁ

)

N
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The following matrix elements have been calculated.

WOO

wol

Wi

Wlo

Woe

W12

w22

oy

W51 = W3

Wsp = Wos

Yas

also for Lm), m)

We determine the F
mn

(o]e]

ol

lo

= 0.500 Wx
= 0.1768 %
= 0.4375Vn
= 0.1768 V=«
= 0.1083 W
= 0.1914Nx
= 0.3984x
1914 Wz

il
(@]

= 0.078Lx
= 0.1271Vx

0.1928 Nt

0.3706 Nt

| r f% Mm-ktYg ml’g_;

Wmn = === (m-1)1 (n-k

X _’L‘f_é@i.azj
. K J

integrals.,

x xR0 »
J{[me)zce) e e eme) dedel
1]

0

{By symmetry and detailed balance theorem.
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o
F o= jo{a 549 )M(E) S5(E) FUE > E) (E°E) dE’ JdE
oy R
= ) ] Z<(E) M(g) F(E-»E’)(E- E') dle dE
° OC*:) 2 9]
g JE ] ME) E5(E) F(E =&Y (Lf;) T
' Ooo gc - ,,‘"2" A /
= g i ?.} M) Zs(E) (E-E) F(E~>E/AEde
= - M
Lf.

IT. Determination of Eigen Values A, and 1.

We shall determine Ay and Ay from Equation (4.16) by considering
m equal to zero and one, and n equal to zero and one, The secular determinant
(4.16) reduces to the 2 x 2 determinant.
| I P ) 9, ) -
(B L =0 homrisd {1085 2
[5]
¢/ e \ o .2 5 . 9 (4.18)
1(2%-%\)»\/10 + @8, - Fio% {(Zqo--/‘&a} Wqq+ @B 4=
The solution of Equation (4.18) gives two values for A. We shall
call them Ay and Ay. The zeroth eigen value A, is smaller than \j. We give
the solutions for Ay and \; assuming the diffusion coefficient to be con-
stant with energy.

Ao = Zqle T LBCSDES) Li (L\/ai = DpR“] (k19)
Weoe 9

Ta,Vo + MaWelo BU'ajWoo'Woj__}(u 20)

L+<l /14 lf\/f& L\/glz) l"/CO LL\/Jll\lr "’L\I )
¢

b3 Lf'- "\/0' N SR
+ 28 Weer) Wes Mg_

These expressions give the upper limits for the two eigen values.

A\
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We make the following observations:
1. TFor the case of zero absorption and infinite medium.

Ko = 0

N = iﬁi.PJongL" (4.21)
4 (gr oo =Weq?)

This means that the neutron energy spectrum emitted from a pulsed
neutron source reaches the final equilibrium spectrum with the decay constant
}1’ which is characterigstic of the physical model of the medium. For this
particular case, the final energy spectrum is Maxwellian and the approach
to the Mexwellian distribution is governed by the first eigen value kl.

2. For the case of infinite medium and 1/v absorber,

In this case the two eigen values are as follows.

A, = 2a,V0
Z U" MQ Wﬂd UuO o —
}\1 - Gevo r Lf‘( "\fil l/\/oc" Wa cz)

For small absorptions, kl is much larger than Ags therefore the
final distribution is given by the smaller of these two eigen values, i.e.
lo‘ The final spectrum 1s Maxwellian, but decays exponentially with a
decay constant lo’ which 1s proportional to the amount of absorption
inside the medium.

For large absorptions, kl is not large compared to ko, therefore,
both decay constants play important roles in the decay of the spectrim,
The decaying spectrum is not Maxwellian in this case.
3. For the case of a finite, absorbing medium.

Ao and )y depend upon B and B, From Equations (4.19) and
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(u.éo).

2 4
A, = &g+ bgE- - CgB
_ 2 4
kl = 8y + blB + ClB
If ), and ), are plotted sgainst B°, we find that the deviation

of X and )\ from straight lines are exactly of the same magnitude but of
opposite signs. Coefficient Cy is the well known 'diffusion cooling co-
efficient.! If the departure from the straight line for ko.isdue to the
shift of the zeroth eigen function associated with ko towards the low
energy side, then for kl, it is due to the shift of fhe first eigen func-
tion associated with M to the high energy side.

The slopes in both cases are of positive signs but of different

magnitudes.

ITIT. Relation Between the Diffusion Cooling Coefficient and kl

The expression for the diffusion cooling coefficient, for constant

diffusion coefficient is as follows.

Ca = T -D Vo Wol_ ' (4.22)
MqlNoo “Woo

It is possible to obtain a relation between the diffusion cooling

coefficient Co and the first eigen value hl in the infinite non=-absorbing

medium case.
Mo IWeo Us

A = GV Weo - Woj_i)

(4.23)

Eliminating Mg, we get

L 2 2
C = D Yo [ (Wez. [ 7
° AL ( Noo) (W11 Weo-Wo1?) _j (4.24)



hg-

If we substitute the values for W W 1 and W1 we get

00’ 0
C - R Di Ue 2
= Vo .
0 SN T (1.25)

It kl is defined as the reciprocal of the thermalization time

constant (tth) in the infinite, non-absorbing medium, then

} - 3'-”00
Ay = ——t:h 3 t-n,, = 2 Dpau,2 (4.26)

Nelkin(52) derived the same relation between the diffusion cool-
ing coefficient and the time constant, with which the 'neutron temperature'
approaches the moderator temperature in the infinite, non-gbsorbing medium.
He assumed that the neutron tempersture can be given by the following
relation,

o o . =1
R = T {8

Using the varistional principle, with pB' as the variational
parameter and a modified Maxwellian trial function, he obtained the follow-

ing result for the neutron temperature

- . =Xt
™t ) = T L+ e 14 (4.28)
Mo deyatey
2 Yz M2
! 1

If y7~ is the time constant, then the relation between y~

and the diffusion cooling coefficient is as follows.

36"‘1 = 2 7;{%1?& Nelkin(32) (4.29)
D 0
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This is exactly the same relation as given for tth by Equation
(4.26). The difference in the two results is due to the methods employed
to obtain them. In obtaining tth? we have not assumed the concept of
neutron temperature, which is the weak point in Nelkin's derivation. tth
gives the rate with which the eigen function associated with xl is decaying
in time. ‘The information about M will give the diffusion cooling coefficient
C, and vice versa.
Equation (4.21) gives Ay for the case of an infinite, non-absorbing
medium.
N = 8.218x 10H M, (sec™) | (1.30)
Thermalization time constant can be given as follows:
tyy, = 12,08/M2 (u sec) (4.31)
Determination of A or tyy, by Equation (4.30) and (4.31) involves
the knowledge of Mo, which has to be obtained from the energy exchange scatter-
ing moments. For a few interesting moderators, M, has been determined, using
extensive numerical calculations. Table 4.1 gives the list of values of My
for a few moderators.
TABLE 4.1

THERMALIZATTON PARAMETER

No. Moderator Mo (cm;l) Reference Remark
1 beryllium 0.30 Singwi & §othari(m0 op = 1000%K
0.36 Nelkin(32 6p = 930°K

2 beryllium oxide 0.20 Singwi & Kothari

3 graphite 0.068 Nelkin(32) Op = 900°K Vibra-
tions L to latice
planes.
Op = 2500°K Vibra-
tions || to latice
planes.

4 water 1.05 x 107 Nelkin(33) Effective mass = 18

6p= Debye temperature



For the heavy gas model,
My = 4 & Zgo vhere £ = 2/A

Yy = free atom scattering
‘ ‘cross section.

We shall list in Table 4.2 0 (in kilocycles/second) and tyy in
u seconds, along with earlier determinations by various other ‘authors

using different methods.

TABLE 4.2

THE THERMALIZATION TIME CONSTANT (tiy,)

No. Moderator M (kilocycles/seg) .Eth(ﬂ sec) Remarks
1 beryllium 2,8 40,266 Singwi & Kotharil2T)
obtained 28 i secs.
29.8 33,56 based upon neutron
temperature idea
2 beryllium oxide 16.56 60. 40 R.C. Bhandari et EL(S-)
., obtained 67 u secs
3 graphite 5.629 177.65 K.H. Beckurtéu%btained
experimentally 185 +
45 u secs. -
(2)

Antonov et al.
obtained thermaliza-
tion time ¥ 200 u sec.

| n
L water 87.00 11.94 von Dardelé;9)
result = 7 u sec,

As indjicated above, the thermalization ftime constant determined
by the eigen value method agrees with the independent results of other
authors.

The case of the heavy gas moderator willmnot be discussed here.

It is discussed in detail in the following chapter.
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IV. Determination of kafk]

Since the experimentalists are interested in the ratio of lo/kl,
in order to estimate the contamination of Ay by A; in their measurements,
we shall calculate this ratio for a given example. We shall take the

(15) for beryllium assembliegs. We

experiments of de Saussure and Silver
assume the following constants for beryllium.

YoV, = 0.288 x 107 /sec

a0
M, = 0.36 cm™t
22 - 1,05 x 107 erfsec.
Jx
Ay = 0.288 x 107 + 1,25 x 10° B2 - 0.8653 x 10° B (4.32)
Moo= 30.088 x 102 + 1.458 x 10° B® + 0.865% x 107 B (4.33)

We have the following results for various size assemblies listed
in Table L4.3.
TABLE 4.3

COMPARISON OF Ay AND 2 IN BERYLLIUM

No. B (10%m™?) 2, (10 /sec) 2, (103/sec) A/

1 0 0.288 30,088 9,57 x 10~

2 1.05 1.589 31.627 5.02k x 1072
3 2,02 2,778 33,068 8.40 x 1072

L 3,31 4,331 35,009 1.257 x 10”7t
5 5,36 6.739 38,152 1.776 x 107%
6 7.18 8.817 41.002 2.150 x 10T

In Figure 4,1 we have plotted ko/kl.against B° obtained from

(4.32) and (4.33) equations for beryllium assemblies used by de Saussure
(15)

and Silver in their pulsed neutron experiments. For the smallest
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Figure 4.1 Variation of ho/ll with B2 for Beryllium.
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assembly of geometrical buekling, B°  equal to 7.18 x 102

el
em o, ko/kl
is equal to 1/4,65, This clearly demonstrates that the contribution by
the first and other higher eigen values are small compared to the zeroth

eigen valwe and, thus, may be neglected,

V. Determination of M,

The newtbtron thermalization parameter is characterized by the
int 1 M».
integral Mo 0 %0 N
~ . X 1 R TN 2!
= [ [ me zsc) e-€)" Fle—E) de'de
° 2
Nelkln(5 ) proposed the determination of its value from the measure~
ment of the diffusion cooling coefficient. We propose an absorption method

for determining its value, We shall discuss the merits of the two methods.

A. Diffusion Cooling Method

Equation (4.22) relates M, with Co, the diffusion cooling coefficient.
-1
Cc = 4 D=Ue Noi (Nb#\/oo)

The determination of the diffusion cooling coefficient depends on the
accuracy of the determination of the decay constant Ay, glven by Equation
(%.19). A small error in A, can cause a large error in the value of Cj.

The diffusion coefficient is assumed to be independent of energy
in Equation (4.22). This is not rigorously true at low energies.

The geometrical buckling, B2, depends upon the extrapolated
distance, The lack of complete knowledge of the extrapolated distance
introduces a small uncertainty in the determination of B2.

Equation (L4.22) has been obtained considering only the fundamental

spatial mode. The effects of higher modes have been entirely neglected.



A rigorous determination of M, should be based upon the corrections
for the finite medium effects introduced by the leakage and boundary. The
above method is handicapped due to lack of information for obtaining these

corrections.

B. Infinite Medimm 1/v Absorption Method

For a very large assembly, which may be considered as infinite,

two eigen values Ag and A were given earlier,

-1
Ae = 2a,Un 3 A1z 2g,Ve T MQWQOL@!:L*(WZLTLWM“W%JJ

In the presence of a small 1/v absorber, )1 >> ko, Then the final decay
of the spectrum is governed by the zeroth eigen value ko.

If we increase the l/v absorption by using boric acid in water,
for example, then A becomes comparable to Ay, The absorption term in
the expression of 7 becomes larger than the thermalization term. In that
case the final decay of the spectrum is governed not only by Ay but also
by M. It is possible to determine Ay &nd Aq by analyzing the decay curve.
Since the absorption term is known, M, can be determined rigorously.

This method avoids the finite mediim corrections but requires
intense neutron sources, as a large amount of @bsorption will be needed
before the decay can be governed by A, and K

In the next chapter we shall give an estimatbe of the absorption

required for determining My for the heavy gas model.



CHAPTER V. NEUTRON THERMALIZATION IN THE HEAVY GAS MEDIUM

In the fourth chapter, a general method to obtain eigen values
for any physical model was discussed. The explicit expressions for the
zeroth and the first eigen values were obtained, considering only the
first three energy transfer moments. In this chapter, the problem of
the heavy gas model will be discussed in detail. Wigner and Wilkins(53)
derived the scattering kernel based upon the Maxwellian distribution of
velocities for the atoms of the moderator. ©Since they ignored the chemi-
cal and crystalline effects, their kernel can be used only for the mono-
atomic gases. As will be shown in this chapter, energy transfer moments
numbering more than three involve terms of the order of (l/Ae), where A
is the mass of the scattering nucleus. For the case of a heavy gas,
therefore, the energy transfer moments higher than three can be neglected.
This leads to the reduction of the integral equation into a differential
equation. The differential operator of the heavy gas model has the associ-
ated Laguerre polynomials of order one as its eigen function. In the case
of a medium having l/v absorption and of known energy dependence of the
diffusion coefficient, the results can be obtained to any degree of accuracy,
and all the eigen values can be determined. We shall determine the first
three eigen values Ay, M , and Ap. The zeroth eigen value was determined
by’Héfele and Dresner.(l9) The first eigen value, Ay, and the associated
eigen function, wl(E), are obtained here rigorously.

I. Transformation of the Integral Equation
into the Differential Equation

We have already outlined the method for the transformation of

the integral equation into the differential equation in Chapter IV.

-56-
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Rewriting Equation (4.6)

LU ?_SU%EQ ME) = - {Za_(E) + D(E) 69‘} YEet) ME)
+ o% NI O (GO S (€) MEE) Ay(E)
=1 Kl "3EK

Where Ak(E) has been defined previously as the k-th energy transfer moment.

For the heavy gas model, we have the following values for the

various energy transfer moments, based upon the Wigner-Wilkins kernel.

SS(E) Ae = Z¢(E)

Z< () A = R Zs, r‘(e?-E)
SJE) Ry =4 HE Ss, (5.1)
T Ak = (M) fr K
2 N2
M = (A)

Substituting these moments into Equation (4.6), we get Wilkin‘s(54)
differential equation.

AL g zgjéfft) M(E) [ E 3 V(E t) +(§2 E) QV(E{-)
U ZSQ

_ g ., { Sa(E)t D(E) BLE W@f)j ME) (5.2)

The heavy gas differential operator has as its eigen values the

associated Laguerre polynomial of order one. This result has been used

by Hafele and Dresner(l9) in their derivation of the diffusion cooling

coefficient. Kazarnovsky et al,(zu) also made use of this result in
their studies.

The energy portion of the differential operator in Equa-

tion (5.2) satisfies the following equation, according to Murphy and
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Margenau<30>
¥ 3 (v (P
[E$n T @E)E L) ==nLnE) i3

where Ln(l) (E) is the associated Laguerre polynomial of first order.
'n' is the eigen value associated with the n-th eigen function. The
eigen value takes the following values: zero, one two ....

We make the following ansatz:

- A{:—t (1
Pet) = Fe T an LnlE) ME)

5.k
blot) =0 5 P(oEt) =0 tort>o0 G4

Substituting the above ansatz into Equation (5.2), multiplying

by Lm(l) (E) and integrating over all energies, we get

[z < Ait T an: { swusao-%vgwmm@&&nzi}.o@j)

U

We have used the notations introduced in Chapter IV. A new
symbol, Oyn 1s introduced in Equation (5.5). It is the Kronecker delta

function.

(?O (.) £
J ln(B) Ee Lm(E)dE = Spn (5.6)
0

The secular determinant given by Equation (5.5) is as follows

.’Y‘ Smn + (Eqa - 7\; U‘o) WWH+@82?mml:O {5.7)

g “So



II. Determination of Eigen Values

For the case of a known diffusion coefficient, all-the eigen
values can be obtained, since all the matrix elements are known. Hifele
and Dresner(l9) obtained the zeroth eigen value and the diffusion cooling
coefficient 'c' by expanding the secular determinant in the minors of the
first row. This 1s possible because the off«diagonal terms contain B2
or its higher powers. It is not possible, for the case of higher eigen
values, to do higher order calculations except by tedious numerical cal-
culations.

For the infinite medium having zero absorption, A, equals zero,
therefore, the next higher eigen value, Ay, becomes important. It governs
the rate of thermalization in this case. If we use the assumption of zero
absorption and infinite medium, then Equation (5.7) reduces to the follow-

ing simple determinant.

" emn = i)\zsnu_o Wmn ) =0 (5.8)

The two by two determinant is obtained from determinant (5.8),

by putting m equal to zero and one, and n equal to zero and one.

_ AWoo _ AWot
g Z&b(fb E szUb

‘
|
% -0 (5.9)

e (- a)

7\0".:-0 S )\| = NOo Wli_wé—fz: (5.10)
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If we substitute the value of My equal to hgzso into Equation
(4.21), it then becomes identical to Equation (5.10) for the heavy gas
model. By expressing the secular determinant in the minors of the first

row, we get matrices of the k-th order, for n equal to k.

K K
K
[)\Woo ;T_ O<ym — o1 19 T/_O(nn""""_“OkO(KO T]"o(h;\‘]:o@.ll)
- K11 pz Apx h=1
where o(my‘ = A Wmn
0( nn e - n + x Wy\n
k
;Z/dhn = o<11‘ dﬂi"'“' 0<KK
This leads to the following equation for A.
K 2,,%

The above equation can be reduced to the following two equations.

A= 0 (5.13)

_ A >\Wn?5
Weo = 7 — N+ AWnn (5.14)
m=1

A equals zero gives the zeroth eigen value, therefore, we have
the final equilibrium distribution constant in time. Equation (5.14)
gives the first eigen value, which determines the rate of thermalization.
We have calculated the following eigen values in various orders. They

are listed in Table 5.1.



-61-

TABLE 5.1

EIGEN VALUES IN HEAVY GAS MODEL

Determinant A A (82s Vo) Ny (626 v0)
2 x2 0 1.506 -
3x3 0 1.329 4,088
L x b4 0 1.274 -

We have calculated the first eigen value, kl’ in various approxi-
mations. It is guessed that the next value of A will be within two per-
cent of the value for the four by four case. Ao has also been calculated

to estimate its relative importance compared to kl.(38)

III. Determination of Eigen Functions

The eigen functions associated with the eigen values A, and A
will be determined. With the help of Equation (5@5> all the coefficients

api for the i-th eigen value can be determined. Rewriting Equation (5.5)

ﬂ'ALtﬂwQ-"ﬂS -&2\—[,— Wmn -
& L Z m{ mn E'ESDU,O m }]‘0(5.8)

Zeroth eigen function o, (E).

The zeroth eigen value, A

73]
Z_ anoh 5mn =0
N=zo

o2 18 equal to zero.

This leads to all app equal to zero, except for n equal to zero.

Qoo F0 Apne = © For N> L
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The zeroth eigen function is ¢ (E) = de E e
This eigen function is the Maxwellian distribution.
First eigen function ¢ (E)

The first eigen function associated with the first eigen value
kl is obtained by determining the various coefficients, any- Using the
b x L case, the ratios of various a,j's to agp's have been determined.
The coefficients;all/aOl, aEl/aOl and a3l/a01 were evaluated. With
the help of these coefficients we construct the first eigen function in

the following manner.

¢,(E) ~ E¢ Qoq [ L% L‘”
+ Oii LU) (E) $ooe j (5.15)

aoj_

The following set of equations, obtained from Equation (5.5),

was used to obtain the above coefficients.

- {Cloj_ Woo + G141 Woi + gy Wog + A4 No3j =0
ffs(}fo

- Qo1 Ad N10+Qli<1 Wii) Qgs AL Wig - Az MW=
QZSU’O ZSU'O $§_g
A ge-Q1t A e, +q°?1(_<2_ Wge)- A3 AL g,z d516)

"Qol
3 ‘So Vo §E Fo &V

s

21 a4 Dablai- g W3a +q - A wgz)zo
-Qop +i— W3o 11 é‘"@» 31 (3 X 33)

&50 é ESU-O

The last three equations were used to obtain all/aOl: agl/a01

and aSl/aOl' The values of these coefficients are listed in Table 5.2.
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TABLE 5.2

COEFFICIENTS OF THE FIRST EIGENFUNCTION

Coefficients Values
all/aOl -2.127
an1/a01 -0.7516
aBl/aOl -0.3515

The first equation may be used to determine the contribution
of these coefficients to the eigen function. The first equation of get

(5.16) is as follows:

A1 Woq +
a

g1 N a (
—= W0y + cyh —_- 5.17)
1 dOi ——-—-—qa W03 - 1/\/00

Substituting the values for the coefficients from Table 5.2

and the values of the matrix elements wﬁn from Chapter IV, we get

Clog Cpq 921 Wos = - 0:4gSIT (5:18).
and — Woa = ~05/F

The difference is about three percent.

Substituting the values of the coefficients into Equation (5.15)
leads to

_E
4%(5) = Ec a,, [-4.013+3860SE-084gsE”  (5.19)
+ 0.0293E2]



Bl

The adjoint of the above eigen function ¢1(E) is

¥ _ VP )
cb\ () = Qot [-4:013+38605E-0 568SE (5.20)
+ 0:0293 E? ]

The eigen functions wO(E) and @l(E) have been numerically deter-
mined for different values of energy. In Table 5.3, these values are

listed.

TABLE 5.3

EIGENFUNCTIONS IN HEAVY GAS MODEL

Energy (KT) 9o (E) = EePagg 01 (E) = Ee Bf(E)ag;
. X aOl
0.1 0.09 -0.327
0.2 0.16k4 -0.535
0.3 0.222 -0.646
0.4 0.268 -0.686
0.5 0.303 -0.674
0.6 0.329 -0.62k
0.7 0.348 -0.549
0.8 0.357 -0.455
0.9 0.366 -0.358
1.0 0.368 -0.255
1.5 0.335 0.1998
2.0 0.271 0.452
2.5 0.205 0.522
3.0 0.149 0.486
4.0 0.073 0.308
5.0 0.03k 0.158



The zeroth eigen function is a pure Maxwellian distribution
with a maximum at 1.0 KT. On the other hand, when one examines Ql(E),
one discovers that it has a maximum at about 2.5 KT and a minimum at
about 0.4 KT. The zero of the curve occurs at 1.3 KT.

The eigen value method discussed in the fourth and fifth chap-
ters does not give the ratios between the amplitudes of the various eigen
functions. It does give however, the eigen values and also the shape of
the eigen functions, accurately. In order to obtain the ratios between
the amplitudes of the eigen functions, one must have the complete knowl-
edge of the function ¢(E,t) at some time. In the case of pulsed neutron
source assemblies, this information is not available unless extensive
numerical calculations are made to generate @(E,t) at different times.

In the next few chapters the results of extensive numerical calculations,

carried out to generate ¢(E,t), will be given.



CHAPTER VI, THE TIME DEPENDENT ENERGY SPECTRUM IN THE INFINITE MEDIUM

The rigprous solution of thé time dependent neutron énergy
spectrum can only be given by numerical methods. The analytical methods
have not proved to be sufficient to answer all questions, due to con-
vergence difficulties. The fast neutrons exhibit l/E energy behavior,
and the slow neutrons have Maxwellian distribpution represented by Ee'E.
It has not been found possible to represent the complete behavior of
neutrons in all the energy intervals by a single function.

In the fourth and fifth chapters we used the eigen value method
to study neutron thermalization. Though elegant to use, the eigen value
method has its own limitations. It can not give the complete time
behavior of the neutron energy spectrum, unless one has the following
information,:

a) A complete set of eigen values Mgy Ay eswe Ay eees

b) A complete set of the corresponding eigen functions

Pos @1 eeee Oy

c) A boundary condition to determine the coefficients of the

eigen functions.

We used the associated Laguerre polynomials of first order
to determine the eigen values. In the case of the general model, we
limited ourselves to the first two Laguerre polynomials, due to the lack
of information about the higher energy transfer moments. In the case

of a heavy gas, however, we used the first four associated Laguerre

polynomials of the first order. It is not easy to get higher eigen

66~
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values than kl’ for crystals and liquids, unless the problem of the
scattering kernel is rigorously solved. . For the heavy gas model, it is
possible to determine all the eigen values and eigen functions analytically.
This, however, would require the expansion of the eigen functions by =a
_large number of laguerre polynomials. The eigen value method is useful

in determining the lower eigen values and elgen functions but is in-
adequate to determine the coefficients of the eigen functions due to

lagk of accurate knowledge of the boundary conditions.

We generate the neutron distribution function @(E,t) numerically
in the following pages, for a few interesting cases. With the help of
this distribution, we shall determine the thermalization time, the rate
of thermalization, the equilibrium spectra and their decay rates. The
diffusion cooling phenomenon in finite media will also be studied. We
propose, in addition, to test the validity of the statement, used by
earlier workers in the analysis of pulsed neutron experiments, that "after
sufficiently long time the asymptotic neutron energy spectrum can be

given as follows:"

et
blet) = ple)e

I; Details of the Numerical Method.

We shall discuss, in this section, the details of the numerical
method used to generate the neutron distribution function tp(E,t)° The
electrical analog computer was used to obtain these distributions. We

shall use the heavy gas model for our problem. In the fundemental spatial
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mode, the time behavior of the neutrons in the above model is given by

Equation (5.3). Rewriting it, we obtains

_ (.t DBV z#@u

We solve Equation (6,1) using the multigroup method. For one
.group of problems, the energy interval between E = 10KT to E = O is
divided into fourteen groups. For the other group of problems we used
twenty groups, in the above energy interval., In the latter case, the
energy interval was divided in the following manner. Between E = O and

E = KT, ten groups of 0.1 KT interval, and between E = KT and E rlO KT,

1l

ten groups of 10 KT interval, were made,

The functions; EﬁEﬁEt‘ and §%;ﬁf5ﬁ) for each group are
expressed by the finite dlfference method in the following way. ILet
AEm'be the energy interval between the (n + m) th and n th groups; let
AEm, be the energy interval between the n th and (n - m) th groups. If
Pnem's P and @, represent the distributions for n-m, n and n+m groups

respectively, then we have for é:%})
2E/Nn

%%)n; Ji[qum"@) + Qb qbﬂm] (6.2)

o Em AE !

The above expression has been employed due to different group
intervals between the (n+m) th and n th groups and the (n-m) th and n th

Eroups .
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(? > s we have the following expression:
2ES

d% ¢H m] (6.3)

(bE"' n .QAEMMEJ: “E’Z;’;] " 2AET,

The above expressions are substituted into Equation (6.1). This gives

a set of coupled differential equations.

3/:; 3/
I .1 En

¢VH—VH[ AEMCAEM'I-AE.MJ) * R AEw

3y 9(4Em+4 Em') ~ 471 1N
t Qt%] [ En 1(“ 4B QB (AEmMTAE, ) 2<AEm‘Z ”

1
+ Ent 4= xcem” (6.4)

-

) Y : & Em - Em - X :éwiaﬂ.
+ CPM ” L A Eqp/ (4Em+t AE,, 1) gAE;n:[ 2t

M‘JU’ It}

The above equation is the representative of the n th group,
which is coupled to the (n+m) th higher group and the {n-m) th lower
group. We have expressed the energy in KT units. The symbols introduced

stand for the following quantities,

(6.5)

P
\((EY\) — [ ZQ(EH);;-H ?J( En) B‘J 6.6)
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Equation (6.4) is the basic equation for generating ¢(E,t).
We solve the set with the help of the analog computer, using time as the
continuous variable.

We use the following boundary conditions for generating the
solution.

1. Neutrons of zero energy have zero distribution at all times.

p(0,%) = O for t >0
2+ The neutron distribution function at time t = ES is given.
(t; ig the mean slowing down time for the source neutrons to have final

energy in the interval Ep to ET/a)' In the third chapter, we calculated

this distribution. Let thig given distribution be represented by S(E,t)

—_ - E~ -
(E ¢t = S(E-ts)A [I1-L—=] .
S(EH) Sa-0 E- C >

The neutron distributionnfunction using the above source
condition S(E,t) will give the complete time behavior of the neutron
energy spectrum, for times greater than the mean slowing down time Eso

We have generated the distribution function @(E,t) for beryllium
and graphite 1in the following cases.

A. TInfinite medium, zero absorption

B. Infinite medium, l/v absorption

C. Finite medium, zero absorpiton

a) Graphite - constant diffusion coefficient.

b) Beryllium - energy dependent diffusion coefficient.



~71~

The asymptotic behavior can be used to obtain general results
for any other heavy medium in the above cases, except for the special
case of beryllium. This is possible since the initial source condition
does not influence the asympototic behavior, which is given by the
physics of the medium. In order to transfer the distribution function
from the known case to the unknown one; we have to carry out the following
transformation for the time and geometrical buckling variables.

et to, B , é’e /QE%% and Do be the time,
geometrical buckling, average logarithmic energy decrement, free atom
scattering cross sectlon, and diffusion coefficient respectively, for
the known medium., For the unknown medium)the corresponding quantities
are tx ’ LBOQ');( > éx jtzsq)xaml D X * The relation between the

time scales for the two cases is:

(Zso
to [ < (?:o) ] (6.7)

When the diffusion coefficient 1s constant, we get a relation-

tx

i

ship for the geometrical bucklings by eguating the leakage of neutrons

in the two cases.

.9
/ —— BO_ .

IT. The Infinite Medium, Zero Absorption Case.

In Figure 6.1 the neutron energy spectrum at different times

in the interval of t = Es to t = 350 + ts micro seconds has been plotted

for beryllium, In determination of these spectra, twenty group calcu-

lations were used. For graphite we obtained the spectra in the time in-

terval of t = Eé to t = 510 + t, micro seconds, using fourteen groupsa(39)

S

This is plotted in Figure 6.2,



NEUTRON DISTRIBUTION, ¢ (£, #)

-72-

100 1
1= U
t =7 +20pusec Ml
50
[ 1=1+350 usec e \A\\
yavd / N\
20 /
I/ / \ \
\
/ / \
/ / W
10 / / \\\ \
\ / / \
_ / \
1= 1 +100 psec / |
5 [ | | / \
| =7 +50 psec / \

/l

2 / \

//
05 | / \
/ —=MAXWELLIAN SPECTRUM
/ =14 psec
0.2
0.4
o 0.2 05 1 2 5 10

ENERGY (KT UNITS) (£;)

Figure 6.1 Time Behavior of Neutron Energy Spectrum in
Beryllium for Infinite Medium and Zero Absorption.
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The energy spectrum at earlier times approximates a Gaussian
distribution, but converges finally into the Maxwellian distribution.
The degree of convergence is very good. After attaining the Maxwellian
distribution, the neutrons retain this spectrum at all further times.
In the non-absorbing infinite medium, the equilibriumASpectrum is the
Maxwellian spectrum. This is a basic result of the H Theorem of
Statistical Mechanics and holds good for any scattering model. It is
also consistent with the detaiied balance theorem. A verification of
this important result is furnished by the distributions plotted in

Figures 6.1 and 6.2.

A. Asymptotic Energy Spectrum

The time behavior of a few energy groups is given in Figures
6.3 and 6.4. We have plotted the behavior of the individual groups in
order to demonstrate the equilibrium state. Parallel curves indicate
the existance of the equilibrium. The slopes of these curves indicate
that the spectrum is constant in time after a certain time known as the
thermalization time. This thermalization time will be defined and dis-
cussed subsequently. The energy groups having energy equal to, or lower
than one KT, always increase in time till they reach the equilibrium
state. The groups of energy higher than one KT increase first, reaching
8 maximum value beforedeca&ing to the asymptotic value.

It is interesting to know the rate with which the energy groups
are reaching their asymptotic distribution. The curves in Figures 6.3
and 6.4 provide excellent dats for determining the thermalization time
constant. In the fifth chapter we have determined Ay for the non-absorbing,

infinite heavy gas model. If the contribution of the eigen values higher
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than )y is neglected then the distribution function will be represented

as follows.
| | _ Mt
Plet) = HE) + dle) e (6.9)

The first eigen value, kl,.gives the thermalization time constant. We
éhall fit our data to the type of distribution given by Equation(6..9).
The exponential fit of the distribution function is discugsed in de-
tail in a following section of this chapter.

B. The Thermalization Time.

The thermalization time may be defined as the total time
required by the source neutrons to have slowed down and to have been com-
pletely thermalized, so as to attaln the equilibrium distribution and
to retain it for all times thereafter. It can be determined with the
help of Figures 6.3 and 6.4 for beryllium and graphite, respec{:ivelya
It may be noted that the precise determination of the ﬁhermalization
time is not possible. A good estimate, however, based upon the slopes
of the curves mentioned can be given. The uncertainty involved is be-
tween five to ten percent.

For beryllium, the thermalization time can be taken as equal
to 100 micro seconds plus 14 micro seconds, the mean slowing down time
defined previously, meking the total equal to 114 micro seconds.

Kothari and Singwi(27) report the thermalization time in beryllium to be
about 145 micro seconds. The time required by the neutrons to acquire
the moderator temperature 310K from 2000°K, was calculated by these

authors to be about 130 micro seconds.
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We estimate the thermalization time to be equal to about 240
micro seconds in the case of graphite. It takes about 200 micro seconds
for the thermalization process and 38.6 micro seconds for the slowing
down process, rAntonov gﬁ_él,(g) determined the thermalization time to
be equal to 200 mlcro seconds, Beckurts(u) gave the estimate of the
thermalization time constant in graﬁhite equal to 180 ¥ L0 micro seconds.
If one were to take the thermalization time constant to be of the same
order as the thermalization time, then the results of Beckurts agree
with Antonov's results. Both values were obtalned experimentally,

The beryllium curves were obtalned using twenty energy groups,
with the help of the 0Osk Ridge National Laboratory analog computer.,

In the case of graphite only fourteen groups were employed. This problem
was carried out on the analog computer of the Wuclear Engineering De-
partment of the University of Michigan. It is interesting to note that

the estimate for the thermalization times for beryllium and graphite

given by the neutron distributions @(E,t) are of the same order as

given by the other authors. It may be suspected that the thermalization
time is independent of the nature of the scattering kernel: and'depends
upon the mean velocities of the initial and final distributions., This
statement is of a speculative nature. The agreement between the results
based upon the heavy gas model and the results obtained for the crystalline

medium, forces one to conclude the above statement.

C. The Exponential Fit of the Distribution Function o(E,t)

We fit the distribution function ¢(E,t) as a sum of two ex-
ponentialss We use the beryllium data in the interval of 60 mierq seconds.

- Aot - At
Cb(E,t) = Ble)e +¢,>(E)€ | (6,10)
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Since Ao is very small (around 0.1 x lﬁgseé—l), the above expression re-
duces to Equation (69). . The fit was made using Cornell's methodu(lg)
It involved the determination of ¢O(E), ¢1(E) and Ay, which correspond
to the zeroth eigen function, first eigen function and first eigen value
of the analytical method. We record these quantities for each energy
group in Table 6.1,

The arithmetic mean of the decay constant xl is equal to 4,75 x ZLOl+
seo—l in beryllium. When expressed in terms of é}é@blfb vunits, Ay 1s
found to be 1.176 éﬁfsaub . The reciprocal Ay defiped as the ther-
malization time constant, is 21.05 micro seconds in beryllium. For
graphite t.y 1is 56.8 u secs. On the heavy gas model, tiy for beryllium

(27)

given by Kothari and Singwi is 21 p secs.

The examination of ¢1(E) indicates that it hasg maximum between
2 and 3 KT, at around 2.5 KT, and a minimum at O.4LKT. The zero is at
about 1.3 KT. We plot @O(E) and @p (E) in Figure 6.5,

From the values of ¢n(E); @1(E) and Ay listed in Table 6.1 we

can construct neutron distribution function @(Egt) for times greater than

60 p secs by the following equation.
—Ai(t-80)
qﬁ(z,t) = gf)ece)-— b e 6.1)
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TABLE 6.1
NUMERICAL VALUES FOR ¢p and @) IN A HEAVY GAS
MEDIUM OF ?BERYLLIUM)

E(KT) 90 (E) 9y (E) A\ x 1077 Sec™t
0.1 - 10.13 -3.09 0.448
0.2 1842 -b.79 0.1k6

0.3 25,1k -5.22 0.456
Ok 30.59 -5.39 0.472
0.5 34.29 -5.03 0.479
046 37.10 I 495 0476
0.7 38,7k ~3.86 0.490
0.8 40,18 -3.12 0.496
0.9 40, Th -2.37 0,518
1.0 41,0k -1.62 0.503
1.5 37.89 1.635 0.439
2.0 29,07 3.122 | 0.461
340 1364k 2.953 0.476
40 6.19 1.78 0.483
5.0 2.53 0.903 0.L477
640 0.957 0.438 0.477

Arithmetic mean of Ay equals 0,475 x lO5 sec. T
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D, Comparison Between the Analytical and Numerical Results.

The analytical results obtalned in the fifth chapter for the
heavy gas model, by the eigen value method, are compared with the numerical
results determined in the previous section.

1.176 éESQUb Numerical result for Ay by:the ahalog computer
(6.12)
1.2738 EZSOUB Analytical result for Ay by the eigen value
method |

The difference between these two results is about eight per-
cent, The analytical value will decrease when more than four Laguerre
polynomials are used, thus bringing the two values closer together. In
Figure 6.6, we compare @l(E) obtained by the two different methods. The
agreement is very good on the low energy side, but is only fair on the
high energy side. The analytical curve will converge to the numerical
curve when a large number of Laguerre polynomials are used to describe
the first eigen function. We normalize the analytical and numerical
distributions, ¢1(E), at 0.4 KT. The numerical curve has a minimum at
0.4 KT, a maximum at about 2.5 KT and zero at 1.23 KT, whereas the
analytical curve has a minimm at 0.4 KT, a maximum at about 2.5 KT
and zero at 1l.27 KT.

In addition, we also compare @O(E) given by the ahalytical and
numerical methods,in Figure 6.7. The analytical method gives @o(E) equal
to a pure Méxwellian distribution. We use the values of @O(E) as listed

in Tables 5.3 and 6.1 for purposes of comparison.
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III. The Infinite Medium 1/v Absorber

It was pointed out in the fourth chapter that the asymptotic
energy spectrum is Maxwellian only in the presence of a small l/v absorber,
and not for a large absorption. We give the ratio of lO and M for the
various valyes of absorption, for the heavy gas model, in Table 6.2,

KO and kl are given according to the following equations.

Ao = Zalo = A& Zs,Ua (6.13)
Az (At ' &7 3] ) QZSOU'O (6.14)
TABIE 6.2
A
THE VALUES OF Kl FOR DIFFERENT ABSORPTIONS
0
A o
M
0.0 s
Oil 13'74
0.4 4,185
lsO 2027
5,0 1.2548
10.0 1.12738

We conclude from Table 6.2, that A is of the same order as

A, for A larger than 1.0. The importance of this result has been discussed

0
in Chapter IV.
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The neutron distribution function w(E,t) has been generated
for various values of the absorption. It was not possible to obtain the
distribution for A larger than O.4. This was due to the rapid decay of
the spectrum. In Figure 6.8 we plot the energy spectrum at 300 micro
seconds, for the different values of absorption. The spectra were nor-
malized for E = KT. All the cases have the same spectrum except for
the case A = O.4. The agreement is very good on the low energy side, but
not on the high energy side., The neutron distribution for high energy
is so small that the uncertainty of the computer data becomes of the order
of 15 to 25 percent of the actual value., The deviation on the high energy
side may, therefore, be neglected for A equals O.k,

The decay constants calculated from the distribution function

for the various values of A are given in Table 6.3,

TABLE 6.3

THE DECAY CONSTANTS FOR DIFFERENT
ABSORPTIONS: IN THE INFINITE MEDIUM

A M (sec™) A (sec™)
0,08 2,850 x 103 3.56 x 10*
0.10 3,572 x 103 3.57 x 10%
0.20 7.185 x 103 3.59 x 10"
0.40 14,275 x 103 3.57 x 10t

The constancy of A, indicates the decay rate to be proportional

0

to the amount of absorption.
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CHAPTER ViI, THE TIME DEPENDENT ENERGY SPECTRUM IN FINITE MEDIUM

The study of the time dependent energy spectra in the finite
" media assumes special significance in the light of pulsed neutron experi-
ments, In order to understand and interpret the results obtained from
these experiments, it is essential to study the characteristics of the
energy spectra‘existing in the medivm at different times. The experi-
mentalist measures the decaying spectrum (which is integrated over all
energies) as a function of time. We attempt to simulete the physics
of the experiment by determining the energy spectrum as a function of
time. With the help of the multigroup formalism introduced in the last
~ chapter, we generate the distribution function ¢(E,t). We deal with two
cases. One is the constant diffusion coefficient, graphite case and the

second is the erergy dependent diffusion coefficient beryllium case. We

use the heavy gas model for the treatmént of these cases,

I, .Coupstant Diffusion Coefficient, Graphite Case

The assumption of the>constant-diffusion coefficient (D) for
graphite is very good. It follows from the constancy of the scattering
cross section (4.8 + 0.2 barns) in the energy interval between 0.005 ev.
and 1 MEV.(56) The Bragg cut off for graphite occurs at 0.0015 ev, We
may further assume that the absorption cross seetion is very small, since
it is about 0.5 + 0,2 millibarns., It may therefore be neglected.

The energy spectra, as pointed out earlier, are based upon the
determination of the energy transfer in the heavy gas model, The spatial

distribubtion of neutrons is assumed to be given by the fundamental spatial

-88.-
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mode, The higher spatial modes have been assumed to have small contri=
butions, compared to the fundamental one. The time behavior -of the
nevtron energy spectra for a few geometrical bucklings hé.ve_been obtained.
In Figure 7,1, we give the spectra for the case where the
geometrical buckling, B2, is equal to 18,5 x 10 cm,,g. The time behavior
of the individual energy groups has been plotted in Figure 7.2. We find
that the energy spectrum decays with a single decay constant after 250
to 300 micro seconds after the introduc‘tiqn of the source pulse. The
existence of the same decay constant, within two to three percent, for
each energy group, indicates the presence of an equilibrium spectrum.
The following characteristics of the equilibrium spectra have been studied

El; 2

in detail: the equilibrium spectrum; the ‘.aVei:age speed, ; and the decay

constant. A.

A. The Equilibrium Spectrum

The normalized equilibrimm spectra for the following geometrical
bucklings, B> equal to zero, 2.96 x 1073, 4.62 x 1073, 8.21 x 10-3 and
18.5 x lO’"3 cm"z, are recorded in Table 7.1l. For B2 = 0 and B® = 18.5 x
lO~5 cm““2 equilibrium spectra are plotted in Figure 7.3. We note from
‘these curves that the energy spectrum shifts to the low energy side,
with increase in the geometrical buckling, 132. The maximum of +the spectrum
for 32 equal to zero occurs at 1.0 KT, while for the case of B2 equal to
18,5 x 107 cm™2, the maximm sppears at 0.9 KT. We have determined the’

average speed, El' 2 s for different geome"t:bical bucklings.
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B. Average Speed, El 2

The average speed in a medium having the equilibrium energy

spectrum @, (E) can be given as follows.

- J5e "%, ©)dE
c Ve = ==L = (7.1)
[°° hote) de
Yo °
E Ne(E)dE =z @, (E) dE (7.2)

In Table 7.2 the average speed is given for a few geometrical

bucklings,
TABLE 7.2

AVERAGE SPEED FOR VARTOUS VALUES OF BZ (GRAPHITE)
B2 (cmig) Average Speed”

0 1.091k4

2,96 x 107 1.0820

462 x 107 1.0789

8.21 x 1070 1.0655
18,50 x 107 1.0513

* in units of v, = speed for most probsble energy (KT).

1/2

For the Maxwellian distribution, E can be given exactly:

g¥/2 - 1.129 (7.3)

When compared to the case where B~ equals zero, in Table
7.2, we discover that the difference between the two values is about

3.50 percent, which is due to mumerical errors in the solution.



-95-

The average speed given in Table 7,2 characterizes the equilibrium
spectrum. With an increase in geometrical buckling, the average speed

decreases.

1/2
The data given for E / in Table 7.2 has been fitted by the

least square method in the following manner.

E2 =z po®¥g [1- 1.852 BE ] (7.1)

Beckurts(5)also obtained the expression for %— on the heavy gas
PN 0
model by the iteritive process assuming that the equilibrium enérgy spectrum

exists. His results are as follows:

E Yo ~ 1129 { | - -;)E‘L:, B“’-‘} Beckurts"' équafior(5> (7.5)
- 2 (7.6)
Tﬂ - § S0 |

Transforming Equation (7.4) in an analogous manner, we obtain:

Y, -
E’- = |'088 { |- I— P ,

{I- £5 6 g (7.7)
1 = [esa (7.8)
273

The expression for V/vo given in this study has been obtained
after establishing the existence of an equilibrium energy spectrum during

the last stage of the decay of the neutron pulse.

C. Average Energy

The average energy of the neutrons can be defined as follows

Eo
. [ E N (E) dE
E = _ % {7.9)

Eo
{ Mo (€) dE
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The values for the average energy are given in Table 7.3.

TABIE 7.3

AVERAGE ENERGY

B2 (cm'g) Average Energy* (E)
0 1.4176

2.96 x 1073 1.3727

k.62 x 10-3 1.3659

8.21 x 1073 1.3410
18.50 x 1073 1.2960

¥ in units of KT.

The least square fit for E versus B2 gives
E = Iu2s [1- 5615B] (7.10)

For a Maxwellian, E = 1.5 KT, so again there is an error, this time
~ 5% in the 32 = 0 value, However, it is felt that the relative values
may be accurately expressed by Table T.3.

D. ""Neutron Temperature'

The concept of neutron temperature, though useful in characteriz-
ing the spectrum, is not rigorous, except in one case. This case is thé
one of infinite medium and zero absorption, where the final energy distribu-
tion of the neutrons.is Maxwellian. For this case, the moderator t;mpggature
TO may be taken equal to the neutron temperature Tn for the neutron gas. For
the sake of convénience, we extend this concept to the cases of non-Maxwellian

distributions. For the Maxwellian distribution, E is equal to 3/2 KT  and is
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2
also equal to 3/2 KT, for (B~ = 0)e Extending this to the non-Maxwellian

distribution, we get

('-F_E:) Y — In( Bz#o) (711)
&) 2 =g Th (B =2) "

With the help of Table 7.3 we calculate the percentage change in

the neutron tempersture STn/TO for different values of B2. These values
are listed in Table T.lk.
TABLE 7.k

NEUTRON TEMPERATURE

B” (cn™?) (x°)

0 0

2,96 x 1073 -3.17 %
ho62 x 1073 -3.65 %
8.21 x 1073 5,40 %
18.50 x 1073 8.58 %

E. Decay Constant

We have calculated the decay constants from the time dependent
energy spectrum curves. After about 250 to 300 micro seconds, there
exists an equilibrium spectrum for all cases of the geometrical bucklings.
The neutron energy spectrum decays thereafter. In Table 7.5 we list the

decay constants.



TABLE 7.5

DECAY CONSTANTS

8% (cm™?) (secl)

0 0

2,05 x 1073 .84 x 10°
2,96 x 107 7.08 x 10°
3,65 x 1073 9.00 x 10°
4.62 x 1073 10.16 x 10°
6.0k x 1073 13.83 x 10°
8.21 x 1073 17.9% x 10°
18.5 x 1073 34,40 x 10°

The uncertainty involved in the determination of the decay
constants, for all cases except the last one, was within 3 percent. In the
last case, the decay was very fast due to the small size of the assembly
(about 4O émS). The uncertainty in the determination of A was more than
5 percent. This was due to the time lag between starting the computer
and the stop watch. The time scale was 10 micro seconds equals about
2.6 seconds.

It must be pointed out that the error involved in the determination
of \ has to be minimized by obtaining the time measurements accurately. In
the case of small assemblies, the decay is so fast that the uncertainty in
the value of A becomes very large. In Beckurts! experiments on graphite,

the smallest size assembly was of 32 equal to 8.21 x lO'3 cm’2.
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We have made a least square fit uéing the first six values from
Table 7.5 in the range of bucklings < 8.21 x 1073 em™3,

A = 2,29 x 10° B [1 - 2,068 B7] (7.12)

IT1. ZEnergy Dependent Diffusion Coefficient (Beryllium) Cases

In the case of beryllium, Bhandari<7) calculated the transport
mean free path as a function of energy. The diffusion coefficient for
beryllium is taken to be energy dependent as given by Bhandari. The time
dependent neutron energy spectra:are generated for a few geometrical
bucklings. In Figure 7.4, the time behavior of the neutron energy spectrum
is given for BZ equal to T+18 x 1072 cm™2, The behavior of individusl
energy groups is plotted in Figure T.5. The parallel lines indicate the
same decay constant for all energy groupse After about 100 micro seconds
plus the slowing down time, there does exist an equilibrium spectrum. The
neutron energy spectrum maintains its shape, but decays with a single decay
constant lo equal to 8.39 x lO3 sec.-l. We have studied the characteris-

tics of the equilibrium spectrum for a few geometrical bucklings.

A. Equilibrium Spectrum

For the sake of comparison, we plot the equilibrium spectra for

2 in Figure 7.6. The

2 -

B~ equal to zero and _B2 equal to 7.18 x 10 2 cm
energy spectrum shifts toward the low erergy side. The sghift is small
compared to the case of graphite., We calculate the average speed assocc-

iated with the above spectra.
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B. Average Speed ;/Vb or El‘/2

We have already defined the average speed by Equation (7.1).

In Table 7.6 we record the values for the average speed.

TABLE 7.6
Efiﬁﬁ:i Average Speed
0 1,106
2,94 x 1072 1.0941
5.36 x 1072 1.0919
7.18 x 1072 1.0586

The least square fit gives

/2 = 41099 [ 1~o0:5179 Y] (1.13)

The difference between the average speed for the Maxwellian dis-
tribution and for the case of B2 equal to zero, from the Equation (7.13)
is about 1.7%.

The coefficient of B2 for graphite from the Equation (7.4) is
-1.852 compared to -0.5179 for beryllium from Equation (7.l1l). We can,
therefore, conclude that the shift in the energy spectrum toward the low

energy side is larger for graphite than for beryllium.

C. Neutron Temperature

The neutron temperature can be estimated from Equation (7.13).

1/2
The average speed E is proportional to the square root of the neutron

temperature, 1f one assumes the Maxwellian distribution. With this
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agssumption, we have

\
2 2
(1;%) = 1.1099 [1 - 0.5179 B7] (Te1k)
where TO is the moderator temperatire.
-2 -
For the smallest assembly of B° equal to T.18 x 10 en™ used by

de Saussure, the change in neutron temperature is about -7.27%ﬁ

De Decay Constant A

The value of the decay constant for a few geometrical bucklings

has been obtained. These values gre given in Table T.7»

TABLE 7.7

DECAY CONSTANT (BERYLLIUM)

5% (en™2) 2 (sec™)

2,94 x 1072 3,64 x 103
3,96 x 1072 ko53 x 107
5.36 x 107° 6.86 x 103
7018 x 1072 8.39 x 10

The least square fit of A\ versus B2 gives the following expression

for A.

2 2

A o= L.267 x 10° [1 - 0,890 B ] B (7.15)

ITI. Diffusion Cooling Coefficient

According to Equation (2.35) the decay of a pulse of neutrons in
a . non-absorbing finite medium, can be given by the following decay constant.

N = Bv F (7.16)
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(Dv) in the above equation is averaged over the energy dis-
tribution of the decaying pulse in the mediume We expand Dv as follows:
v = (Bv), [1 - CB] (7.17)
where (5;)0 is averaged over the Maxwellian distribution,

C determines the deviation from the Maxwellian spectrum

If the diffusion coefficient is constant, then (fﬁ)o is equal to
(5)0(5)0. We shall determine the diffusion cooling coefficient C using the
following two equations for ¥ and A.

A = (Dv), [1 -8’ B (7.18)

7 o= (¥), [1 - ¥ (7.19)

ii

]

In the case of a constant diffusion coefficient, the two values
of C must be equal. We shall discuss in brief the results for graphite

and beryllium.

Ae Graphite (Constant Diffusion Coefficient)

From two methods, we get the following values of C for graphite,
from Equations (7.4) and (7.12).
C = 1.852 from v
(7.20)
C = 2,068 from A
These two values differ by almost 10 percent. We observe that for (G)o
and (Dv), we get 1.088 and 2.29 x 10° cm*/sec. instead of 1.129 and
2413 x lO5 cm?/sec., respectively. If we make corrections of these
orders to the diffusion cooling coefficients given in Equation(?.EO),

we obtain C as equal to 1.924 (from 1)), and C equal to 1.922 (from V).

We shall consider C equal to 1.922 for graphites
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B» Beryllium (Energy Dependent Diffusion Coeffient).

For beryllium we get the following values of C from Equations
(7413) and (7.15)a

C 0,518 from ¥

(T+21)

H

c 0.890 from A

We shall compare the values of C obtained by Hurwitz and Nelkin(gl)

(19)

and by Hafele and Dresner to our value. We use the following values

for the constantss

ZSo CBe) = 8,28 x _:LO_l em™>
T (C) = 41 x107F em?t
g (Be) = 0.222
é ( C) ccc Based upon heavy gas model
= 0410667

(.DU)(BQ).= 1,26 x 10°/cn® sec
* °
(:'DU'}O (C) = 2.13 x 10° cm®/sec
We use the following formulae, obtained under the constant

diffusion coefficient assumption.

(pU), (0148)

: - (7.22)

Cpp =
< Zs, Vo
Values obtained for graphite and beryllium are as follows:

0. 46
Hol (7+24)
0.459

Q
—~
td
(0]
~—r
I

Q
3
S

b

(1]

|
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Cy N(graphite) 2,102
(7+25)

2,092

1]

CH‘D(graphite)

We conclude from the above study, that the diffusion coolin
coefficient, as calculated in this study, differs by 9 percent from that
of other authorss This observation is true for the case of constaunt
diffusion coefficient. The value of the diffusion cooling coefficlent
obtained from A for beryllium is considerably higher than from v. This
can be explained by the energy dependence of the transport mean free pathe.

The expérimental values of C for beryllium, according to.de Saussure

(15) ()

and Silver and for graphite according to Beckurts are as follows:

C (Be) = 1.1+ 0.9

. (7.26)
C (graphite) = 7.0+ 1

The experimental values for graphite are considerably higher than the heavy

gas model resultse. Bub for beryllium the calculated value for the energy

dependent D(E) is closer to the experimental value than the consbant

diffusion coefficient value.



CHAPTER VIII. THE TIME DEPENDENT DISTRIBUTION IN
THE PULSED MULTIPLYING MEDIUM
In this chapter, we discuss the time behavior of the neutron
energy spectrum, in the multiplying medium. In addition to the decrease
of neutron density, there is a regeneration of neutrons due to the pres-
ence of fissionable material. The process of regeneration is character-

istic only of the multiplying medium.

I. General Formulation

The distribution of the neutrons according to the diffusion
theory approximation can be given as follows, where @(E,r,t) is the

thermal flux. The energy E lies in thermal region.

L @b_d?t<e,nt) = -1 Ta(E) + T5E) - D 7] pLEsse)

t U Ze ] | Q) g (rhr; totiem) dridt
_tl Y/
| (8.1)
+ fzg(_ﬁ’)sb'(‘Eﬁt/r) FESE) dE!
E/
+ SeweCETE)

The external source term Sext(E,r,t) is represented by the delta
function in time. :
Sejt(EPKt) — Sexi:(E)Y) SCt)
Equation (8.1) contains the extra source of neutrons due to the
presence of the fissionable material. We shall assume that the fission

of the neutrons takes place at energy E. The slowing down of the neutrons
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born with fission energy EO is given by the slowing down kernel
alr'er; t'-=1t; EO—eE). We have neglected the effect of the delayed
neutrons, which is about 0.75%. In order to include this effect, the
extra source term should be multiplied by a factor of (1-6), where B
equals 0.0075 delayed neutron fraction.

We define the kernel as follows. The slowing down kernel gives
the probability that the fission neutrons of energy Eq, born at r' and
at ¥, will slow down to energy dE about E at dr about-ﬁ and at a time
dt at t.

Let us make the following ansatz.

ble,rt) = z f P, (E, t)

vi@(r) = —Bi CP,O(V) 3 ciDP(F)‘:O (8.2)

Qp(r) vanishes at a fixed boundaryxf. This boundary is given
by the actual geometrical dimension, plus the extrapolated distance equal
to 0.71 M. The symbol Ay, stands for the transport mean free path.

B% in Equation (8.2) stands for the geometrical buckling for the p-th
spatial mode. We have assumed in Equation (8.2) that the neutron distri-
bution goes to zero at the fixed'boundary'?lfor all energies. That means
that the extrapolated distance is independent of energy.

Substituting the set (8.2) into Equation (8.1) we get

z L+ B;P 2 GLEsL) B)=- rv)ﬁ{ ZalE) + 75(8) +DE) By § Bt
+ z<<c9gb(£t)/“<L->E) dzj

+ E{J f¢(lf)¢ EC)CL(Y—H’. £- th) drdt!
t/ Y/
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We shall use the results of the fundamental theorems of the
asymptotic reactor theory to simplify the slowing down kernel. These
theorems first given by Weinberg(5l) are discussed in detail by Weinberg
and Wigner.(52) We give these theorems in brief here.

First theorem:

This theorem has two postulates.

1. The finite medium slowing down kernel can be replaced
by a displacement kernel. The slowing down kernel is
a displacement kernel in the infinite medium. In the
finite medium, away from the boundary, the kernel can
be taken to be the displacement kernel.

2. The effect of the finite medium is taken into account
by making the distribution zero at a fixed boundary 7.

Mathematically this is expressed as

+% '
[ ) PCrondr= [y BArar Y
R -0

Second theorem:
This theorem states that the non escape probability during mod-
eration in a uniform bare assembly is given by the Fourier
transform of the slowing down kernel.
In essence the second theorem replaces the infinite medium in-

tegral by the Fourier transform.

-!_OO ’ . . /. /) — 9
(V) B Ur-Ndr= 2 Fd Bp) &(r)
2 L) R0 e } - Tk 85) £ (5.5
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Using the results of both theorems, the slowing down integral

can be represented as follows.

—

/ Il N ) .
¢l Et’) F>r: t—t,; E E)drdt’
%g/ /%(r)cpp(,t q (r=r; ; Eo—E)

=3 80 ] 58 ) £ ) gust)ar
P P t/

~

(8.6)

— A

- .
where (‘i/w< BP/ t-t J ED'*E) is equal to the Fourier transform
of the slowing down kernel in the infinite medium with Bp as the Fourier

transform variable.

Substituting Equation (8.6) into Equation (8.3) for the p-th

spatial mode, we get

T Q'a%’égt) = - [Zal8)+ 2 +DE) 8 B (5 Y
+UZHE) [ b (Et)G LB ot B o
h (8.7)

+ [ sd(e) 95/;<E/t) FlESE)dE’
EI

We make the following expansion for the time dependent function.

o o= At
@(E,t) =z qbiof(t-) e

Pp (0,t) =0 §5,9( 0, t) =0

M 1is the eigen value for the i-th energy eigen function, for

(8.8)

the p-th spatial mode. Our assembly is subcritical, therefore, the time

behavior is given by the decaying exponential.
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Substituting the expansion for q)p(E,t) into (8.7)

Z [ —-E- Cb (E) e >\P( ]_ [ZQ+ZS+DBPL]¢(E)Q. i

+) 5S(E')¢(£') & Mitpele) e
(8.9)
T E Z*ngngE) G (Bpi; t-tiEp g Mt

We simplify the slowing down integral.

1 j
t'=

/.

— (th)
Yo BP -t E*Q dt’ (8.10)
_o0

Let t-t' equal tye We substitute this into the integral (8.10).

A— A , toﬂp[
T = | 9,0 Bpl ; tykoeE) € dte
o]

We can identify the above integral as the Laplace-Fourier
transform of the slowing down kernel in the infinite medium with s = - }‘Pi

being the Laplace transform variable.

0 — 2 =St
Ir = J Yo CBpl; toy Ea~E)E dio

T = 'Zi,m( 6%9@ 5 S, Eo—E) (8.11)

We substitute (8.11) into Equation (8.9). Then we get for the

p-th spatial mode and the i-th energy mode:

A PE) T = [ T4t I +D 8 ] PE)

+y-2.’: Cl,oo(Plo, ~A; Eo—)'E)CP(E) -f—jzs F(E-#E) (8.12)
e’ ¢ (e)de’

We have removed the subscripts p and i for the sake of brevity.
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II. The Monoenergetic Case

We specialize Eguation (8.12) for the monoenergetic thermal
case. We assume that the experimentalist is measuring the density of
monoenergetic neutrons. Then the decay constant A is given by the

following expression.

A= (Za+ DB U- UUSe Gu(B - s EE)  (8.13)

In order to use the above equation, we must determine the
Laplace-Fourier transform of the slowing down kernel. The determination
of this transform requires a detailed knowledge of the slowing down pro-
cess. We shall treat two cases, namely, the heavy element moderated and
hydrogen moderated syste@s. In the case of heavy element moderation, we
can use the continuous slowing‘down model, i.e., the Fermi age model.

For hydrogen moderated systems, this model is not applicable, because the
neutron can lose all its energy in a single collision with the hydrogen

nucleus. We require a different model for this case.

A. Heavy Element Moderation. (A >> 1)

On the basis of the Fermi age slowing down model, the Laplace-
Fourier transform is here calculated. We rewrite Equation (8.10).

o0

A 2 ) _ — 2 . /\tO

G (B 5 = A; Eo>E)= [q (Bt Emt)edysy 1)
0

The Fourier transform of the slowing down kernel, in the infi-~

nite medium, can be given in a simple manner as follows:

o 2
— 9 n : ‘ YT
q/oo < B, Ey» E) = 4772[%41// Eﬁ;)v(sm Bg)rj(é-lh)
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The slowing down kernel according to the Fermi age model is

as follows.
ri.
= - et P
Doo (1 E"—)E) (4mz) %2 (8.15)

where T equals the Fermi age corresponding to the energy interval from
E, to E, and p equals the resonance escape probability.

Substituting Equation (8.15) into Equation (8.14) we get
BT

‘?— . - —

Goo (BY E.>E) = P e

When the neutrons are slowirg down, according to the Fermi age
model, the time taken by neutrons of speed Vo to have slowed down to
speed v is as follows.

- o= [ L - L+
ts(U) - .Qgis[ U Uo

It is characteristic of the Fermi age model that all neutrons
having a speed vy at time zero, have the same speed v at the time tg.

Mathematically, it can be expressed as follows.

Cto-ts) (8.17)

— % _Bzzﬂ
Yoo (B tos Ba»E) = € p &

where 8(ty-tg) is the Dirac delta function.

Using Equation (8.15) in Equation (8.10), we get
2

(o @]
= BT . Ato
%oo ( 52—)' —)\; Ee—>E) = B[P € é(to“ts)e dt,
= pe Bfe/\ts (8.18)
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The Laplace-Fourier transform of the slowing down kernel in the
infinite medium, is given by Equation (8.19). We substitute this into

the expression for the decay constant A in Equation (8.13) .

Bz Ats
e

A= U(Zat+ D p?) —Vr2epe (8.19)

If we take into account the delayed neutrons and express

VZ% in the conventional form, Equation (8.19) reduces to

2
- BT ats

, . U
A= U(Za+DB2) -7Mp Zall-pPVe e (8.19)

it

V)
where ’Y) = ZF / ZC;J

Equation (8.19) should be used to analyse pulse neutron data
in a multiplying medium containing the heavy element moderator, i.e.,
graphite or beryllium. It must be pointed out that it is not possible
Atg

to omit the eXponential factor e s unless Aty << 1. This is not true

in the case of small assemblies, which have large decay constants.

B. Hydrogen Moderation (A = 1)

As pointed out earlier, the hydrogen moderated systems can not
be treated on the basis of the Fermi age model. The study of slowing
down neutrons in these systems is still actively pursued. A great deal
of effort is being spent to study this problem theoretically and experi-
mentally. It is well known that the age of the fission neutrons to the
indium resonance energy (1.M4 e.v.) in water is 26 cm?, as determined by

(22)

theoretical methods. The earlier experimental values are higher, as

btained by Hill et al.(20) (30 cm?) and by Barkov and Mukhin(3)
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(29.L + 1.5 cm?). Recent experiments at Argonne National Laboratory
give a lower value of the age, about 27 em®. It must be pointed out,
however, that the Selengut-Gortzel model gives a theoretical value of
30 cm?, in agreement with the earlier experimental values. A discussion
of the various models has been given by Hurwitz and Zweifel.(22>

Due to lack of agreement about the use of a particular model,
we represent the Fourier transform of the slowing down kernel in an

arbitrary manner for hydrogeneous systems.

- 2 K 9ke——m
G C B Eo>E) =P [ Z (=1) B r2*](g.20)

K=o —Cakt)!

- We define the 2K-th spatial moment as follows.
o K+2
gK _ L“‘boo(r Eo>E) Y

-}j Yoo ( 1/ Eo—>E) s

(8.21)

The spatial moments are given by the type of model used to
describe the slowing down kernel. In the case of water and other hydro-
geneous systems Equation (8.20) should be employed. A choice must be
made between an experimental or a theoretical model.

For analyzing pulse neutron experiments in a multiplying medium
moderated by hydrogeneous material, we need the Laplace-Fourier transform
of the slowing down kernel. We have given the solution for this case in

Chapter III. The results obtained were given in Equation ( 3.26) and are

as follows. E"(qu'l'S"‘ U'/D,Bz') dEl
Goo (£58Y 52-0)= 250 e xp =71  zervBR )

[ Zatg) +b + DpBE+ 5.(8) ]

SalE) = 73: (8.22)
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We write the above equatidn as the product of three factors.

Eo 344 dE’
Bexp ~ {f ) za?—mww’e’mzs)fg}
TZq(E)—v\ £ DB TsE)
Eo / /
X exp - 52}‘.__:7_)_2 e (8.23)
{Zao—)\-FU’CDBﬁ-"‘{E’

/

2
(E; BN =

(2]

Lk

X QXP )\j E.’[Zq —)\+U/<D’BL+ZI)]

We simplify the abowe equation.

~ _3 Z \ts
%OO(E J '")\) 2 (8.24)

Equation (8,24) is true only if it is possible to separate the

time and space dependent solutions. We assume that in the exponentials

2

. -B
involving resonance escape probability p and non-escape probability e T,

the decay constant A is small compared to Zgo + v(DB2 + Zg). This leads

to a separation of Equation (8.23) into two parts.

I

exp A 5 E E-)\-t 2‘ao+ u'w'elﬁsﬂ

1 U‘TZ?(EoH- DCE) 8% zs(Eo)}

ZQO+ U.DBZ dET
ZS(F‘,)EXP J;LTQO+ Uy 624"?: /) 8.25)

| Za6H Do) B + Tolte)
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Equation (8.25) can be expressed as the product of two functions,

as follows.

— & ~,
%,(E B -2) = P(E) P(BS-)) (8.26)

The function P(Be;- A) may be regarded as a function of A alone,
. 2 ' .
since the leakage term vDB~ may be neglected in comparison to Zéo + VZS - A

This leads to a simplification of Equation (8.26).

Qoo (E; BE-2) = PBY P(-N) (8.27)

_— ZQQ 'f'U--DB ¢E_

T)(Bz):_fs(@exp-{ L 200+ V(D 2‘+§5)—l E'j (8.28)
[ Za+ (DB*+3)] _

o

assuming Zao+ Y (DR%Z4+ 2s) > A
%(_ A) = e)qo )\i LZM'H/'SS )\)E/} (8.29)
){23Q50)+}&0w
assuming Tao +U Zs=A>> U D BE ; Talk)+%E0.B"

The decay constant in pulse neutron assemblies consisting of
hydrogenous and fissionable material can be given by the following

equation.

A= UZa +0 DB -U7) 5 BE)FON(Rs.30



-119-

It must be pointed out that Equation (8.28) corresponds to the
expression for the Selengut-Gortzel slowing down model in hydrogen. It
is essentially the same expression as derived by Simon(hg) for the case
of constant cross section using the Selengut-Gortzel model for the time-
independent infinite medium problem.

In the analysis of pulse neutron experiments on subcritical

(11)

systems, Campbell and Stelson used the following equation for the

decay constant .

A= U Zq-\»U‘DB?‘—’Y] ZQUU‘ :-P;(.B%') (8.31)

When the expressions for A given by Equations (8.30) and (8.31)
are compared, we find that the factor P(- \) is missing in Equation (8.31).
The effect of this factor is to decrease ?(Bg). Campbell and Stelson(ll>
expressed ?(Bg) as equal to l/l + B°T and obtained T as equal to 21.2 cm?.

If, however, we take into account the correction factor P(- \), then the

value of T increases. We shall determine this correction subsequently.

ITI. The Multi-Energy Case

We shall use Equations (8.9) and (8.11) to study this case.

Combining these two equations, we get

At S S TR
2} M- 2\5_ #,(e) = - {Za(a)"'Z_SCE)f-D(E)B f;b(fc)
+2 2 %Uooc Bz)’w A, Eo>E) 4{_(5‘)
) ) (8.32)
v [ 24ee) e FE=E) e’
El
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A detailed knowledge of the variation of the kernel with the
final energy E is required, in the multi-energy case. This variation
depends upon the physical model used to describe the slowing down phenome-
non. Even 1f the Fermi age slowing down model is used, the problem does
not become a simple one unless a few drastic assumptions are made. In
the final stage of the slowing down process, we assume that the slowing
down time can be an average, Eg. In the energy interval between 10 KT
and 1 KT, the slowing down time tS(E) varies by almost a factor of five.
The slowing down length, however, does not change more than a few percent
in the above interval, thus it can Jjustifiably be given by an average value.

We shall use the above assumptions for simplifying the Laplace-
Fourier transform of the slowing down kernel.

Let us make the following ansatz:

CP (E) = Z an L (E) ME)
d%J(O) =) 4)(00) - 0

For the scattering integral, we shall use the expression given

(8.33)

previously,
: /e % e s
—§5¢<é>+_Ef{ ZE) PLE) FlE=E)ar's I 1 Pt & HEOA)

We substitute ansatz (8.33) into Equation (8.32), then multiply

(1)

by Ly (E) and finally integrate over all energies. Using the notation

of the fourth chapter, we have

“Ct ‘_xiLJmn

- - P
ani L 7 = - ZaoWmn-(PB )mn (8.34)

+ Fmn + Gmn 7]

Te

¢

sV
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0 X~ 2_ )] )]
Gron = §7 25 Goo (BT Es>E1-X) LinM(®) Li®de(5.35)
0

We shall simplify the Gmn integral for a special case.

The secular determinant for (8.34) is as follows:
N 9 _ -
l (Zao‘ Z\LFO) Wwmn + (D8 )w\ -~ Frn~ Gmn \ =0 (8.36)

The solution of the secular determinant (8.36) will give the
values for A. It will, however, require a detailed knowledge of F,. and
Gmn integrals.

For the Fermi age slowing down model, we have:

00 .
A AiB(E) —-B%E R (0
Gmn = | ¥V Zepe Lm® ME) Ln (E) dE  (8.37)
[s) .

As discussed in detail above, we assume:

1. The neutron age TEo—eE does not change appreciably in
the energy region (Ep > E > 0). Ep equals thermal cut
off energy.

2. The slowing down time Eg can be given by an average

value tg weighted over the Maxwellian distribution.

o0

- B -
T = ) ts(e) Ee e

e}

_ Ve _E
f l'-ze dE
0
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On'substituting these values into Equation (8.37), we get
8% AT i 5 "’
Glmy\:[: pe ” e i v 3i by M(B) Ly alE] (8.39)

For 1/v cross section law, Gyn integrals can be evaluated.

IV. Analysis of Experiments

We shall analyze the data given by the experiments of Campbell
and Stelson.(ll) The value of the decay constant A for different geome-
trical bucklings B2 at a concentration of 26.5 grams U‘235 per liter are

given in Table 8.1.

TABLE 8.1
THE VALUE OF THE DECAY CONSTANT FOR DIFFERENT B° vALuEs 1®)
B® cm™? lO'h/sec"l
0.0436 0.550
0.0483 0.630
0,0562 0.70k
0.072 0.883
0.135 1.386
0.192 1.768
0.296 2.358
0.506 3.194
We calculate the experimental non-leakage probability ?éxp(Be)

using the following equation.

9 =
A= USa+UDB + U sq C1- 7] T’cxp(bz) (8.10)
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We use the following values for the constantse.

VY, = 0.48x 10° seec™k for water

VZQ = 0,965 x 10° sec™t for 235 (26.5 gms U235/liter)
n = 2.07

vD = 3.49 x lOu emsect

VZS = 29,48 x th sec™t
v = 2.2 x 107 cms/ sec Thermal neutron speed

—

7 2
exp

We express (B2) as the product of two functions, P(B“). P(-A)

as given by Equation (8.27). P(-)) is calculated according to Equation (8.29).
= 2y =2 o

In Table 8.2 we give Pexp(B ); P(B°) and P(-)\) for different values of the

geometrical buckling, B2;

TABLE 8.2

NON -ESCAPE PROBABILITIES

s Peyp(F2) P() e
0.0436 0.524 1,03697 0.5053
0.0483 0.490 1.0k285 0.4699
0.0562 0.469 1.0480 0. l475
0.0720 00&07 1.0646 0.3823
0.135 0.265 1.0986 0.2412
0.192 0.17h 1.1156 0..1560
0.296 0.060 101676 0.051k
0.506 0.009 1.2318 0.0073

In the region where B2 is less than 0.1k cmfg, Campbell and Stelson

fitted Féxp(Bg) by 1/1 + 5°r and obtained T as equal to 2L.2 cmac(ll)
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If we take ?(Bz) instead of ﬁéxp(Bg) we get t equal to 22.82 cm®. It is

important to note that the P(-A) correction increases r in the right

direction. In small finite systems, the experimental value of ?(BE),

rather than the neutron age, should be compared with the theoretical

calculations. For small systems it is no longer possible to express

?(Bg) as equal to 1/1 + B2T; Equation (8.20) should be used.

In the case of heavy element moderators, P(-\) is equal to

s, The experimental value of féxp(Bg) can be used to obtain the

(26)

slowing down time tge Kloverstrom and Komoto carried out the
experiments on graphite enriched uranium systems and analyzed their

data taking into account the e}‘ts factor.



THAPTER IX., DISCUSSION OF RESULTS.

We have studied the time behavior of the low energy spectrum,
for a pulse of fast neutrons, in a homogeneous medium. Analytical and
numerical methods have been employed to undertake this study. Charac-
teristics of neutron thermalization and diffusion of a pulse of neutrons
in a medium have been determined. The analytical method is based upon
the expansion of the neutron distribution function Q(E,t) for one spatial

mode, in the following manner.

- ALt |
Pcet) = Z e  ai B (9.1)

In the above expansion, @i(E) is the elgen function associated
with the i th eigen value A Each eigen function is expanded by a sum
of an infinite number of associated Laguerre polynomials of first order,
weighted by the Maxwellian energy distribution. The choice of the Iaguerre

polynomial is arbitrary.

I. First Eigen Value

We have given a general formulation of the method for deter-
mining eigen wvalues which characterize the decay of a pulse of neutrons
in any medium. The zeroth eigen value was determined by Singwi.(MB)
The expression for the first elgen value, according to Equation (4,20),

is as follows:

Voo U
- Sa,Uo + Mg Woao
)\fL aoVYo 4<W11W00_N01’;.j (0.2)

M{Wooﬁ_wa} g_*_él;ﬁ'_ﬁiga..(Wol)z
Woo W11 loq - Wo12 Woo Mo \TWeo

-125-
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In a non-absorbing, infinite medium, the zeroth eigen wvalue is
zero, but the first eigen value is not zero and is equal to the following

expression,
Mo WooUe

H (W11 Woo —=We1) = "
= 297 X104 My ( Sec™?)

(9.3)

A1

11 determines the rate of thermalization. The reciprocal of

M, 1s the thermalization time constant, with which the neutron energy

1
distribution approaches the Maxwellian distribution. We have derived
the following relation between the thermalization time constant and

the diffusion cooling coefficient, as given by Equation (k.25).

t = 5 Lo (9.4)
th 7 @ T2

Nelkin(32) derived this equation based upon the concept of
neutron temperature, using the variational method. We have rigorously
derived this expression without using the concept of neutron temperature,
which has been criticized on physical grounds. The thermalization time
constants for a number of moderators have been determined and are found

to be in good agreement with the results of other authors.

IT. Determination of Mp

(32)

It was pointed out by Nelkin that the experimental value
of the diffusion cooling coefficient can be used to determine the ther-

malization parameter M. This parameter is related to the second
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energy transfer moment, as shown by the following equation.

o

% X IR
Mg = f J Zs(&) MEE) FCE>EJ (E-E)dEdE (g,5)
o

Finite medium corrections, coupled with the dependence of the diffusion
coefficient upon energy, limit the usefulness of this method. We have
pointed out the importance of the determination of My by the absorbtion
method. The eigen values for an infinite medium, containing a l/v

absorber, are given as follows.

>\o i 730 U-O
Me Wap Uz (9.6)

NoF 2V + T TE)

For large absorptions, A is comparable to Ao and the final decay of the
energy spectrum is governed by both, not by kO alone, which is the case
for small absorptions. The advantage of the absorption method lies in
the determination of Nb by direct measurement of decay constants, which

can be measured accurately.

ITT. Thermalization in a Heavy Gas Medium

For the heavy gas, we have determined A; and Ay for a non-
absorbing and infinite medium case. The fact that the eigen functions
of the heavy gas differential operator are the associated Ilaguerre
polynomials of first order, simplifies the problem. The two eigen values

for this case are as follows:

A = 12738 i ESOL)'O Four Laguerre polynomials

(9.7)

g

~ 4.088 § Se, Vo Three Laguerre polynomials



-128-

The eigen function corresponding to the first eigen value was also

obtained. The expression for ml(E) is as follows.

. -E _ 4_
ble) = eda, [ 4ols+380E-0569 6" (0.8
+ 01029 E::]

IV. The Time Dependent Energy Spectrum in the Infinite Medium

A unique method of studying the time behavior of the energy
spéctrum of a pulse of neutrons has been developed. With its help,
we have generated the neutron energy spectra for times greater than the
slowing down time. The source at the slowing down time was calculated
on the basis of the Fermi age slowing down model. It must, however,
be pointed out that the results obtained here are independent of the
detalils of the initial source at the slowing down time, In the infinite
medium, we have studied two cases: zero absorption and 1/v absorption.

For the case of zero absorption, we determined the total
thermalization time required by the neutrons to reach the Maxwellian
distribution. The thermalization time for beryllium and graphite was
found to be 114 micro seconds and 240 micro seconds, respectively.
Kothari and Singwi's calculations for beryllium gave 143 micro seconds,
and Antonov et al's. experiments gave for graphite 200 micro seconds.
It is speculated that the total thermalization time depends upon the
mean speeds of the initial and final distributions, and is insensitive

to the scattering kernel. The time constant with which the neutron energy
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distribution approaches the Maxwellian distribution is found to be equal
to 1.176 g 250Us compared to 1.2738 % 2s,Vs , as given by the eigen
value method., By means of an exponential fit, we have determined wl(E)

and have compared it with the first eigen function ¢j(E). The agreement

is fairly good.

V. The Time Dependent Energy Spectrum in a Finite Medium

The finiteness of the medium introduces the effects of leakage
of neutrons. In all the previous theoretical studies, it was assumed
that the asymptotic energy spectrum can be described by a single decay
constant. In this thesis, however, it 1s established that the asymptotic
energy spectrum decays with a single decay constant. The energy spectrum
attains an equilibrium spectrum at about the thermalization time. The
shape of the spectrum remains constant in time, but the amplitude de-
creases., A shif£ of the equilibrium spectrum toward low energy was
observed with the increase in geometrical buckling. This is an evidence
of the'cooling of the spectrum'. The following characteristics of the
equilibrium specta were studied.

1. Average Speed

2., Average Energy E and ' Neutron Temperature'

3. Decay Constant

4, Diffusion Cooling Coefficient

Two special cases were studied: first, the constant diffusion
coefficient case of graphite, and secondly, the energy depenflent diffusion
coefficient case of beryllium. The average speed v and the decay constant
A, when fitted by the least square fit give the 'diffusion cooling-com

efficient’,
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The value for the diffusion cooling coefficient for graphite
obtained here was 1.922. This differs by about 9 percent from the re-
sults of other authors, namely a value of 2,10 for the diffusion cooling
coefficient.

For beryllium, we obtained the following values of the diffusion
cooling coefficient.,

0.52 from v
0.89 from A

Since we used the energy dependent diffusion coefficient, the
two values are not expected to be identical. The results of other authors,
based upon a constant diffusion coefficient, are equal to 0.46.

The Multiplying Medium

We have analyzed the data of Campbell and Stelson's experiments
on U235 and water mixtures. The Laplace- Fourier transform should be
used to analyze the pulse neutron experiments instead of the Fourier trans-
form of the slowing down kernel, -Taking into account this correction,
the age is found to be 22,82 sq cm® instead of 21.2 cm2, as calculated by
Campbell and Stelson.(ll)

The pulse neutron experiments on multiplying media can be used
to determine a large number of reactor physics parameteres: the slowing
down time, the slowing down length, and n. However, the determination
of these quantities requires a careful analysis of the experiments, as

pointed out above.
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VI. Conclusion

The eigen value method is useful in determining the upper limits
for lower eigen values, which characterize the last stage of neutron ther-
malization and diffusion processes. This method fails to give the neutron
distribution function at all times., In order to obtain results of higher
order, a large number of ILaguerre polynomials and the higher energy transfer
moments are required. However, the usefulness of this method lies in its
exactness and in its general applicability. For the heavy gas model, this
method can give exact results of all orders, though the calculations in-
volved are tedious and require large machine calculations.

In addition to the eigen value method, a numerical method to
generate the behavior of the neutron energy spectrum at times greater
than the slowing down time, has been developed. This method has been
applied to the heavy gas model, and the time dependent energy spectra
were obtained for the various cases mentioned earlier. This metheod is
unique, since it simulates the experiment and follows a pulse of neutrons
during thermalization and diffusion periods. The advantage of this
method is that it describes the neutron distribution function ¢(E,t) com-
pletely, provided the initial source distribution is given exactly. It
also gives the correct asymptotic behavior, which describes the last stage
of neutron thermalization and diffusion, and is independent of the details
of the initial source. Results obtained by this method differ by 5 to
10 percent when compared to the analytical results. The limitations of
this method are determined by the machine used to generate these distri-
butions. It might be possible to generate these distributions for the

erystalline model by a similar multigroup technique.



-132-

It should be pointed out that the two methods described are
complimentary to one another.

We have established in this study the existence of an asymptotic
energy spectrum, characterized by a single decay constant Ay. Evidence of
the 'diffusion cooling', based upon the time dependent energy spectra for
the finite media;, has been given. The energy spectrum deviates from the
Maxwellian distribution and shifts toward the low energy side in the
finite media. In the case of an infinite medium, for small absorbtions,
the energy spectrum is Maxwellian and is characterized by a single decay
constant kO‘ However, for large l/v absorption, the energy spectrum is
not Maxwellian, and its decay is governed by two decay constants, one of
which depends upon the energy transfer properties of the medium;

It should also be pointed out here, that for small absorptions,
the pulse neutron experiments give the absorption cross section and diffusion
coefficient averaged over the Maxwellian distribution. The deviation from
the Maxwellian distribution is contained in the 'diffusion cooling' term.

It is hoped that this study would further the understanding of
neutron thermalization and diffusion, and would stimulate and aid in the

study of thermalization and diffusion by pulse neutron technigques.
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APPENDIX I. PROPERTIES OF ASSOCIATED LAGUERRE POLYNOMIALS

We list the properties of the associated Laguerre polynomial

of Q-th order, as given by Copson<l) and Sneddon.(e)

[(o&l+n)

In(2) = F, (-n; o#l; 2) (1.1)
nt Jawr Tt
©  (n), 2% Hypergeometric
F. (-n, o#1, 2) = L ——— ; (1.2)
151 ’ y Z) =0 71 (a+1)r Function
‘Ot+
(@) = =5 (1.3)
l o/
_ It
- Q -0l It
LR L (2) = (1-t) e T (1.4)
0
~Z =0 n
a e Z a -
L, (2) = 5= 5 (e 2™ (1.5)
If (o+n) 4s positive integer or zero, then
Z n+o
a g,y _ (1)%e” a 2 ,n
Ln (Z) = nt q7Zn+o; e Z (I.6)
e ¢]
-Z | !
[ 2e™ 1 (2) 1(2) az = 9L oy (1.7)
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If f(Z) = % Ch Ln (z) and term by term integration is valid,

then

_ n! " eZ o o
Cp = Ero) é z* £(z) Ly (2) az (1.8)
-r—-—j 00 -n T ZI'
° r=0 . T
11 ) = (me1) 7 (1) n! 27 (1.10)
n =0 (n-r)t (r?)(r+1)! g
? Ln}) (z) Lé}) (z) ze™ az = ntl  Bpp (1.11)
0

The normalizing factor is The normalized associated

\/ 1Tl
Laguerre polynomial of order one, is given as follows,
n n -r |
(1) R (-1)% z¥
L z) = \Vn¥l L I.12
n ( ) v+l =0 (n-r)! (r!)(r+l)! ( . )

Ln (Z) is the solution of the following differential equa-

2

z 9_% s (22) iy =0 (1.13)
dz

&

The differential operator of the heavy gas model has the asso-

ciated Laguerre polynomial of first order as its eigen function.
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APPENDIX II. TIME DEPENDENT ENERGY SPECTRA FOR DIFFERENT B®

We give the additional time dependent energy spectra for
beryllium assenblies in Figures II.1l, 2 and 3. All these spectra were
obtained using twenty energy groups with the; ORNL analog computer.

In Figure II.4 we give the neutron energy spectrum at 300 micro
seconds in graphite for various geometrical bucklings, BE. A1l these
curves were obtained using fourteen energy groups with the help of the
analog computer of the Nuclear Engineering Department of the University
of Michigan. In Chapter VII, é complete set of curves were given for
the case of B2 = 18.5 x 1072 cm'2. These curves were obtained using

twenty energy groups by the CORNL analog computer
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APPENDIX III, HIGHER SPATIAL MODE CONTRIBUTION

The neutron distribution as a function of energy, space and

time variables can be represented as follows:

o(E,r,t) = %.Am on(r) oy(E,t) (III.1)

where:
m represents the m~-th mode,

Am is the amplitude of m-th spatial mode,
¢y(r) spatial distribution of m-th mode,

on(E,t) energy-time distribution of m-th mode.

In order to determine @(E,r,t) completely, we need mm(E,t) and
Am for each m-th mode. We have shown in Chapter VII that the neutron
distribution @(E,t) at times greater than the thermalization time can
be represented by a single exponential decay. We also note that for
the Fermi Age slowing down model, the slowing down time is constant and
does not vary with the spatisl mode or the geometrical buckling. This
does not hold good for the other slowing down model.

For times greater than the thermalization time III.1 can be
expressed in the following manner for a rectangular block.

-B2T

?(E,r,t) n'gingn e ®4,m,n

(r) e 24,m,n® (I11.2)
where:
£,m,n represent the integers which characterize the

spatial mode in a rectangular assembly.

=14k
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-BET .
bmgn amplitude factor for £,m,n spatial mode,
Mg m,n = decay constant for f,m,n spatial mode.

2

We take the specifi¢ example of B . =2.96 x 10™%cn™2. This

111
is one of the assemblies uséd by de Saussure and Silver (ORNL—2641) in
their experiment on beryllium. We take T = 80 cm? and calculate Ag,m,n

for different spatial modes using the decay constant formulas given in

Chapter VII. We rewrite it:

A = 1.267 x 10° [1-0.8982] B2

For t = 114 p secs, we have:

Q(E,y5) = [ (r) + 637 x 107 gy3p(x) + %17 x 1073 gy ()

+ 6.97 x JLo'LL

¢113(r) + 2,77 % 1074 ®222(r) +.o]
(111.3)

For t = 200 p secs, we have:

o(E,r,t) = [Qlll(r) + h,77 x 1072 @llg(r) + 2.37 x 1073 @lgg(r)

b b

+ 3030 x 1077 @1q5(r) + 1.21 x 107

Ppop ()]

(III.4)
From the above analysis, it is apparent that all the higher

spatial modes except (112) contribute less than 1/2%. The contribution

by (112) diminishes with time, leaving the fundamental as the dominant

mode. Some of the next higher spatial modes are suppressed by the judi-

cious placement of the source and the detector. In de Saussure and

Silver's experiment next higher mode to the fundamental is (113). The

contribution to this mode is less than 0.1% of the fundamental.
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It may, therefore, be concluded that at times greater than the
thermalization time, only the fundamental spatial mode is important.

During the interval between th¢ slowing down time and the
thermalization time, one has to use the exact mﬂ,m,n(E’t) for each
(ﬁ,m,n) mode . We have limited this study to the generation of ¢(E,t)
for a few géometrical bucklings used in the experiments. In order to
undertake a complete modal analysis, ¢£,m,n(E’t) will have to be gener-
ated by the additional machine calculations or by the interpolation method
using the curves given in this study. It should, however, be pointed out
that for times slightly greater than the slowing down time, the distribu-
tion function will be strongly dependent upon the initial source distri-
bution. The initial source distribution given by the Fermi Age model
will also have to be replaced by Eriksson's distribution described in
Chapter III.  No attempt is made to undertake this study, here$ it is a

complete problem in itself.



APPENDIX IV COMPARISON OF THE STEADY AND TIME-DEPENDENT ENERGY SPECTRUM
IN THE FINITE MEDIUM
The energy spectrum of a decaying pulse of neutrons was found
to be softened in the finite medium compared to the Maxwellian distri-
bution. However, the energy spectrum due to a steady source is hardened
spectrum. In the heavy gas model, under the diffusion theory approximation,
the neutron energy distribution for the time independent case can be

given as follows:

+ DE2
E d2¢(g) + 8 2E) | @) - Lo + DB o(E) - S(E) (Iv.1)
aE

where

S(E) = External Source

8(E - E)
This equation has been studied extensively by Hurwitz gﬁ_g;.(l)
and also by Cohen(g) in some special cases.
We shall deal with two cases.
Case A: Absorption cross section Za = constant
Diffusion coefficient D(E) = constant
Case B: Absorption cross section follows 1/v law
Diffusion coefficient is constant.
For Case A, the differential Equation (IV.1) can be trans-
formed into the confluent hypergeometric equation form by using

w(E) = W(E)Ee'E. The solution of the transformed equation is given by

-1h47-
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Jahnke and Emde.(3) Tt is as follows:

o(E) = A Ee " [Py [2,2,E] (1v.2)
where: ( o za
D(E)B™ +
a(E) = '—2-%25—— = constant
o}

a(o+l) E2

a
171 (@2,F) =1+ 3 B+ 5750y

For the Case B, we make the following additional transformation

El/2 = X, Transformed equation is as follows:
x SV(E) | (3 - 2x?) WEL 2 - ay Jy(x) =0 (Iv.3)
dxe ' dx B 0§£
where: D(E) B2
Q = =
B2~ 2,
= —zéﬂ- and = X
% T 2w, Lo = 2
We seek the series solution for the differential Equation
(1v.3).
y(x) = L ay xB (Iv.h)
n=0

On substituting the above series into the differential
Equation (IV03)3 and equating the coefficients of xn+ly we get the

following recurrence relation between the coefficients.

- {2(n-2) + hebg} ap_p + 4C Ygan-1 (1v.5)

n(n+2)
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On evaluating the coefficients, we get the following solution

for ¢(E)

o(B) = a, B, (1 +

l\LOéZ‘r’LE-L/2+—l-‘{lkoc +%ﬁ}E
3 g ' B 3

32 log, g, top )3 . (1V.6)
El5 _3_ (ll_a82+2> + 8 ()-JQBE-F N ocg'a <)}

g2 (Lvog”) (b ) oy, b, hoy,  (hag,)?
+

+ EZ{“*—E“”- (Aoég 2 )+'l5 ( 3 (haB2+2)+ 5 (4@B2+

+

)}+,..]

For the case of zero absorption, the solutions givén by the
Equations (IV.6) and (IV.2) become identical.
We note the following features of the soclution for @(E) as
given by the Equation (IV.6).
1. For zero absorption and infinite medium, the neutron
energy distribution is Maxwellian.
2, For small l/v absorption and infinite medium, the spectrum
is Maxwellian.
3. For large l/v absorption and for B® % Oy, the spectrum is
hardened.
For a special case of B® = 2.9 x ZLO'”3 em™2 for graphite, we
calculatedv(i) according to the pulsed and steady state sources according

v
to the following definition.

(1V.7)
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We have the following results for the pulsed,steady state and

Maxwellian casess

1 B R
(;)P{ilse = 9,36 x 10

1 _ -1
(;)Steady state = 8.06 x 10
(1) = 8.84 x 107L

. Maxwellian

The degree of hardness of the spectrum is not equal to the

degree of softness. ©Shift of the energy spectrum occurs in two different

directions for these two cases. The deviation is not symmetrical about

the Maxwellian spectrum.
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APPENDIX V. DIFFUSION PARAMETERS OF BERYLLIUM AND GRAPHITE

We list the diffusion parameters of beryllium, as compiled by

de Saussure and si1ver (1) and of graphite as given by Dardel and Sjgstrami‘2>

TABLE V.1

1
BERYLLIUM (DENSITY 1.85 gms/cc)( )

Diffusion Coefficient Diffusion Cooling (C)
Authors (Dg) x 10=5(cm?/sec) Coefficient
Antonov et al. 1.17 + 0.05 2.5 + 0.9
Campbell et al. 1.25 0
Kloverstrom et al. 1.24 + 0.0k 3.15 + 0.65
de Saussure and Silver 1.25 + 0.06 1.1 + 0.9
TABLE V.2

GRAPHITE (DENSITY 1.60 gms/cc) 2)

Authors Do (cm®/sec) x 107 C Do(cmk/sec) x 107
Beckurts 2.13 + 0.017 16.3 + 2.5
Antonov et al. 2.07 + 0.03 12.5 + 2.0

Decay constant A = zaovo + DB2(1 - CB®)
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