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Kalman filtering theory [1] has been around for more than two decades and has been the
backbone of modem applied stochastic estimation. It is used extensively in many areas
including engineering and econometrics. A Kalman filter estimates the states of a system from
observations made about the stochastic inputs and outputs of the system. The Kalman filter
performs its operations in an attractive recursive fashion, and can be easily implemented on a

computer.

The Karmarkar's algorithm (2] is a relatively recent invention, which is an interior point
algorithm to solve linear programming problems. It has been shown to be very effective in
solving large linear programs. There are several variants of this algorithm, and the primal affine
scaling algorithm [3] is a popular one. This algorithm has also been extended to solve convex
programs with linear constraints [4]. A comprehensive treatment of various interior point

algorithms has been the main focus of a recent book by Fang and Puthenpura [5].

In this paper, we first establish a parallelism between the Kalman filter and the affine scaling
algorithm. This is done by appropriate modeling of the affine scaling algorithm in a state space
form and identifying the corresponding elements in a Kalman filter framework. In this case, the
stochastic elements of the filter are suppressed to emulate a deterministic system. These ideas

have immediate extension to quadratic programming as well.
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Here several interesting concurrences (both conceptual and computational) between the affine
scaling algorithm and the Kalman filter are established. This enables us to derive a unified

treatment of both the estimation and the optimization problems.

When we activate the stochastic elements of the Kalman filtering theory, we can effectively
deal with stochastic linear programming problems. We obtain some theoretical results and a
new Karmarkar-based algorithm is developed for this problem. This new approach appears to

be very promising for applications in stochastic optimization and control of systems.

1. THE STATE SPACE REPRESENTATION OF LINEAR SYSTEMS

In this section we review some basics of the state space representation of systems, within the
framework of Kalman filtering. For the sake of brevity we consider only the discrete time
representation of systems (as opposed to continuous time reprcsentatibn) with single input and
single output (SISO). However, the results can easily be extended to multivariable systems in

either discrete or continuous time.

Consider a SISO system, with a given input sequence {u(f)} and output sequence {y ()},
where ¢, sometimes referred to as the discrete time index, represents the sampling time. We say

that the system is of order n if the sequences satisfy an n-th order difference equation of the

form,
y@)+ay@=-1)+ay(t-2)+ ... +a,y(t-n)=bou(t) + bju(t-1) + ... + byu(t-m) (1)

where m < n. The state space form transforms the above n-th order equation into n first-order
difference equations by introducing dummy state variables. In equation (1), we can define
variables: zy(£) =y (1), za(t) =y (t=1) =z, (t=1), - - -, 2,(t) = y(t-n+1) = z,_4 (r-1). Thus we

have
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z(t) = Fz(t-1) + Gu(t) (2a)
and

y () = Hz(r) (2b)
where

Z(t) = [Z 1 (t),Zz(t),“',Z,,(t)]T,

.’a'l

1 0 -0

F= 0 1 -0
LO 0 1

u(e) = [uy () ua (), um(®))7,
G= [bo,bl.“'.b,,,], and
H =[1,0,~,0].

Equations (2a) and (2b) are usually called the state transition equation and the output equation
respectively. Also, matrix F is commonly referred to as the state transition matrix. The
eigenvalues of F represent the natural frequencies of the system. The choice of the state
variables {z;} is not unique. Actually it is possible to choose proper states so that F follows a
suitable canonical form [6]. Moreover, the state variables can be chosen so that the states
represent a physical aspect of the system under consideration. For example, in the case of a DC
motor, the system can be conveniently modeled as a second-order system with two states

representing the angular displacement and velocity of the motor shaft.

The vector u(r) can be considered as a forcing function of the difference equation (1), hence

(2a). If u(z) = 0 for all t, the system is called an autonomous system.
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2. THE FILTERING PROBLEM

If we have access to the states of a system, by virtue of the relationship (2a) and (2b), the
output of the system can be expressed as a function of u(r)’s and z(¢)’s. Tlus aspect is
discussed extensively in the literature of modem control theory, for example [6]. However, the
control of the system becomes more challenging if the states are not readily available. We then
have to estimate the states from some measurable aspects of the system. This means samples of
input and output of the system are needed. A device which estimates the states of a system
from input output samples is commonly referred to as an observer. If the data used by the
observer is assumed to be noise free, the observer becomes deterministic. On the other hand, if
the input and/or the output data is noisy, one has to estimate or filter-out the values of the
states from the noisy data given some kndwledge of the statistical properties of the noise. Such

an observer is a stochastic observer and Kalman filter is a good example of it.

The state space model of the Kalman filter can be obtained by extending the model depicted by

equations (2a) and (2b). For a multivariable system, these are given as follows:

z(t+1) = Fz(t) + Gu(?) + v(r) (3a)
and

y() = Hz() + e(1) (3b)
where
2f)eR", FER™, GeR™™, HeR™, ut)eR™ v(t)eR", y(t)eR’, and
e(r)eR’.

The parameter v(¢) is the vector of system. noise (or plant noise vector) and e(t) is known as
the measurement noise vector. We assume that e(r) and v(r) are from two independent

Gaussian distributions with
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Elv()]=0 (4a)
Ele(r)] = 0 (4b)
Elviov ()] =Q (40)
Ele()e’ (0] =R (4d)
and

Ele(t)v (1)) =0 (4e)

where Q and R are covariance matrices (often diagonal) of orders nxn and /x/ respectively.
The filtering problem is to estimate the state vector z(¢+1) from the sigma algebra Y’ of

observations up to time ¢.

If one estimates z(r+1) by minimizing its variance, it is equivalent to solving the conditional

expectation proble‘m given by
2(t+1) = E[z(r+1) | Y] (5)

where 2(t+l) denotes the expectation of z(¢+1). The geometrical interpretation of the above

operation is the projection of the observations onto the hyperplane defined by z(z)’s.

A Kalman filter solves the above problem in a recursive fashion.

3. THE KALMAN FILTER

The essential idea behind a Kalman filter is to propagate the expected value of the state vector
and its covariance matrix in a recursive fashion. Without going into the detailed derivation [7),
the essential mathematical equations that govem the Kalman filter of system (3a), (3b) are

given as follows:
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2(¢e| 1) = 2(¢ | +=1) + P(¢ | =)HT(HP( [ +=DHT + R)™ (y(¢) - Hz(z | £-1))

= z(t | t-1) + K(t | e=1)(y(t) - Hz(t | t-1)) (6a)
P(¢| 1) = P(t| t-1) = P(¢ | t-DHT(HP(¢ | t=DHT + R THP(¢ | 1-1)
=P(t|t-1) - K@t | t=1)HP(¢ | t-1) (6b)
where
K(t|t-1)=P@ | t-)HTHP( | t-1)HT + R)™! (6¢)
and finally,
20+1 | 1) = F2t | 1) + Gu(r) (6d)
P(+1 | 6) =FP¢ | )FT + Q (6€)

The matrix P is called the covariance matrix and matrix K the Kalman gain matrix.

As described before, 2(t+1 | ) is the estimate of z(r+1) at the instant ¢ (based on all the
measurements made up to and including at time ), which is depicted by equation (5). The
matrix P(z+1 | ¢) is the covariance matrix of the above estimate of states. From this, we can
| se]ect an arbitfary vector 2(1 | 0) to start the Kalman ﬁltex_' so long as the covariance matrix
P(1| 0) is set very large (theoretically infinitely large). In a Bayesian framework, this amounts
to non informatory prior on 2(1 | 0). In practice, one can conveniently choose ;(1 | 0) =0 and
P(1]0)=A with A€ R* and k >> 0 and I is the identity matrix. It is also important to note
that the Kalman filter can be applied to time varying systems in which the matrices F,G and H

vary in time.
3.1 SIMPLIFIED FILTERING EQUATIONS FOR AUTONOMOUS SYSTEMS

In this section the Kalman filtering equations are simplified for autonomous systems, which

will be directly applicable to our forthcoming discussion. To begin with, we introduce the
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following notation.

20+1 | =120+1) ; 2¢|t=1)=2(¢) and P@+1|1r)=P@+l) ; P@|r=1)=P().

Now we state our results as follows:
Proposition 1

For an autonomous system, the Kalman filtering equations are,

20+1) = Fz(t) + K(O)((t) - H(t)) (Ta)

K(r) = FP()HT (HP()H + R)™! (7b)
‘and

P(s+1) = FP()FT + Q - K(*)HP(:)FT | (7c)
Proof:

Since for an autonomous system, u(¢) = 0 for all ¢, it follows from (6d) that ;(t+1) = F;(t) for
all r. This property, in conjunction with equations (6a) and (6b), and some simple algebraic

simplifications yields the desired results.

Now let us focus on affine scaling algorithm for linear programming problems.

4. THE LINEAR PROGRAMMING PROBLEM AND THE AFFINE SCALING
ALGORITHM

The linear programming problem can be stated as follows in the standard form:

T

minimize ¢'x | (82)

such that Ax=b and x20, (8b)

where
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is an mxn matrix called the constraint matrix,
is an m vector called the right-hand-side,

is an n vector called the cost vector,

is an n vector of variables.

® 6 o>

The affine scaling algorithm [3] is summarized below.

Assume x° is an interior feasible point to the problem (8a) and (8b). We let D, be the diagonal
matrix containing the components of x. Then the translation vector (c,) from X’ to a new

feasible point x' is given by

¢ =~ %szr %2)
where

r=(c-ATw), (9b)

w = (AD2AT)'AD ¢, (%¢)

y=""(e;PD,c) 9d)

here ¢; is i-th unit vector and P, is projection matrix given by
P, =1-D,AT(AD2AT)'AD, (10)

The parameter o is a scalar between O and 1. Vector r is called the vector of reduced costs,

and vector w the vector of dual variables.
The new interior feasible point x! is obtained by
x! =x0- —‘;—Dfr (11)

The affine scaling algorithm essentially transforms the LP problem by performing the affine
mapping (scaling of the affine space defined by equations (8a) and (8b) with respect to the

current feasible solution x°)
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x =Dix (12)

and obtains the direction of descent by projecting the gradient of the transformed cost function

(D,,) on to the null space of the transformed constraints set (AD,o). The new solution x! is

then obtained by translating the current solution (in the transformed space) along this direction,

and then mapping the result back into the original space.

Now an interesting observation on the affine scaling algorithm can be made.

Proposition 2
The dual solution in equation (9¢) is arg‘inin | |(AD,)'w - D,c | |2.
Proof:

Let V = || (AD,)"w - D¢ | |2

Consequently,
V= [(AD,)"w - D,c]"[(AD,)"w - D,c] = w'AD? ATw — 2wTAD?c + D2c"¢

Partially differentiating V with respect to w and setting it to zero yields the stated result.

5. THE AFFINE SCALING METHOD IN A FILTERING FRAMEWORK

Based on the observation by Puthenpura and Sinha [9], we now derive the connection between

the Kalman filter and the affine scaling algorithm, both conceptually and computationally.
Theorem 1.
The Kalman filter minimizes

El€@)e@ | ¥ (132)

where €’(¢) is called the filtered state error vector defined by
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€)= 2(t) - 2(1) (13b)

and ;(t) is the state estimated by the Kalman filter. Moreover, when the filter converges,

En@®)|Y1=0 (142)
EM(y’ (0] =0 (14b)
Ele¢en’ (1)) =0 (14c)
E[e'(t) | Y! ]1=0 (144)

where n(t) = y(t) - Hi(r) is called the innovations or residual vector.

Proof:

See [7] and (8] for a complete proof of these results.

One important note should be made here:

Conditions (14a) to (14d) imply that the filter converges when the estimates and the residuals
become statistically orthogonal to (statistically independent of) the stochastics of the system. In
this case, no component of the statistical information in the stochastics of the system

contributes to the improvement of the estimates of the states.

Theorem 1 indicates that the states estimated by the Kalman filter, i(t), is a minimum variance
estimator of z(t). At the same time, Proposition 2 shows that the dual vector w of the affine
scaling algorithm is a least squares solution. Thus, the underlying computation for both cases
is the minimization of deviations measured by the /; norm. This is the key to the parallelism

between the affine scaling algorithm and Kalman filter.

We now introduce a state space model to exam the affine scaling algorithm (depicted by

equations (9a) through (11)) in a Kalman filtering framework.
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Theorem 2

The state space equations for the affine scaling algorithm are

w(t+1) = w(?) (15a)
and
ce(t) = Ap()Tw(r) + e2) (15b)

where ¢;(t) = Dyc and A.(t) = AD;; D, being a diagonal matrix with diagonal elements

being components of x~,

Proof:

At any step k of the affine scaling algorithm, from Equation (9c), we see the dual vector is
unique provided the matrix A has full row rank. Therefore, if we use the Kalman filter to
estimate the dual corresponding to the current interior point, it has to converge to this unique
dual vector wX. That is, at some sufficiently high value of r, we expect w(t+1) = w(r) = w*.

This justifies (15a).
Now, from equation (11), we have

Xt =xt — BD2(c - ATWH) (16a)
o
here f = —.
where B Y
Rearranging terms results in
Djc = D,ATwW — —é-n,:‘ [ - xt] (16b)

Adding the discrete time index ¢ to the above equation (to emulate the filtering environment),



Page 12

we get Equation (15b).
O
Note that Equation (15b) depicts the ¢* instant of the filtering iteration at the k * affine scaling

iteration.
The following result is a direct consequence of Theorem 2:
Proposition 3

The affine scaling iteration is a special case of applying Kalman filter to an autonomous system

with
F=I
H=ATD,
y(t) = Dgc

Q:R:g[

e-0.

so that the state estimates z(t) converges to the dual vector wt corresponding to the current

interior point x¢, when the filter converges.

Combining Propositions 1 and Proposition 4, one can immediately set up the Kalman filter

equations corresponding to the affine scaling algorithm.

To render further clarity, a step-by-step implementation procedure on emulating affine scaling

iteration via Kalman filter is given below.
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1. Initialization of affine scaling iterations:
Find x° such that Ax’ =b, x° > 0. Select 0 < a. < 1.

(One may use a Phase 1 LP here, which itself could employ the Kalman filter
approach)

2. Kalman filter iterations to obtain the dua1 vector:

(a) Set t = 0; w(0) = 0; P(0) =AI suchthat A > 0. Also set

H = ATD,; y(r) = Dc for all £, Q =R =&l such that D, is a diagonal matrix with
diagonal elements being the components of x* and € — 0.

(b) Perform the updates
w(t+1) = w(t) + K()[y(r) - Hw(r)]
P(t+1) = P(t) + Q - K()HP(r)
where
K(?) = P()HT[HP()HT + R]™
and set
t e t+l
until || P(¢) || £ ¢ where ¢ is arbitrarily small, for some ¢ =T.

() Set w* - w(T).

3. Affine scaling update to obtain the primal vector:

Set
rtl =c- ATw; ¢t =-D*

_min|_o k _ k
=" {:Zk—ld,. <o] X+ = xt + 4D, d

!

4. Test for optimality of x**! (KKT conditions). If optimality conditions are not
satisfied, set k « k+1 and go back to Step 2.

Note that the main computational burden at each affine scaling iteration is the evaluation of the
matrix inverse (AD2AT)™! which is an O (m>) operation given A is a m X n matrix. Now if
we invoke KFS to compute the dual vector (see Step 2 of the above step-by-step

implementation procedure), then the bulk of the computation is to evaluate the Kalman gain
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matrix K(), specifically the computation of [HP()H” + R]™ which is an O(n*) operation.
Note that this inverse operation is to be carried out several times within an AFS iteration.
Moreover, the matrix P(r) is dense so that sparse matrix techniques cannot be employed to
reduce the computan'onai burden. Therefore, for deterministic case, invoking KFS tends to be a
rather expensive way to obtain the dual vector. However, as will be seen later, the real
usefulness of this approach will be for the stochastic case where the dual vector will be filtered
out by the KFS from noisy (stochastic) environment. Before that, let us look at the
correspondence between Kalman filter and the affine scaling algorithm in a detailed manner,

which will be useful in subsequent discussions.

6. CORRESPONDENCE BETWEEN KALMAN FILTER AND AFFINE
SCALING ALGORITHM

The conceptual and computational parallelism between the the Kalman filter and affine scaling
are summarized in this section. For brevity we denote the Kalman filter as KFS and the affine

scaling algorithm as AFS.
6.1 EN_VIRONMENT OF OPERATION

KFS operates in a stochastic environment, while AFS works essentially in a deterministic

framework.
6.2 MEASUREMENTS (OBSERVATIONS)

KFS estimates the states from the measurements of the noisy output of the system i.e., y(¢). By
virtue of Proposition 3, AFS derives the information from the gradient of the cost in the
transformed space, i.e., Dyc. This is quite true, as c is a constant the only variable is Dy or x

itself, which essentially contains the entire information.
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6.3 OPTIMAL ESTIMATES

KFS estimates the states z, of a system in the sense of minimum variance from the
observations. AFS basically computes the dual vector w, in the sense of least squares, from

the observation of the current interior feasible point.
6.4 SOURCES OF INFORMATION:

Both KFS and AFS can be considered as a predictor-corrector mechanism. That is, start at
some point and move towards optimality in steps by predicting the next point from the
information that is currently available. As far as KFS is concemed, the next estimate of states

is based on the "residuals (innovations)" defined as
s(r) = (1) - Hz(r) (172)

For AFS, the next direction of move is based on "reduced cost vector" (ri(t)), that is defined in

the transformed space by the equation
1) = () - A{ (OW() (17b)

where ¢(¢) and A,(?) are defined in Equation (15b).

6.5 OPTIMALITY CRITERIA

For KFS, the optimality conditions are given by the zero mean of residuals (equation (14a))
and the statistical orthogonality (statistical independence) between the residuals vector and the

observation vector (equation (14b)).

Likewise, for AFS optimality occurs when the reduced cost are non-negative (dual feasibility)
and the reduced costs vector and the current interior point vector becomes geometrically

orthogonal (complementary slackness).
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By now we see that the affine scaling algorithm is equivalent to the Kalman filter working in a
deterministic environment. In other words, one can emulate the affine scaling algorithm by the
Kalman filter by shutting off stochastic elements. Now the question is, why can’t w: make use
of the inherent power of the Kalman filter to deal with stochastics, to solve stochastic
programming problems. After all, the Kalman filter has been designed to deal with stochastic
systems. This idea leads to our accomplishment of developing a Karmarkar-based algorithm

for stochastic linear programs.

7. KARMARKAR-BASED ALGORITHM FOR STOCHASTIC LINEAR
PROGRAMS

In this section we introduce stochastic parameters into the linear program and focus on two
classes of problems. The first consists stochastic cost vector and deterministic constraints, and

the second class of has both the cost vector and the constraint matrix stochastic.

7.1 STOCHASTIC PROGRAMMING WITH DETERMINISTIC
CONSTRAINTS AND STOCHASTIC COST VECTOR

The problem can be stated mathematically as follows:

minimize [cy+5c(r)]Tx (18a)

suchthat Ax=b and x20, (18b)

where dc(t) is assumed to have zero mean Gaussian noise with a covariance matrix X, and ¢,

is the unknown "true" value of the cost vector.

Note that in this case, the projection matrix which projects on to the null space of the
constraint set is deterministic, as A and b are deterministic. However the projected gradient of

the cost and hence the dual estimates at each step of the iteration are stochastic.



Page 17

Proposition 4

The state space equations at the k™ affine scaling iteration, corresponding to the case with only

. the cost vector stochastic, are:

w(t+1) = w(?) : (19a)
and
(1) = ()T w(r) + e(r) (19b)

where ¢y(t) = Dic(t), Ay(t) = AD;, and Dy is diagonal matrix whose diagonal elements are

components of x*.
Proof:

When A and b are deterministic, the projection operator onto the hyperplane containing the
rows of AD; is unique. This implies (19a), provided A is of full rank. Also note that c(z) is
the stochastic measurement (as ¢ is stochastic) which implies e(f) is the noise to be filtered
using the output equation (19b).

Now assume that we are at the k™ affine scaling iteration. We Set

(a) P(0) = AI where A >> 0,

(b) w(0) arbitrary (‘a good choice would be the dual vector of the previous iteration).

We set

(c) Q = €I, where € — 0, and

@R=X
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in the Kalman filtering framework as described in Proposition 1. Then we run the filter until

the optimality criteria of Theorem 1 are satisfied.

Assume that w(T) and P(T) are the estimate of the dual vector and its covariance matrix
respectively, when the filter converges. We ﬁke w(T) as the value of the dual vector for the
k™ affine scaling iteration, and translate x* to x**! via Equation (11). While doing so, one
could use an estimate of the expected value of ¢ in Equation (9b). A good choice is to use the

mean value of the known samples, i.e.,
M) =TtM-1) - %[E(M—l) - M) (20)

where €(M) is the mean up to the M * sample and M is the number of samples obtained up to

time ¢.

7.2 STOCHASTIC PROGRAMMING WITH STOCHASTIC CONSTRAINT
MATRIX AND STOCHASTIC COST VECTOR

This problem can be stated mathematically as follows:

minimize [co+0c(r))x : (21a)

such that [Ag + SA()x=b and x 20, 21b)

where dc(r) is Gaussian noise with zero mean and covariance matrix Z,, and 8A(t) is Gaussian
with zero mean and covariance matrix £,. We also assume that b is deterministic and that the
system (21b) is feasible for all outcomes 8A(r). We show later how the infeasibility of (21b)

can be handled.
Proposition 5

The state space equations at the k™ affine scaling iteration, in the case that both the cost vector
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and the constraint matrix are stochastic, are:

W(t+1) = w(t) + v(¢) (222)
and
k() = AT w(e) + e(r) (22b)

where ¢;(t) = Dyc(?) and Ai(t) = A(t)D;.
Proof:

When A is stochastic, the projection onto to the space containing the rows of A(#)D; is not
unique. Hence, the dual vector w has some inherent uncertainty or system noise and it is
impossible to completely filter out this noise from the dual estimates. As a matter of fact, the
covariance matrix of the dual estimate does not vanish, but asymptotically reaches the Cramer-
Rao lower bound [12]. Correspondingly, we can model the dynamics of the system
corresponding to the dual vector as described in (22a). Equation (22b) can be obtained in the

same manner as before.
In this case we can set up the Kalman filter as follows:
At k* affine scaling iteration, we set

(a) P(0) = AI where A >> 0,

(b) w(0) arbitrary [a good choice is the dual vector at the previous affine scaling iteration

k=D,

©Q=Z,

(Since A(#) contributes to v(¢))
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@R=Z,7+3,

(due to the fact that A(f) and c(f) contribute to e(t))

in the Kalman filtering framework as described in Proposition 1. Then we run the filter and
stop it when the optimality criteria of Theorem 1 are satisfied. Assume that w(T") and P(T) is‘
the value for the dual vector estimate and its covariance matrix respectively, when the filter
converges. We shall take w(T) as the value of the dual vector for the k™ affine scaling

iteration.
7.3 INFEASIBILITY OF (21b)

In order to avoid the infeasibility of (21b), we only consider those samples of A which makes

the set
{x | (A +8A(")]x=b, x>0}

feasible. A simple Phase-1 step can be quickly detect the case that a sample of A leads to an
infeasible problem. By discarding such samples in the Kalman filter, we have the minimization

problem (21a) conditioned on feasible samples of A.

8. ERROR ANALYSIS

In this section we look into an analysis of the error propagation properties of the proposed

algorithm, and assume that (21b) is feasible for all values of A in the sample space.
Theorem 3

Assume that we are at an interior feasible point x*, and the algorithm generates a new interior
feasible point x**! for the interior feasible point. If A is contaminated by a Gaussian noise
with zero mean and covariance matrix £, and c is contaminated by a Gaussian noise with zero

mean and covariance matrix X, then we have
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Ex* | Y1 =x§*! 23)

and

B )@ Y11 Y < 6207 [5. + AJP.Ag + oz |p? @4)

where x§*! is the true solution vector, Y' is the sigma algebra of observations,

X =k _xd AL s the true value of A ( which in practice could be replaced by
E[A(t)] ), P_, is the steady state covariance matrix of the dual estimate, and 0 £ G < . The
scalar P is a positive constant which assures that x*! will lie strictly within the polyhedral set

defined by the constraints.
Proof:

Let w(t) be the estimate of the dual obtained by the filtering process, Ay and ¢, be the "true”

values of A and c. Given the history Y’ of observations, we define the "true” interior (primal)

solution as

xg*! = x* - BD} [Co - (Ao)Twé] (25)
where w¢ is the ‘true’ dual solution at the interior point x*. Also, the "stochastic" interior poiht
is given by

x**! =x* - pD} [c(z) - (A(r))Tw(o] (26)

Subtracting (24) from (25) and substituting x(k+1), c(r), A®) and w(r) for
x(k+1) = x£*, o(r) - cp, A(r) — Ag, and w(r) — w§ respectively, we obtain

“k+1
X

- BD [¢) - (o) (t) - (A)TwE - (AYTwO) @n

It can be readily confirmed that E[;((l+1) | Y1 =0. (Note that the conditioning on Y renders

x(t) a constant). Hence the first part of the theorem follows. Also
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E [(i"“ x| Y'] = p*D? [E [E(r)(E(x))T | Y‘] +E [AOT w()W()T A, | Y'HDE +
p’Di [E [éa»fwawa)mm | Y']]DE 28)
Since w(¢) is the dual estimate obtained by Kalman filter, and the filtering process has

stabilized, all the stochastics of the system become "statistically orthogonal" to the error in

estimate. Hence the other terms like (.:(t)v-v(t)TA(t), c(r)w§)TA(R) etc. in the calculation of
Ex T ()] from (27), have zero expectations. Also, the Kalman filter gives E[w(s)(w(s))
as the matrix P,. Now,

E[(&r»’wé(wé)ﬂ«) | Y'] < oF [(A0)A® | Y'] = 0% (282)

where ¢ = sup{p [w(’)‘(w{)‘)T] }; p(.) denotes the matrix spectral radius. Clearly 6 2 0. Now,

given the primal LP is feasible, the duals are bounded, hence 6 < oo. Thus we have (24).

i
Corollary 1
For the case where only c is stochastic, we have
Epxt* |77 = xf*!
and
B @ 71 = 8 [DPE.D] 29)
Proof:

Since only c¢ is stochastic, clearly £, = 0 and the error in the state equation v(¢) = 0, and from

a standard result, P, = 0. Hence (29) follows from (24).

0O

Notice that Theorem 3 and Corollary 1 indicate that the proposed algorithm generates an



Page 23

unbiased estimator with controlled variance.

The key thing to note here, that the step length B can be adjusted to control the variance. This
is intuitively true. In a stochastic environment, taking small step lengths (that is, making
"cautious translations") is expected to reduce the uncertainty in estimates. However, the price
we pay here is the slow convergence (that is, sacrificing efficiency). More studies need to done
in striking a trade off between the reduction of variance and improving the efficiency of the

algorithm.

When the algorithm is converging to the solution (i.e. x is converging to the solution), by
considering the limiting behavior, the trajectory, starting at x* under the stochastic case, and
the trajectory starting at x* but determined by the true values A and/or c, are the closest in the
minimum variance sense, dictated by the Cramer-Rao lower bbund. Thus, the estimate of the
conditional variance given by (24) is a reasonably good estimate of the variance of of the
solution generated, at least for the stochastic cost vector only case. In the other case, only a
bound on the variance can be established. Our preliminary numerical experiments also support
the above claim. However, we caution that the conditional variance ( given by (24) ) must not
‘bef used to predict the variance of the solution 1n the earlier iterations. Further research work
needs to be done in estimating the variance of x* also recursively in a computationally efficient

manner.

9. CONCLUSIONS

We have shown how the Karmarkar algorithm in conjunction with Kalmanfilter can be used to
solve stochastic programming problems. As it stands now, with the proposed approach, one can
solve stochastic linear programming problems with stochastic cost vector and/or stochastic

constraint matrix. To our knowledge, this is the first interior-point method that solves linear
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programs in a stochastic environment. The proposed approach actually differs from the
conventional approaches studied in [10] to [13], since these approaches rely on the knowledge
of the distribution functions of the stochastic elements while our approach only deper<s upon a
finite number of available samples. This distinction renders us the capability to perform "on-
line" analysis or "on-line" monitoring of stochastic linear programs. For the problem with non-
Gaussian noise, the idea of "robust Kalman filtering" [14] and "bootstrap algorithm" [15] can

be incorporated in our approach.

More work needs to be done to extend these results to the cases involving stochastic right hand
side vector along with stochastic constraint matrix as well as stochastic cost vector. Besides,
means have to be explored to enhance the computational efficiency of the proposed method.

These aspects are under investigation by the authors.
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