Table S1 – Phenotypes not differing between WT and $\Delta cprS$

	Phenotype	Experiment
Pathogenesis-related:	Adherence and invasion	in vitro INT 407 gentamicin protection assay
	Serum sensitivity	10% human serum survival
Antimicrobial tolerance:	Antibiotic resistance:	MICs: gentamicin, ampicillin, rifamipicin
	Antimicrobial tolerance:	MICs: Tween-20, Triton X-100, ethidium bromide, EDTA
	Low pH survival	acetic acid disk diffusion assay, MH broth pH 5.5 survival
Atmospheric tolerance:	Aerobic atmosphere survival	ambient atmosphere broth culture survival
	Anaerobic atmosphere survival	anaerobic atmosphere broth culture survival
	Oxidative sensitivity	30% H₂O₂ disk diffusion assay
	Low CO ₂ tolerance	5% CO ₂ atmosphere growth
Carbohydrates:	Surface polysaccharides	Calcofluor white, Congo red, and Sudan black reactivity
	Lipooligosaccharide	SDS-PAGE - silver stain profile
	Capsule	SDS-PAGE - Alcian blue staining and Penner immunoblotting
Nutritional stress:	Low iron (Fe ²⁺ and Fe ³⁺)	dipyridyl and desferal sensitivity
	Nutritional downshift	survival in Minimal Essential media
Other:	Heat shock	growth at 45°C
	Low osmotic tolerance	survival in water

Table S2. Strains used in this study.

C. jejuni strains		
81-176	wildtype _	Korlath et al., 1985
∆cprS	81-176 <i>cpr</i> S∷Cm ^尺 derivative	this study
∆ <i>cpr</i> S∷KmR	81-176 <i>cpr</i> S∷Kan ^尺 deri∨ati∨e	this study
∆ <i>c</i> prS ^c	81-176	this study
∆spoT	81-176 <i>spoT</i> ::Kan ^尺	Gaynor et al. 2005
E. coli strains		
DH5a	general cloning strain, recA1 endA1	Invitrogen
Bacteriomatch II	two-hybrid HIS3 and aadA reporter strain	Stratagene
Plasmids		
pCR-XL-TOPO	PCR cloning vector, Km ^R	Invitrogen
pGEM-T	PCR cloning ∨ector, Amp ^R	Promega
pJM1	cprS::CmR in pCR-XL-TOPO	this study
pJM2	cprR:: CmR in pCR-XL-TOPO	this study
pSS3	cprS::KmR in pGEM-T	this study
pRRK	C. jejuni rRNA spacer integration vector, Km ^R	J. Ketley
pSS50	<i>cpr</i> S in pRRK, KmR	this study
pBT	two-hybrid lambda cl fusion vector, Cm ^R	Stratagene
pTRG	two-hybrid RNAP- $lpha$ fusion vector, Km $^{ m R}$	Stratagene
pSS38	cprS C-terminal domain in pTRG	this study
pSS39	dccR in pBT	this study
pSS41	cprR in pBT	this study

Table S3. Primers used in this study

Primer name	Sequence (5' -> 3')	Restriction	Source
		site	
cprS-TOPO FWD	GTTTCAAGCGCAAGACAT	-	this study
cprS-TOPO REV	GAGCTTAAGGAGCGTTTGGA	-	this study
cprS-INV FWD	TAAGCCACAAAAGCCAAGT	Mfe l	this study
cprS-INV REV	AATCAAGTTTTGGATTAGGGCTTT	Mfe l	this study
<i>cpr</i> S-pGEM FWD	GTCTGGATCCGTTTTGCGACTTTGCTTGTGC	Bam HI	this study
<i>cprS</i> -pGEM REV	GTGT <u>CTCGAG</u> TACTCTACCGCTGAGCTAATCCG	Xhol	this study
cprS-INV2 FWD	GCAG <u>TCTAGA</u> GAAATGATAGAAGATAATAAATATAAAGAGCG	Xbal	this study
cprS-INV2 REV	GTAA <u>GGTACC</u> GCCAAGTATAACACTAACCCCAGC	Kpnl	this study
<i>cprS</i> -pRRC FWD	GC <u>TCTAGA</u> GGTTATAAGCTTACTCAATGAATAAATC	Xbal	this study
<i>cpr</i> S-pRRCREV	GC <u>CAATTG</u> TTACTCCTTAACAATAACACTTTTTAAATTTC	Mfe l	this study
ak233	GCAAGAGTTTTGCTTATGTTAGCAC	-	Karlyshev and Wren, 2005
ak234	GAAATGGGCAGAGTGTATTCTCCG	-	Karlyshev and Wren, 2005
ak235	GTGCGGATAATGTTGTTTCTG	-	Karlyshev and Wren, 2005
PKanF	CAAGTGGTATGACATTGCCTTCTG	-	J. Ketley
BT- <i>cprR</i> FWD	GATC <u>GGATCC</u> ATGACAAATATTCTTATGATAGAAGATGATT	Bam HI	this study
BT- <i>cprR</i> REV	GTAC <u>ACTAGT</u> TCATTGAGTAAGCTTATAACCTATTCC	Spel	this study
BT-dccR FWD	GATC <u>GGATCC</u> ATGGCTGCTAAAATTTTACTTTTAG	<i>Bam</i> HI	this study
BT-dccR REV	GTAC <u>ACTAGT</u> TTAGCCATAGCAATATCCCCTG	Spe I	this study
TRG-cprS-CTD FWD	GATC <u>GGATCC</u> ATGGGGGTGGATGAAATTTC	<i>Bam</i> HI	this study
TRG-cprS-CTD REV	GTAC <u>CTCGAG</u> TTACTCCTTAACAATAACACTTTTTAAATTT	Xhol	this study
htrA-3'	GTTCAAGTGCTGATGAAGCAGG	-	this study