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ABSTRACT

A RELATIONAL DATABASE MACHINE:

ANALYSIS AND DESIGN

by
Ghassan Zaki Qadah

Chairman: Keki B. Irani

The collection of data in the form of an integrated database is a sound
approach to data management. The conventional implementation of the data-
base system, that is, augmenting a large general-purpose von i.c..nann com-
puter with a large complex software system, the database management system
(DBMS), suffers from several disadvantages. Among these are low reliability and
poor performance in support of a large class of database operations. The impor-
tance of database systems, the disadvantages of its conventional implementa-
tion, the advancement of processor-memory technology, and the continuous
drop in its fabrication cost inspired a new approach to database system imple-
mentation. This approach replaces the general-purpose von Neumann computer
with a dedicated machine, the database machine (DBM), tailored for the data
processing environment and, in most cases, utilizing parallel processing to sup-
port some or all the functions of the DBMS. The new approach claims to improve

database system reliability and performance.



The general framework of this thesis is the design of a DBM suitable for sup-
porting concurrent, on-line, very large relational database systems. In designing
this machine, a structured approach is followed. First, the relational data
model, together with its most important operations and the previously proposed
DBMs, is reviewed. This review, coupled with the requirements of the very large
database systems and the restrictions imposed by the current and the antici-
pated state of technology, is used to formulate a set of design guidelines. Conse-
quently, an architecture for a cost-effective DBM that meets this set of guide-
lines is synthesized. A review of the previously proposed DBMs is carried out
using a novel classification scheme. This scheme not only aids one to under-
stand the various organizations of the previously proposed DBMs as well as their
design trade-offs and limitations, but als.o pfovides a tool to qualitatively analyze
and compare DBM effectiveness in supporting the requirements of the very large

database systems.

Within the context of the proposed machine, the implementation of a very
important relational algebra operation, the equi-join operation, is extensively
studied. A large set of algorithms is suggested to implement the equi-join opera-
tion on the DBM. An average-value modeling technique is proposed and used to

evaluate the equi-join implementations and determine the best performing ones.

- Finally, the implementation of the other relational algebra operations as

well as other primitives essential to the new DBM are developed.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1. Introduction

A conventional database system is one which is implemented by augment-
ing a large general-purpose conventional von Neumann computer with a large
complex software system, the database management system (DBMS). A DBV.S
is needed primarily to map the user transactions which manipulate the high-
level logical data model (the way the data is viewed by the users) into primi-
tives which manipulate the physical data model (the way the data is actually
stored). This implementation suffers most from three problems: The first
problem is the existence of a complex software system. This reduces the data-
base system reliability and speed. The second problem is the low processing
power which can be provided by the underlying Von-Neuman computers anc
the third problem is the inability of such a system to meet the projected
future demands for more processing power. This processing power is needec
to support the projected large increases in database sizes, the increase in the
database usage, the concurrent user environment, and the -important data-
base system features such as data integrity, data security and user views

mechanisms.

The limitations of conventional database systems, together with the con-
tinuous advancement in memory-processor technology as well as the continu-
ous reduction in its fabrication cost, inspired a new approach to database sys-

tem implementation; one which uses parallel processing and special function



hardware to support directly the operators manipulating the logical data
model. The set of hardware units which is used to support the database sys-
tem is a dedicated one and is called the "Database Machine." This approach
reduces the software complexity because many functions which were imple-
mented by software are now implemented by hardware, thus making the sys-
tem more reliable and efficient. It also provides the database system with
large processing power, which enables it to support a highly concurrent user
environment as well as a comprehensive integrity, security, and user views

mechanism without degrading the system performance.

Traditionally, the organization of databases has been classified broadly
into three types [DATE77], namely, the hierarchical, the network, and the rela-
tional modeis. In the hierarchical and network models, the user views the data
as a set of records connected in specific structure (tree for hierarchical and
general graph for network). In these models information is represented in
several ways, namely, by the content of records, by the
connections between records, by the ordering of records, and by the
access paths defined on the records. On the other hand, the relational model
presents the data as a set of two-dimensional tables. In this model, the infor-

mation is represented by the content of such tables.

The relational model has several advantages over the hierarchical and
network models. From the implementation point of view, the relational model
lends itself well to parallel processing. From the user point of view, the rela-
tional model provides for a high degree of data independence and presents the
data in a simple and symmetrical way. From the system point of view, the
relational model rests on a strong theoretical foundation. This makes the
rigorous study of good database system design possible and allows the
development of relational database languages as precise as mathematical

languages (relational calculus languages).



The general framework of this thesis is the design of a database machine
(DBM) suitable for supporting concurrent, on-line, very large, relational data-
base systems. A structured apprcach is followed to arrive at such a design.
First, the relational data model together with its most important operations
and the previously proposed DBMs are reviewed. Next, the latter review cou-
pled with the set of the very large database systems requirements and the res-
trictions imposed by the current and anticipated state of technology are used
to formulate a set of design guidelines. Consequently, an architecture for a
cost-effective DBM that meets this set of design guidelines is obtained. In the
rest of this Chapter, the relational data model and its most important opera-

tions are reviewed.

In Chapter 2, the pr‘evious.ly proposed DBVMs are reviewed. This review is
carried out using a novel scheme for the classification of such machines; one
which will help us to understand the various organizations of these machines
together with their design trade-offs and drawbacks. In Chapter 2, the latter
reviews, coupled with both the requirements of the very large database sys-
tems as well as the restrictions imposed by the current and anticipated state
of technology, are used to formulate a set of design éuidelines for the new

machine.

Presented in Chapter 3 are the architectural features of a DBV, designed

to meet the set of guidelines developed in Chapter 2.

In Chapter 4, the implementation of an important relational database
operation, the equi-join operation, on the proposed DBM is studied in great
detail. A large set of algorithms for such implementation is proposed. An
average-value analytical technique for modeling both the proposed algorithms
and hardware is used to evaluate the various implementations and determine

the best performing ones.



In Chapter 5, a powerful set of algorithms is presented for implementing
some other operations for the relational data model together with some primi-

tives essential to the new DBM.

Finally, in Chapter 6, a summary of the work is presented as well as the
future directions for the work reported in this thesis. The main contributions

of this work to the DBM area are also summarized.

1.2. The Relational Data Model [CODD70, CHAM76, DATE77, TSIC77]

In order to define formally the relational data model, the definitions of

the terms relation, key, and normalized relation must be introduced.

(a) Relation

In mathematics, the term relation may be defined as follows:

De finition 2.1 Relation

Given a collection of sets D,,D,, . . ., D, (not necessarily distinct), R is a

relation on these n sets if

R C D\XDzX * + - XDy,

The above definition implies that a relation is a set of ordered-tuples
<d,dj, ...,d,> such that d;eD; for i = 12,---n. The sets D;,D,,...,D,
are called the domains of the relation, the positive integer n is called the
degree of tﬁe relation and the number of tuples in the relation is called the

relation cardinality.

In general, an n-ary relation can be viewed as a two dimensional table

with the following properties:

(1) Each row of the table represents an n-ary tuple of of the relation,



(2) The ordering of the rows is not significant,
(3) None of the rows is identical,
(4) The ordering of the table's columns is significant.

In the above representation, it is customary to name each of the table's
columns, thus eliminating the tabular representation property number 4. The

names of the columns are called attributes.

(b) Key
Definition 2.2 Key

A key (candidate key) of a relation R is a subset of the attributes of ¥

with the following time-independent properties:
(1) In each tuple of R, the value of the key uniquely identifies that tuple.

(2) No attribute in the key can be discarded without destroying property

Number 1.

It is possible for a relation to have more than one key. Usually one of

these keys is designated as its primarykey.

(c) Normalized Relation

In general, relations can be categorized into two subclasses, namely, the
normalized relations and the unnormélized relations. A relation is normalized
if every attribute of the relation is defined on an atomic (nondecomposable)
domain. The representation of relations as normalized relations was intro-
duced primarily for two reasons [DATE77], namely, the normalized relation
imposes no real restriction on what can be represented in the database and

the normalized relations result in a data structure which can be manipulated



easily by a simple set of operators. Several levels of normalization exist,
namely, the first, second and third normal forms {3NF). Successive levels of
normalization help the database systemr to further eliminate some of the
undesirable properties related to the data storage operatoers {insert, delete

and update).

At this point, with the previous definitions in mind, the relational data

model can be defined as follows:

De finition 2.3 Relational Data Model

The relational data model is a collection of time-varying, normalized [usu-

ally in the third Normal Form (3NF)] relations of assorted degrees.

1.3. Operations on the Relational Data Model

In general, normalized relations can be manipulated by two classes of
languages, the relalional calculus and the relational algebra languages. The
relational calculus family grew from the observation that the first-order predi-
cate calculus can be used to specify 'rAelations which can be derived from the.
database normalized relations. The relational algebra family rests on a set of
relational algebra operators introduced by CODD [CODD70, CODD72] in the
early 1970s. The relational algebra operators take relations as operands and
yield new relations as a result. >While the relational calculus languages are less
procedural than the relational algebra, and therefore better for the user inter-
face, the relational algebra languages can be more directly implemented on a

parallel machine.

In order to formally define the relational algebra operators, the following

definitions must be introduced.



Ne finition 2.4 Concatenatlion

Given the tuples r = <r;,7;, . . ., Tm> and s = <s;,8z, . . ..5,>, the

Concatenation of r with s(7s) is the (m +7)-ary tuple:

<T.T2 . .\ Tm.S1.S2. . .., Sp>

De finition 2.5

Let F be an n-ary relation, 7¢R, and let {4;.4z. .. .. Ay} be Lhe set of

attributes of R, then

(1) 7[A] designates the value of the i** attribute in the tupler,

and
() IfAC (A, A5 .. . A} then

(a) r[A] is a tuple containing only the values, in 7, of those attributes

specified by A

and (b) R[A] = {r[A] . reR]

De finition 2.8

Assume that all the attributes in the database have different names and

let

AT be the set of all attributes in the database,

AT (R) C AT be the attributes of the relation R,

DT be the set of all possible values of the domains underlying
all the attributes in the database and

DT(at) be the set of all possible values of the domain underlying

the attribute at.



Then

(1) A Predicate (P), defined on the relation R, is an ordered quadruple
<R,at,¥,v> where ateAT(R), ds{=,2, >.<,2,<) and
ve [DT (at) UAT(R)]. i ¥is" =" and v e DT{at), then the corresponding

predicate is of the simple type. Otherwise, it is of the complex type.

(%) A Predicate Conjunction (PC) is a conjunction of predicates. That is,

m
PC = N P; where m is some finite positive integer.
j=1

(3) A Qualification Ezpression (@QF) is a disjunction of predicate conjunc-

tions. That is,

n
@F = U PC; where n is some finite positive integer.
i=1

De finition 2.7

If the two relations R; and R; with the respective attribute sets AT{R,)

and AT(R;) are given, while

AC AT (R))

and

B C AT (Ry).

then A and B are compatible sets of attributes if, and only if,
(a) A and B have 1-1 correspondence, and

(b) If acA and bePB and a.b correspond to each other, then a and b are

defined on the same domain.



With the previous definitions in mind, the relational algebra operators,

namely; select, project and ¥-join are introduced:

(a) Select

Select is a unary operator. It takes one relation F as an operand,
together with some controlling information, the qualification expression @F, to
produce a new relation R'. R’ is formed from those tuples of K which also

satisfy @F. Formally the select operator can be defined as follows:

De finition 2.8 Select

Sez(R) = {r: TeRNQE(r)]

(b) Project

Project is a unary operator. It takes one relation R as an operand,
together with a set of attributes A € AT{R), to produce a new relation #'. R’
is formed by selecting the attributes, specified by the set A, from the relation
R, then the duplicate rows are removed. Formally, the projecf operator can
be defined as follows:

De finition 2.9 Project

plri4)] = {r[A]:'rsR]

(c) 8—Join

¥-join is a binary operator. It takes two relations, the source relation S
and the target relation T, together with a predicate P, to produce a new rela-

tion R. R, which is called the output relation, is formed by concatenating a
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tuple of S together with a tuple of 7 whenever the predicate evaluated on the
two tuples is true. Formally, the ¥-join can be defined as follows:

Definition 2.10 ¥—-Join

Let

def= # > =<, s
At AT(S)
B & AT(T)

where A,FB are compatible attributes then,

Jisp[S.T] = ist: seSNteTN(s[A]8t[B])}

Several operators which are related to the ¥-join operator are of special
importance, namely, the equi-join, the natural-join and the implicit-join. The

"

equi-join is a ¥-join where the relational operator 4 is "' =.

The natural-join is the same as the equi-join except that the reduncant

attribute(s) generated by the operation is removed.

The implicit-join is the same as the ¥-join except that the physical con-
catenation of the source and the target tuples are not performed. That is, the
output relation R is formed of tuples from the target relation T which satisfy

the predicate A3B.

1.4. The Database Queries

The general workload of a relational database system consists mostly of a
set of queries. A query is a high-level nonprocedural specification of data. In
general, the system queries can be grouped into two categories, namely, the
retrieval queries and the update queries. A retrieval query gets some data

items from (a copy of) the database. On the other hand, an update query per-
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forms one of the operaticns, inserticn, deletion or modification. While the
first/second operation adds/deletes some data items to/from the database,
the third operation updales some data items that already exist in the data-

base.

In general, a retrieval query can be decomposed into a set of relational
algebra operations,* such as the selection, the projection and the ¥-join. The
set of operations which corresponds to a retrieval query, can be represented
by a tree structure. The ncdes in this tree represent the relational algebra
operations. The edge(s) that terminates into a node represents the input
relation(s) to the corresponding operation. The edge that originates from a
node represents the relation which results from processing the operation
represented by that ﬁode. The leaf nodes of the tree réference only the per-
manent relations in the database. In most database systems, the leaf nodes of

a typical retrieval query are mostly of the selection type.

Similar to the retrieval query, an update operation can be represented by
a tree structure (a tree with only the root node). The node, in the latter tree,
references only one permanent relation and has one of the operations, inser-

tion, deletion or modification.

*Throughout this thesis, the two words operation and operator will te used interchangcatly.



CHAPTER 2

DATABASE MACHINES LITERATURE SURVEY

2.1. A Classification Scheme for the Previously Proposed Database Machines

A database machine (DBM) is a collection of specialized hardware units
dedicated and tailored to support some or all of the functions of the database
management system (DBMS). The database machines (DBMs) proposed so far
have been organized according to the "back-end” concept. The basic idea
behind this design concept [CANA74] is shown in Figure 2.1. In a conventional
database system all of the system's major software components, namely, the
operating system, the database management system (DBMS), the system
language(s) translator(s) and optimizer(s), as well as the application pro-
grams, are executed on a single general-purpose von Neumann computer
which has direct access to the database. On the other hand, in the "back-end”
database system, all-or paft of the DBMS is implemented on a ‘separate
machine, the database machine dedicated to support all or part of the DBVS
functions, and has exclusive access to the database. The rest of the database
system functions are supported by a general-purpose computer (called the
host). In this organization the host and the database machine have a master-
slave felationship. The host computer, the master, passes high-level access
requests to the back-end machine, the slave. When the back-end machine
completes the access, it passes the response back to the host. The back-end
design concept can be generalized to include configurations where one data-

base machine or more would serve many hosts.

12
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During the past decade a large number of DBMs have been proposed.
Some of them have also been implemented. Others have been commercial-
ized. All of these machines have been designed either to partially or totally
support the relational databases* or to support the relational database
together with the other database types, namely, the network and the hierarch-
ical databases. In this chapter, the set of DBMs proposed so far is reviewed.
This review stresses the way the DBMs are organized as well as the relational

database tunctions** they were designed to support.

A novel scheme to classify the set of DBMs proposed so far is developed.
This scheme not only helps us to understand the different organizations of the
DBM, together with their design trade-offs and limitations, but also provides us
with a useful method of qualitatively comparing the various DBMs proposed.
The study participates in formulating some guidelines for designing a cost-

effective DBM.

The new classification scheme views the DBMs as points in a three dimen-
sional snace, the DBM space. The coordinates of this space, as indicated in
Figure 2.2, are: the indexing level, the query processing location and the

processor-memory organization. .

The most fundamental and important operations the DBMs are designed
to support are the selection (from a permanent relation) and the modification
operations. In the early designs of the DBMs these operations were carried out
using a pure associative approach. That is, the whole database (a set of per-
manent relations) would be ‘'scanned and the data items which satisfy the
selection/modification qualification expression would be retrieved/modified.

Quickly, researchers in the DBM field came to realize that such an approach is

*The DBMs which were designed to suppor: the file management functions (early DBMs) can also
be considered as partially supporting the relational databases since these machines store their fiies
in relation form and support the relational algebra operation seiection.

**The most important of these functions, in relational terminology, are the selection, the projec-
tion, the ¥ -join and the modification operations.
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not a cost-effective one since the whole database nceds to be scanned, at least
once, for every selection or modificalion operation regardless of the size {car-

dinality) of the operation's output relation.

To achieve a more cost-effective DBY. design, a new approach for perform-
ing the selection and modification operations has beefl followed. It is cailed
the quasi-associative approaéh. In this approach only a relatively small por-
tion of the database (rather than all) needs to be processed for every opera-
tion. To support such an approach, the database is divided into a sét of data
units. In order to perform the selection operation, for example, the machine
has first to map the selecticn qualification expression, to the set of data units
which contain (in addition f.o some other unwanted data) the data which satisfy
the qualification expression. Then each data unit of the latter s.et would be
associatively searched to extract the data items which satisfy the selection

qualification expression.

In all the DBMs proposed so far, the structure, in use, to map the qualifi-
cation expression of the selection operation to the data units of the per-
manent database is the index table [MART77]. These tables are defined for the
database and need to be stored and maintained. The data unit, the smallest
addressable unit of data, can be logical, namely, the database (no indexing),
the relation, or can be physical, namely, a set of tracks, a track or part of a

track of a moving/fixed head disk. The physical data unit is called a page.*

The first coordinate in the proposed scheme is.the indexing level defined
for the permanent database and supported by the particular DBM. Along this
coordinate, the DBMs can be grouped into three categories, namely, DBMs with

database indexing level, DBMs with relation indexing level and DBVMs with page

* Indexing on subtrack pages has been used extensively in the conventiona! database systems.
In the context of DBMs, indexing on relations or relatively large pages (multiple tracks) has been
used. This approach reduces the size of the index tables to be maintained, thus reducing their
storage and maintenance cost and at the same time improving the system response iime and/or

throughput.
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indexing level. The first category includes all the DBMs which support only the
pure associative approach. The DBMs of the second category support the
quasi-associative approach. The index tables of the machines, in this
category, are defined for the permanent relations as the minimum address-

able units.**

The DBMs of the third category support also the quasi-associative search
approach. However, in addition to supporting the relational level index tables,
they support the index tables which are defined for the pages (containing

tuples from the permanent relations) as the minimum addressable units.

The second coordinate in the proposed scheme is the query processing
location. Along this coordinate. the DBMs can be grouped into three
categories, namely , the off-disk,*** the on-disk and the hybrid categories.
The DBMs of the first category execute the query off the disk where the data-
base is stored. In doing that, the DBMs of this category need to move the data
relevant to the query from the disk to a separate processor-memory complex

where the query processing would take place.

The DBMs of the second category execute the query on the disk. The
machines of this category do not need to move data from the disk to a dif-
ferent memory for processing. The disk (a memory) is provided with logic
units and the query processing would be carried out on the disk where the

database is stored.

The DBMs of the third category execute part of the query on the disk, the

selection {from permanent relations) operations and in some machines the

**To facilitate the parallel processing as well as the movement of data, some DBMs of the
first /second category store the corresponding minimum addressable unit of data (DB/relation) on a
set of physical units called the minimum access units (MACUs), each could be moved separa:ely.
However, when a data item needs to be retrieved, all the MACUs containing the DB/relation are pro-
cessed. In the DBMs of the third category the page (the minimum addressable unii) is stored in one
MACU.

$*sThe disk here implies a moving-head disk, a fixed-head disk or an electronic disk, such as the
magnetic bubble memory (MBM) or the charge-coupled device memory (CCD). The disk(s) stores the
database.
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update operations, and move the resulting data to a separate processor-
menicry cr.mplex where the rest of the query execution (if any) would take

place.

The third coordinate in the proposed scheme is the processor-memory
organization. This coordinate characterizes the hardware of the database
machines. For the on-disk/off-disk machines, this coordinate characterizes
the way the processor-disk/processor-memory complex executes the data-
base operations. For the hybrid machines this coordinate characterizes the
way both the processor-disk and processor-memory complex execute the

database operations.

Along the third coordinate, the DBMs can be grouped into three
categories, namely, the single instruction stream-single data. stream (SISD),
the single instruction stream-multiple data stream (SIMD) and the multiple
instruction stream-multiple data stream (MIMD) categories. This grouping for
the DBVs is similar to that made by Flynn [FLYN72] for the uniprocessor and

the multiprocessor systems.

In the following sections, the DBMs proposed so far, together with the
corresponding database systems that they are designed to support, are
reviewed. This is done within the context of the newly proposed classification

scheme.

2.2. The DBMs with the Database Indexing Level

Figure 2.3 shows the database machines which fall within this category.
These machines have been organized as an associative processor (AP). An asso-
ciative memory is a collection or assemblage of elements having data storage
capability which are accessed simultaneously and in parallel on the basis of
their content rather than by a specific address {KOHO77]. On the other hand,

an associative processor (AP) can be defined as an associative memory with
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the added capability of sophisticated data transformation and arithmetic

operations.

Many architectures have been proposed for the AP. In [YAU77] these
architectures were grouped into four categories, namely: the"fully paraliel,”
the "bit/byte serial-word parallel,” the "bit parallel-word serial” and the

"block-oriented” categories.

According to the scheme presented in Section 2.1, the DBVs which fall
within this category can be grouped further into three subcategories, namely,
the off-disk with DB indexing level DBMs (Off-Disk-DB), the on-disk with DB
indexing level DBMs (On-Disk-DB) and the hybrid with DB indexing level DBVs
(Hybrid-DB). In the following section, the DBMs which fall within the above sub-

categories are reviewed.

2.2.1. The Off-Disk with DB Indexing Level DBMs

The machines within this subcategory were among the early proposals
for a database machine. These machines were provided with the capability of
supporting simple file management functions (selection based on simple
predicates, simple update. etc.), rather than supporting the functions of a

comprehensive database management system.

The database machines of this subcategory are organized around the
"bit/byte serial-word parallel” APs. An AP of the latter type is organized as a
set of relati(rely short memory words. Each word is associated with a process-
ing element (simple hardwired logic unit with one bit/byte data path). The
processing elements are organized in a synchronous SIMD fashion, where a
single hardwired common control unit, executing one instruction at a time,
directs and controls their activities. The memory words are implemented
using high-speed serial shift registers. The processing elements are physi-

cally separated from the memory words. The processing elements execute
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parallel search, boolean, update and simple arithmetic operations. In the fol-

lowing sections, the DBMs which fall within this subcategory are reviewed.

2.2.1.1. 1IFAM Project

DeFiroe et. al [DEFI73] developed a data management system called
"information systems for associative memories (IFAM)." An experimental
prototype of IFAM was implemented at Rome Air Development Center. This
implementation was based on a 2048-word, 48 bits each, bit serial-word

parallel associative processor called AM developed by Goodyear.

IFAM stored its data in a simple relational format, called the associative
normal form (ANF). The capabilities of IFAM were closely tied to the simple
operations which can be performed by the AM. Among these operations were

selection based on equality, inequality and within-range match.

2.2.1.2. Moulder Project

Moulder [MOUL73] described the implementation of an experimental,
resee. cli oriented, hierarchical data management system. The implementa-
tion was based on the "bit serial-word parallel” associative processor STARAN
and a parallel head-per-track magnetic disk. The system was provided with a

high-speed parallel channel to move data between the disk and STARAN.

Using the techniques developed by DeFiore [DEFI71], the hierarchical
data were converted into the ANF and stored on the head-per-track disk.
The capabilities of the system were close to that of IFAM. The database was
partitioned into a number of physical disk sectors which were successively
read into the STARAN memory in a high speed parallel fashion, where they

were searched using the associative capabilities of STARAN.
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2.2.1.3. APCS Project

Linde [LIND73] proposed the "associative processor computer system
(APCS),” to support simple data management functions. This system was
based on a "byte serial-word parallel” associative processor. Linde con-
ducted a performance comparison of the APCS with a conventional data
mangement system implemented on an IBM 370/145 computer system. In
that study he hypothesized the existence of a very large random access
memory to store the database. The memory is provided with a high speed
parallel 170 channel with the capability of transferring 1.6 billion bytes per

second to and from the associative processor memory.

Under the above assumptions, Linde found that, in comparison with the
conventional system, APCS required less storage and was faster in executing

the simple retrieval (simple selection) and update operations.

In general, the database machines presented above suffer from several

problems. The most important ones are:
1. The high cost

Organizing a database machine around a "bit/byte serial-word parallel”
AP is very 'expensive. Although the logic-memory cost dropped substanf.ially
during the past decade, this AP implementation continued to be very costly.
This is due to the fact that such implementation demands a very large
amount of logic and fast memory devices. The high cost of this implementa-
tion limits the size of the databases that can be supported to relatively small

ones.
2. The AP Memory Load/Unload Bottleneck

In general, the size of the database is much larger than the capacity of
the AP memory. The database, therefore, is stored on relatively inexpensive

secondary storage (disks). The database is partitioned into a number of
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data units. Each unit can fit in the AP memory. To search the database, the
data units would be successively read into the high speed AP memory where
the search would be performed. Unless the system is provided with 1/0
channels of huge capacity, an 170 bottleneck would be created due to the
difference between the seérch speed of the AP and the 1/0 channel speed. As
a result of the latter bottleneck, the system performance will be consider-
ably degraded. On the other hand providing the system with high-capacity

1/0 channels increases the system’s cost considerably.

2.2.2. The On-Disk with DB Indexing Level DBMs

The database machines of this subcategory were organized around the
"block-oriented” APs. An AP of the latter type is organized as a set of
memory blocks. Each memory block is associated with a processing element.
The memory blocks are made of slow, relatively inexpensive, rotating storage
devices, such as the tracks of a fixed-head-per-track magnetic disk or its
electronic counterpart such as the charge-coupled memory device (CCDs)
[THRE78], or magnetic bubble memory devices {MBM) [CHEN78]. The set of
processing elements are organized in an SIMD fashion, controlled by a single
control unit. The processing elements are constructed using hardwired logic
and are provided with the capabilities of searching and updating the data as
it passes by the disk heads. In the following sections, the database machines

which fall within this subcategory are reviewed.

2.2.2.1. The Early Proposals

Slotnick [SLOT70] was probably the first to propose adding logic to a
rotating storage device. The system he proposed associated logic with each
pair of tracks of a magnetic fixed-head disk. The data is read from one

track, processed by the head logic and then written back on the other one.
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Communication lines were added to permit the tracks to be processed by

logic units other than those associated with them.

Parker [PARK71] proposed a system for information retrieval based on a
block oriented AP. In Parker's system, every track of a magnetic head-per-
track disk is associated with a read head, a write head and a processing ele-
ment. The data is stored on the disk tracks as variable length records iden-
tified by keywords. Under the control of a single control unit, the set of pro-
cessing elements can in parallel,. retrieve, update and count records based

on the corresponding keywords.

Parhami [PARH72] proposed a system for information retrieval similar
to that of Parker. The proposed system is called RAPID, (rotating associative
processor for information dissemination). RAPID was based on a block-
oriented AP. RAPID stored its data on a head-per-track magnetic disk in
string format. The processing elements of RAPID are provided with simple
pattern-matching capabilities as well as capabilities similar to those of

Parker's system.

One important note on the above proposals for a DBM is the fact that
these systems were designed to support only simplé file management func-
tions rather than comprehensive database management systems with their

associated logical data models.

2.2.2.2. CASSM

The DBM CASSM‘ [COPE73, LIPO78, SU73, SU79] was proposed at the
University of Florida. It was designed to support the three main data
models, the hier‘archical. the network and the relational. CASSM is organ-
ized as a "block-oriented” AP. The storage media used is a fixed-head-per-

track disk. Each track is associated with a read head, a write head and a

*CASSM stands for "context addressed segment sequential memory.”
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processing element. Each processing element can communicate directly

with its adjacent neighbors.

The processing elements, controlled by a single processor, perform the
data processing functions in an SIMD fashion. The control processor is
responsible for communicating with the host(s) computer(s), distributing

instructions to the processing elements, and collecting the final results.

The key feature of CASSM is its "segment sequential” storage scheme
introduced by Healy et. al [HEAL72, HEAL76]. A record in this scheme is
composed of an arbitrary number of fixed length words. A word is organized
as an ordered pair:

<attribute name, value>
The scheme stores the values of the non-numeric attributes only once in the
database, separate from the words in which they are values. In these cases
the "value" field of the ordered pair is a pointer to the corresponding non-

numeric value.

The scheme associates a fixed number of mark bits with each attribute
and each record in the database. These are used to identify the result data
of one operation that is the input to a subsequent operation. The set of
records, constituting the database, are packed together in a file. The file,
which can be thought of as a one-dimensional string of words, is subse-
quently divided into equal length segments, each stored in bit-serial fashion

on a track of the head-per-track disk.

When performing the selection operation, the processing elements mark
all the records (tuples) which belong to the relation referenced by the
operation in one disk revolution. A second disk revolution is used to mark
those words of the marked records which satisfy the selection qualification

expression. A third disk revolution is used to output the marked words. In
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the event that the marked attribute is non-numeric, the third disk revolu-
tion is used to check the values of the marked words, pointed by the pointer
in the "value” fields. A fourth revolution is needed to output the marked

non-numeric values.

CASSM implements only the implicit-join* operation. This operation is
imp!emented using a hashing scheme and an auxiliary random access
memory. Since this scheme was first proposed for use in the CAFS [BABB79]

DBV, its description is postponed until the latter machine is reviewed.

2.2.2.3. RAP

The DBM RAP** [0ZKA75] was proposed at the University of Toronto. It
was designed specilically to support the relational da.ta model. RAP, in its
original design, is organized as a "block-oriented” AP. The storage media,
similar to that of CASSV, is a fixed-head-per-track magnetic disk, each track
is associated with a read head, a write head and a processing element. RAP’s
processing element is a hardwired logic unit designed specifically for non-
numeric processing. It is more complex than that of CASSM (for example, it
contzins several comparators rather than one as in CASSV,). The set of pro-
cessing elements, operating in an SIMD fashion, is controlled by a éingle con-..
trol unit similar to that of CASSM. Each processing element has the capabil-
ity to broadcast part of its data directly to all the other processing ele-

ments.

In RAP, data is organized in a relational format which defer sightly from
that proposed by CODD [CODD70]. RAP format allows duplicates of tuples to
exist in a relation. It also puts an upper limit on the number of attributes a

relation can have. The tuples of RAP relations are stored bit wise along a

*For the definition of this operation, the reader is referred to Section 1.3
**RAP stands for "relational associative processor.”
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track. Only tuples from one relation are allowed on a track. Asin CASS¥, a
tupie is augmented with a fixed number of mark bits [attributes are nctj,

but cannot span two tracks.

Processing of the selection operation in RAP is similar to that.in CASSY,,
however, Vit is faster because of the simpler storage structure and because
the processing element in RAP can perform multiple comparisons (as many
as the number of comparators in one processing element) in parallel verses

performing one comparison in CASSM.

RAP implements the projection operation using the mark bits. The
tuples participating in the projection operation normally are selected
(marked) during the execution of an earlier one. RAP executes the projec-

tion operation in the following way:

A processing element of RAP retrieves cne marked tuple and resets its mark-
ing bit. The processing element forwards the value of projection attributes
of the selected tuple to the centroller. It also broadcasts the latter to all the
processing elements. The processing elements then reset the mark bit of
every marked tuple which contains values that match the breadcast ore.
This process is repeated until all the mark bits are reset.

RAP processes the implicit-join operation as a series of selection opera-
tions on the larger relation using the values of the join attribute in the

smaller relation as the selection qualification expression.

An analytical performance comparison between RAP and a hypothetical
uni-processor DBMS is described in [0ZKA77]. The uni-processor is assumed
to store the database in a sequential ordered form with indices defined for
all the attributes of the database. The performance study shows that RAP
was between three and sixty times faster than the DBMS in executing the
selection operations. When comparing the execution of the modification
operation, RAP was found to be 5,000 times faster than the DBMS. This is due
to the extra efforts associated with updating the indices by the DBMS. For

the more complex operations, such as the implicit-join or the projection,
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RAP shows no significant performance advantage over the uni-processor

DBNS.

Since its introduction in 1975, RAP underwent many design changes.
The new design of RAP (called RAP.2) falls within the off-disk-relation DBM

category. RAP.2 is reviewed later within the context of its own category.

2.2.2.4. RARES

RARES* [LIN76] was designed at the University of Utah as an intelligent
controller for a head-per-track magnetic disk. It is provided with only the
capability to perform the selection operation on the relational data of the
disk. RARES stores the relational data in a different way from that of RAP.
Tuples in RARES are stored across the tracks in byte-parallel fashion (in RAP
tuples are stored along the tracks in a bit-serial fashion). The set of tracks
used to store a tuple is called a band. The band sizes vary according to the

tuple length.

RARES hardware consists of a set of specially designed search units
(hardwired logic) with relatively wide datapaths (64 bits). Each search unit
is associateq with 256 tracks. These tracks are partitioned into four groups.
The searéh unit has the capability to search the tracks within any of these

groups in parallel.

Several advantages have been claimed for RARES orthogonal storage
layout over that of RAP-like systems. The most important one is that in out-
putting'the selected tuples, contention, likely to occur in RAP-like systems,
between the processing elements for the 1/0 bus can be reduced. On the
other hand, this organization is not without drawbacks. It does not distri-
bute the workload evenly. For the selection operation where the qualifica-

tion expression involves one attribute, only one search unit is busy, the

*RARES stands for "rotating associative relational store”.
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others simply wait for a command to transmit their portion of the tuple. In
addition, close conimunication between all the search units is required dur-
ing the output of a selected tuple since all the search units must output its
share of‘ the tuple in specific sequence. This is needed in order to allow the

controller to reconstruct the selected tuple.

In general, the database machines which fall within the On-Disk-DB
category have offered a good solution to the data movement problem. By
moving the logic to data rather than moving the data to logic, the need for
the costly data movement has been eliminated. On the other hand, this solu-

tion is not without its own drawbacks. The most important ones are:
1. Low Speed

The On-Disk-DB machines process the query on relatively slow rotating
storage devices. In a performance report [0ZKA77], RAP (and RAP-like pro-
cessors) are shown to be effective in processing the selection and modifica-
tion operations which require few disk revolutions. RAP on the other hand is
very slow (as slow as the conventional DBMs) in executing the more complex
operations, such as the projection and the ¥-join operations. This is due to
the fact that such operations are implemented* as repeated search opera-
tions with a fixed long rotational time for each of these search operations

regardless of the number of tuples needed to be searched.
2. High Cost

Associating logic with each head of a head-per-track disk is an expen-
sive approach to DBM design. This is due to two factors, namely, the high
cost of the head-per-track disks as mass storage media ( at least one order
of magnitude more expensive than the moving-head-disk storage technology)

and the high cost of associating logic with every track of the disk. Both of

*One excepiion to this implemes atation is that of CASSM.
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the previous factors catise these DBMs to have expensive mass storage

media, thus limiting them Lo supporting only small databases.

2.2.3. The Hybrid with DB I ndexing Level DBMz=

Only one DBM, the Slaaw machine [SHAWBO0], falls within this category.
The Shaw DBM is designed specifically to sﬁpport the relational data model. It
is organized as a two-level hierarchy of APs. At the top of the hierarchy is the
primary associative memc ry {PAM). PAY is fairly fast, small AP, organized as
"bit/byte serial-word para.llel.” At the bottom of the hierarchy is the secon-
dary associative memory {.SAM), a large, relatively slow AP. SAV is organized
as a "block-oriented” AP (the same as RAP). Each of the blocks processing
elements have the additio nal capability of performing some nontrivial arith-
metic operations such as multiplication and division. PAM and SAM are pro-

vided with a channel of ade:quate bandwidth for intercommunication.

SAM stores the relati onal database using a storage structure similar to
that of RAP. The Shaw naachine executes the selection operation on per-

manent relaticns i SAM in(the same way that RAP does.

The Shaw machine im plements the equi-join cperation. The algorithm in
use partit'ions'.the'Join at tribute uhderlyihg domain into disjoint sets such
that the expected number* of the source and target tuples which map to any
of these sets would fit in PAM's local store. The sets of tuples, one set at a
time, would be retrieved b y SAM and transferred to PAM. PAM then would join

the sets, one at a time, usi ng an algorithm similar to that of RAP.

One method for doma in partitioning is the hashing function technique. A
hashing function, compute:d by the track processing elements of SAM, would
select those tuples of the ¢3ource and target relations which hash to one parti-

tion of the join domain an d forward them to PAM where the rest of the equi-
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join operation weuld be concluded.

The Shaw machine also implements the projection operation. The algo-
rithm in use exploits the domain partitioning techniques similar to that in use

for the equi-join operation.

The performance of the Shaw machine is superior to that of both the
Off-Disk-DB and the On-Disk-DB. In comparison with the Off-Disk-DB DBVs, the
Shaw machine eliminates the need to move the whole database to the fast AP
(as a matter of fact, only a small portion of the database needs to be moved).
Thus rélatively inexpensive 1/0 channels can be used without any serious 1/0
bottlenecks. In comparison with the On-Disk-DB DBMs, the Shaw machine
moves the execution of the complex relational operations from the slow rota-
tional device, the head-per-track disk, to a much faster device, the "bit/byte

serial-word parallel” AP.

The Shaw machine is not without problems. One of the most important
ones is the high cost of organization. The Shaw machine combines two very
expensive technologies: the head-per-track disk (vbsvlete as mass storage
media) with nontrivial logic associated with each head and the "bit/byte
serial-wora parallel” AP. The cost factor restricts the Shaw machine to sup-

port only the relatively small database systems.

2.3. The DBMs with Relation Indexing Level

Figure 2.4 shows the database machines which fall within this category.
According to the scheme presented in Section 2.1, these DBVs can be grouped
into three subcategories, namely, the off-disk with relation indexing level (off-
disk-relation), the on-disk with relation indexing level {on-disk-relation) and
the hybrid with relation indexing level {(hybrid-relation). In the following sec-

tions, the DBMs within the latter subcategories are reviewed.
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2.3.1. The Off-Disk with Relation Indexing Level DBMs

2.3.1.1. RAP.2

RAP.2 [SCHU79] is a modified version of the DBY. RAP. RAP.2 consists of
a number of processing elements, each with a pair of tracks. The set of pro-
cessing elements, implemented as microprocessors, are controlled and
managed by a single controller. The controller, implemented as a
mini/micro processor, and the set of processing elements process data in an
MIMD mode. The processing elements can intercommunicate indirectly
through the controller. In RAP.2 the track is implemented using one of the
new memory technologies, such as the charge-coupled device memory
(CCDs), the magnetic bubble memories {M¥BVs) or ‘the - electron-beam

addressable memories (EBAMs).

RAP.2 stores the database on some number of conventional mass
storage devices (moving-head disks, for example). For every relation in the
database, the controller keeps a list of the secondary storage track
addresses which store the given relation. Before processing any relational
operator, the controller brings all the tracks which store the relations,
referenced by the given operator from the secondary storage, to the tracks
of RAP.2. The processing of the relational operator then proceeds in the
same way as that of RAP. Providing two tracks to every processing element

in RAP.2 is needed to overlap the 1/0 data movement with data processing.

One last note about RAP.2 is the fact that the execution of the relational
operators which reference a relation(s) larger than the capacity of the

tracks associated with the RAP.2 processing elements were never presented.



2.3.1.2. RELACS

RELACS* [OLIVBO] is a DBM proposed at Syracuse University to support
large relational databases. RELACS is designed around two APs organized in a
"bit serial-word parallel” fashion. The design tries to overcome the weakness
of early systems with similar organization (Off-Disk-DB DBMs), namely, the
170 bottleneck due to relatively slow 1/0 with respect to faster search time
and the requirement that the entire database be searched at least once for

each selection operation.

RELACS consists of six main functional units: the global control unit
(GCU); the data dictionary unit (DDU); the associative units (AU0,AU1); the
mass storage device (MSD); and the output buffer (CB). The GCU interfaces
and controls the activities of the different functional units of RELACS. The
MSD is organized as a set of moving-head disks augmented with a number of
high-speed buffer memory modules each with the capacity of one track. The

data, organized as relations, are stored on the moving-head disks.

For every relation in the database the DDU stores the list of the track
addresses which store the given relation. AUQ and AUl are extfemely fast
APs which, in cooperation with the GCU, can execute the relational opera-
tions in a limited MIMD fashion. Loading an AP is performed by a custom-
designed 1/0 device which is capable of selecting a module from the buffer
memory and transferring its content to the AP's memory. While one buffer
memory module is being emptied into an AP, one or more of the other

modules can be loaded from the disks.

RELACS processes the selection operation in a simple way. The set of
tracks which store the relation referenced by such an operation are loaded

into the memory of AUO and/or AU, one track at a time. The data then is

*RELACS stands for "relational associative computer system"
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searched using the associative capability of the corresponding AP(s).

RELACS implements the ¥-join operation. The algorithm in use per-
forms selection repeatedly. Part of the source reiation is loaded into the
AP(s) memory(ies). Then each tuple of the target relation is compared using
the associative capability of the AP(s) to the loaded source tuples. The
source tuples which respond to a target tuple, together with the target tuple
are transferred to the output buffer OB were they are physically joined. This
process is repeated until all the source and target tuples have been pro-
cessed. The implementation of the projection operator on RELACS was never

presented.

Oliver [OLIV79] compared the performance. of RELACS to RAP in per-
forming the selection, deletion, modification and insertion operations. It was
shown that RELACS is faster in almost every case with the exception of the
mass addition to the database. While in the worst case RELACS performs
marginally better than RAP does, in the best case it is three orders of magni-
tude faster. In the above, worst and best case refer to the capacity of the

AP’'s memory.

2.3.1.3. DIRECT

DIRECT [DEWI?9] is a DBM proposed at the University of
Wisconsin/Madison to support large relational databases. It is organized as a
set of general purpose microprocessors (termed query processors) whose
function is to execute operations, such as selection, ¥-join and update, on
the database. These microprocessors are controlled and managed by a mini-
computer [termed back-end controller (BEC)]. The BEC is also responsible
for interfacing DIRECT to the outside world [the host(s)], distributing
instructions to the query processors and overseeing the data transfers from

the secondary memory to the processors. The BEC and the query
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processors are organized in an MIMD fashion.

The database in DIRECT, organized as relations, resides on so:1e number
of mass storage devices (moving-head disks). Each relation is organized as a
vector of fixed-size pages. For each relation the BEC keeps a list of
addresées for those pages which store that relation. A number of CCD
memory units serve as a fast buffer memory between the query processors
and the mass storage devices. The CCD memory units also serve as tem-
porary storage units for the result pages of one operation that are to be
used in a subsequent operation. The CCD memory units are managed by the

BEC.

‘The query processors and the CCD memory vunits are interfaced by a
simple cross-point switch that has two important capabilities: any number
of query processors can read the same CCD memory unit simultaneously an
any two query processocs can read from any two CCD memory units con-
currently. The cross-point switch also interfaces the mass storage devices

to the CCD memory units.

The organization of DIRECT facilitates two types of concurrent query
processing, namely, intra-query processing (simulta'neous execution of two
or more instructions from the same query) and inter-query processing
(simultaneous execution of two or more instructions from different queries).
Facilitating both types of concurrent query processing are essential for sup-

porting contemporary and future concurrent large database systems.

To execute the selection operation the BEC selects a number of query
processors and broadcasts to them the selection operation code and some
other needed information. The BEC also brings the relation (referenced by
the selection operation) into the CCD memory units. Each query processor

participating in the Selection, requests a data page from the controller each
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time it is through with its current one. The controller replies with the CCD
memory unit address which stores the corresponding data page. The query
processor then reads the data page into its internal memory and retrieves
those tuples which satisfy the selection criteria using the sequential scan of

the data.

DIRECT implements the 9¥-join operation using a parallel version of the
nested loop algorithm. In DIRECT, the larger of the two relations being
joined is designed as the outer relation, the other is the inner one. Each
query processor participating in the ¥-join receives one page of the outer
relation. If the page is not sorted on the joining attribute, the query proces-
sor sorts it. Next, the pages of the inner relation, which are sorted on the
joining attribute, are broadcast, one at a time, to all the query processors
with an outer page. Each query processor joins its outer page with the
incoming stream of inner pages. Whenever a query processor's output
buffer fills up, the query processor sorts it on the attribute that is to be used
in the subsequent operation (if any) and then outputs it to an empty CCD
memory unit (whose address is supplied by the BEC). This procedure is

repeated until all the pages of the outer relation have been processed.

DIRECT implements the projection operation. The description of the

algorithm in use can be found in [BORAB:].

Although the organization of DIRECT facilitates concurrent query pro-
cessing, it is not without problems. In a simulation study for DIRECT
[BORAB1], it was evident that the BEC is a system bottleneck even for a small
number of query processors. This is due to the fact that the organization of
DIRECT necessitates that any query processor request for reading/writing

any CCD memory unit must pass through the BEC.
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The other problem of DIRECT is related to the crosspoint switch. This
switch requires that the comiplexity of the logic at the interface of the CCD
memory units (whose number is m) and the query processors (whose
number is n) grow as (m x n). Thus, for large n and m this interface would
introduce a large delay in the data transfer between the CCD memory uriits
and the query processors. The large amount of logic together with the fact
that every CCD memory unit must be provided with e‘nough power to drive all
the query processors make the crosspoint switch prohibitively expensive for

supporting a large number of query processors.

2.3.2. The On-Disk with Relation Indexing Level DBMs

Only one DBM falls within this category, namely, the VERSO [BANC80]
DBM. ltis orga.nized as an SISD machine. The database is stored on a number
of moving-head disks (conventional or modified for parallel read out from the
whole disk cylinder) in relational format. A single processor, which is
designed primarily to execute the selection operation, is placed between the
disks and the memory device to which the selected data is to be delivered.
The processor, which acts as an 1/0 filter, is organized as a finite state
machine which executes very simple microcode instructions and has the

capability to scan the data as fast as the disk delivers it.

In [BANCBO] it is shown that, if the data is organized in a new normal
form, VERSO can be used to perform the equi-join operation with some occa-
sional performance penalty. The new normal form simplifies the join algo-
rithm as well as reduces the number of joins to be performed on the data-

base.
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2.3.3. The Hybrid with Relation Indexing L.evel DBMs

2.3.3.1. CAFS

CAFS* [COUL72, BABB79] is a DBM designed specially for supporting the
relational databases and is available commercially from ICL Ltd. In CAFS the
database, organized in the relational form, is stored on a number of moving-
head disks. CAFS contains several specially designed hardware units, among
them are the associative search unit (ASU), the file correlation unit (FCU),
and the record retrieval unit (RRU). The first two units process data in a
pipeline fashion and at the same rate as the disk delivers it. In both units

the data is processed in an SISD fashion.

The ASU is responsible for executing the selection operation. It acts as
a data filter to the FCU which is responsible for performing the other com-
plex relational operators. The ASU implements the selection operation as

follows:

The tuples of the referenced relaticn (referenced by the selection operatior)
stream through the ASU at the disk transfer rate. The ASU evaluates the
selection qualification expression on each passing tuple and marks those
which satisfy it. The RRU then collects the marked tuples for output tc the
user.

The FCU provides an efficient mechanism for the evaluation of the
implicit-join and the duplicate removal part of the projection operations. It
consists of a number of 1 bit wide random accesé memories { 1-bit-wide vec-
tors). The 1-bit-wide vectors are used to store, in coded form, the set of

values present in some join or projection attribute(s) of a relation(s).

The implicit-join operation references two relations, the source (S) and
the target (T). In implementing this operation CAFS uses a novel algorithm {-
it is also used by other DBMs such as CASSM ). In this algorithm, the join

attribute value of each source tuple is transformed into an index, using a

*CAFS stands for “content addressable file store.”
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hashing function, of the 1-bit vector. The corresponding bit of the vector is
set to "1.” Then for every tuple of the target relalion, the join attribute
value is transformed into an index using the same hashing functior The
index is used to access a vector location and the tuple is retrieved il the

location value is ""1."

Using the above algorithm, some of the target tuples are retrieved
without having a match among the values present in the join attribute of the
source relation. This is due to the collision phenomenon asscciated with the
hashing functions [KNUT73]. That is, with the hashing functions in use, there
is a non zero probability that a given bit will be set by more than one of the
values present in the join attribute of the source relation tuples. This proba-
bility, as shown in [BABB79], can be made arbitrarily small by the use of a
sufficient number of 1-bit vectors together with an equal number of statisti-
cally independent hashing functions. However this probability will never be

zero and occasionally some target tuples wili be retrieved in error.

CAFS implements the duplicate removal part of the projection operation
using an algorithm similar to that of the {mplicit-join operation. The details
of the algorithm can be found in [BABB79]. However, the usage of the hash-

ing scheme will result in the loss of some tuples of the projected relation.

Although CAFS implements some novel algorithms for evaluating the
implicit-join and the projection operations, it still suffers from many prob-
lems. One problem is the fact that the novel algorithms introduce some
error in performing the implicit-join and the projection operations. Another
problem is the fact that CAFS implements only the implicit-join algorithm
efficiently. but not the more general join operations such as the equi-join
and the ¥-join. A third problem is the fact that both the on- and off-disk pro-

cessing units of CAFS are organized in an SISD fashion with little ability to
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support a concurrent query processing environment.

2.3.3.2. Boral Machine

Boral [BORAB1] at the University of Wisconsin/VMadison proposed & DBY
designed specifically to support large concurrent relational database sys-
tems. This machine contains a master controller (MC), a set of instruction
controllers (ICs), a set of instruction processors {IPs) and a set of modified
moving-head disks. These components intercommunicate over a broadband,
coaxial cable, broadcast bus that uses frequency-multiplexed, RF-modulated
channels to allow for several simultaneous communications over the single

bus.

The moving-head disks store the database in relational form. Every
head of a moving-head disk is provided with a processing element. The set of
processing elements of one disk is controlled by a single contreller. For
every relation on a moving-head disk, the corresponding disk controller
keeps a list of the page addresses which store such relations. The proces-
sors of a disk have the capability to perform, in an SIMD mode, the seiection
and some simple update operations on the data of the tracks as fast as the
disk delivers it. The set of moving-head disks can execute instructions in an

MINMD fashion.

The MC handles all the communications with the host computer(s), ini-
tiates the execution of the instructions, and controls and manages the other

machine components.

An IC is a processing element provided by some amount of fast memory
and a small secondary store (small moving-head disk). An IC together with a
number of both IPs and moving-head disks form what is called an IC group.
The different units of an IC group communicate over one channel of the mul-

tichannel coaxial cable. An IC, grouped with a set of IP's and moving-head



42

disks, is assigned an instruction (selection, 8-join, projection or any combi-
nation of them) for execution. The group IC is responsible for the manage-
ment of the other components within the group. The number of IPs allo-
cated for the execution of a given instruction is deterruined by the MC, tak-
ing into consideration several factors such as the statistics about the data,
etc. The broadband coaxial cable allows a number of IC groups executing

different instructions to proceed concurrently.

Boral's DBM executes the selection, the ¥-join and the projection opera-
tions using algorithms similar to those of the DIRECT machine. The details of
these algorithms can be found in [BORAB1]. In Boral's DBV, the selection
operation on permanent relations is executed on the moving-head disks. the
result of this operation is staged to the local store of the IPs and ICs where

the more complex operations are executed.

Although, Boral's DBM uses what seems to be an "exotic” interconnec-
tion scheme, it still suffers from many problems. The first one is the fact
that each hardware unit connected to the coaxial cable needs to have an
RF-multiplexer/demultiplexer unit. This increases the cost of these
hardware units cons‘ider.abl_y and thus the overall machine cost. Another
problem is the fact that the communication of messages over such media
requires some form of acknowledgment [MAGLB0O] performed by the
software. This tends to reduce the bus effective transmission rate consider-

ably.

2.4. The DBMs with the Page Indexing Level

Figure 2.5 shows the DBMs which fall within this category. According to
the scheme presented in Section 2.1, these DBMs can be grouped into three
subcategories, namely, the off-disk with page indexing level (off-disk-page),

the on-disk with page indexing level (on-disk-page) and the hybrid with page
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indexing level (hybrid-page). In the following sections, the DBMs within these

subcategories are reviewed.
2.4.1. The Off-Disk with T’age Indexing Level DBMs

2.4.1.1. The Intelligent Database Machine

The intelligent database machine (IDM) [EPSTB0A, EPST80B] is designed
to support the small to medium relational database systems and is commer-
cially available from Britton-Lee, Inc. The database is organized as a vector
of small size (subtrack) pages. Indices are defined for the most frequently
used attributes of the database. An attribute index contains a list for every
value of the corresponding attribute. The list contains the addresses of all
the pages which store the tuples having such attribute and value. The IDX
stores the database together with the indexing information on up to 16

moving-head disks.

The other important hardweare components of the IDM are the masler
processor, the database accelerator and a cache random access memory
with maximum size of 3 Mbytes. The cache is used to buffer the most fre-
quently referenced pages of the database. The master processor is a con-
ventional one which performs some database functions as well as controls
the activities of the rest of the machine components. The database
accelerator is a custom-designed processor that is claimed to run at speeds
ten times the transfer rate of the disk. The accelerator is designed to effec-
tively execute some small portions of the relational DBMS code. It was
observed that most of the execution time of the DBMS is typically spent in

such ccde.

The details about the way the IDM implements the different relational

operations are not available and thus are not presented here.
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2.4.1.2. INFOPLEX

INFOPLEX [MADN75, MADN79] is a DBM designed in a structured top-
down fashion. The database system functions were decomposed into a func-
tional hierarchy. Each functional level of the hierarchy is implemented in
terms of the functions (primitives) provided by the next lower level. By
associating a microprocessor complex to each functional level (the
microprocessor complex is optimized to execute the primitives of that level)
and piping the data between the levels, both the inter and intra instruction
parallelism can be attained. An intelligent storage hierarchy employing dif-
ferent technologies of varying speed and cost is used to store the database.
The design of the organizations is based on locality of reference observations

in databases.

The details about the implementation of both the functional and the
storage hierarchies as well as the implementation of the different relational

operations are not available and thus are not present here.
2.4.2. The Hybrid with Page Indexing Level DBMs

2.4.2.1. Hybertree

Hybertree [GOODBC] is a DBV. proposed for supporting relational data-
base systems. It is an interesting machine because of the way it was
designed. The performance of a number of differént interconnection stra-
tegies between a number of processing units was examined for the execution
of the duplicate removal part of the projection operation [GOOD80]. The
various strategies were characterized in terms of their merits and de-
merits. An augmented physical binary tree structure was picked as the
best. In this scheme, processors are organized as a binary tree, but with

each node connected in a regular manner to one of its siblings. The leaf
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nodes are interconnected using the perfect shuffle structure [STON71] and
are connected to a moving-head disk modified for parallel read out of a
whole cylinder. The leaf nodes are responsible for the execution of the sim-
ple search operations. Thus they act as data filters to the higher level nodes

which are responsible for executing the complex relational operations.

The hybertree DBM implements both the projection and the equi-jcin
operations. The duplicate elimination part of the projection operation is
implemented using the perfect shuffle or the binary tree connection. The
equi-join is implemented using a parallel version of the CAFS hashing algo-
rithm. Each leaf processor initializes, in parallel with the others, its own 1-
bit-wide vector with the number of entries equal to twice the number of
uniqﬁe values in the join attribute. Each leaf processor sets up its own 1-bit
vector according to the values of the join attribute of the source relation.
Parent nodes in the tree are responsible for "ORing"” the bit vectors that
their children produce. This procedure is repeated for the target relation.
The root of the tree receives the final two vectors, encodes the two relations
and ANDs them to form a new vector. This vector is broadcast to all the leaf
nodes. The source and target tuples are hashed again to the 1-bi£-wide vec-
tor. A tuple of the source or 'the targef relations is then forwarded to a
prespecified processor if it hashes Lo a "set” bit of the 1-bit-wide vector. The
prespecified processors are picked in such a way that tuples that have the
same Join attribute value are sent to the same processor. The prespecified

processors then join the corresponding assigned tuples.

2.4.2.2. DBC

.

The DBC [BANE79,BAUM76] is a DBM designed to support very large
database systems. The database is organized as a vector of pages {each has

the size of a cylinder). Indices are defined for the database in the same way
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as those of the IDM. However, since the page size in the DBC is much larger
than that of the IDM, the size of the index in the former rnachine is much

smaller than that in the latter.

The DBC consists of seven functionally specialized units. These units are
organized in two loops, namely, the data loop and the structure loop. In
addition to other units, the data loop contains the mass memory (MM) and
the post processing unit. The structure loop contains the structure memory

components.

The MM [KANN78, HSIA76B] stores the database on a set of moving-head
disks modified for parallel readout of a whole cylinder. The set of disks are
connected via a switch to a set of processors (the track processors). The
track processérs perform the selection as well as the update operations.

Thus they act as data filters to the other components of the DBC.

The post processing unit is responsible for executing the equi-join
operation. The post processing unit consists of a number of processors
interconnected by a uni-directional ring and a single controlling processor
that has a communication line to each processor [ HSIA79 ]. In executing
the equi-join operation, each processor receives two blocks of tuples, one
from the source relation and the other from the target relation. For every
tuple of a target block, the corresponding processor joins it with the tuples
of the source blocks then communicates the tuple via the ring networks, to
its neighbor processor. This is repeated until all the target tuples have been
joined with the tuples of all the source blocks. One problem with the post
processing unit implementation of the equi-join operation is that it is
assﬁmed that the data to be operated on will fit in the memories of all the

processors.
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The structure memory (SV) [HSIA76A] stores the index information.
The S is to be constructed out of onr of the new mernory technologies, such
as MBWVs, CCDs or EBAVs. By storing the database on the moving-head disk
such that the most frequently referenced part is clustered together in as few
cylinders as possible, the SM can help reduce the number of cylinders which
need to be scanned by the track processors for each selection or update

operation.

2.5. A Critical Look at the Previously Proposed DBMs

In the previous sections, a comprehensive and detailed survey for the pre-
viously proposed DBMs was presented. This presentation was guided by a
newly developed classification scheme. This scheme is based on three attri-
butes, namely, the indexing level, the query processing location and the
processor-memory organization. In this section, this scheme is used to discuss
critically the various DBVs designs. It will also help to highlight the most basic

tradeoffs in the design of the various DBVs.

Historically speaking, the first DBMs to be proposed were organized as
off-disk machines and were provided with only the associative access to the
database (Off-Disk-DB DBMs). In éeneral. these machines (and this design
approach) suffered from many drawbacks, in particular, its ineffectiveness in
handling the very large database systems. A DBM of the latter type must move
all of the database from the slow, rotating mechanical disks where it is stored
to a fast (associative) memory where the execution of the selection or the
update operations take place. In the large database system environment
(database size >> associative memory capacity), the 1/0 channels easily
become the system bottleneck as a result of the mass data movement (all the
database) and the high search speed of the associative memory. These draw-

backs, coupled with the high cost of producing associative memory units of
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large capacities and providing the DBM with wide 1/0 channels, make this

design approach cost ineffective.

The On-Disk-DB design eliminates the data moveiment problem. The latter
design approach achieves that by processing the database operations on the
secondary store devices where the database resides. Although this approach
eliminates the need to move large volumes of data and thus eliminate the 1/0
bottleneck, it continues to have many drawbacks. The most important ones

are:

1. The above design for DBMs stores the database on a set of logic-per-track
disks. Using the latter disk as a mass storage device is very costly, some
orders of magnitude more expensive than the moving-head disk. In gen-
eral, the logic-per-track disk has two components, namely, a fixed-head-
per-track magnetic/electronic disk and a set of logic units. Each of these
units is associated with the head of the head-per-track disk. The high cost
of the logic-per-track disk is attributed mainly to tw40 factors] KANN78 ],
namely, the high cost of the head-per-track disk as a mass storage media
and the large number of the logic_units associated with such a disk.
Currently, the magnetic head-per-track disk is considered to be obsolete
as mass storage media. The electronic disk {the MBY. devices and the CCD
memory) is at least one order of magnitude more expensive than that of
the moving-head disk. The future directions in the mass storage technol-
ogy shows that the electronic disk technology will not challenge the

speed/cost level of the moving-head-disk for the near future_ HSIA8: ].

2. The above design for DBVs requires that the logic unit associated with
each head of the head-per-track disk be fast enough to perform the selec-

tion and update operations on the disk data "on the fly.” That is, at the
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rate the disk delivers its data. This requirement is hard to satisfy because
of two factors, namiely, the large variations in the rate of the data pro-
cessing requirements and the recent improvement in the disk transfer
rates (for example, a recently introduced IBM 3380 moving-head disk has

a data transfer rate per head of 3 Mbytes/sec [IBM80]).

The above problem is a complicated one and its solution at the hardware
level, such as providing the disk with a specially designed, highly fast logic, will
largely increase the mass storage (even for the storage system which contains
only moving-head-disk units) cost. To appreciate how fast the head logic must
be, it must be remembered that the current Widespr_ead use of the moving-
head disks is attribut.éd to the introduction of high-speed head controllers,
implemented using the expensive bipolar logic technology which has the abil-

ity to check and correct disk errors on the fly.

3. Assuming the above two problems can be solved, the On-Disk-DB DBVs
perform reasonably well in executing the simnple Jdatabase operations
which require few disk revolutions (the selection anc_l update operations
Wit.h simple gualilication expressions). On the other hand, they perforin
poorly in executing the more complex datébase operations that require
many disk revolutions (for example, the ¥-join and the projection opera-
tions). The latter observation was ‘evident. in the performance evaluation

of RAP[ OZKA77 ] (an example for the On-Disk-DB DBVs).

Recall that a query can be thought of as a tree whose nodes represent a
set of database operations. The leaves of the tree reference only permanent
relations of the database. In a real database environment, the leaf nodes are
mostly of the selection and update type. A hybrid DBV processes the leaf
selection operations and, in some machines, the update operations on the

disk. The result relations are then moved to a fast processor-memory



o1

complex where the rest of the query operations (if any) are executed. In most
cases executing the selection and update operations on the disk largely
reduces the volume of data need to be moved to the fast processor-memory

complex.

From the preceding discussion, one can draw the following two important

conclusions regarding the DBMs of the Hybrid-DB group, namely:

1. The performance of the Hybrid-DB DBMs is superior to that of both the
Off-Disk-DB and the On-Disk-DB DBMs. This is due to the fact that the DBMs
of the former type execute the database operations on more tailored
hardware units and at the same time reduce the volume of data to be
moved out of the secondary disks. On the other hand, the Hybrid-DB
approach compound the cost problem and do not offer any solution to the
problem of "on the fly" processing. The cost problem has been com-
pounded because the hybrid-DB DBMs combine two expensive technolo-

gies, namely, the logic-per-track disks and the associative memories.

2. In the light of the current and near future technology, providing the DBV
with only associative access to the database will result in a cost-
ineffective design. In order to achieve an acceptable levels of perfor-
mance, the latter approach provides the DBM with very expensive (and
will continue to be expensive in at least the near future) mass storage

media and logic units.

In general, the number of tuples to be selected/modified as a result of
executing a typical selection/modification operation is relatively small in com-
parison with that of the database. In the light of current processor-memory
technology, it is clear that the need to scan the whole database, at least once,

to carry out these operations is very cost ineffective. The design approach
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which provides the DBM with a mechanism that eliminates the need to scan the

whole database will, in general, be more cost-effective.

In the context of DBMs, index tables defined for the permanent database
have been used as a mechanism to reduce the amount of data to be processed
for a given selection or modification operation. In the scheme presented ear-
lier, the DBMs, which use indexing, have been classified, according to the
indexing level they support, into two groups, namely, the DBMs with relation
indexing level (DBMs-Relation) and the DBMs with page indexing level (DBVs-

Page).

To facilitate data sharing as well as data movement, the DBMs of the
DBMs-Relation-type store the database relations on the secondary storage in a
set of physical units, each can be moved sepératély (for example, RAP.2 and
RELACE use the disk track as a data unit; DIRECT and BORAL's machine use a
page 18 Kbytes long as a data unit). However, whenever an operation refer-
ences a data item, all the data units which store the relation containing such

item are processed.

The index table defined for DBVs-Relation DBV (relation-index) store, for
every relation -of the database, the set of addresses of the data units which
store the corresponding relation. In general, the size of the relation-index
inde'x is very small relative to the size of the database. Its maintenance and
storage cost are negligible relative to those of the database. To execute a
selection/modification operation on an on-disk-relation/hybrid-relation DBY,
only the data units which store the relation referenced by the operation will be
searched /modified. For those machines which use a logic-per-track disk as
storage media, only the tracks which correspond to the former units will be
processed. The rest of the tracks can be processed, simultaneously and in

parallel, against one or more other selection and/or modification operations.
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On the other hand, to execule these operations on an off-disk-relation DB),
only the data units which store the relation referenced by the operation need

to be moved to the processor-memory complex for processing.

From the preceding discussion, one can draw the following important con-

clusions regarding the DBMs-Relation DBVs:

1. In the context of the databases dominated by relatively small size rela-
tions, providing a DBM with a Relation-Index index substantially improves
its cost-effectiveness. For the On-Disk/Hybrid organized DB¥s, the Logic-
Per-Track disk allows more than one operation to be processed in parallel
or may be replaced by a less expensive mass storage media. For the Off-
Disk DBMs the amount of data nead to be moved out of the secondary
store is substantially reduced. Thus a less expensive I/0 channels can be

utilized.

2. In the context of the databases dominated by relatively large size rela-
tions (in the very large database systems a relation could have the size of
several magnetic disks), providing a DBV, with a relation-index index does
not improve its cost-effectiveness. It is very clear that such DBVs suffer

from the same problems as those of the DBVMs-DB Lype.

A DBM of the DBMs-Page group stores the database relations, on the
secondary stores, in a set of physical data units, each is called a page [or a
minimum access unit(MACU)] and can be accessed and moved separately. The
index tables supported by the DBMs-Page DBMs (page-index) is defined on the
set of the most frequently referenced attributes of the database. For every
value of the latter attribute the page-index index storeé the set of addresses of
all the Pages which contain tuples having such value. Although the size of the

page-index index(relative to that of the database) is a function of the size of
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the page itself, nevertheless, the index size as well as its storage and mainte-
nance cost is substantial. Another problen with using the Page-Index index is
the need for a clusiering mechanism{BANE79]. This mechanism is used to
store the set of tuples which are {requently referenced togetﬁer in as small a
number of pages as possible. The use of the latter mechanism will generally
improve the performance of the selection and possibly the modification opera-
tions. On the other hand, it will introduce some overhead in executing the

insertion operations.

In the context of very large database systems, the use of small size page
in conjunction with a DBM will result in a relatively large page-index index
which requires a huge amount of storage and high maintenance and updating
costs. The performance of the update operations will be severely degraded.
The improvement in the execution time for the selection operation wili not be
enough to compensate for the overhead and the latter loss in performance
(one example of this approach is the conventional database system which use
the von Neumann computer as a DBV). On the other hand, the use of large size
pages, in conjunction with a DBM, will result in a relatively small page-index
index(~ 1% of the total database size{BANE79]). Thus its storage and mainte-
nance costs will be substantially low :md thé perforfnaﬁce of the modification
and selection operations will, in general, be enhanced especially if the page is

processed by a number of processors in parallel.

Using the page-index index coupled with large size pages has allowed
designers to replace the expeﬁsive logic-pér-track disk with the relatively
inexpensive moving-head disk (or a slightly modified version of it) as a unit for

mass storage.

In the scheme presented earlier, the DBMs proposed so far were organ-

ized as SISD, SIMD and MIMD machines. In general, the execution of a database
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operation,* on a DBM of the first/second group is done serially. That is, one
operation (possibly two for the hybrid DBMs) is the maximum number of
operations that a DBV. of this type can execute at any given time. While the
database operation is ex_ecuted.serially (that is, by one processor) on the SISD
DBMs, it is executed in parallel (that is, by more than one processor) on the

SIMD DBMs. The MIMD DBMs, on the other hand, execute one or more database

operations in parallel fashion. The operation itself is also executed in parallel.

In the context of the relatively low cost of the processor and memory dev-
ices and the very large database systems, employing parallel processing
largely enhances the effectiveness of the DBMs. This was evident in the DBMs
presented earlier. Although the SIMD organization of the DBMs largely
enhances the execution t.ir'ne of a database operation, it does not offer a real
solution to the database concurrent user problem, The MIMD organization is
more effective in database systems where fast and concurrent access to the
database is a basic requirement. This is due to the fact that the MIMD organi-
zation has the ability not only to execute a database operation in parallel but
also to execute more than one operation (from same or different queries)

simultaneously and in parailel.

One important drawback in the MIMD organization is the overhead in con-
trolling the execution of the different queries and the management of the vari-
ous system components. In most MIMD DBMs such overhead puts an upper
limit on the number of queries or resources that can be active simultaneously
in the system. This overhead caused the DIRECT machine to have poor
performance{BORAB1]. Therefore, controlling and minimizing such overhead

must be a basic objective for the MIMD DBM designer.

*With database operation is meant the selection, projection ,J-join, insertion, deletion or mod:%-
cation.
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2.6. Gencral Guidelines for the Proposed DBM

The general framework of this research is the design of a back-end DBV
capable of supporting very large, concurrent relational! databases with high
performance. This machine is to be called the "relational databasc machine

(RDBNM)."

The most important characteristics of the contemporary and future very
large database systems are the vast amount of data in such systems and the
large number of users requiring simultaneous access to this data. To support
such a system, our proposed RDBM must support the latter features in a cost-
effective way. This places the following two important requirements on the

‘RDBM, namely:
1. Availability of large capacity storage.

2. Handling the on-line concurrent access to the cdatabase with adequate

response time and throughput.

To ensure the satisfaction, in a cost-effective way, of the above twc
requirements, our proposed RDBM will be organized along a set of guidelines.
These guidelines have been drawn from our study of the earlier proposals for
the DBM as well as the current and future state of te_chﬁology. These guidelines

are:

1. The mass storage in the proposed RDBM is to consist of the moving-head
disks. The latter disk type is selected for its ability to provide a vast
amount of on-line storage at a relatively low cost and moderate perfor-
mance. Currently, the magnetic fixed head-per-track disk is considered
obsolete as a mass storage device. The electronic disk (the MBM and the
CCD memory devices) technology is at least one order of magnitude more
expensive than that of the moving-head disk. A look at the future direc-

tions in mass storage technology shows that electronic disk technology
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will not challenge the speed/cost level of the moving-head disk for, at

least, the near future[HSIAB1].

Supporting the page level indexing. This type of indexing will greatlv
improve the execution time of the selection and modiﬁéation operations.
On the other hand, it will increase the execution time of the other update
operations and introduce some overhead in the form of index table access
delay as well as in storing and maintaining the corresponding indices. To
minimize the drop in performance due to the overhead associated with
indices maintenance, the page must be selected to have large size {multi-
ple tracks of the moving-head-disk) and be processed, in parallel, by a
number of proceééors. Also, it must provide a support to access the page

index at the hardware level.

Organizing the proposed RDBY as an off-disk DBM. Although this organ.za-
tion introduces some increases in the execution time of the database
operations (due to moving the data to the processor-memory complex), it
nevertheless avoids provid:lng the moving-head disk with a large amount
of specially designed logic and memory devices needed for "on the fly”
processing of the selection and update operations. Thus keeping the mass
storage cost at a minimum. This organization must also try £o improve
the execution speed of the latter operations by taking advantage of the
locality of references to the database. The processor-memory complex
must bé designed to effectively support not only the relational algebra
operations, namely, the selection, projection and ¥ -join, but also the

primitives that manipulate the page index.

Organizing the proposed RDBM as an MIMD DBM. This is very important in

order to provide the proposed RDBVM with the ability to handle concurrent
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access to the database. The proposed design must be able to handle the

excessive overhead associated with the MIMD DBY. organizalion



CHAPTER 3

THE RELATIONAL DATABASE SYSTEM ORGANIZATION

In this chapter, the architecture of a back-end DBM suitable for supporting
concurrent, on-line, very large relational databases is presented. The newly pro-
posed DBM has been designed to meet the set of the previously stated guidelines
(see Section 2.6). However, before presenting such an architecture, the way the

data is organized in the new system is outlined and discussed.

3.1. The Data Organization

In general, the proposed relational database system stores two types of

data, namely:

(1) The Database

The database is organized as a collection of time-varying normalized rela-
tions of assorted degrees. The database is divided into a set of large data
units. Each, called the page [or the minimum addressable unit* (MAU)]
represents the smallest addressable unit of data. The only tuples which are
allowed in the same MAU are those of the same relation. This is done for the

following two reasons:

{a) Space Saving

Placing the tuples of different relations in different MAUs will save a con-

siderable amount of storage. This saving is due to the fact that the name of a

*In the newly proposed machine, the minimum addressable unit is contained in one minimum
access unit as is seen later.

59
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relation and its tuple format do not need to be attached to each tuple of the
database. On the other hand, this organization will result in wasting somc
storage space due to MAU internal fragmentation. The internal fragmentation
would result from having small relations compared to the size of an MAU. The
storage waste due to the internal fragmentation is minimal in very large data-

bases since a typical relation in such a database occupies many MAUs.

(b) Improving The Machine Performance

In most database environments, there exists a high probability that tuples
of the same relation will be referenced together. Placing tuples of the same
relation in an MAU would reduce the number of MAUs which need to be
accessed and processed for a user transaction, thus improving the machine

performance.

(2) The Database Directory

The database directory contains the information needed to map a "data
name" to the set of MAU addresses which store the named data. In the pro-
posed system, data is named at two levels, namely, the relation level
(relation-name) and the tuple level (tuple-name: < relation name, attribute
name, .value>). While there is one unique name for a relat;on. more than oné
name can be attached to one tuple. The number of possible names for a tuple

does not exceed the number of the tuple's attributes.

The database directory consists of two indices, namely the relation index
and the MAU index. The relation index maps the relation-name to 4 set of MAU
addresses. These MAUs contain all the tuples of the relation whose name is
relation-name. The MAU index maps a tuple-name to a set of MAU addresses.
Each of these MAUs contains at least one tuple which has the tuple-name as its

name. In the following, both indices will be formally defined.
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Let
R=ir,ra ..., 7}

be the set of relations which form the database;

AT= {at,, at,, . . ., at;}

be the set of attributes in the database;

AT(r) C AT

be the set of attributes associated with the relation r;

V= vy, va, o U

be the set of attributes values in the database;

Virat)CV
be the set of values in the database associated with

the attribute at of the relationr;

ADDR = {addr,, addr,, . . ., addr.}

be the set of all MAU addresses;

ADDR(r) C ADDR

be the set of all MAU addresses which contain the tuples of the relation r.

De finition 3.1 Relation ndezx

The relation index is a set of ordered pairs. Each has the form
<r, ADDR(r)>

wherereR.

The MAU index (Figure 3.1) is organized as a three level index. The first
level is the MAU master index (MIND), the second level is the attribute index
(AIND) and the third level is the index-term index (ITI). The index-term index

maps a tuple-name to a set of MAU addresses. Each of these MAUs contains at
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least one tuple with the above name. The index-term index is a set of index

terms. Formally, an index term can be defined as follows:

Definition 3.2 IndexTerm

An index-term is an ordered quadfuple <r,at,v, MAUA> where
TeR, ateAT(r), v eV(r.at) and MAUA ¢ ADDR(r). The MAUA is the address of

an MAU which contains at least one tuple whose name is <7, at, v>.

In general, the index terms will be defined only for those attributes which
are frequently referenced by users. The index terms in the proposed system
are grouped and stored in units, equal in size to an MAU, called the index MAUs
(IMAUs). Although an IMAU may contain index terms defined for different
att.ributes of different relations, some clustering mechanism will be used to
cluster, into the same IMAU, those index terms which are defined for the attri-
butes of the same relation. This will improve the storage cost as well as the

processing efficiency of the index terms.

The MAU master index and the attribute index are introduced in order to
reduce the number of IMAUs which need to be processed for a selection or
modification 6peration. The MAU master index maps a relation name to its
attributes. The attribute index maps an attribute name to a set of IMAU
addresses. The IMAUs contain the set of index terms which are defined for the
corresponding attribute. Formally, the two indices can be defined as follows:

De finition 3.3 MAU Master ndezx

The MAU master index is a set of ordered pairs of the form

<r, PT>

where reR and PT is a pointer to the second level index, the attribute index.

De finition 3.4 Attribute Index
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The attribute index is a set of tables, one table for each e #. Each table

is a set of ordered pairs of the form, <at, {addr,, addr,, . . ., addr;}>, where
at eAT(r.at) and {addr,, addr,, . . . , addrs) C ADDR. f{addr,,
addr,, . . ., addr,] is the set of IMAU addresses which store the index terms of

the attribute at .

Before leaving this section, an important operator, the indez —select,

which manipulates the index-term index, must be outlined. The index-select
operator is executed in conjunction with the relational algebra operator
select. It limits the search space of the latter operator to those MAUs which

contain tuples that satisfy the corresponding select qualification expression

QE.

3.2. The Relational Database Machine (RDBM) Organization

The proposed relational database machine (RDBM), shown in Figure 3.2,
may be broken down into four subsystems, namely, the master back-end con-
troller (MBC), the processing clusters subsystem (PCS), the mass Storage sub-
system (MSS) and the interconnection network subsystem (INS). In the follow-

ing sections the architecture of these subsystemé is outlined.

3.2.1. The Master Back-End Controller Subsystem

The master back-end controller (MBC) [possibly in cooperation with the
front-end computer system(s)] performs the following functions: (1) Interfac-
ing the users to the database system; (2) translating the user queries into the
primitives of the processing clusters subsystem; (3) séheduling and monitor-
ing the query execution; (4) storing and maintaining the system dictionary;
(5) storing, maintaining and manipulating part of the database directory (the
relation index, the MAU master index and the attribute index) and (8) provid-

ing for security checking, integrity maintenance and user views. In the fol-
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lowing paragraphs, the most important functional features of the ones stated
abcve are discussed in more detail.

(a)Maintenance of the System Dictionary

The system dictionary stores all the information which relates to the
definition of the database. For each reiation in the database, the system dic-
tionary stores its name, cardinality, and the name of its attributes as well as
the attribute size, type, etc. The system dictionary also stores the system's
users definitions together with their database accessing privileges as well as

the users’ view definitions.

The information stored in the system dictionafy is very important to the
relational system. It is used in almost all phases of query processing, namely,

query translation, optimization and execution.
(b) Translating and Optimizing the User Queries

Query translation and optimization are essential functions in the data-

base system. In general, the translation process is needed to transform the
user query into a set of primitives executable by the system hardware.
Whereas the optimization process is needed to find an optimum plan
(optimum with respect to certain performance measures) to execute the user

query on a given hardware.

In RDBM, a query,* before it is ready for execution, passes through three
distinct phases. During the first phase, the query is translated into an
equivalent set of relational algebra operations. In the second phase, the exe-
cution order of the relational algebra operations, which constitute the query,
is rearranged. The primary objective of such rearrangement is to minimize
the volume of data which must be manipulated during the construction of the

query response set. Also during this phase all the operations, in the

*Throughout the rest of this thesis, the word query refers to the retrieval ones only.
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translated query, are assigned methods by which they find their relevant
sets of MAUs. For the operations which reference temporary relations (rela-
tions obtained from the database permanent relations by applying one or
more relational operators), as well as the 0-join and the projection operations
which reference permanent relations, the set of the relevant MAUs are those
which store the temporary and permanent relations, respectively. The
addresses of such MAUs are obtained from the relation index. For the selec-
tion operations, which manipulate permanent relations, a decision must be
made regarding the index to be used (the relation index or the MAU index).
The decision is based on several factors, namely, the expected size of the
operation response set, the localization of such set, and the availability, in
the select qualification expression, of simple predicates which reference
indexed attributes. If the qualification expression contains simple predicates
of indexed attributes, the response set is relatively small and it is localized
(span a small number of MAUs relative to the large number of MAUs spanned
by the permanent relation), then the MAU index will be used, otherwise the
relation index will be used. For a given selection operation, If the relation
index is to be used, then the RDBM will process the set of MAUs which store
the tuples of the referenced relation. On the other hand, if the MAU index is
to be used ,then only a subset of the latter set will be processed. This subset
is determined by executing the index-select operation on those IMAUs which

contain index terms relevant to the selection operation.

In general, the type of index to be used in association with a selection
operation is determined by processing its qualification expression QE. This is
carried out in two steps, namely, the QE processing step and the MQE pro-
cessing step. In the following sections both of these phases are outlined.

(1) QF Processing: QE is the qualification expression associated with the

selection operation. During this step, the QE is transformed into a modified
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qualification expression MQE which has the same form as QE but consists only
of predicates of the simple type and is defined on indexed attributes. This

step is processed as follows:

Scan QE, one predicate at a time. Whenever there exists a predicate of the
complex type or a predicate of the simple type but defined on an unindexed
attribute and the predicate is the only remaining member of the correspond-
ing predicate conjunction, then the rest of this phase is skipped and MQE is
assigned the value null. On the other hand, if the predicate is not the only
remaining member, then it is deleted and the scanning continues. The QE
remaining after this processing is the MQE.

When the processing of the QE is finished, the result is the modified qual-
ification expression MQE which is either null or contains simple predicates
defined on indexed attributes. If the MQE is null, then the relation index is
used and the MQE proce'ssing step is skipped. On the other hand, If the MQE is
not null, then, with the aid of the syste.m dictionary, the ratio of the number
of MAUs which store the tuples satisfying MQE and the number of MAUs which
store the whole referenced relation, is estimated. If this ratio is relatively
small, then the MQE processing step is carried out, otherwise, the relation
index is used.

(2) MQF Processing: In this step, the set of IMAU addresses which contain the

index terms relevant to MQE is found. This is done as follows:

Replace every predicate in MQE with the set of IMAU addresses which contain
index terms of the corresponding attribute. The set of IMAU addresses
corresponding to every predicate conjunction in MQE is then found by inter-
secting the sets corresponding to every predicate of a predicate conjunction.
Then, the set of [MAU addresses which contain the index terms relevant to
MQE is found by taking the union of the sets which correspond to every predi-
cate conjunction in MQE.

At the end of the second step, both the MQE, the set of IMAU addresses
found above and the index-select operator are attached to the associated
selection operation.

In the third phase of the query translation and optimization process,

each operation in the optimized query is replaced by its equivalent set of
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PCS primitives. When this phase is completed, the query is placed on the

ready list, maintained by the MBC, waiting for execution.

(c) Scheduling and Monitoring the Query Ezecution

The MBC schedules and monitors the execution of the different parts of
the user query on the PCs. It synchronizes their processing and signals their
termination. The MBC also supervises the data movements between the MSS

and the PCS.

One final note regarding the MBC. The implementation of the latter sub-
system is strongly dependent on the way the earlier stated functions are par-
titioned between the front-end computer system and the MBC. Based on this
partition, the MBC can be implerr;ented using a powerful mini/micro com-

puter.

3.2.2. The Mass Storage Subsystem

The mass storage subsystem (MSS), shown in Figure 3.2, is the repository
of the database and its index-term index. This index is needed because the

MSS subsystem is not fully associative.

The MSS is designed as a two-level memory system, as shown in figure
3.2, the mass memory (MM) and the parallel buffer (PB) levels. While the
mass memory helps MSS to meet the large capacity storage requirement, the
PB helps it to take advantage of the local and sequential references to the

database. In the following paragraphs, both of these levels are outlined.

The Mass Memory

The mass memory is organized as a set of moving-head disks, controlled
and managed by the mass storage contfoller (MSC). Each disk is provided

with the capability of reading/writing from/to more than one track in
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parallel. Tracks which can be read/written in parallel from ore disk form
what is called the minimum access unit (MACU).* The tuples, within the latter
unit, are laid out on the moving-head disk's tracks in a "bit serial-word serial”
fashion. The MACU is the smallest accessible unit of data as w'ell as the unit of
data transfer between the MM, the PB and the PCS. The MACU in the new
machine stores only one MAU. Although the number of ﬁracks in an MACU is
limited by the hardware cost and the processing clusters capability, the

MACU is expected to have the size of a moving-head-disk cylinder.

In addition to the database relations, the MM stores another type of data,
namely, the index terms. In general, the index terms which are defined on
attributes of different relations can rgside in the same IMAU. In order to
improve their retrieval cost, the indevx termé are clustered together accord-
ing to their relation and attribute names. That is, the index terms which are
defined on the same relation and attribute are likely to reside in the same

IMAU.

The IMAU is stored on one MACU. Figure 3.3 shows the layout of an IMAU
on the tracks of a moving—head-disk. Every track within the latter unit con-
tains a set of blocks of éuitable size ( ~ 4 Kbytes). Each block contains index
terms defined for the same relation and attribute. For st;rage as well as pro-
cessing efficiency, the < relation-name, attribute-name > common to all the
index terms of the block is stored only once (at the beginning of the block).
The rest of the block stores only the < value, MAUA > part of the correspond-

ing index terms.

The Parallel Buf fer

*Actually, the number of tracks within one MACU can only be one of those in the set { n, n/2,
n/4,..., 1} where n is the number of tracks in one cylinder of the moving-head disk and even.
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Figure 3.3 The IMAU layout on the physical storage
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The primary objective of the parallel buffer (PB) is to help the MSS to
take advantage of the fact that most references to the database and index
terms are of sequential and local nature. Thus by storing the most frequently
referenced data most of the time in the relatively fast PB raéher than in the
relatively slow MM, the MSS response time (bandwidth) is improved substan-

tially.

The parallel buffer (Figure 3.2) is organized as a set of blocks, each with
size equal to that of an MACU. A block is further partitioned into a set of sub-
blocks. Each subblock can buffer one track of a moving-head disk. The
parallel buffer is managed by the mass memory controller. The parallel
buffer implementation can take advantage of the promising magnetic bubble
memory [CHEN78, COMP’?Q] and the charge-coupled device memory[TZOUB0]
technoloéies. Both technologies currently have off-the-shelf memory chips

which can buffer an entire disk track.

3.2.3. The Processing Clusters Subsystem

The processing clusters subsystem (PCS) is organized as a multiple sin-
gle instruction stream- multiple data stream (MSIMD) system. The PCS (Fig-
ure 3.2) consists of a set of processing clusters which share a c.omnion buffer,
the parallel buffer. A processing cluster(PC), shown in Figure 3.4, has a single
instruction stream-multiple data stream (SIMD) organization. A PC consists of
a set of triplets, each of the form:

< 170 controller (10C), triplet processor (TP), local memory unit (LMU) >.
The set of triplets within a PC is controlled and managed by the cluster mas-
ter processor (CMP). This processor accesses its triplets through a broadcast
bus, the master bus (MBUS). The MBUS permits the CMP to write the same
data to all the LMUs of its cluster triplets, simultaneously. On the other hand,

the MBUS permits the CMP to sequentially read data from one of its triplets’
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LMUs.

Within a PC ( Figure 3.4 ), the data is moved between its triplets via a
bus, the triplets bus (TBUS), controlled by a high-speed DMA controller, the
data mover (DM). Under instructions from the CMP, the DM rn.oves data items
between the LMUé of the.cluster's triplets. The TBUS is provided with both

point-to-point as well as broadcast capabilities.

In general, the LMU i in a PC is accessible directly by the CMP; through
the MBUS, the data mover through the TBUS, and both the i*® triplet proces-
sor and the i** 1/0 controller. Although a LMU is expected to have relatively
large capacity (multiple the size of a moving-head-disk track), nevertheless,
it will be implemented using random access memory (RAM) storage technol-
ogy. RAM has. the a!;ﬂity to support the processing of the relational aatabase
operations, in a triplet, in a more cost-effective way than other technologies,
such as the charge-coupled devices memory technology, especially in the
wake of the tremendous improvements in the per bit cost of RAM and the
near future availability of the 256-Kbit chips as off-the-shelf units. An 10C and
a TP of a triplet are expected to be implemented as a high-speed DMA con-

troller and an off-the-shelf microprocessor, respectively.

3.2.4. The Interconnection Network Subsystem

The Interconnection Network is designed to fulfill the following three

important requirements:

1. The ability to interconnect the PCs, the MM moving-head disks and the
PB blocks.

2. The ability to support the parallel processi‘ng of the system’'s most
iniportant operations (selection, projection, ¥-join and index-select).

Also, the network must facilitate the simultaneous processing of dif-
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ferent system operations. This implies that the network must enable the
PCs to individually read/write from/to different blocks of the PB, simul-
taneously as well as allowing more than one PC to simultaneously read
from the same block of the PB. In other words, the network should pos-
sess the crossbar interconnectioﬁs (between the PCs, the PB blocks and
the MM moving-head-disk units) as well as broadcasting capabilities

(between the PB blocks and the PCs).

3. The network simplicity. That is, the network must be simple enough to
be able to support a relatively large number of PCs, PB blocks and MM

moving-head disks.

The intercopnection network subsystem (INS), shown in Figure 3.2, is a
modified version of an interconnection network proposed by Dewitt[DEWI79].
Dewitt proposed a network which is a modified version of the crossbar switch-
ing network. Adopting Dewitt's network to our proposed machine would
result in the interconnection of every triplet of a PC to every subblock of the
PB blocks. In Dewitt's network the role of the buffer and the processors are
interchanged. Traditionally, in a crossbar switching network, the processors
play the active part while the buffer subblocks play the passive ones. In
Dewitt's network, the active part is piayed by the buffer subblocks where
each one continuously broadcasts its contents along a 1-bit-wide bus. When-
ever a processor wants ’to read a page, it switches itself to the specific sub-
block bus. Thus more than one processor can simultaneously read the same

subblock.

Although Dewitt's network provided a neat solution to some of the inter-
connection system requirements, it still has several drawbacks. The most
important one is its inability to support a large number of triplets and sub-

blocks. The logic complexity at the triplet/disk-head grows as the number of
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PB subblocks is multiplied by the number of triplets/disk-heads in the sys-
te.n [QADABO]. Thus for a large number of triplets, MM moving-head disks and

PB subblocks, Dewitt's network becomes prohibitively expensive.

The INS is a modified version of Dewitt's network. In this network only
one triplet/track in each PC/(MM moving-head disk) is connected to the
same PB subblock (via the corresponding 1-bit-wide bus). Whenever a
PC(s) /(MM disk) needs to read from a given PB block, its 10Cs/(disk-track
heads) need only to switch themselves to the appropriate set of data buses. If
the parallel buffer block contains a data MAU then the I0Cs/{disk heads)
proceed to read it starting at a tuple boundary. However, for an index VAU

the 10Cs/(disk heads) proceed to read it starting at an index block boundary.

Whenever a PC/(MM disk) needs to write to a given Parallel Buffer block,
its I0Cs/(disk heads) need only to switch themselves to the appropriate set of
data buses. The writing then follows immediately. Notice that the MS3C is
responsible for preventing any two PCs or disks, or both, to write to the same

parallel buffer block.

Figures 3.5 and 3.8 show two examples of the proposed network. The net-
work in Figure 3.5 intérconnects one processing cluster, one moving-head -
disk and one PB block. The network in Figure 3.6 interconnects two process-
ing clusters, each having three triplets, one moving-head disk and two PB
blocks, each with three subblocks. Notice that (each triplet within a
PC)/(each head of a disk) is connected to one subblock in each block of the

PB.

The newly proposed interconnection network has a logic complexity, at a
triplet or disk head, smaller than that of Dewitt's network by a factor equal to
the number of subblocks within one block (NS). Thus the new network has

the ability to support a large number of triplets and MY moving-head disks.
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That is, for almost the same hardware cost, the new network is able to sup-
port NS tinies the number of triplets and MM disks that can be supperted by

Dewitt’'s network.



CHAPTER 4

THE RELATIONAL 8-JOIN

The ¥—join is one of the most important operations of the relational data
model. It participates in all data retrieval queries which reference more than
one relation. The ¥-join* operation takes two relations, the "source (S)" and
"target (T)" relations, together with a predicate P to produce the "output (0)”
relation. Based on the type of the operator "3" associated with the.predi.cate P,
the ¥-join operation has different types. These types can be grouped into two
categories, namely, the equi-join and the nonequi-Join ones. An equi-join opera-
tion is a ¥—join with ¥ being the operator”=." On the other hand a nonequi-join

operation is a ¥—join with d&{#,>,>,<,<].

In the proposed RDPY. anc or more PC is used to perform the ¥—join opera-
tion. In general, the number of PCs assigned to perform such an operation is an
MBC decision. _This decision is based on maﬁy factors, such as the size of the
input relations, the number of available PCs and the priority class to which the

operation query belongs.

The flexibility and generality of RDBM architecture permits the implemen-
tation of a large set of algorithms for the equi-join operation. A subset of that
can also ;;erform the'nonequi-Join operations. In all of these algorithms, the
MBC starts the execution of a ¥—join operation by broadcasting the operation
code and the tuple format of both the source and target relations to the set of

PCs which partiéipat:e in the execution of the operation. The cluster master pro-

*For the formal definition of the ¥ —join refer to Section 1.3
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cessors, in turn, broadcast this information to their triplets.

In Section 4.1, the set of algorithms which perform the equi-join operation
on the RDBM is presented. This presentation will not pay much attention to the
detailed implementations of these algorithms. In Sectionv4.2, analytical models
for the execution of the presented algorithms on the proposed RDBM are
developed. In section 4.3, these models are used to evaluate the performance of
the equi-join algorithms. This evaluation is used in choosing the best performing
algorithm(s) for the different input data environments. Finally, in Section 4.4,
the models of Section 4.2 are used, with slight modifications, to evaluate the
effect of improving the PC intertriplets communication on the performance of

the equi-join algorithms.

4.1. Algorithms for the Equi-Join Operation

The flexibility and generality of RDBM architecture permits the implemen-
tation of a large set of algorithms for the equi-join operation. These algo-
rithms can be grouped into four categories, namely, the basic Equi-Join algo-
rithms, the "target relation partial filtering (TPF) equi-join algorithms, the
"source-target relations partial filtering (STPF)" equi-join algorithms and the
"source-target relations complete filtering (STCF)" equi-join algorithms. In
the following subsections the algorithms within each of these categories are

presented.

4.1.1. The Basic Equi-Join Algorithms

The basic algorithms category is comprised of twelve different algo-
rithms. In Section 4.1.1.1, a scheme to classify and name these algorithms is
introduced. The scheme rests on several attributes which characterize the
bas{c algorithms. These attributes are also introduced and discussed. In sec-

tion 4.1.1.2, the sequence of steps a typical PC goes through while executing a
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basic algorithm is presented. In Section 4.1.1.3, the memory space (within a

PC) required to support the basic algorithius is presented.

4.1.1.1. The Basic Equi-Join Algorithms Classification Scheme

The basic equi-join algorithms can be classified according to three com-
mon attributes. The first attribute is the way a particular algorithm distri-
butes the tuples of the source and the target relations among the PCs for
processing. The second attribute is the way a particular algorithm distri-
butes a PC's share of the source and the target tuples among the PC's tri-
plets for joining. The third attribute is the way a particular algorithm per-
forms the equi-join operation within a PC triplet. The classification of the
basic algorithms according to these three attributes is presented in Figure

4.1.

Two methods exist for distributing the tuples of the source and target

relations among the PCs for processing. These two methods are:

(a) The Global Broadcast Method

In this method, each PC ¢ APC* is assigned a different MAU of the source
relation. T]:}en every MAU of the target relation is broadcast, one MAU at a
time, to all PC e APC. The latter joins the tuples of the source MAU with all
the tuples of the target MAUs. This process is repeated until all the MAUs of

the source relation have been processed.

(b) The Global Hash Method

In this method, a hashing function partitions the join attribute underly-
ing domain into disjoint subsets (global buckets) such that the expected
number of tuples from the source relation per subset would fit in the PC’s

local store. Then each PC ¢ APC is assigned a different global bucket to join.

*APC is the set of processing clusters assigned to execute the equi-join operation.
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The latter step is repeated until all global buckets have been processed.

A PC &£ APC collects the tuples of the source and target relations which

fall in a subset i as follows:

The PC reads an MAU of the source relation intc its local memory units.
Then the tuples in an LMU are processed by the corresponding triplet pro-
cessor. A typical tuple is processed by computing a hashing functior. The in-
put to the hashing function is the tuple’s join attribute value. The output of
the hashing function is a subset number j to which the tuple would belong.
If j=i , then the tuple will be kept in the LMU for further processing, other-
wise it will be deleted. This process is repeated for all the MAUs of the
source relation. Then it is repeated for all MAUs of the target relation.

From the preceding, it is concluded that the execution of a basic equi-
join algorithm is composed of a number of phases. During a typical phase,
one PC ¢ APC is assigned some source and target tuples for joining. If the
équi-join operation is performed using the global broadcast method, then
the PC is assigned one MAU of the source relation and all the MAUs o'f the
target relation. The number of phases, in this case, is equal to that of the
source MAUs. On the other hand, if 'the equi-join operation is performed
using the global hash method, then, during one phase a PC is assigned the
tuples of a global bucket. The number of phases, in this case, is equal to

that of the global buckets.

The tuples assigned to a particular PC during the execution of one
phase of the equi-join operation can be distributed among the PC's triplets

using one of the following two methods:

(a) The Local Broadcast Method

In this method, the tuples of the source relation assigned to the cluster
triplets are not redistr‘ibuted. The assigned tuples of the target relation are
broadcast by the data mover, one tuple at a time, to all the tr;iplets within
the PC. Whenever a target tuple is broadcast to a particular triplet, the

corresponding processor joins it with the triplet's share of the source tuples.
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(b) The Local Hash Method

In this method, the tuples of the source relation assigned to a PC during
one phase of the equi-join execution are hashed, based on the tuples’ join
attribute values, to the PC triplets. A triplet stores, in its LM.U, these tuples

of the source relation which hash to itself.

The assigned tuples of the target relation are also hashed, based on the
tuples’ join attribute value, to the PC's triplets. Whenever a target tuple
hashes to a particular triplet, the corresponding triplet processor will join it

with the triplet's share of the source tuples.

Three methods are available, at the disposal of a triplet, for joining one
tuple of the target relation with the tuples of the source relation assigned to
it during the execution of one phase of the equi-join operation. These

methods are:

(a) Complete Comparison Method

In this method, the source tuples assigned to a triplet are stored in its
LMU in a random fashion. A target tuple is joined with the source tuples as

follows:

Scan the source tuples one tuple at a time. For every source tuple, compare
its join attribute value with that of the target tuple. If they matck, then con-
catenate both tuples and move the result tuple to the output buffer.

(b) Sorting the Source Tuples Method

In this method, the source tuples assigned to a triplet are stored, in its
LMU, in a sorted order. The source tuples are sorted on their join attribute

values. A target tuple is joined with the source tuples as follows:

Using the binary search method[KNUT73], locate those source tuples whose
join attribute values are the same as those of the target tuple. Concatenate
these tuples with the target one and move the result tuples to the cutput
buffer.
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In a triplet, the source tuples sorting step will not be implemented by
actually sorting the source tuples but by sorting a table of addresses
through which the source tuples can be referenced. The storage allocated
for the source tuples within a triplet is divided into two areas, namely, the
primary and thé secondary ones. In the secondary area, the source tuples
are stored in linked lists structure. Each linked list corresponds to one join
attribute value. The headers of the linked lists are stored, in the primary
area, in a sorted way. This implementation avoids the high cost of the tuples’

movement which could result from the actual sorting of the source tuples.

(¢) Hash Table Method

In this method, the source tuples assigned to a triplet are stored, based
on their join attribute values, in a hash table. A target tuple is joined with

the source tuples as follows:

Hash the target tuple, based on its join attribute value, to one of the hash
table buckets. For every source tuple within the bucket compare its join at-
tribute value with that of the target tuple. If they match, then concatenate
both tuples and store the results in the output buffer.

The hash table of a triplet is irriplemented as two storage area's,
namely, the primary and the se»condary ones. In the secondary area, the,
s’ource tuples which hash to the same bucket are stored in a linked list
structure. The headers of the linked lists are stored in the primary area.

This implementation improves the triplet’'s LMU storage utilization.

The different basic equi-join algorithms can be named using the preced-
ing scheme. An algorithm name can be thought of as the ordered quadruple
<nam, ,nam; ,namg basic>, where nam, is the name of the method by
which the algorithm distributes the tuples of the source and target relations
among the participating PCs for processing; nam, is the name of the method

by which the algorithm distributes the tuples of the source and target rela-
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tions, assigned to a PC during one phase, among its triplets for processing;
namgj is the name of the method by which the algorithm performs the equi-
join operation within a triplet and the word "basic” indicates that the algo-
rithm belongs to the basic group. For example, algorithm number 1 of Fig-
ure 4.1 is called the “global broadcast-local broadcast-complete -
comparison-basic” algorithm. For simplicity this name will bé abbreviated
to BBC-Basic. In the same way, algorithm Number 8 of figure 4.1 is called

"global hash-local broadcast-hash table-basic (HBH-Basic)" algorithm.

4.1.1.2. Executing the Basic Algorithms by a Processing Cluster”

In general, the processing of a basic algorithm can be decomposed to a
number of phases. Throughout the execution of the basic algorithm, a typi-
cal PC executes one or more of the corresponding phases. A typical phase,
as shown in Figure 4.2, is divided into six subphases. During the first sub-
phase, a set of the source relation tuples (the tuples of a source MAU for the
global broadcast algorithms, the tuples of the source relation which hash to
a global bucket for the global hash algorithms) are selected by the PC tri-
blets. During the second subphase the CMP in cooperation with the cluster
triplets and the data mover (do nothing with)/(hash to the cluster triplets)
those tuples of the source relation which were selected during the first sub-
phase. During the third subphase every triplet, within the PC, (do nothing
with)/sort/(store in a hash table) its share of the source tuples. In RDBM a
PC éxecutes these subphases in a pipeline fashion with the tuple as the unit
of the pipeline. 'fhat is, as soon as a tuple is selected in the first subphase it
will trigger the execution of the second subphase which in turn will trigger
the execution of the third one. When all the tuples of the source relation,
which were selected in the first phase, are processed through the second

and third ones, then the fourth subphase will start to be executed.
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During the fourth subphase a set of the target relation tuples (all the
target relation tuples for the global broadcast algorithms, the tuples of the
target relation which hash to a global bucket for the global hash algorithms)
are selected by the PC triplets. During the fifth subphase the cluster master
processor, in cooperation with the cluster triplets and the data mover
broadcast/(hash, based on the join attribute values) to the cluster triplets
those tuples of the target relation which were selected during the fourth
subphase. During the sixth subphase every triplet, within the PC, joins its
share of the source and target tuples. Just as for the first, the second and
the third subphases, the PC executes the fourth, the fifth and the sixth sub-
phases in a pipeline fashion. That is as soon as a target tuple is selected in
the. fourth phasé, it will trigger the execution of the fifth | phase
(broadcast/hash the target tuple), which in turn will trigger the execution of
the six phase [joining the target tuple with the source tuples in the

triplet(s)].
4.1.1.3. The Basic Equi-Join Algorithms Memory Requirement

In order to sup;;ort the basic equi-join algorithms, the local memory
unit of a typical triplet must, at least, have three buffers. The first buffer
stores the triplet's share of the source ‘tuples. This buffer is called the
source buffer (BUFS). The second buffer stores those tuples (source /target)
being read from the parallel buffer. This buffer is called the inpﬁt buffer
(BUFI). The third buffer stores those tuples of the output relation waiting to
be written to the parallel buffer. This buffer is called the output buffer
(BUF0). BUFI and BUFO must each have the capacity of the track of a
moving-head disk (a parallel buffer subblock). An additional buffer with
capacity equal to that of BUFI is needed if overlapping the processing of the
PC’'s triplets and the read/write from/to the parallel buffer is required.

Some small extra memory space is needed, in a local memory unit, to
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s upport the algorithms’ data structure and the communication between the

n 1aster cluster processor and its triplets.

To support the "global broadcast” basic algorithms, BCFS must have
e nough capacity to store one or more tracks of the source relation. To sup-
p ort the " global hash” basic algorithms, .-BUFS must have enough capacity to
s tore thoée tuples of the source felation which hash to the same global

b ucket.

4.1 .2. The TPF Equi-Join Algorithms

The algorithmic category TPF is comprised of twelve different algo-
rit.hms. Every algorithm within this category is an extension of one of the
basic 'equi-joiq algorithms. As for the basic algorithms, a TPF algorithm is
de:composed into a number of phases, each with six subphases. During the
se cond, the third, the fifth and the sixth subphases, the same processing as
th at carried out for the corresponding subphases of the basic algorithms are
pe:rformed. During the first subphase, in addition to selecting a subset of the
so ﬁx»ce relation tuples, the TPs of the PC encode the join attribute values of
th ese selected tuples. The encoding scheme involves a hashing function and a
ve ctor of suitable number of components (referred to as the (cluster) vec-
to r). Each component has the size of 1 bit. This vector is initialized and main-
ta ined by the CMP. The hashing function transforms the join attribute value of
a selected tuple to an index to the vector. This index is passed by the TP to
th e CMP. The CMP "sets” the corresponding vector bit to one. During the
fo urth subphase and before further processing of a selected target tuple, its
joiin attribute value is checked against the encoded set of the source tuples’
joiin attribute values. This is done by transforming, using the hashing func-
ticon of the first subphase, the target tuple's join attribute value into an index

to a bit within the vector. If the corresponding bit is set then the target tuple
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will be hashed/broadcasted to one/all triplet(s) for further processing. If the
bit is not set then a source tuple with join attribute value which matches that
of the target one does not exist, in the PC’s local store, and no further pro-

cessing for the target tuple is needed.

Since every algorithm in the TPF category is an extension of one of the
basic algorithms, the same scheme, which is used to classify the latter algo-
rithms, is used to classifying the TPF algorithms. Also the same naming con-
vention as that adopted for the basic algorithms is used for the TPF algo-
rithms. However in the TPF, the word basic in the name of a basic algorithm
must be replaced by the word TPF. For example, algorithm Number 8 of Fig-
ure 4.1 has the name "global hash-local broadcast-hash table-TPF."” For sim-

plicity this name is abbreviated as "HBH-TPF."

In order to support the TPF algorithms, the local memory units of a PC
must have the same capacity as those required to support the basic ones.
However, in addition, a TPF algorithm requires some additional memory

space, in the CMP memory, to support the vector.

4.1.3. The STPF Equi-Join Algorithms

The algorithmic category STPF is comprised of six different algorithms.
Every one of the latter algorithms is an extension of one of thé "global hash”
TPF algorithms.* As in the TPF algorithms, a PC executing one of the STPF
algorithms goes through a number of phases, each with six subphases. Dur-
ing the first subphase the PC's triplets collect the tuples of the target rela-

tion which hash to the global bucket corresponding to the PC . In addition to

Actually, the algorithmic category STPF is comprised of twelve different algorithms, each is an
extension of one of the TPF equi-join algorithms. However, the STPF algorithms which correspond to
the "global broadcast” TPF equi-join algorithms are not considered. This is because each of these al-
gorithms will require any PC to have enough space, in its LMUs, to store all the tuples of the target
relation or to read the tuples of the target relation off the disk twice during the execution of one
equi-join phase. Thus resulting in an inferior algorithm relative to the others proposed. On the other
hand, this is not the case with the "global hash” TPF algorithms.
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that, the TPs of the PC encode the join attribute values of the collected
tuples. The encoding is done using a hashing function, computed by the PC's
triplets and a vector HBIT-T, initialized and maintained by the CMP. When all
the collected target tuples have been processed through the first subphase,

execution of the second sﬁbphase will start.

During the second subphase, the PC's triplets collect the tuples of the
source relation which hash to the current global bucket. In addition, the join
attribute value of every collected tuple is encoded using a vector HBIT-S and
the hashing function of the first phase. In addition, the collected tuples are
checked against the encoded set of the target tuples’ join attribute values. A
bit, in HBIT-S, set due to a source tuple is compared with the corresponding
bit of HBIT-T. If the corresponding bit in HBIT-T is set then the source tuple is

retained for further processing, otherwise it is discarded.

During the third subphase, the source relation tuples which survive the
checking process of the second subphase are (left in)/(hashed to the PC's tri-
plets). During the fourth subphase, the source tuples within a triplet are
stored in a random/sorted/hash table form. The PC executes fhe second, the
third and the fourtl? subphases in a pipeline fashion. That is as soon as a
source tuple is selected it is checked against HBIT-;I’. If the tuple survives the
checking then it will be stored in the proper triplet in a random order/sorted
order/hash table. The execution of the second, the third and the fourth sub-
phases continues until all the tuples of the source relation, selected by the

PC, have been processed. This triggers the execution of the fifth subphase.

During the fifth subphase, the join attribute value of every target tuple,
selected during the first subphase, is checked against the encoded set of the
source tuples’ join attribute values. If the corresponding bit, in HBIT-S, is not

set then the target tuple is discarded. If the bit is set then the tuple is
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(broadcasted to)/ (hashed to one of) the cluster's triplets for further pro-
cessing. During the sixth subphase every target tuple which survives the
checking process is joined with the source tuples stored within the PC's
triplet(s). Notice that the PC executes the fifth and sixth subphases in a

pipeline fashion.

Since every algorithm in the category STPF is an extension of one of the
"global hash" TPF algorithms, the same classification scheme which was
presented for the latter can be used for classifying the STPF algorithms.
Also, the same naming convention can be used to name the STPF algorithms.
However, in the latter case, the word "TPF" is replaced by the word STPF. For
example, algorithm Number 2 of Figure 4.3 has the name "global hash-local

broadcast-hash table-STPF."” This name is abbreviated as "HBH-STPF."

In order to support the STPF algorithms, the local memory units must
have the same capacity as those required to support the basic algorithms
(the target relation tupleé selected during the first subphase can be stored,
waiting for the end of the fourth subphase, in the BUFO and therefore no addi-
tional storage space is needed in the local memory units). In addition the
STPF algorithms require some additional space, in the memory of the CVP, to

support the vectors HBIT-S and HBIT-T.

4.1.4. The STCF Equi-Join Algorithms

The algorithmic category STCF is comprised of twelve different algo-
rithms. Every algorithm within this category is an extension of one of the
basic equi-join algorithms. An STCF algorithm is comprised of two phases
(Figure 4.4), namely, the global filtering phase and the join phase. The objec-
tive of the global filtering phase is to filter out many unmatching tuples of the
source and target relation. This phase is followed by the join phase where one

of the basic equi-join algorithms is used to join the remaining tuples of the
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source and target relations.

The global filtering phase is carried out by one PC. This phase can be
divided into three subphases. During the first subphase the PC reads all the
MAUs, one MAU at a time, which store the source relation tuples. The PC also
encodes thé join attribute va_lues of the source relation tuples. The encoding
is carried out using a hashing function and a vector, HBIT-S, initialized and
maintained by the CMP. The hashing function transforms a typical join attri-.
bute value into an index to the vector HBIT-S. The CMP "sets” the

corresponding vector bit to one.

During the second phase, the PC reads all the MAUs, one MAU at a time,
which store the target relation tuples. The PC encodes the join attribute
value_s of the target relation. The encoding is done using the hé.shiné function
of the first subphase and a vector (HBIT-T) initialized and maintained by the
CMP. The PC also checks the target tuples’ join attribute values against the
encoded set of the source join attribute values. Every tuple of the target rela-
tion which survives the latter checking is moved to the output buffer. When-
ever the PC's output buffer fills up, it is written in.t.o a block of the parallel
buffer. If the paralle.l buffer has no empty space then some of the parallel
blocks are transferréd to the moving-head disks before the PC can write its

own output buffer.

During the third subphase the PC reads again all the MAUs, one MAU at a
time, which store the source relation tuples. Every tuple within an MAU is
checked against the encoded set of the target tuples’ join attribute values.
The tuples‘of the source relation which survive the latter checking are moved

to the output bufter.

During the join phase, one or more PC can be assigned to execute the

physical join of the surviving source and target relations’ tuples, using one of
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the basic equi-join algorithms.

Since every algorithm in the category STCF is an extension of one of the
basic algorithms, the same classification scheme which was presented for the
latter category can be used for presenting the STCF algorithms. Also the
same naming convention as that adopted for the basic algorithms can be used
to name the STCF algorithms. However, in the latter case, an algorithm name

needs to include the word "STCF" instead of the word "'basic."”

In order to support the STCF algorithms, the local memory units must
have the same capacity as those required to support the basic algorithms. In
addition, the STCF algorithms require additional space, in the memory of the

cluster master processor, to store the vectors HBIT-5 and HBIT-T.

4.2. Models for Executing the Equi-Join Algorithms on the Proposed RDBM

In this section, a series of analytical, average valued models are intro-
duced. Each one, called the execution model, will model the execution of one
of the equi-join algorithms on the proposed RDBM. These models are used in
the next two sections to evaluate and compare the performance of the equi-
join algorithms. They are also used to evaluate the effectiveness of carrying

out some architectural changes in the proposed RDBM.

The parameters which characterize the set of the execution models can
be grouped into four categories, namely, the data parameters, the hardware
parameters, the hardware-algorithm parameters and the performance param-
eters. The data parameters, the hardware parameters and the hardware-
algorithm parameters which characterize an execution model are called the
model input parameters. The execution model performance parameters are
called the model output parameters. In the following paragraphs the parame-

ters within each of these categories are presented.
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(a) The Data Parameters

The data participating in the equi-join operation consists of two relations,
namely, the source relation (S) and the target relation (T). These two rela-

tions are modeled using the following parameters:
et ze{S5, T}
Then NTz = the cardinality of (number of tuples in) relation z,
LTz = the tuple length (in bytes) of relation z,
LJ = the join attribute length (in bytes),
ND = the cardinality of the domain underlying the Join attribute.

The data model assumes that a tuple of relation S or T is equally likely to
take, for its join attribute, any value frorﬁ the join attribute underlying
domain. This assumption eliminates the need to have other parameters to
characterize the data model, such as the number of distinguished values in
both the source and target relations’ join attribute. With this assumption the
value of the latter parameters (as is shown later) can be obtained from the

values of the parameters NTS ,NTT and ND.
(b) The Hardware Parameters

The RDBM being modeled consists of one PC, one parallel buffer block and
one moving-head disk. The PC has been modeled using the following parame-

ters:
NP = the number of triplets per PC,

BUFSC = the capacity of the storage, in the PC's LMUs, allocated for

buffering tuples from the source relation,

TCD = time (in ms) to directly compare the join attribute value of a

source tuple with that of a target tuple,
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TCI = time (in ms) to indirectly compare {access the tuples through a
table of pointers) the join attribute value of a source tuple with that of a

target one,

TH = time (in ms) to calculate a hashing function with the tuple's join

attribute value as the input argument,

TMy = time (in ms) to move a tuple of the relation ¥ within the LMU of a

triplet, where y £{ S,7.0 } and O is the output (result) relation,
TEP = time (in ms) to swap two pointers within the LMU of a triplet,

Tr = time (in ms) to move a tuple of relation z across the TBUS,

ze § S, T}

In the hardware model, it is assumed that the MAU is a cylinder of the
moving-head disk. The moving-head disk and the parallel buffer have been

modeled using the following parameters:

MAUC = the MAU (moving-head disk cylinder) capacity (in bytes),
TDAC = moving-head-disk average access time (in ms),
TSK = time (in ms) for the moving-head disk to seek one track,

TDT = time (in ms) to transfer an MAU (cylinder) between the moving-

head disk and the parallel buffer block,

TBT = time (in ms) to transfer an MAU between the parallel buffer block

and the triplets.
(c) The Hardware-Algorithm Parameters

Recall that some of the equi-join algorithms use some data structures
such as a hash table and a vector. These two structures have been modeled

using the following two parameters:
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NBIT = the number of bits in the vector,

NBP = the number of buckets in the hash table of a triplet.
(d) The Model Output Parameters

The comparison of the different equi-join algorithms, executed by RDBV,
is done mainly through comparing the behavior of an important performance
measure (the model output parameter), namely, the "total execution time
(TTIME).” /The TTIME is the time to execute an equi-join algorithm on RDBM
without any overlap between the activities of the different hardware units.

Basic Assumptions:

In developing the equi-join execution models, several basic assumptions

have been made, nameiy:

1. A tuple of the relation S or T is equally likely to carry, in its join attri-
bute, any value from the domain underlying the join attribute. This
assumption eliminates the need to have other parameters to characterize
the data model, such as the number of distinguished values in both the
source and target relations’ join attribute. With this assumpiion the value
of the latter parameters (as is shown later) can be obtained from the

values of the parameters NTS, NTT and ND.

2. All the hashing functions, which are used in an equi-join algorithm, are

statistically independent of each other.

3. All the hashing functions, which are used in an equi-join algorithm, are
ideal. ‘A hashing function is ideal if it is equally likely to map a value from

its domain to any value of its range.

In Section 4.2.1 the equations which relate the performance parameter of
every Basic algorithm to its execution model input parameters are developed.

In Sections 4.2.2, 4.2.3, and 4.2.4 the latter process is repeated for the other
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categories of the equi-join algorithms, namely, TPF, STPF and STCF.

4.2.1. Execution Models for the Basic Equi-Join Algorithms

The execution of a basic‘ equi-join algorithm by RDBM can be decomposed
into a number of similar phases. For the "global broadcast” basic algorithms
the corresponding number of phases is equal to that of the MAUs which store
the tuples of the source relation. For the "global hash" basic algori‘thms the

corresponding number of phases is equal to that of the global buckets.

In order to calculate the TTIME the following notation is used:

K = the number of phases in the execution of a basic equi-join algo-

rithm,
xefl2 ..., K

TTI = total input time ( time to move the tuples of the source and target

relations from the mass storage to the PC's triplets),
TTI(x) = input time of phase x,

TTO = total output time ( time to move the MAUs of the output relation

from the PC's triplets to the moving-head disk),
TTO(x) = output time of phase x,

TTP = total triplet processor time ( time for a triplet processor to exe-

cute the equi-join operation),
TTP(x) = time for a triplet processor to execute phase x,

TTPM(x) = time spent by a triplet processor during phase x in moving

tuples within its LMU,

TTPH(x) = time taken by a triplet processor during phase x to hash

tuples,
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TTPC(x) = time taken by a triplet processor during phase x to compare

the tuples’ join attribute values,

TTPS(x) = time taken by a triplet processor to sort the source tuples of

phase x,

TTB = total transmission time ( time to move tuples across the cluster’s

TBUS during the execution of the equi-join operation),

TTB(x) = transmission time of phase x,

NTO = the expected number of tuples in the output relation,

NMS = the number of MAUs which store the source relation,

NMT = the number of MAUs which store the target relation,

NMO = The expected number of MAUs which store the output relation,
NGB = the number of global buckets.

The TTIME spent in executing one of the basic equi-join algorithms can be

expressed as follows:

TTIME = TTO + f [TTI(z) + TTP(z) + TTB(z)]

s=1
Since TTY z ), TTP( z) and TTB( z) for all z£§1,2, . . . .k} are on the aver-
age equal to TTI(1), TTP(1) and TTB(1), respectively, then

TTIME = TTO + K-[ TTI(1) + TTP(1) + TTB(1) ] (4.1)

In the following paragraphs, the formulas which compute the quantities
TTO, TTI(1), TTP(1) and TTB(1) for the different basic equi-join algorithms are
derived.

(a) TTO Derivation

The total output time TTO for each of the basic algorithms can be com-

puted using the following formula:
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TTO = NMO.( TBT + 2 TDAC + TDT) (4.2)

This formula states that for every MAU of the result relation it takes TBT to
move the MAU to the parallel buffer block, TDAC to randomly locate an empty
cylinder on the moving-head disk, TDT to move the MAU to that cylinder and

TDAC to resume the transfer of the target MAUs.

In Section 1 of Appendix A the following expression for NMO is derived:

[ NTS NTT (LTS +LTT)

NHO = ND.MAUC

where " [ ] denotes the ceiling function.
(b) TTI(1) Derivation

Two expressions exist for TTI(1), one for the "global broadcast” basic
algorithms and the other for the " global hash ” basic algorithms. In deriving
these two expressions it is assumed that the MAUs which store the tuples of
the source relation are stored in adjacent cylinders of the moving-head disk.

The same assumption also applies to the target relation.
During one phase of a "global broadcast” basic algorithm one MAU of the
source relation is joined with all the MAUs of the target relation. Therefore,

TTI(1) = ( TDAC + TDT + TBT ) + ( TDAC + TDT + TBT ) +

(4.3)
( NMT - 1)( TSK + TDT + TBT)

Moving a source MAU from the disk to the triplets’ LMUs needs (on the
average) TDAC to locate the cylinder of the moving-head disk which stores
the source MAU, TDT to transfer the MAU to the parallel buffer block and TBT
to transfer the MAU to the cluster’'s triplets. The movement of the first tar-
get MAU to the cluster’'s triplets takes the same time as that of the source
MAU. Then for every remaining target MAU it takes TSK to move the disk

heads to the next cylinder, TDT to transfer the cylinder content to the paral-
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lel buffer block and TBT to transfer the content of the parallel buffer block to

the cluster's triplets.

During one phase of a "global hash" basic algorithm the MAUs which store
both the source and target relations are read off the moving-head-disk to the
‘triplets’ LMUs. This is needed in order to extract the set of source and target
tuples which hash to the global bucket being processed by the PC . There-
fore,

TTI(1) = ( TDAC+ TDT + TBT )+ (NMS - 1) TSK + TDT + TBT ) +
( TDAC + TDT + TBT ) + ( NMT -1 )( TSK + TDT + TBT )

(4.4)

(¢) TTB(1) Derivation

Four expressions exist for TTB(1). one for the "global broadcast-local
broadcast” basic algorithms, one for the "global broadcast-local hash” basic
algorithms, one for the "global hash-local broadcast” basic algorithms and

one for the "glcual hash-local hash” basic algorithms.

During one phase of a "global broadcast” basic algorithm the tuples of
one MAU of- the source relation are Joined with all the tuples of the target
relation. To do this-a "global broadcast-local broadcast” basic algorithm
t;roadcasts every tuple in all the MAUs which store the target relation to all

the cluster’s triplets for joining it with the source tuples. Therefore,

TTB(1) = NTT.TT (4.5)

To join one MAU of the source relation and all the MAUs of the target
relation, a "global broadcast-local hash"” algorithm will first redistribute the
tuples of these MAUs, using a hashing function, among the cluster’s triplets.

Therefore,
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NTS .TS

TTB(1) = NIS

(4.8)

+ NTT.TT H

where (NTS/NMS) is the average number of tuples in the source MAU and
(1-1/ NP) is the average fraction of a triplet's tuples which need to be
transferred to other triplets. In deriving the latter fraction we took advan-

tage of both the first and the third basic assumptions stated earlier.

During one phase of a "global hash” basic algorithm the tuples of one glo-
bal bucket are Joined. Using the first and the third basic assumptions one
can easily find that the average number of the source and target relations

which hash to a global bucket are (NTS/ NGF) and (NTT/ NGE) respectively.

To join the tuples of a global bucket, a "global hash-local broadcast' algo-
rithm will broadcast the target relation tuples of the global bucket to the

cluster triplets. Therefore,

TTB(1) = xgg T (4.7)

To join the tuples of a global bucket, a “global hash-local hash” algorithm

will first redistribute the source and target tuples of the global bucket among

the triplets. Therefore,

NTS ro , NTT

NGB ~vee T

TTB(1) =

1
1- ]—V-j';] (4-8)

(d) TTP(1) Derivation

In general, the TTP(1) for a basic equi-join algorithm can be expressed

as follows:

TTP(1) = TTPM(1) + TTPH(1) + TTPS(1) + TTPC(1) (4.9)
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In the following sections, the formulas which compute the quantities
TTPM (1), TTPH(1), TTPS(1) and TTPC(1) are derived for the different basic
equi-join algorithms.

(1) TTPM(1) Derivation

In general, a triplet processor, executing a basic equi-join algorithm
moves two types of data, namely, the output tuples and some source tuples.
The output tuplés, generated as a result of the joining process, are moved to
BUFO. The average number of the output tuples is the same for all the Equi-
Join Basic algorithms. In Section 1 of Appendix A, the following expression for

the expected number of tuples in the output relation is derived:

[ NTS NTT
| ND

Assuming that the generation of the output tuples is uniform over the
PC’s triplets and the execution phases of the equi-join algorithm, then the
number of output tuples generated by one triplet during the execution of one

phase of an equi-join algorithm is:

1 NTS-NTT
K-NP- ND

Therefore, the time spent by one triplet to move the output tuples generated

during one phase is:

1 I’ NTS NTT

KNP |  ND - ] THo

In addition to the output tuples, a triplet processor executing a basic
equi-join algorithm moves some of the source tuples within its local memory
unit. The amount of tuples moved during the execution of one phase of an

equi-join algorithm largely depends on its implementation details. The
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tuples’ movement is a time-consuming operation and a smart implementation
of an equi-join algorithm is one which minimizes the amount of such move-

ment. In the following calculation such implementation is assumed.

For a triplet processor executing one phase of a "global broadcast-local
broadcast” basic algorithm, the tuples of the source MAU and the target
MAUs can be read directly into BUFS and BUF], respectively. Therefore, no
tuples need to be moved by the triplet processor and the quantity TTPM(1)
can be expressed as follows:

1 [ N7s-NTT

TTPM(1) = X'NB|~ ND

] . THO (4.10)

For a triplet processor executing one phase of a "global broadcast-local
hash” basic algorithm, a source MAU and the target MAUs are read, one at a
time, into the PC's buffers BUFI. A triplet processor needs to move to BUFS
only those tuples of the source MAU which hash to the corresponding triplet.
The rest of the source MAU tuples are moved by the data mover. No target

tuples need to be moved by the triplet processor. Therefore,

NTS-NTT
ND

1
K NP

NTS L rys  (a11)

TTPHM(1) = N5 T

l- THO +

——

For a triplet processor executing one phase of a "global hash” basic algo-
rithm, the MAUs which store the source and target relations are read, one at
a time, into the BUFIs of the triplets. When executing one phase of a "global
hash-local broadcast" basic algorithm a triplet processor needs only to move
to BUFS those tuples of the source relation which hash to the current global
bucket. No target tuples need to be moved by the triplet processof. There-

fore,
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NTS =1
NGB NP

TTPHM (1) = THMS (4.12)

1 [ NTS-NTT
K-NPI ND

] - TMO + CH:
where CH has the value zero if the number of global buckets is one, otherwise,

CH is one.

When executing one phase of a "global hash-local hash"” basic algorithm a
triplet processor needs only to move to BUFS those t.upleé of the source rela-
tion which hash to itself and to the current global bucket. On the other hand,

no target tuples need to be moved by the triplet processor. Therefore,

I- o + MIS._L_.rys (4.13)

TTPM(1) =

NGB NP?

1 NTS-NTT
KNP ND

(2) TTPH(1) Derivation

During the execution of .one phase of a "global broadcast” basic algo-
rithm, one MAU of the source relation and all the MAUs of the target relation
are joined. A triplet processor executing one phase of the BBH-Basic algo-
rithm must first hash and store its share of the source MAU tuples in the hash
table. The triplet processor must also calculate the haching function for its

share of the target tuples. Therefore, for the BBH algorithm,

NTS _ NTT
TTPH(l):[NMS-NP+ NP

-TH (4.14)-

Both the BBC-Basic and the BBES-Basic algorithms do not use any hash-

ing technique. Therefore,

TTPH(1) =0 (4.15)

A triplet processor executing one phase of the BHC-Basic or the BHS-
Basic algorithm must hash its share of tuples from ’one source MAU and all
the target MAUs to the cluster’s triplets. Therefore ,for the BHC-Basic or the

BHS-Basic algaorithm,
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NTS + NTT
NMS-NP NP

TTPH(1) = { - TH (¢.186)

In addition to the above, a triplet processor executing one phase of the
BHH-Basic algorithm must hash its share of tuples from one source MAU and
all the target MAUs to the triplet’s hash table. Therefore, for the BHH-Basic

algorithm

_ .| _NTS NTT|
TTPH(1) = 2 [NMS_NP + 5 ] TH (4.17)

During the execution of one phase of a "global hash" basic algorithm, a
hashing function must be computed for all the tuples of the source and target
relations. This is needed in order to select the source and target tuples
which hash to the current global bucket. This is the only hashing technique
used by the HBC-Basic and the HBS-Basic algorithms. Therefore, for these

two algorithms TTPH (1) can be expressed as follows:

NTS + NTT

et g [ TH (4.18)

TTPH(1) = CH- [

where CH has the same definition as that of Equation (4.12).

In addition to the above, a triplet processor, executing one phase of the
HBH-Basic algorithm, must calculate the hash-table hashing function for its

share of the global bucket tuples. Therefore, for the HBH-Basic algorithm,

TTPH(I)_CH[NTS NTT] T+ [NTS

NP NGB-NP]' TH (4.19)

During the execution of one phase of a "global hash-local hash” basic
algorithm, two hashing functions are computed, one for all the tuplés of the
source and target relations and the other for those tuples of the source and
target relations which hash to the global bucket. The latter hashing is used

to distribute the tuples of the global bucket among the cluster’s triplets for
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processing. This is the only hashing technique used by the AH(-Basic and
HHS-Basic algorithms. Therefore, for these two algorithms- TTPH{:) can be

expressed as follows:

_ oy |NTS | NTT|
TTPH(1) = CH [NP + 35 ] TH +

NTS + NTT
NGB-NP- NGB-NP

TH (2.20)

In addition to the above, a triplet processor executing one phase of an
HHH-Basic algorithm must calculate the "hash-table” hashing function for its
share of tuples from the source and target relations. Therefore, for HHH-

Basic algorithm,

NTS | _NTT
NGB-NP  NGB'NP

‘TH + 2

s,y -

TTPH(1) = CH-[ T

(3) TTPC(1) Derivation

In general the quantity TTPC(1) of a basic equi-join algorithm can be

computed from the following equation:
TTPC(1) = ENC(1)'T (4.22)

where ENC(1) is the expected number of tuple comparisons performed by a
triplet processor during the execution of one phase of the basic equi-join
algorithm and T has the value of the parameter TCD for those basic algo-
rithms which'use the complete comparison technique, otherwise, T has the

value of the parameter TCI.

Recall that during the execution of one phase of a "global broadcast”
basic algorithm the tuples of a source MAU are joined with the tuples of all
the target MAUs.. To do so, the PC executing one phase of a "global
broadcast-local broadcast” basic algorithm will broadcast all the target
tuples, one tuple at a time, to the cluster triplets. For a triplet processor

executing one phase of the BBC-Basic algorithm, ENC(1) can be expressed as
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follows:

NTS

ENC(1) = NTT'W

(4.23)

In Section 2a of Appendix A the following ENC(1) expression for a triplet

processor executing one phase of the BBH-Basic algorithm is derived:

1—g NBP
where
and

[ _NTSp
NDSp = ND|1-e NP

In general, a triplet using the sorting method for joining a target tuple
with a number of source tuples will first use the binary search method
[KNUT73] to locate the address of the link list which stores those source

tuplés whose join attribute values match that of the target one. The number

of comparisons, in the worst case, the triplet must perform is {log oN |, where

N is the number of the source tuples in that triplet and "I ]" is the ceiling

function.

Using the above argument, one can easily show that the ENC(1) for the

BBS-Basic algorithm can be expressed as follows:

ENC(1) = NTT | (4.25)

o . _NTS '
€2 NS NP

In general, during the execution of one phase of a "global broadcast-local

hash" basic algorithm, the expected number of target tuples which hash to a
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NTT

iplet for ioinine is |
triplet processor for joining is NP

. For a triplet processor executing one

phase of the BHC-Basic algorithm, ENC(1) can be expressed as follows:

_ NTT __ NTS
ENC(1) = NP NMS-NP

(4.26)

In Section 2b of Appendix A the following ENC(1) expression for a triplet

processor executing one phase of the BHH-Basic algorithm is derived;

_NTSy  NDSp
NTT-NTS |1—e ND o NBP
ENC(1) =
(1) NMS-NP? NBP _NDsp (427)
{—g NBP
where
_ NTS
NTSy = NiS
and
ND NSy
=N, ND
NDSp NPl e

For a triplet processor executing one phase of the BAS-Basic algorithm,

ENC(1) can be expz;essed as follows:

ENC(1) log

NTT | NTS
A ml (+28)

Recall that, during the execution of one phase of a "global hash" Basic
algorithm, the source and target tuples of a global Bucket are joined. The

expected number of the source and target tuples which hash to a global

NTT
NGB

NGB

bucket, during one the execution of phase, are [NTS] and ] respec-

tively. A triplet processor executing one phase of a "global hash-local broad-

NTS

t.' B . 1 . . , 3 ————EeE—
cas asic algorithm will be, on the average, assigned NGB NP

tuples of
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target

the source relation. The triplet processor will also process the [xgg

tuples against the assigned source tuples.

For a triplet processor executing one phase of the HBC-Basic ulgorithm,

ENC(1) can be expressed as follows:

NTT _NTS

ENC(1) = NGB NGB NP

(4.29)

In Section 2c of Appendix A, the following ENC{1) expression for a triplet

processor executing one phase of the HBH-Basic algorithm is derived:

_NTSg  NDsp
NTT-NTS - |1—e ND o NBP
ENC(1) = .
()= 3P -NBP NGB? _NDSp (+30)
1—e NBP
where
ND _NTSs
= YU \.__""ND
NDSp = ~=51-e
and
_ NTS
NTS, = 55

For a triplet processor executing one phase of the HBS-Basic algorithm,

ENC(1) can be expressed as follows:

ENC(1) = 3GE | °% NcE vp

[
NTT NTS I (4.31)

A triplet processor executing one phase of a "global hash-local hash”

. . . : NTS '
basic algorithm will be, on the average, processing NGB NP source tuples
and NTT_ target tuples. For a triplet processor executing one phase of

NGB-NP

the HHC-Basic algorithm, ENC(1) can be expressed as follows:
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NTT NTS

ENC() = §ep'NP  NoB NP

(4.32)

In Section 2d of Appendix A, the following ENC{1) expression for a triplet

processor executing one phase of the HHH-Basic algorithm. is derived:

- _NTs _NDSp
_ __ NTT-NTS 1—e ND g NBP
ENC(1) = Nege NP2 NP NDSp (4.33)
{—g NBP

where

NTS
= __1.‘.’.-’?____{ - ‘NT}
NDSp = Np-neB 7

For a triplet processor executing one phase of the HHS-Basic algorithm,

ENC(1) can be expressed as follows:

ENC(1) =

NTT | NTS ]

NGB NP | °82 NGB NP (4.34)

(4) TTPS(1) Derivation

The quantity TTPS(1) has a nonzero value for only those basic algo-
rithms which use the sorting technique in performing the equi-join operation.
In gerieral, a triplet will internally sort M tuples of the source relation in, on.

the average, ( MlogaM ) comparisons and pointer swaps. Thus a general for-

mula for TTPS(1) would be:

TTPS(1) = (TCI + TEP)Mlog,M (4.35)

During the execution of one phase of the BBS-Basic or BHS-Basic algo-
rithms, the expected number of source tuples assigned to a triplet is

[—i@— . Substituting the latter quantity for M in Equation (4.35) yields

NMS-NP

the following equation for TTPS(1) of both the BBS-Basic end BHS-Basic algo-
rithms:
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Nrs | NTS
TTPS(1) = (TCI + TEP) 3us™NE | 1°%2 Wgs np

(4.36)

During the execution of one phase of the HBS-Basic or the HHS-Basic
algorithm, the expected number of source tuples assigned to a triplet is

[ NTS . Substituting the latter quantity for M in Equation (4.35) yields

NGB-NP

the following equation for TTPS(1) of both the HBS -Basic and HHS —Basic

algorithms:

TTPS(1) = (TCI + TEP) (4.37)

NTS | os, _NTS
NGB-NP| °82 NGB NP

4.2.2. Execution models for the TPF Equi-Join Algorithms.

Recall that every TPF equi-join algorithm is an extension of one of the
basic equi-join algorithms. Similar to the basic equi-join algorithm, the exe-
cution of a TPF algorithm goes through a sequence of similar phases. The
number of these phases is equal to that of a basic equi-join algorithm. During
the execution of one phase of a basic equi-join algorithin, some tuples of the
source and target relations are selected and jomed. However, during the exe-
cution of one ;'>hase of a TPF algorithm and before joining the selected tuples
of the source and target relations, a vector, initialized and maintained by the
CMP, and a hashing function are used to encode the join attribute values of
the selected source tuples. This vector is used to filter out many of the
selected target tuples which do not match the source ones. The filtered out

target tuples need not be processed any further.

From the preceding discussion it is easy to conclude that Equation (4.1)
can be used to compute the TT/ME spent in executing one algorithm of the
TPF equi-join algorithms. Also, the formulas of Section 4.2.1 which compute

the various quantities, other than TTB(1), TTPH(1) and TTPC(1) for the basic
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equi-join execution models can also compute the same quantities for each of

the TPF equi-join exécution models.

In the foilowing sections, the formulas which compute the quantities
TTB(1), TTPH(1) and TTPC(1) for the various TPF equi-join execution models
are derived.

(a) TTB(1) Derivét.ion

Recall that during the execution of one phase of a "global broadcast”
basic algorithm the tuples of one MAU of the source relation are joined with
all the tuples of the target ones. In doing that, a "global broadcast-local
broadcast” basic algorithm will broadcast every tuple of the target relation to
the PC's triplets. On f.he other hand, a "global broadcast-local broadcast” TPF
algorithm will broadcast only those tilples of the target relation which survive

the vector checking.
Let

LTB be the fraction of the target relation tuples which survive the vector
- checking during the execution of one puase of a “global broadcast” TPF

algorithm.

Then for a "global broadcast-local broadcast” TPF equiZjoin algorithm, TTB(1)

is:
TTB(1) = LTB-NTT-TT (4.38)
In Section 3a of Appendix A, the following expression for LTB is derived:
, NTSy  NDSy
LTB = 1-e ND g NBIT (4.39)
where
NTS

NTSH = NMS
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and

_NTsy
NDSy = ND-[1-e P

To join one MAU of the source relation with all the MAUs of the target
relation, a "global broadcast-local hash” TPF algorithm will first redistribute
the tuples of the source MAU as well as those tuples of the target MAUs which

survive the vector checking. Therefore,

TTB(1) = %?S-TS + LTB NTT- TTHl——— (4.40)

where LTB is computed from Equation (4.39)

Recall that during the execution of one phase of a "global hash” basic
algorithm the tuples of ‘one vglobal bucket are joined. In doing that a "global
hash-local broadcast” basic algorithm will broadcast the target tuples of the
global bucket to the cluster triplets. However, a "global hash-local broad-
cast” TPF algorithm will broadcast only those target tuples of the global

bucket which survive the vector checking. Therefore,
let

LTG be the fraction of the target relation tuples which hash to a global
bucket and survive the vector checking during the execution of one

phase of a "global hash" TPF algorithm.

Then for a "global hash-local broadcast” TPF equi-join algorithm, T7B(1) is:
TTB(1) = LTG'NTT-TT (4.41)
In Section 3b of Appendix A, the following expression for LTG is derived:

) _N1s _NDsg
- 1 |y_, ND_ NBIT
LTG = NGB 1-e e

(4.42)

where
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_NTS]

NDSg = ——-jévé,; [1—e NP

To join the tuples of a global bucket a "global hash-local hash” TPF algo-
rithm will redistribute the source tuples of the global bucket as well as the
target tuples which hash to the global bucket and survive the vector check-

ing. Therefore,

TTB(1) = %-Ts + LTG-NTT'TT][I-I/ NP] (4.43)

where LTG is computed from Equation (4.42).
(b) TTPH(1) Derivation

. During the execution of one phase of the BBH —TPF equi-join é.lgorithm.
a triplet processor will calculate two hashing functions. The first one, the
hash-table function, is used to store the triplets’ share of the source tuples
into the triplets’ hash tables. The second one, the hash-bit function, is used
to encode the join attribute values of the latter tuples. In addition to that a
triplet processor will calculate the two hashing functions for its share oi the

target tuples. Therefore, for the BBH-TPF equiZjoin algorithm, TTPH(1) is:

NTS +'NTT
NHS-NP ~ NP

2 TH (4.44)

TTPH(1) = [

A triplet processor, executing one phase of the BBC-TPF or the BBS-TPF
equi-join algorithm, will calculate only the hash-bit function for its share of
both the source and the target tuples. Therefore, for a BBC-TPF or BBS-TPF
algorithm, o

~TTPH(1)=[ NTS +NTT]-TH (4.45)

NMS: NP NP

A triplet processor executing one phase of the BHC-TPF or the BHS-TPF

equi-join algorithm will compute two hashing functions for its share of tuples
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from both the source MAU and all the target MAUs. The first one is the hash-
bit function. The second one, the triplet-hash function, is used to hash the
tuples to the PC’s triplets. Therefore, for the BHC-TPF or BHS-TPF algo-

rithm,

TTPH(1) = [m]gfvp N jjvg]-z-m (4.46)

In addition to calculating the above two hashing functions, a triplet pro-
cessor executing one phase of BHH-TPF algorithm computes the hash-table
function for its share of tuples from both the source MAU and from the surviv-

ing tuples of the target relation. Therefore, for the BHH-TPF algorithm,

_NTS _ . LTB-NTT|
NS NP + NP TH(4.47)

NTS _ NTT].Z,TH N

TTPE(1) = \us-wp * NP

During the execution of one phase of a "global hash" TPF equi-join algo-
rithm, a hashing function, the global-hash function, is computed for all the
tuples of the source and target relations. This is needed in order to select
the source and target tuples which belong to the current global bucket. The
execution of one phase of the HBC-TPF or HBS-TPF algorithm will involve the
additional computation of the hash-bit function for both the source and tar-
get tuples which hash to a global bucket. Therefore, for the HBC-TPF or
HBS-TPF algorithm,

_ ~y |NTS | NTT|
TTPH(1) = CH NP + NP TH +

NTS NTT
nNea-np T nopap|TH (448)

where CH has the same definition as that of Equation (4.12).

In addition to calculating the above two hashing functions, a triplet pro-
cessor execuling one phase of the HBH-TPF equi-join algorithm calculates the
hash-table function for its share of the source and target tuples which hash to

a global bucket. Therefore, for the HBH-TPF algorithm,
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| _ .~y |NTS . NTT|
TTPH(1) = CH [ T ] TH +

NTS NTT |
Neene T negwp| 2 TH (449)

During the execution of one phase of the HHC-TPF or HHS-TPF algorithm,
a triplet processor computes three hashing functions. The global-hash, the
hash-bit and the triplet-hash‘funyctions. Therefore, for the HHS-TPF or HHC-
TPF algorithm.,

_ o |NTS | NTT|
TTPH(1) = CH [NP + 52 ] TH +

NTS NTT
NN T weg wp| 2 TH (450)

In addition to calculating the above three hashing functions, a triplet
processor executing one phase of the HHH-TPF algorithm, computes another
hashing function, the hash-table function. A triplet processor compul;es the
latter function for its share of the global bucket source fuples and its share of
the target relation tuples which belong to the global bucket and survive the
vector checking. Therefore, for the HHH-TPF algorithm,

_ o |nTs . NTT] NTS NtT |,
TTPH(1) = CH [NP » 52 ] rh + | A NGB,N’P] 2 TH
NTS . LTG-NTT| ...
*|Iveenp * NP ]TH (4.51)

(c) TTPC(1) Derivation
In general, the quantity TTPC(1) of a TPF equi-join algorithm can be com-
puted from the following equation:

TTPC(1) = ENC(1)-T (4.52)

where ENC(1) is the expected number of tuple comparisons performed by a
triplet processor during the execution of one phase of a TPF equi-join algo-
rithm and T has the value of the parameter TCD for those TPF algorithms

which use the complete comparison technique, otherwise, T has the value of
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the parameter TCI.

Recall that during the execution of one phase of a "global broadcast” TPF
algorithm the tuples of a source MAU are joined with the tuples of all the tar-
get MAUs. To do so the PC, executing one phase of a "global broadcast-local
broadcast” TPF algorithm, will broadcast all the target tuples which survive
the vector checking to the cluster triplets. Thus for a triplet processor exe-
cuting one phase of the BBC-TPF algarithm, ENC(1) can be expressed as fol-

lows:

NTS

ENC(1) = LTB-NTT: NIS NP

(4.53)

where LTB is computed from Equation (4.39).

For a triplet processor executing one phase of the BBS-TPF algorithm,

ENC(1) can be expressed as follows:

[
ENC(1)= LTB-NTT NTS l

logz v 5 NP

In Section 3c of Appendix A, the following ENC(1) expression for a triplet

processor executing one phase of the BBEHA-TPF algorithm is derived:

NTSp NDSy NDSp  NTSp

_ _NTT-NTS |1—e ™0 4 (1—¢ MBIT)(1—g NBP), "ND
EveQ) = NMS -Np-NBP NDS,
1—g NMNBP
(4.54)

where NTS,, NDS, and NDSy are the same as those of Equations (4.25),

(4.27) and (4.39), respectively.

In general, during the execution of a phase of a "global broadcast-local

hash” TPF algorithm, the expected number of target tuples which survive the

vector checking and hash to a triplet processor, for joining, is

LTB-NTT
NP |
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Thus for a triplet processor executing one phase of the BHC-TPF algorithm,

ENC(1) can be expressed as follows:

_ LTB-NTT _ NTS

ENC(1) NP NHS NP

(4.55)

For a-triplet processor executing one phase of the BHS-TPF. algorithm,

ENC(1) can be expressed as follows:

) [
_ LTB'NTT NTS ] (4.56)

ENC(1) = *=3p— |\t 5w

In Section 3d of Appendix A the following ENC(1) expression for a triplet

processor executing one phase of the BHH-TPF algorithm is derived:

_NTS"' _NDSP _NDS” -NTSH
_ NTTNTS 1—g ND + (1_2 NBP )(1—8 NBITE ND
ENC(1) = NMS NP?* NBP _Nbsp
{—e NBP
(4.57)

where NTSy and NDS, are the same as those of Equation (4.27) NDSy is the

same as that of Equation (A.29).

Recall that during the execution of one phase of a "global hash” TPF algo-
rithm, the source and target tuples of a global bucket are joined. The aver-

age number of the source and target tuples which hash to a global bucket are

NTT
and [NGB

NTS
NGB

, respectively. The vector checking will reduce the target

tuples of the global bucket to (LTG-NTT) where LTG can be computed using
Equation (4.42). During the execution of one phase of a “global hash-local
broadcast” TPF algorithm, a triplet processor is assigned, on the average,

NTS
NGB-NP

tuples of the source relation to process. Thus for a triplet proces-

sor executing one phase of the HBC-TPF algorithm, ENC(1) can be expressed
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as follows:

NTS

ENC(1) = LTG-NTT- NGB NP

(4.58)

For a triplet processor executing one phase of the HBS-TPF algorithm,

ENC(1) can be expressed as follows:

ENE(1) = LTG-NTT'[ (4.59)

NTS
logz yop NP !

In Section 2e of Appendix A, the following ENC(1) expression for a triplet

processor executing one phase of the HBH-TPF algorithm is derived:

NTSg NDSp . NDS;  NTSg

_ NTT-NTS J1—e M0 4 (1—¢ NBPY)({_ NBIT), D
ENC(1) = §ege np NEP _NDsp
1—e NBP
(4.60)

where NTS;, NDS, and NDS¢ are defined in Equationé (A.30), ( A.26) and

(A.44), respectively.

During the execution of one phase of a "global hash-local hash" TPF algo-

NTS

rithm, a triplet processor is assigned, on the average, NGB NP

tuples of the

source relation. These tuples are compared with the target tuples which hash
to the global bucket, survive the vector checking and hash to the triplet pro-

LTG NTT

NP . Thus for a tri-

cessor. The average number of the latter tuples is

plet processor executing one phase of the HHC-TPF algorithm, ENC(1) can be

expressed as follows:

LTG-NTT __NTS
NP NGEB-NP

ENC(1) = (4.61)
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For a triplet processor executing one phase of the AHS-TPF algorithm,

ENC(1) can be expressed as follows:

: [
ENC(1) = LTG-NTT log NTS

NP |'°%*NGB NP (+.62)

In Section 3f of Appendix A, the following ENC(1) expression for a triplet

processor executing one phase of the HHH-TPF algorithm is derived:
: /

_NTS _Nosp _NDsg;  _NTS
NTT-NTS 1—e NP 4 (1-e NBP)(1_g NBIT)p AND
ENC(1) =
(1) NGB* NP?* NBP _NDsp
1—-e NBP
(4.83)

where NDSp and NDS¢ are defined as those of Equations (4.33) and ( A.'44).

respectively.

4.2.3. Execution Models for the STPF Equi-Join Algorithms

Recall that every STPF equi-join algorithm is an extension of one of the
"global hash" TPF equi-join algorithms. As for a TPF algorithm, the execution
of an STPF goes through a sequence of similar phases. The number of these
phases is 'equai to NGB, the number of gldbél buckets. During the execution
of one phase of a "global hash" TPF algorithm, the source and target tuples of
one global bucket are joined. In the latter algorithms a vector (BIT-S), initial-
ized and maintained by the cluster master processor, is used to encode the
join attribute values of the sourée tuples which belong to the current global
bucket. This memory will then be used. to filter out many of the global bucket
target tuples whose join attribute values do not match those of the encoded
source ones. In addition to BIT-S, an STPF algorithm uses another vector
(BIT-T), initialized and maintained by the cluster master processor, to encode

the join attribute values of the target tuples 'wihich belong to the current glo-
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bal bucket. BIT-T will then be used to filter out some of the source tuples

which do not have matches among the encoded target ones.

From the above discussion, it is easy to conclude that Equation (4.1) can
be used to compute the TTIME spent in executing one algorithm of the STPF
equi-join algorithms. Also the formulas of Section 4.2.1 which compute the
quantities TTO and TTI(1) for the "global Hash" TPF equi-join execution models
can also be used t;o compute the same quantities for each of the STPF equi-

join execution models.

In the following paragraph, the formulas which compute the quantities
TTB(1), TTPM(1), TTPH(1), TTPC(1) and TTPS(1) for the various STPF equi-join

execution models are derived.
(a) TTB(1) Derivation

During the execution of one phase of a "local broadcast” STPF algorithm,
the cluster master processor broadcasts, to all the cluster's triplets, every
target tuple which belongs to the global bucket and survives the BIT-S vector

checking.

Let |
z e{S.T]
Lz be the fraction of relation z tuples which hash to a global bucket and
survive the corresponding vector (BIT-S for target tuples, BIT-T for

source tuples) checking.

Then for a "local broadcast” STPF algorithm, TTB(1) is:

TTB(1) = LT-NTT-TT (4.64)

where the parameter LT is computed using the equation developed for the
parameter LTG of the previous ‘section. That is, LT can be expressed as fol-

lows:
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. { _NTS %] (2.65)
- 1 _ ND NBIT )
LT NGBI e e
where
-NTS
_ N[ W)
NDSG NGB 1 e

During the execution of one phase of a "local hash” STPF algorithm, the
source and target tuples which hash to the global bucket and survive the
corresponding vector checking must be redistributed. Therefore, for a "local

hash" STPF algorithm, TTB(1) is:
TTB(1) = ( LS-NTS'NT + LT-NTT-TT ){1 - 1/ NP) (4.66)

where LT is cornpﬁted using Eqﬁation (4.85). A formula for computiné LS can
be derived by following the same steps used to derive Equation (4.65). How-
ever, the quantities NTS and NDS; must be replaced by the quantities NTT

and NDTg, respectively. Thus LS has the following equation:

LS = —t_|{—¢ ND o WEIT (4.67)
NGB
where
. _NTT
_ M5
NDTg NCE 1-e
(b) TTPM(1) Derivation

Similar to a TPF (or basic) equi-join algorithm, a triplet processor exe-
cuting an STPF algorithm moves two types of datg. namely, the output tuples
and some source and target tuples. The output tuples, generated as a result
of the joining process, are moved to BUFO. The time spent by one triplet pro-
cessor to move its share of the output tuples generated during the execution

of one phase of an STPF algorithm is computed using Equation (4.10).
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IDuring the execution of one phase of a "local broadcast” STPF algorithm,
a trip»let processor moves, to a temporary storage, its share of those target
tuple s which belong to the global bucket. The triplet processor also moves, to
BUFS , its share of the source tuples which hash to the global bucket and sur-
vive ‘the BIT-T checking. Therefore, for a triplet proéessor executing one

phase: of a "local broadcast” STPF algorithm, TTPM(1) is:

N
_ 1 [nrs-arr] _NTT
TTPH(1) = s | s ITMO + CH ~ o THT  (4.66)
¢ LENTS rys

NP

wher«2 CH has zero value if NGB = 1, o_therwise, one.

IDuring the execution of one phase of a "local hash” STPF algorithm, a tri-
plet [>rocessor moves, to a temporary storage its share of those source tuples
whicl 1 hash to the global bucket, survive the BIT-T vector checking and do not
need to be communicated to a different triplet. Therefore, for a triplet pro-

cesso r executing one phase of a "local hash" STPF algorithm, TTPM(1) is:

1 [NTS NTT

_ . L _NTT
TTPH(1) = o | M ]TMO-!-CH ol T
(4.69)
+ LSNTS 7y
NP

(e) T1TPH(1) Derivation

Iuring the execution of one phase of an STPF algorithm, the PC com-
putes: the global-hash function for every Luple of the source and target rela-
tions. This is needed in order to select the source and target tuples which
hash to the current global buc.ket. ‘The execution of one phase of the HBC-
STPF or HBS-STPF algorithm will involve the additional computation of the

hash- bit function for both the source and target tuples which belong' to a
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global bucket.* Therefore, for the HBC-STPF or the HBS-STPF algorithm.,

_ - INTS . NTT]| NTS NTT |
TTPH(1) = CH [NP + NP]TH+ von et e ap| TH (470

In addition to computing the global-hash and the hash-bit functions, a
triplet processor executing one phase of the HBH-STPF aIgorithrﬁ computes
the hash-table function for its share of those source and target tuples of the
global bucket which survive the corresponding vector checking (checking
BIT-T for the source tuples, checking BIT-S for the target tuples). Therefore,
for the HBH-STPF algorithm,

_ ~u |NTS . NTT|. NTS NTT |
TTPH(1) = CH [ ~F t NP ] TH + [NGB-NP * SCE NP ‘TH + ( 7_)
4.71
LS'NTS _ LT-NTT|.
NP T NP ] TH

During the execution of one phase of the HHC-STPF or the HHS-STPF
algorithm, a triplet processor computes three hashing functions, namely, the
global-hash, the hash-bit and the triplet-hash. Therefore, for the AHS-STPF

or HHC-STPF algorithm,

NTS " NTT | oopr
Nee Np +t Negnp| 2 TH (£73)

TTPH(1) = CH-[w + -’Yﬂ']-m'+

NP NP

In addition to computing the above three hashing functions, a triplet pro-
cessor executing one phase of the HHH-STPF algorithm computes another
hashing function, the hash-table function. A triplet processor computes the
latter function for its share of the global bucket source and target tuples

which survive the vector’s checking. Therefore, for the HHH-STPF algorithm,

*The address of the bit, in BIT-T which encode the join attribute value of a given global bucket
target tuple, is stored together with the corresponding tuple. This eliminates the needs to reevaluate
the hash-bit hashing function for the target tuple of the current global bucket.
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_ ~y |NTS . NTT| NTS NTT |,
TTPH(1) = CH [_NP + —NP] TH + vee.np t NCE NP ' TH
LS -NTS = LT-NTT (4.73)
o i v "TH
(d) TTPC(1) Derivation

Recall that, during the execution of one phase of an STPF algorithm, the
source and target tuples which hash to a global bucket and survive the
vector's checking are (LS'NTS) and (LT NTT), respectively. During the exe-

cution of one phase of a "local broadcast” STPF algorithm a triplet processor

LS NTS

stores in BUFS, on the average, NP

tuples of the source relation.

These tuples are compared with every target tuple of the global bucket which
survives BIT-S checking. Thus for a triplet processor executing one phase of

the HBC-STPF algorithm, ENC(1) can be expressed as follows:

LS NTS

ENC(1) = LT-NTT- 225

(4.74)

With Equation (4.35) in mind, it is easy to see that for the HBS-STLF

algorithm, ENC(1) can be expressed as follows:

[
ENC(1) = LT-NTT-|log,

LS NTS ] (4.75)

NP

In Section 4a of Appendix A, the following ENC(1) expressioh for a triplet

processor executing 6ne phase of the HBH-STPF algorithm is derived:

_NTSs _ NTSs _NDSFp _NDSg |
NTT-NTS LS 1-¢g ND Lo ND 1-e NBP 1—e NBIT |
ENC() = Np-NcB NBP _EDSF
{—-g NBP

(4.76)
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During the execution of one phase of a "local hash” STPF algorithm, a tri-

LS-NTS

plet processor stores in BUFS, on the average, NP

tuples of the source

relation to process. These tuples are compared with those target tuples of

the global bucket which survive BIT-S checking and hash to a triplet proces-

sor. On the average, the number of these tuples is {LT' ]_;,V% . Thus for a tri-

plet processor executing one phase of the HHC-STPF algorithm, ENC(1) can

be expressed as follows:

LT-NTT LS-NTS

ENC(1) = NP NP (4.77)
For the HHS-STPF algorithm, ENC(1) can be expressed as follows:
_ LT-NTT]  LS-NTS
ENC(1) = NP loga NP I (4.78)

In Section 4b of Appendix A, the following ENC(1) expression for a triplet

processor executing one phase of the HHH-STPF algorithm is derived:

{ 9
_NTS _NTS _ NDSFp _ NDS g
.NTS - 1—e¢ M 4o ND|\_g NBP ||{_o NBIT
ENC(1) = NIT-NTS:LS , e
NP®-NGB-NBP T NBSF;
{—g NBP
\ * )
(4.79)
(e) TTPS(1) Derivation

The quantity TTPS(1) has a nonzero value for only two STPF algorithms,
namely, the HBS-STPF and the HHS-STPF algorithms. Recall that Equation
(4.35) computes the time a triplet proceséor spends in sorting M tuples. Dur-

ing the execution of one phase of the HBS-STPF or HHS-STPF algorithms, the

LS NTS

NP ] Sub-

expected number of source tuples assigned to a triplet (M) is [
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stituting the latter quantity for M in Equation (4.35) yields the following equa-
tion for TTPS(1) for both the HBS-STPF and HHS-STPF algorithms:

TTPS(1) = (TCI + THP) NP log NP

. [ .
LS-NTS LS-NTS ] (4.80)

4.2.4. Execution Models for the STCF Equi-Join Algorit.hms :

In this section, the execution models are presented for every STCF algo-
rithm except those algorithms which use the hash-table method in joining the

tuples within a PC's triplet.

Recall that the execution of an STCF algorithm is comprised of two
phases, namely, the global filtering phase and the join phase. The computa-
tion of the TTIME spent in executing an STCF algorithm involves the computa-

tion of the TTIME spent in executing both of the latter phases.
Let

TTIMEG be the TTIME spent in executing the global filtering phase of an
STCF algorithm, and

TTIMEJ be the TTIME spent in executing the join phase of an STCF algo-
rithm.

The TTIME spent in executing an STCF algorithm can then be expressed

as follows:

TTIME = TTIMEG + TTIMEJ (4.81)

In the following paragraphs, the formulas which compute the quantities

TTIMEG and TTIMEJ are derived.
(a) Derivations for TTIMEG

The global filtering phase is common to all the STCF algorithms. There-

fore, the TTIMEG spent in executing this phase is the same for all the STCF
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algorithms. Recall that the execution of a global filtering phase is comprised
of three subphases. Therefore, the quantity TTIMEG is the sum of the TTIME

spent in executing each of these phases.

Let

zefl, 23

and TT/MEG(z) be the TTIME spent in executing subphase z of the global
filtering phase.
Then, the TTIMEG can then be expressed as follows:

3
TTIHEG = E TTIHEG(z)

= él[rmz) + TTO(z) + TTP(z)]

(4.82)

In the following sections, the equations which compute the quantities

TTI(z), TTO(z), and TTP(z) for all x are developed.
(1) TTI(x) Computation

During the execution of the first subphase of the global filtering phase,
all the MAUs which store the target tuples are read, one MAU at a time, from

the moving-head disk into the PC's LMUs. Therefore,
TTI(1) = (TDAC + TDT + TBT) + (NMT-1)(TSK + TDT + TBT) (4.83)
During the execution of the second subphase, all the MAUs which store

the source tuples are read, one MAU at a time, from the moving-head disk

into the PC’'s LMUs.

Therefore,

TTI(2) = (TDAC + TDT + TBT) + (NMS—1)(TSK + TDT + TBT) (4.84)
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Finally, during the execution of the third subphase, all the MAUs which
store the target tuples are again read, one MAU at a time, from the moving-

head disk into the cluster's LMUs. Therefore,

TTI(3) = TTI(1) (4.85)

(2) TTO(x) Computation

During the execution of the first subphase, no tuples need to be moved

from the cluster's LMUs to the moving-head disk. Therefore,

TTO(1) = 0 (4.86)

During the execution of the second subphase, the tuples of the target
relation which survive BIT-S checking need to be moved, in MAU units, to the

moving-head disk.
Lety ¢ {S.T}

NMyF be the number of MAUs which store those tuples of relation y
which survive the corresponding vector checking.

Then, the TTO(R) can be expressed as follows:

TTO(R) = NMTF-(2 TDAC + TDT + TBT) (4.87)

1t is easy to see that the quantity NMTF can be expressed as follows:

NMTF =

lpr-NTT-LTT
HAUC

In Section 5a of Appendix A, the following formula for LT is derived:
_NIS _NDS
LT = 1—e ND o NBIT (4.886)
During the execution of the third subphase, the tuples of the source rela-
tion which survive BIT-T checking need to be moved, in MAU units, to the the

moving-head disk. Therefore,
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TTO(3) = NMSF(2-TDAC + TDT + TBT) (4.89)
where the quantity NMSF can be computed from the following equation:

1S NTS LTS ]
HAUC

NMSF =

In Section Sb of Appendix A, the following formula for LS is derived:

N NDT
LS = 1—g " ND g~ NBIT (4.90)

(3) TTP(x) Computation

During the execution of the first subphase, a triplet processor computes

the hash-bit function for its share of the source tuples. Therefore,

TTP(1) = ’-Vl-fg-m (4.91)

During the execution of the second subphase, a triplet processor com-
putes the hash-bit function for its share of the target tuples. Also the triplet
processor moves, to the output buffer, those tuples of the target relation
which survive BIT-S checking. Therefore, the quantity 'ITP(Z) can be

expressed as follows:

NTT LT-NTT

TTP(2) = —='TH + NP TMT (4.92)

NP

During the execution of the third subphase, a triplet processor computes
the hash-bit function for its share of the source tuples. Also the triplet pro-
cessor moves, to the output buffer, those tuples of the source relation which
survive BIT-T checking. Therefore, the quantity TTP(3) can be expressed as

follows:

NTS-TH + LS NTS

TTP(3) = NP NP

THS (4.93)
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(b) Derivation for TTIMEJ

During the join phase of the STCF algorithms, the source and target
tuples are joined using one of the basic equi-join algorithms. .Therefore, the
computation of TTIMEJ for executing the join phase of an STCF algorithm is
similar to that of computing TTIME for the correspondiﬁg basic equi-join algo-
rithm.* The quantity TTIMEJ can be computed using Equation (4.4). That is,

TTIMEJ can be expressed as follows:

TTIMEJ = TTO + K-[TTI(1) + TTO(1) + TTP(1) + TTB(1)]  (4.94)

Also the quantity TTP(1) can be expressed as follows:

TTP(1) = TTPH(1) + TTPH(1) + TTPC(1) + TTPS(1) (4.95)

The equatiods which were developed for computing the quantities
K, TTO, TTI(1), TTB(1), TTPM(1), TTPH(1), TTPC(1) and TTPS(1) of the
basic execution models can also be used, with slight modification, to compute
the same quantities of Equations (4,94)‘and (4.95). The equations developed
for the basic execution models must be modified to include the effect of the
global filtering phase. The parameters NTS and NTT of the eqhations gen-
erated for the basic execution models must be replaced by the parameters

NTSF and NTTF, respectively, where
NTSF = LS-NTS (4.96)
and

NTTF = LT NTT (4.97)

*This statement is true only for those STCF algorithms which do not use the hash-table method.
This section, therefore, only models the execution of the STCF algorithms and corresponds to the
basic ones which satisfy the latter statement.
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4.3. The Evaluation of the Proposed Equi-Join Algorithms

In this section, the performance of the diiferent equi-join algorithms, pro-
posed for the new RDBM, are studied and compared. This is carried out in two
steps. In the first step, each of the equi-join algorithmic categories {basic,
TPF, STPF and ST(.{F) are separately studied using the corresponding' execution
models already developed in the previous section. In this step, the best per-

forming algorithm(s) within each of these categories is aiso determined.

In the second step, the best performing algorithms from each of the
equi-join algorithmic categories are compared. The overall best performing

algorithm(s) under the different data environment is then determined.

Two basic factors are considered in selecting the best performing algo-
rithm, namely, the performance measure TTIME and the number of hashing
functions. In general, the best performing algorithm, in a set containing oth-
ers, over a range of a parameter’ values is the one with the smallest values of
TTIME over that range. However, if more than one algorithm has close TTIME
values over that range, then the best performing algorithm is the one with a
minimum number of hashing functions. The last criterion is adopted to com-
pensate for the fact that in our performance evaluation wé considered only the
average behavior of the hashing functions, not the worst case one; moreovér
we did not consider the overhead involved in handling the overflow phenomena
associated with their use [KNUT73]. Therefore, it is argued that in order for an
algorithm with a hashing function to be adopted for executing the equi-join
operation, it must show a significant performance imﬁrovement over the one

with no hashing function.

In Appendix B, the input parameters of the equi-join models are classified
into two groups, namely, the static parameters and the dynamic parameters.

The static parameters are those whose values are kept constant throughout
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the evaluation of the equi-join execution models. The values selected for the
static parameters together with the reasons behind such selection are

presented in Appendix B.

The dynamic parameters are NTS, NTT, ND, NBP and NBIT. To reduce the
number of dynamic parameters it is assumed that both NTS and NTT have the
same value. ND will be changed indirectly through changing the parameter
(NTS/ND). In Appendix B it is shown that, throughout the performance evalua-

tion, one can assign values to the parameters NBP and NBIT using the following

formulas:
(
.| NDDgp . NTS
Min [ 4 'LF NBP * §uS NP |[tor the global broadcast algorithms
NBE = NDDgp NTS |
in { —— L the global lgori
Min { y ..F'NBP NGB NP ‘]for e global hash algorithms

¢

NDD . .
Min { Bl | FNBIT [ NTS + NTT ] J] for all algorithms with
4 one CMP vector

NBIT = for all algorithms with

. NDDpg,;
Min — \FNBIT-[ NTS + NTT 1/ 2|}tas0 CHP vectors

t

where NDDgp and NDDg; are functions of ND (together with some other static-
parameters). FNBP and FNBIT are functions of the capacity of the storage allo-

cated for the hash table within a triplet, and the vector, respectively.

In Appendix B, the range of values which the parameters NTS (NTT) and
[NTS/ND] will assume throughout the performance evaluation is presented.

The results of this evaluation are presented in the following sections.

4.3.1. The Evaluation of the Basic Equi-Join Algorithms

A computer program was written to compute the performance measure

TTIME for every basic equi-join algorithm using the Equations already
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developed in Section 4.2.1. The set of programs were run for NTS(NTT) &
§10% = 10%], NTS/ND ¢ {1, .1, .01} and FNBP ¢ {1, 5, 10}. The corresponding

behavior of TTIME is shown in Figure (4.5).
From Figure (4.5), the following important conclusions can be drawn:

1. Within the range of values assumed for [NTS/ND], namely (1, .1, .01), the
performance measure TTIME for all the basic equi-join algorithms is

independent of the joining probability* values.

2. Vithin the range of values assumed for FNBP, namely (1, 5, 10), the per-
formance measure TTIME, for all the basic algorithms which use the hash
table method (BBH-Basic, BHH-Basic, HBH-Basic, HHH-Basic), is indepen-

dent of the number of entries in the corresponding table.

3. The hashing functions improve the execution speed of the equi-join
operation considerably. For example, joining two relations, each with 10*
tuple, using the HBH-Basic algorithm is approximately 650 times faster
than that using the BBC-Basic algorithm.

4, FExecuting the equi-join operation using an algorithm other than HBS-
Basic either degrades the operation performance (as in the case of using
the basic algorithms 'BBC, BBS, BBH, BHC, BHS, BHH, HBC and HHC) or
does not improve the performance enough to justify its usage (as in the
case of using the basic algorithms HBH, HHS and HHH). Thus the algo-
rithm HBS-Basic is considered as the best performing one within the

basic algorithmic category.

One final note regarding the basic equi-join algorithms. Recall that only
the BBC-Basic and BBS-Basic algorithms can be used for executing the

nonequi-Join operations. Figure (4.5) shows that the performance of the BBS-

*This is defined, in Appendix B, as the probability that a target tuple finds at least one source
tuple with matching join attribute value. It is also shown that this probability is related to [NTS/NTT].
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Basic algorithms is superior to that of the BBC-Basic algorithms. Therefore,

the former algorithm is recommended for performing these operations on the

proposed RDBM

4.3.2. The Evaluation of the TPF Equi-Join Algorithms

A computer program was written to compute the performance measure

TTIME for every TPF equi-join algorithm using the equations already

developed in Section 4.2.2. The set of programs were run for NTS(NTT) ¢

§10% — 105}, [NTS/ND] ¢ {1, .1, .01}, FNBP = 1 and FNBIT ¢ {.1, 1, 10}. The

parameter FNBP was restricted to the value of one since larger values do not

affect TTIME, as was shown in the previous section.

The behavior of the performance measure TTIME which corresponds to

the above parameters’ values is shown in Figures 4.6 through 4.10. From

these figures, the following important conclusions can be drawn:

1.

For large values of the joining probability [NTS/ND ~ 1], the TTIME is
independent of the parameter FNBIT (Figure 4.8). This is due to the fact
that with [NTS/ND ~ 1], the vector, regardless of its size, will filter out
few target tuples, since most of these tuples would find a match among

those of the source ones.

For large values of the joining probability, the best performing algorithm
within the"TPF category is HBS-TPF. To reach this conclusion reasoning
similar to that used in conclusion Number 4 of the previous section was

used._

For moderate values of the joining probability [NTS/ND ~ .1], the TTIME

is generally dependent on the value of the parameter FNBIT (Figures 4.7

through 4.9). As FNBIT increases (NBIT gets larger) the performance of
every TPF algorithm, over the range of NTS(NTT), is improved. However,
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this improvement becomes insignificant as FNBIT increases beyond the
value of one (compare Figure 4.8 with Figure 4.9). Also the magnitude of
the performance improvement due to the increase in the value of the
parameter FNBIT is not the same for all the TPF algorithms. For exam-
ple, the improvement in the performance of BBC-TPF algorithm is much

larger than that of the HBH-TPF one.

4. For moderate values of the joining probability, the best performing algo-
rithm within the TPF category is a function of FNBIT. For small FNBIT (~
.1), the HBS-TPF algorithm is the best performing one. On the other
hand, the BBS-TPF algorithm is the best performing one for moderate to
large values of FNBIT.

5. For small values of the joining probability (NTS/ND ~ .01), the TTIME is
also generally dependent on the value of the parameter FNBIT (Figures
4.7, 4.8 and 4.10). However, this improvement continues as the value of

FNBIT increases beyond the value of one.

8. For small values of the joining ‘probability. the best performing algo-

rithms are the same as those for the moderate joining probability case.

4.3.3. The evaluation of the STPF Equi-Join Algorithms

A computer program was written to compute the performance measure
TTIME for every STPF equi-join algorithm using the equations already
developed in Section 4.2.3. The set of programs were run for NTS(NTT) &
§10° - 10°%), [NTS/ND] ¢ {1, .1, .01}, FNBP = 1 and FNBIT ¢ {.1, 1, 10}. The
corresponding behavior of TTIME is shown in Figures 4.11 through 4.15. From

these figures, the following important conclusions can be drawn:

1. For large values of the joining probability (NTS/ND ~ 1), the TTIME is

independent of the parameter FNBIT (Figure 4.13). The reason for that is
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the same as the one given in conclusion Number 1 of Section 4.3.2. It is
also evident, from Figure 4.13, that for large values of the joining proba-
bility, the best performing algorithm within the STPF category is HBS-
STPF.

2. For moderate values of the joining probability (NTS/ND ~ .1), the TTIME
is generally dependent on the vaiue of the parameter FNBIT (Figures 4.12
through 4.14). As FNBIT increases from .1 to 10, the performante of
every STPF algorithm is improved. However, this improvement is insigni-
ficant for the STPF algorithms HBS, HBH, HHS and HHH, especially when
used for joining large relations (NTS=NTT >60000 tuples). It is also evi-
dent, from Figures 4.12 through 4.14, that for all Vja}ues_ of FNBIT and
moderate values of the joining probability, the best performing algo-
rithm within the STPF category is HBS-STPF.

3. For small values of the joining probability (NTS/ND ~ .01), the TTIME is
also dependent on the value of the parameter FNBIT (Figures 4.12, 4.13
and 4.15). From the latter figures it is evident that for all values of FICIT
and small values of the joining probability the.best performing algorithm
within the STPF category is HBS-STPF.

4.3.4. The Evaluation of the STCF Equi-Join Algorithms

; A computer program was written to compute the performance measure
TTIME for those algorithms of the STCF category which were modeled in Sec-
tion 4.2.4. The set of programs were run for NTS(NTT) £ §{10° - 10%}, [NTS/ND]
¢ {1, .1, .01} and FNBIT ¢ {1, .1, .01}. The corresponding behavior of TTIME is
shown in Figures 4.16 through 4.19. From these figures, the following impor-

tant conclusions can be drawn:

1. For large values of the joining probability (NTS/ND ~ 1), the TTIME is

independent of the parameter FNBIT (Figure 4.16). The best performing
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algorithm, in this data environment, within the STCF category is HBS-

STCF.

2. For moderate values of the joining probability (NTS/ND ~ .1), the TTIME
depends of the parameter FNBIT (Figures 4.16 through 4.19). Within this
data environment, the best performing algorithm within the STCF

category is HBS-STCF.

3. For small values of the joining probability (NTS/ND ~ .01), the TTIME is
also depends on‘ the parameter FNBIT (Figure 4.16, Figure 4.17 and Fig-
ure 4.19). The best performing algorithm within the STCF category is a
function of the parameter FNBIT. For small FNBIT, the best performing
algorithm is HBS-STCF. On the other hand, for large FNBIT the best per—j
forming one is BBS-STCF.

4.3.5. Comparing the Best Performing Equi-Join algorithms

One of the most important objectives for the performance evaluation,
carried out earlier, is to determine the best performing equi-join algorithms
for the various input data environments. In Sections 4.3.1 through 4.3.4 the
best performing equi-join algorithms within the basic, TPF, STPF and STCF
algorithmic categories were determined. Which algorithm within these
categories is "the best performing one” was found to be a function of the
parameters NTS/ND and FNBIT. However, when FNBIT assumes large values
(>1), "which algorithm within each category is the best performing one"
becomes a function of only one parameter, namely, [NTS/ND]. In this section,
the best performing algorithms for the various algorithmic categories are
compared. This comparison is carried out under the assumption that
FNBIT=10. This comparison will enable us to determine the best performing

equi-join algorithm(s) under the various input data environment.
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In Figures 4.20 through 4.22 the performance measure TTIVE is plotted

for the best performing algorithms of the different algorithmic categories,

verses the parameter NTS{NTT). The three figures correspond to the values :,

.1 and .01 of the parameter [NTS/ND]. In all of these figures, the parameter

FNBIT is held constant at the value of one. From these figures, the following

important conclusions can be drawn:

1.

For large values of the joining probability (NTS/ND ~ 1), the algorithm
HBS-basic is the overall best performing one (see Figures 4.20). Any
other algorithm will either have an inferior performance (HBS-STCF) or
equal performance but will require more overhead and storage (HBS-TPF
and HBS-STPF). The ‘performance of the BBS-Basic represents the upper

bound on TTIME spent by the RDBM in executing the equi-join operation.

For moderate values of the joining probability (NTS/ND ~ .1), the overall
best performing algorithm, in executing the equi-join operation, is the
BBS-TPF algorithm (see Figure 4.21). Any other algorithm will either
have an inferior performance (HBS-.Basic. HBS-STPF when joining rela-
tions with large cardinalities and the HBS-STCF when joining relations
with small cardihalit_ies) or little performance advantage that does not,
just:.if)" the extra overhead these algorithms invoive .(HBS-STPF when join-

ing relations with small cardinalities and HBS-STCF when joining rela-

tions with large cardinalities).

For small values of the joining probability (NTS/ND ~ .01), the overall
best performing algorithm in executing the equi-join opefation is a func-
tion of the number of tuples participating in the operation ( refer to Fig-
ure 4.22). For relations with small cardinalities [NTS(NTT) < 15000
tuples], i:he best performing algorithm is the BBS-TPF. On the other

hand, the best performing algorithm for relations with large cardinalities
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( > 15000 tuples) is the BBS-STCF.

Based on the preceding conclusions, it is recommended that the algo-

rithms shown in Figure 4.23 are adopted for the new RDBM.

4.4. The Effect of Improving the Cluster’s Intertriplets Communication

on the Performance of the Equi-Join Operation

Recall from Chapter 3 that a processing cluster of the newly proposed
RDBM is organized as a set of triplets which intercommunicate, indirectly, over
a single bus, the TBUS. During the modeling process of Section 4.2, it was felt
that the adoption of this bus structure would not allow some equi-join algo-
rithms to capture their tull performance potential. These algorithms are those
which use the local hash method to distribute. the tuples of both ttxe source
and the target relations among the triplets of a PC for processing. In general,
these algorithms require more tuples to be moved among the cluster’s triplets

than those algorithms which use the local broadcast method.

In this section, the effect, on the performance of the Equi-Join operation,
of providing the PC with a communication structure with hiéher bandwidth
than the smgle bus can provxde l.S 1nvest1gated One of these structures is the
multiple bus structure. That 15 in addition to the TBUS the PC is provided
with one or more buses. Each of the added ones is similar in architecture,

bandwidth and function to that of the TBUS.

The additien»of one or more buses to the PC will not affect the perfor-
mance of the equi-join algorithms which use the local broadcast method. On
the other hand, it will affect the perfermaﬁce of the equi-join algorithms which
use the local hash method. The performance measure TTIME for the latter
algorithms can be calculated using a slightly modified version of the
corresponding models already developed in Section 4.2. The modification to

these models involves updating the equations which compute the quantity
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TTB(1) to take into account the new multiple bus organization.

Let NBUS = the number of buses (including the TBUS) in a PC,

TTB(1) = the bus transmission time per phase for the single bus organiza-

tion, and

TTB® = the multiple bus transmission time per phase.

It is easy to see that

TTB(1)

TTB®(1) = NEUS

where NBUS ¢ {1.2.... lﬂa’-’ ]}

The equations of Section 4.2 which compute the TTIME for the “local hash”
equi-join algorithms were updated according to the above equation. The
corresponding computer programs were updated also. The updated programs
were rupr for NTS(NTT) £ §103~ 10°%], [NTS/ND] £ § 1, .1, .01}. For the local hash-
basic, -TPF, and -STPF algorithms, the parameter FNBIT is held constant at the
value of ten. In order to obtain an upper bound on the performance improve-

ment, the parameter NBUS is assigned its highest value %’” The

corresponding behavior of the TTIME is shown in Figures 4.24 through 4.33.
From these figures it can be concluded easily that the best performing algo-
rithm within each of the local hash-basic, -TPF, -STPF and -STCF categories is
independent of the parameter [NTS/ND]. The best performing algorithms are:
the BHS-Basic,the BHS-TPF, the HHS-STPF and the BHS-STCF for the local
hash-basic, -TPF, -STPF and -STCF algorithmic categories, respectively.

In Figures 4.34 through 4.36 the TTIME of the best performing algorithms,

determined above, verses NTS(NTT) are plotted for the [NTS/ND] ¢ {1, .1, .01},
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respectively. From these figures, it can be concluded that the best performing
algorithm is a function of the parameter [NTS/ND]. For [NTS/ND] = 1, the
BHS-Basic is the best performing one (Figure 4.34). For [NTS/ND] = .1, the
BHS-TPF is the best performing one (Figure 4.35). Finally, for [NTS/ND] = .01,
the best performing algorithm is a composite one (Figure 4.36). For relations
with small cardinalities, the BHS-TPF algorithm is the best performing one. On
the other hand, the best performing one for relations with large cardinalities

is the BHS-STCF algorithm.

In Figure 4.37 the performance parameter TTIME of the best performing
algorithms is plotted for both the NBUS = 1 and NBUS=7 cases verses
NTS(NTT) for NTS/ND ¢ {1, .1, .01}. From this Figure, the following important

conchisions can be drawn:

1. For large values of the joining probability (NTS/ND ~ 1), or in the absence
of the vector, the adoption of the multiple bus organization together with
the BHS-Basic algorithm will improve the equi-join performance over that
executed on the single bus organization. However, this improvement

becomes insignificant when joining relations with large cardinalities.

2. For moderate to small values of the joining probabilities (NTS/ND < .1),
the adoption of the multiple bus organization will either slightly improve

the equi-join operation performance or not improve it at all.

From above and from the fact that most equi-join operations tend to have
low joining probabilities, it can be concluded that the single bus organization is
cost-effective in executing the equi-join operation, especially in the context of

the very large database environments.



CHAPTER 5

ALGORITHMS FOR THE SELECTION, INDEX-SELECT AND PROJECTIGN

In general, selection and projection are fundamental operations to the rela-
tional databases. In most retrieval queries, the projection operation immedi-
ately follows the selection one. For performance improvement, the RDBM com-
bines the latter two operations (whenever that is possible) to form a ne\& opera-
tion, the selection-projection (SP). This operation is processed as a nondecom-

posable operation.

The newly proposed RDBM supports the execution of the selection, the pro-
jection and the selectioﬁ-projection operatibns. It defines an index, the MAU
index, on the most frequently referenced attributes in the database, together
with an index retrieval operation, the index-select. In most cases, this structure
will reduce the number of MAUs that the RDBM has to process foz" a given selec-
tion or selection-projection operatiog. In a‘ddition, the proposed RDBM uses
pa’rallel' p.roce.ssing and algorithms for executing the latter as well as the index-

select operations.

In executing the index-select operation, the RDBM uses one PC. On the other
hand, it uses one or more PCs in executing the selection, the projection or the
selection-projection operation. In general, the number of PCs allocated to exe-
cute one of the these operations is a master back-end controller {MBC) decision.
This decision is based oh many factors, such as the operation type, the s‘ize of
the input relation, the expected size of the output relation, the number of avail-

able PCs and the priority class to which the operation’'s query belongs.
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In this chapter, the set of algorithms which implement the selection, the

projection and the index-select operations on the proposed RDBV are outlined.

5.1. The Selection-Projection Operation

The selection-projection operation is formally defined as follows:
SPg*(R) ={7r[A]:7eR N QE(r)

where R is the input relation, A is a subset of relation R attributes and QE is a

qualification expression (for its definition refer to Section 1.3).

SP processing proceeds in two phases. In the first phase, the set of MAU
addresses, MA, containing the tuples which satisfy QE is found. In the second
'phase.. the MAUs whdse addresses are in the set MA are processed to obtain the

operation resulting relation.

Recall that the proposed RDBM defines two index tables, the relation
index and the MAU index. During the first phase, the MBC uses the information
attached to the opération. during the compilation phase of its query (refer to
Section 3.3.1), for the index to be used. If the relation index is to be used, then
it will be accessed by the MBC for retrieving all the MAU addresses which store
the tuples of the relation referenced by the SP operation. On the other hand, if
the MAU index is to be used, then it will be accessed using the index-select
operator. This operator will then retrieve (as is shown later) the set of MAU

addresses which contain the tuples relevant to the SP operation.

During the second phase, the MBC determines the set of PCs for process-
ing the set of MAUs of the first phase. The MBC distributes the operation code,
the referenced relation format together with other necessary information, to
the participating PCs. Having received the latter information, the CMP of each

PC participating in executing the SP operation broadcasts such information to
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every one of its triplets. The algorithm executed by the PCs for this phase is
based on hashing. A hashing furiction. computed by the TPs of the participat-
ing PCs, partitions the tuples in the MAUs, based on the values of the attribute
subset A, into disjoint subsets of tuples (referred to as the global subsets). The
tuples of each of these subsets which satisfy QE must fit in a PC's LMUs. Then,
in parallel, each PC processes a different subset. If the number of subsets is
larger than that of the PCs, then the latter process is repeated until all the

subsets have been processed.

The tuples, in a typical subset, are processed by further partitioning into
disjoint subsets of tuples (referred to as the local subsets). The tuples of each
of these subsets whic_:h satisfy QE must fit in the LMU of a triplet. Finally,
every triplet projects its share of the selected tuples by sc;rting them and

deleting the duplicate ones.

A typical participating PC collects and processes the tuples of a subset

(say subset i) as follows:

1. The CMP requests, from the MBC, ou: MAU with an address in MA every
time its triplets are through processing the current one. The MBC replies
with the address of a PB block which stores an unprocessed* MAU (if the
PB doés not contain a relevant MAU, then the MBC requests that one be
brought from the MM to PB). The CMP then directs its I0Cs to read the
corresponding PB block into its LMUs. This step is repeated for all MAUs

whose addresses are in MA.

2. Every triplet (say Triplet n, for example) of the PC processes a typical
tuple by first computing a hashing function over its value of the attribute
subset A. The output of the function is a global subset index j. If j # i, then

the tuple will be ignored, otherwise, the QE will be evaluated for the tuple.

*By "unprocessed” we mean “never processed by the PC requesting the MAU.”
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If QE evaluates to "false,” then the tuple will be ignored. If the QE evalu-
ates to "true,” then only the value of the attribute subset A will be
retained. Al»so. another hashing function will be computed over the attri-
bute subset A. The output of the function is a local subset index (a triplet

number) k.

3. Ifn =k, then the new tuple will be compared, by the triplet, to a duplicate
free, sorted list of projected ones (constructed from previously processed
tuples) using the binary search method[KNUT73]. If the list contains a
duplicate tuple, then the new tuple will b";: ignored, otherwise, it will be

inserted in the list in a sorted fashion.

4, Ifn # k, then the data mover moves the new tuple (over the TBUS) to the
k* triplet. The latter triplet will then process the received tuple against

its own duplicate free sorted list as in Step 3.

5.2. The Projection Operation

The execution of the prqjection operation on the proposed RDBM is car-
ried out using a slightly modified version of the algorithm implemented for the
SP operation. Dur"ing the first phase in executing the projection algorithm, the
set of MAU addresses which store all the tuples of the relation referenced by

the operation is determined.

During the second phase, the same steps as those of the SP operation are
carried out with a small difference, Step 2 of this phase does not include the
evaluation of the QE (simply because there is no selection operation to be per-

formed).

5.3. The Selection Operation

The proposed RDBM executes the Selection operation in two phases. The

first phase is identical with that of the selection-projection operation. The
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result of executing the latter phase is the set of MAU addresses MA relevant to

the seleclion operation.

During the second phase, the MBC determines a set of PCs for executing
the operation. The MBC distributes the operation code, the referenced relation
format together with some other information, ;to the selected set of PCs. The .
MBC also requests some MAUs whose addresses are in the set MA to be brought
into the parallel buffer. On the other hand, each CMP of a PC participating in
the selection broadcasts the information, received from the MBC, to every one
of its triplets. It also requests, from the MBC, one MAU each time its triplets
are through processing the current one. The MBC replies with the parallel
buffer block address which stores an unprocessed* MAU. The CMP directs its
Isz to read the corresponding parallel buffer block into their input buffers.
Every triplet processor then searches its input buffer and retrieves those

tuples which satisfy the selection qualification expression.

The tuples retrieved by the cluster's triplets are stored in their oﬁtput
buffers. Whenever the output buffers of a PC’s triplets gct {ill, the correspond-
ing master processor requests an empty parallel buffer block. The MBC
responds with a block address to which the cluster master processor directs

its triplets’ IOCs for stéring their output buffers.

Although the algorithm, presented above for the selection operation,
looks similar to that of DIRECT [DEWI79], nevertheless, the two algorithms

differ from each other in several ways, namely:

1. In DIRECT, each query processor participating in the selection operation
must go through the back-end controller (BEC) each time it inputs or out-

puts data. The overhead associated with such a scheme is shown by BORAL

. *By "unprocessed” we mean "never processed by any of the PCs participating in executing the
operation.”
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[BORAB1] to create a system bottleneck at the BEC. In the algorithm
presented above, whenever the triplets of a PC need to input or output
data, the CMP,"representing all these triplets, needs to request the MBC
service only once. This reduces the algorithm overhead (by a factor equal
to the number of triplets within a PC) and prevents the MBC from becom-

ing a system bottleneck.

2. The algorithm for the selection operation presented above takes advan-
tage of the MAU index to limit the number of MAUs which must be moved
from the secondary storage and processed by a PC. For large relations
and localized reference to the data this scheme largely improves the
selection operation performance. On the other Hand, the DIRECT selection
algorithm uses only a relation index. This results in poor selection perfor-

mance especially in the large database environment.

5.4. The Index-Select Operation

The index-select operation is used in conjunction with a selection or
selection-projection operation. It manipulates the index-term index to retrieve
the set of MAU addresses which contain tuples relevant to the associated

operation. The RDBM implements the Index-Select operation as follows:

1. The MBC selects one PC to execute the index-select operation. It also
sends to the corresponding CMP of the chosen PC the operation code, the

MQE and the index term format.

2. Receiving the above information, the CMP of the chosen PC broadcasts it

to its triplets.
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Every triplet of the PC initializes a hash table HTAB with a suitable
number of entries. Each entry, in the latter table, contains a pointer to a
link list. This list can contain zero or one or more nodes. Figure 5.1 shows
the node format. The BITS field consists of several subfields, each
corresponds to a predicate conjunétion of MQE. A subfield consists of a set
of bits, each of which corresponds to a predicate of the associated predi-
cate conjunction. In order to improve the BITS field processing, the sub-

fields must be aligned in memory at the byte boundaries.

The PC requests one IMAU of those referenced by the index-select opera-
tion, whenever it is through processing the current one. The MBC
responds with the address of the pafallel buffer block which stores an
unprocessed MAU. The PC's triplets are then directed to read the parallel

buffer block into their input buffers. This step is repeated until all the

- IMAUS relevant to the index-select operation have been processed.

Every triplet processor of a PC scans the tags of its share cI ti.e index-
term blocks and compares the relation and attribute names associated
with these tags to those of every predicate in MQE. Whenever a match
occurs, the index terms of the corresponding block are processed one at

a time as follows:

The predicate is evaluated on the value part of the index term. If the
result is true, then the MAU address field is augmented with the predicate
number and hashed based on the MAU-Address, to one of the PC’s triplets.
The PC’'s master processor then moves it to the destination triplet. The
processor of the destination triplet hashes.the received MAU-Address to-
HTAB. If the MAU-Address is not already in the HTAB, then it is stored in a
node and the proper bit in the BITS field of such node is set, otherwise,
the proper bit in the node, where the MAU-Address is stored, is set.

When all the IMAUs relevant to the index-select operation have been pro-

cessed, then the processor of every triplet in the PC does the following:
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For each node in HTAB, evaluate the BITS field. If one of the node subfields
evaluates to one then send the corresponding MAU-Address to the CMP.

7. The CMP of the chosen PC sends the list of addresses, accumulated in

Step 6, to MBC.

One variation to the above algorithm would be to use the sorting and
searching method instead of the hashing table method of Step 5. In the light of
the high cost of computing a hashing function using today's microprocessors,
the sorting method may have an average performance similar to that of the

HTAB scheme, but a much better worst case one.



CHAPTER 6
CONCLUSIONS

6.1. Summary of Research

The general framework of the research presented in this thesis is the
design of a back-end database ma\chine (DBM) suitable for supporting con-
current, on-line, very large relational database systems. A structured
approach was followed in designing such a machine. First, the relational data
model, together with its most important operations and the previously pro-
posed DBMs, were reviewed. Next, this review, coupled with the set of the very
large database system requirerﬁents and the restrictions imposed by the
current and anticipated state of the hardware technology, were used to formu-
late a set of design guidelines. Consequently, an architecture for a tost-

effective database machine that meets this set of guidelines was synthesized.

In Chapter 1, the design process ';Nas began by reviewing the relational

data model together with its most fundamental operations.

In Chapter 2, the design process was continued by reviewing the previ-
ously pfoposed DBMs. This review was guided by a novel classification scheme.
The new scheme rests on three attributes, namely, the indexing level, the
query Processing place and the processor-memory organization. The attribute
"indexing level” describes the type of indexing a DBM supports for improving
the processing of the most fundamental operation in the database system,
namely, the selection (from the permanent relations of the database). Three

levels of indexing are supported, namely, the database level (no indexing), the
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relation level and the page level.

The attribute "query processing place” describes the place where a DBV
executes the different parts of a user query. Some of the DBMs execute all the
query on the disk (where the database is stored). Others execute all the query
off the disk(in a separate processor-memory complex). A third group of DBVs
execute part of the query On the disk and the 6ther part off the disk (hybrid-
DBMs).

The attribute "processor-memory organization" describes the way a DBM
executes the database operations. Some DBMs have SISD organization, others

have SIMD organization. A third group have MIMD organization.

Also, in Chapter 2, the novel scheme was used together with the current
and anticipated state of technology to qualitatively analyze and compare the
previously proposed DBMs. Some important conclusions regarding their cost-

effectiveness were reached and presented.

In the last section of Chapter 2, the above conclusions coupled with the
requirements of the large database systems are used to arrive at a set of
guidelines along which the new machine was designed. These guidelines involve
the use of the moving-head disk as a unit for mass storage, supporting the.

page level indexing and adopting both the off-disk and the MIMD organizations.

In chapter 3, a back-end DBM designed to meet the set of guidelines of
Chapter 2 was presented. This machine is organized as a set of "processing
clusters” managed and controlled by the master back-end controller (MBC). A
processing cluster is organized as a set of SIMD processor-memory units
(referred to as triplets) managed and controlled by the cluster master proces-
sor (CMP). Communications between the CMP and the triplets and between
the triplets themselves are carried out over two buses, namely, the master

bus (MBUS) and the triplet bus (TBUS). The database is stored on a set of
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moving-head-disk units. Both, the set of processing clusters and the set of
moving-head disks are interfaced to a set of memory blocks [referred to as
the parallel buffer (PB) and can be implemented using the newly emerging
electronic disk technology]. Each block has enough capacity to store the unit
of data transfer (MACU) between the moving-head disks, the processing clus-
ters and the parallel buffer. The interface allows two or more processing clus-
ters or moving-head disks to read /write different parallel buffer blocks simul-
taneously. Also, it allows any set of processing clusters and moving-head disks
to read the same parallel buffer block simultaneously. The interface is a modi-
fied version of the cross-point switch proposed by Dewitt{DEWI79]. In com-

parison with the latter one, our interface has a lower logic complexity.

The new machirie‘ also supports an indexing structure (page level index-
ing) to reduce the number of MAUs which must be processed for a typical
selection operation. It is also provided with the ability to execute one or more

database operations (from the same query or different ones) in parallel.

In Chapter 4, an extensive and detailed study was presented for imple-
menting an important relational algebra operation, the equi-join operation, on
the new DBM. A lafge set of algorithms was developed for such implementation.
These algorithms were classified according to three important attributes. The
first attribute specifies the way a given algorithm distributes the tuples, parti-
cipating in the equi-join operation, among the processing clusters for process-
ing. The second attribute specifies the way a given algorithm distributes the
tuples of one processing cluster among its triplets for processing. The third
attribute specifies the way a triplet performs the equi-join operation on its

own tuples. The latter scheme was used in presenting the equi-join algorithms.

In Chapter 4, an analytical framework was also developed to evaluate and

compare the different equi-join algorithms. This comparison was carried out
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mainly through comparing the behavior of an important performance meas-
ure, namely, the "total execution time (TTIME).” The TTIME is the time to exe-
cute an equi-join algorithm on the new machine without any overlapping
between the activities of its different units. To compute this performance
measure for the various equi-join algorithms, a series of analytical, average
valued models were introduced. Each cne, called the execution model, models

the execution of one of the latter algorithms on the proposed machine.

The above framework enabled us to determine the best performing equi-
join algorithm. Which equi-join algorithm is the best performing one was found
to depend on the characteristics of the data participating in the equi-join
operation. The proposed fram'e_work also allowed us to investigate the cost-
effééiiveness of adding more buses to the §rocessing cluster for improving the
data communication betweer} its triplets. It was found that in a normal data-
base environment, this addition does not improve the 'performance of the
equi-join operation, especially in the context of the very large databasevsys-

tems.

Finally, in Chapter 5, a set of powerful parallel algorithms were developed
and presenté'd for implementing, on the proposed machine, the other opera-
tions of the relational data model together with a primitive essential for the

support of the page level indexihg .

8.2. Contributions

The research reported in this thesis makes a number of contributions to

the database machine area. The most important ones are:

1. The introduction of a novel scheme for the classification of the DBMs. it is
believed that such a scheme is a step forward in the direction of finding a

common framework for quantitatively comparing the different proposals
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for a DBM. It also contributes to our understanding of the different DBM's
organizations. It is also believed that such a scheme provides the
researchers, in the DBMs area with an important tool to qualitatively
analyze, compare and investigate the basic design trade-offs of the vari-

ous proposals for the organization of the DBMs.

The introduction of a back-end DBM suitable for very large database sys-
tem environment. The design of this machine rests on a set of principles.
These principles include two fundamental ones followed by some previ-
ously designed DBMs, namely, the MIMD organization of DIRECT[DEWI79]
and the "page level indexing" of DBC[BANE79]. While the MIMD organiza-
tion is vefy valuable in handling the concurrent user environment, the
"page level indexing" is equally important in s'upporting the very large
database environment. The latter reduces the data volumes which need
to be moved per selection/modification operation. As compared to the
DBC, the newly proposed machine stores the database étructure informa-
tion on the relatively inexpensive mass storage devices (on moving-head
disks rather than the more expensive electronic ones), manipulates the
latter structure using the the same‘units (the processing clusters) which
manipulate 'the dafabase (thus distributing the systems workload uni-
formly among its various components) and provides the machine with the
MIMD capability as well as the additional parallelism and processing power
which are essential for meeting the requirements of the contemporary
and anticipated very large database systems. Finally, the proposed archi-
tecture removes the restriction imposed by DBC on processing the equi-
join operation [MENOB1], namely, the fact that both the source and target
relations of the equi-join operation must fit in the local memory of a

processor-memory complex, designed specially to carry out the
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corresponding operation. The newly proposed machine has the capability

of joining relations of any sizes.

As compared to DIRECT, the proposed machine groups the processing ele-
ments into a set of clusters, each cluster with its own controlling proces-
sor. The data transfer in the new machine is done in relatively large units
(the MACUs). This organization not only improves the management and
control of the processing elements as well as reduces the overhead
caused by processing the requests for the data units movement (experi-
enced mainly by DIRECT), but also reduces the complexity of the inter-
connection network. Providing the new machine with “"page level index” as
well as supporting its primitive operation, at the hardware level, helps to
iinprove the perfbi'rriance of the Selectic;n operation. This operation per-
forms poorly, on DIRECT, relative to other DBMs[HAWTB1]. In the context
of the very large databases, the new machine permits the implementation
of a set of algorithms for the equi-join operation which is more powerful
than the one implemented in DIRECT. In [QADAESA], the performance of
the equi-join operation in both DIRECT and the new DBM uéing the model-
ing framework of chapter 4 are'compared. It was found that in most data-
base environments, 'the performance of the eciui-join oberation on t'he new

machine is two to five times faster than that on DIRECT.

The introduction of an analytical framework for modeling the execution of
the different equi-join algorithms on the new machine. It is believed that
such modeling framework is general enough to be applicable for evaluat-
ing the execution of the equi-join algorithms on other proposed DBMs.
This became clear when we saw the ease of using the new modeling tech-
nique in comparing the execution of the equi-join operation on

DIRECT[QADAB3A] to that on the new machine.
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6.3. Further Research

There are several avenues of research to be explored based on this

research, among these are:

1.

Investigating the impact of the newly emerging VLSI technology on the
design of the DBMs. It is believed that the scheme of Chapter 2 can aid in

such an investigation.

Investigating the support of'the update operations on the proposed
machine. This will involve the design of two important mechanisms,
namely, the tuples and index terms clustering mechanism and the con-
currency control mechanism. While the first improves the storage as well

as the processing efficiency, the second ensures the database integrity.

Developing simulation models for the execution of the best performing
equi-join algorithms on the new machine. This will allow the DBM designer
to closely investigate the trade-offs in the implementation the the latter

algorithms.

Investigating the performance of the set of parallel algorithms proposed
for implementing the selection, projection and index-select operations. It
is believed that both analytical as well as simulation models can be found

to carry out such evaluations.
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Appendix A
Derivations For the Equi-Join Execution Models

1.1. Some Derivations For the Execution Models of the Equi-Join Algorithms

In this appendix, some important derivations for the execution models of
the equi-join algorithms are presented. These derivations rest on several
important propositions. These propositions are stated and proofed below.

(1) Proposition 1

Given a collection of keys (possibly not distinct) with cardinality NK
defined on a domain with cardinality ND. If a key is equally.probable to
have any value of the domain, then the expected 1:1urnber of distinguished
values NDK in the collection of keys is:
./
NDK = ND(1-e "P) for NK, ND >» 1

Proof:

This problem is similar to the classical occupancy problem treated by
Feller [FELL67]. The occupancy problem deals with finding the number of
empty cells m after throwing r balls to n cells. A ball is assumed to go to any
cell with equal probability and the capacity of each cell is assumed to be infin-
ite.

Feller showed that m has the following mass probability function.

Pn(rm) = [ "i"'(—z)vr;"‘] [1—4"‘; "]r

M) v=0

He also showed that as r,n-»=, P,(r,n) can be computed from the follow-

ing approximate formula:
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R i
Pp(rm)=ce A;!

where
x _A_ ne -/n

and the expected number of empty cells E,, is equal to A.

Thus

En_m = expected number of occupied cells

=n—=—Epn=n-ne"™/"

En-m =n(l1-e”/") (A.1)

Replacing n with ND and r with NK in Equation A.1 yields the following for-

mula:

E)tpected number of distinguished values =

_NK
NDK = ND{1-e ND) (A.2)

Note

For finite NK and ND, the formula A.2 gives an approximate value for NDK.
The error of this approximatién approachs zero as: NK and ND - =, To see
how well this approximation will perform for finite values of NK and ND, the
expected number of distinguished values NDK using both the exact and the
approximate formulas were calculated for two cases, namely, ND =10,

NK = 10and ND = 10, NK = 18. The results are presented in Table A.1.

By analyzing the results of Table A.1, it is concluded that Equation AR is
a good approximation for NDK even for relatively small values (>10) of ND and
NK.
(2) Proposition 2
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Table A.1 Exact and Approximate Values for NDK.

ND NK NDK Exact NDK Approx. % Error
10 10 6.5132 6.322 2.9
10 18 B.499 8.348 1.7

The expected number of keys per existing value is:

NK
NK = ¥pk

Proof:

Let Y be a random variable. Y is the number of keys which carry the

same value: -

NK, = E[Y|Y=1]
NE _
NK, = ) ip(Y=i|Y=1). (A.3)
1=0
and

P(Y=i, Y>1)
P(Y=1)

P(Y=i|Y=1) =

NDK
ND

since P(Y=1) = and P(Y=0, Y=1)=0

then  P(Y=i|¥=1) = %p(y:«;) (A.4)

By combining Equations A.3 and A.4, the following formula for NK, will

result:

ND YNk, .
NKD = NDKE'LP(Y:"L)

ND 1=0 (A.5)
= wox ELY]
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It is easy to show that Y has a binomial mass distribution function. That

P(Y=i) = KKJ[E}B]‘[I_W%}M(-i

and the F[Y] is % . By Substituting %g for the latter quantity, in Equation

is,

A.5, the following formula will result.

ND_ NK
NDK ND
- NK
=~ NDK

NK, =

(3) Proposition 3

Given-a collection of keys (distinct) with cardinality NK. If a key hashes to
the components of a cluster vector, of size NBIT, with equal probability, then

the expected number of bits set (NBS) in the vector will be

_NK
NBS = NBIT[I —e NBIT for NK, NBIT » 1

Proof:

The proof follows that of Proposition 1. By replacing ND and NDK of Equa-
tion A.2 with NBIT and NBS, respectively, the above “forrnu,la_ will result.
(4) Proposition 4

Given a collection of keys (distinct) with cardinality NK. If a key hashes to

a hash table (with number of buckets NBP) with equal probability, then the

expected number of buckets with one or more keys (NBF) is:

_NK
NBF = NBP[l —g NBP for NK, NBP > 1 (A.8)

and the expected number of keys per non-empty bucket NDKjp is:
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NK

NDKs = NEBF

(A.7)

Proof:

The proof of formula A.68 follows that of proposition 1. By replacing ND
and NDK of Equation A.2 with NBP and NBF, respectively, formula A.6 will

result.
The proof of formula A.7 follows that of proposition 2.

In Section A.1 the derivation of formulas to compute some important
quantities, common to all the equi-join execution models, is presented. In Sec-
tions A.2 through A.5 the derivation of formulas to compute some important
quantities are presented, respectively, for the basic, the TPF, the STPF and

the STCF equi-join execution models.

1.2. Derivations Common to the Equi-Join Execution Models

In this section formulas for three important quantities are derived,

namely, NMS, NMT and NMO.

Let [ 1" denote the ceiling functionand =z ¢ {S.T3
then NMz, the number of MAUs which store the relation z, can be expressed as

follows:

[ NTz LTz

NMz = l e (A.8)

The derivation of a formula for NMO proceeds as follows:
Let
NDS =

The expected number of distinguished values in the join attribute of the

source relation.
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NTS, =

The expected number of source tuples with the same value.
The expected tuples in the output relation NTO is [NTT NTS,- P (a tuple of the
target relation carries, in its join attribute, a value which exists in the join

attribute of the source tuples)].

Using Proposition 2, NTS, can be expressed as xgg Therefore,
- NTS NDS _ NTT:NTS
NTO = NTT NDS ND ND (A.9)
and
[NTT- A
NHO = NTT-NTS(LTS + LTT) (A.10)

ND-MAUC

1.3. Derivations for the Basic Equi-Join Execution Models

In this section and the following ones, the following notation is adopted:

- Notation

NTSy =
.the number of tuples in one MAU of the Source relation.
NDSy =
The expected number of distinguished values in the join attribute of the

tuples in one source MAU.

NTSyy =
The expected number of tuples in one source MAU which has the same
join attribute value.

NTSg =

The expected number of source tuples which hash to one global bucket.
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NDSG =

The expected number of distinguished values in the join attribute of the

source tuples of one global bucket.

NTS¢y =

The expected number of source tuples in one global bucket which have

the same join attribute value.

NTSP =

The expected number of source tuples in one triplet.

NDSp =

The expected number of distinguished values in the join attribute of the

source tuples in one triplet.

NTSpy =

The expected number of source tuples in one triplet which have the same
join attribute value.

NDSg =

The expected number of distinguished values in the join attribute of the

source tuples of one hash table bucket.

NTSS =

The number of tuples stored in the same track of each source MAU.
NDSS =

The number of distinguished values in the join attribute of the tuples

stored in the same track of each source MAU.

In the following, the derivation of ENC(1) expressions for the BBH-, BHH-,
HBH-, and HHH- basic equi-join algorithms are presented.
Notation
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Let x & {BBH —Basic, BHH ~Basic, HBH —Basic, HHH - Basic )

ENCT(x)
is the expected number of comparisons a triplet processor will perform in
joining one target tuple with its share of the source tuples during the exe-

cution of one phase of the x equi-join algorithm.
(a) Deriviation of ENC(1) for the BBH-Basic Egqui-Join Algorithm

Let A be the event that a target tuple hashes to a non-empty bucket of the
hash table.

Then,

ENCT(BBH -Basic) = ¢-P(A) + NTSpy NDSgP(A) (A.11)

Let E be the event that the target tuple's join attribute value has a match

among those of the source tuples stored in the hash table.

Then,

P(A) = P(An(EUE)) = P(ANE) + P(AnE)
= P(A|E)P(E) + P(A|E)P(E)

_ NDSp

P(4) = 1- 2

+

ND NBP '

NDSp . NB *[ (A.12)

The parameter ENC(I) of the BBH-Basic equi-joih algorithm can be expressed

as follows:

ENC(1) = NTT-ENCT(BBH -Basic) (A.13)

By combining Equations A.11 through A.13, the following formula will

result:

°In the derivation of P(A|E) the following is assumed: given that the target tuple's join attribute
has no match among those of the triplet processor source tuples, the target tuple will hash to any of
the hash table buckets with equal probability.
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ENC(1) = NTT-NTSpy'NDSg

NDSp . NBF [1 _ NDSp

ND T NBP|'"AND

| s

Using Propositions 1, 2 and 4, one can show that the following relations

hold for the BBH-Basic equi-join algorithm:

NTSP = Fifs-np (4.19)
NTSpy = %‘Zﬁ (A.16)
NDsy = 5258 (a.17)
NDSp = ND[l —e'ﬂf%z (A.18)
and
NBF = NBP[l-e'%E] (A.19)

By combining Equation A.14 through A.19, the following expression for

ENC(1) will result:

_NTSp _NDSp.
_ _NTT'NTS |1-e %0 ¢ NBP
ENC(1) = Nus NP NP - Xbsp (4.20)
1—e NBP

(b) Deriviation of ENC(1) for the BHH-Basic Equi-Join Algorithm
Let

A Dbe as defined for the BBH-Basic algorithm and

D be the event that a target tuple will hash to a triplet processor

The quantity ENCT(BHH-Basic) can be expressed as follows:

ENCT(BHH) = NTSyy NDSpP(AND) (A.21)
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Let

E  be the event that a target tuple’'s join attribute value has a match among

those of the source tuples of one MAU.

Then,
P(AnD) = P(ANDNE) + P(ANDNE)
P(ANDNE) = P(A|DnE) P(D|E) P(E)
_,.NDSp NDSy _ NDSp
P(ANDOE) = 1 ype “ND = D
and
P(AnDNE) = P(A|DnE) P(D|E) P(E)
= NBF 1 | _ NDSu
NBP NP ND
Therefore,
_ 1 |yp NDSp . NBF| _NDSy
P(anD) = §5 [I_VP ~D * NBP[ ND (4.22)

It is easy to show that for the BHH-Basic algorithm, the following equation is

true:

NDSy

NDSp = =5

(A.23)

By combining Equations A.22 and A.23, the following formula for P(AnD) will

result:

P(AnD) =

1 [NDSu _ NBF[, _NDSk
NP| ND NBP ND

} (A.24)
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It is also easy to see that

ENC(1) = NTT-ENCT{BHH —Basic) (A.25)

By combining Equations A.21, A.24 and A.25, the following formula will

result:

NDSy

ENC(1) = ND

NTT -NTSyy NDSg | NDSy N NBF
NP ND NBP

] (A.28)

Using Propositions 1, 2 and 4 shows that the following relations hold for

the BHH-Basic equi-join algorithm:

NTS

NTSu = Nus (A.27)
NTSuv = ﬁZ?; (A.26)
NDSp = GE = e (4.29)
NDSy = ND[l—e-f% (A.30)
and
NBF = NBP[l —e "NN_fﬁ (A.31)

By combining Equations A.26 through A.31, the following expression for

ENC(1) will result:

_NTSy _NDsp
. - ND NBP
Enc(r) = —SELETS —iize — 2 - (A3R)
NMS-NP?* NBP R
1-e

(c) Deriviation of ENC(1) for the HBH-Basic Equi-Join Algorithm
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Let
A be as defined before,
C be the event that a target tuple will hash to the current global bucket and

E  Dbe the event that a target tuple's join attribute value has a match among

those of the tuples stored in the same track of each source MAU.

The quantity ENCT(BHH-Basic) can be expressed as follows:

ENCT(HBH -Basic) = NTSpy NDSg-P(ANC) (A.33)
P(ANC) = P(ANCNE) + P(ANCNE)

P(ANCNE) = P(A|CnE)P(C|E)P(E)
=1 NDSp NDSs _ NDSp

" " NDSs ND ~ ND
and
P(ANCNnE) = P(A|CnE)P(C|E)P(E)
. NBF 1 1_NDSs
~ NBP NGB ND
Therefore,
_ 1 _NDSp . NBF | _NDS,
P(ANC) = NGB{NGB ~0_ * NBP [1 ND (A.34)

It is easy to see that for the HBH-Basic algorithm, the following equation is

true:

(A.35)

By combining Equations A.34 and A.35, the following formula for P(ANC)

will result:
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1 |NDSg NBF NDSg
= + -
P(anc) NGB{ Np T NBR|'"TAD (4.36)
It is easy also to see that
ENC(1) = NTT-ENCT(HBH - Basic) (A.37)

By combining Equations A.33, A.36 and A.37, the following equation will

result:

NDSg
ND

ENC(1) = NTT-NTSpy-NDSp- N

1 |NDSg + NBF
GB | ND NBP

} (A.38)

Propositions 1, 2 and 4 can be used to show that the following relations

hold for the HBH-Basic equi-join algorithm:

wrss = 413 n39)

NTSs

NGB (A.40)

NTSP =

NTS
- NTSpy = m% (A.41)

NDSp (A.42)

NDSp NBF

NTSg

NDSs = Np[l-e’ 77 (A.43)
and
NDSp
NBF = NBP|1-e NBP (A.44)

By combining Equations A.38 through A.44 together with Equation A.35,

- the following expression for ENC(1) will result:
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_NTSg  NDsp
_  NTT-NTS |1-e ND o NBP
ENc(1) = NP-NBP-NGB? - NDsp (A.45)
1—¢e NBP

(d) Deriviation of ENC(1) for the HHH-Basic Equi-Join Algorithm.
Let
A, D and C be as defined before and

E be the event that a target tuple's join attribute value has a match

among those of the source tuples:

ENCT(HHH —-Basic) = NTS¢gy' NDSg- P(AnCND) (A.46)

- P(ANDNC) = P(ANCNDNE) + P(ANCNDNE)
P(ANCNDNE) = P(A|CNDNE) P(D|CNnE) P(C|E) P(E)

NDSp NDS _ NDSp

=Y NDs; ND - D

and
P(ANCNDNE) = P(A|CNDNE) P(D|CnE) P(C|E) P(E)
~NBF 1  _1_| _NDS
NBP NP NGB ND
Therefore,
_ 1 , _NDSp _NDS
P(AnDNC) = YP-NGB {NP NGB ~o * 1 ND ]} (A.47)

It is easy to see that for the HHH-Basic algorithm the following equation is

true:

NDS

ND3p = Neg NP

(A.48)

By combining Equations A.47 and A.48, the following equation will result:
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- 1 NDS . NBF|, _NDS
Planbne) = NP-NGB{ ND * NBP|'”ND } (4.49)
It is easy to see that
ENC(1) = NTT-ENCT(HHH -Basic) (A.50)

By combining Equations A.46, A.49 and A.50, the following equation will

result:

NTT-NTSgy NDSp
ENC() = =P NGB {

NDS , NBF [1_ NDS } (A51)

ND  NBP ND

proposition 1, 2 and 4 can be used to show that the following equations are

true for the HHH-Basic algorithm:

NTS

NTSg = 422 (A.52)
. NDS
NDSg = 2= (A.53)
_ NTSg
NTSgy = NDSg (A.54)
NDS,
= .55
NDSp NP (A.55)
_ NDSp
NDSp NBF (A.586)
_N1S
NDS = ND|1—e ND] (A.57)
and
_NDSp
NBF = NBP[l—e NBP] (A.58)

By combining Equations A.51 through A.58, the following expression for

ENC(1) will result:
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. _NTS _ NDSp
NTT-NTS 1—e ND o NBP
ENC(1l) = - A59
(1) = g% Npe NBP ~¥05 (4.59)
1—-e NBP

1.4. Derivations for the TPF Equi-Join Execution Models

In this section the derivations of the formulas for the parametlers LTB and
LTG are presented. These parameters are used in developing the "global
broadcast” TPF and the "global hash” TPF execution models, respectively.
Also, the derivation of the ENC(1) expressions for BBH-TPF, BHH-TPF, HBH-TPF

and HHH-TPF equi-join algorithms are presented.

Notation

Let x ¢ {BBH~TPF BHH~-TPF HBH-TPF HHH- TPF}
ENCT(x) be as defined before

(a) Deriviation of the LTE Formula

Let

B be the event that a target tuple will hash to a "set” bit in the cluster vec-

tor and

E Dbe the event that a target tuple’s join attribute value has a match among

those of the source tuples in one MAU:

LTB = P(B) (A.60)
P(B) = P(BNE) + P(BnE)
P(B) = P(B|E)P(E) + P(B|E)P(E)

and

P(B) = 1. (A.81)

NDSH + NBS I—NDS”
ND NBIT ND
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Using Proposition 3, it be can shown that the following equation is true for

the "global broadcast”" TPF equi-join algorithms:

NDSy

{—g WEIT (A.62)

NBS = NBIT

By combining equations A.60 through A.82, the following expression for
LTB will result:

NTS;  NDSy
LTB = 1—e ND , NBIT (A.83)

where NTSy and NDSy are computed using equations A.27 and A.30,

respectively.

(b) Deriviation of the LTG Formula
Let

B,C be defined as before and

E be the event that a target tuple’s join attribute value has a match among

those of the source tuples

LTG = P(BNC) (A.84)

P(BNC) = P(BNCNE) + P(BNCNE)
P(BNCNnE) = P(B|CnE)P(C|E)P(E)
NDSe NDS _ NDS¢
"'NDS ND ~ ND

=1

and

P(BnCNE) = P(B|CnE)P(C|E)P(E)

- NBS _1 | _ NDS
~ NBIT NGB ND

Therefore,



214

NDS, NBS DS]‘
P(BNC) = NGB[NGB ot NB[T{ "D ” (A.85)
From Propositions 1 and 3

_NDsg

NBS = NB[T[l —e NBIT (A.686)
and
-NTS

NDS = ND[l-e M’] (A.87)

By combining Equations A.53 and A.84 through A.87, the following expres-

sion for LTG will result:

) _NTS NDSG

—o ND _, NBIT
LTG = NGEl e e

(A.88)

where NDS; is computed using Equations A.53 and A.67.

(c) Deriviation of ENC(1) for the BBH-TPF Equi-Join Algorithm
Let

AE be as defined in Section A.2.2 and

B Dbe as defined in section A.3.a

The quantity ENCT(BBH-TPF) can be expressed as follows:

ENCT(BBH -TPF) = NTSpy-NDSg-P(AnB) (A.69)

P(ANB) = P(ANBNE) + P(ANBNE)
P(ANBNE) = P(A|BnE)P(B |E)P(E)
NDSp _ NDSp

ND ND
P(ANBNnE) = P(A|BnE)P(B|E)P(E)

=11

and
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_ NBF NBS

_ _NDSp
NBP NBIT

ND

1

Therefore

NDSp . NBS NBF
ND NBIT NBP

_NDSp

P(AHB).: ND

1

(A.70)

Also ENC(1) of the BBH-TPF equi-join algorithm can be expressed as fol-

lows:

ENC(1) = NTT-ENCT(BBH ~TPF) (A.71)

By combing Equations A.69 through A.71, the following formula will result.

1 NDSp H (A.72)

NDSp , NBS _NBF
ND

ND NBIT NBP

ENC(1) = NTT-NTSpy- NDSB{

Using Proposition 3, it can be shown that the following.equation is true for

the BBH-TPF equi-join algorithm.

_NDsy
NBS = NBIT|1—e NBIT

(A.73)

By combining Equations A.15 through A.19, A.27 and A.30 together with

A.72 and A.73), the following expression for ENC(1) will result:

_ NTSp _NDsy _NDs, | NTS,
NTT-NTS 11-e M0 & |1—¢ WEIT ||y _o NP |o” WD
ENC(1) = §is NP-NBP W5
1—e NBP
(A.74)

(d) Deriviation of ENC(1) for the BHH-TPF Equi-Join Algorithm

Let
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A,D and E be as defined in Section A.2.b and
B Dbe as defined in Section A.3.a.

The quantity ENCT(BHH-TPF) can be expressed as follows:

ENCT(BHH ~TPF) = NTSyy NDSg P(AnBND) (A.75)

P(ANBND) = P(ANBNDNE) + P(ANBNDNE)
P(ANBNADNE) = P(A|BNDNE)P(D|BnE)P(B |E)P(E)

= 1. NDsp | NDSu _ NDSp

NDSy ND ~ ND
and
P(ANBNDNE) = P(A|BNDNE)P(D|BnE)P(B|E)P(E)
- NBF 1. .NBS | _NDSu
NBP NP NBIT ND
Therefore,
.1 'NDSp . NBF NBS |, _NDSy
P(AanD)-NP{NP ~D- * NBP NB[T[l D (A.76)

By combining Equations A.23 and A.76, the following formula for
P(AnBND) will result:

1 |NDSy . NBF NBS| _NDSu
NP| ND ~ NBP NBIT ND

P(AnBnD) = } (A.77)

Also ENC(1) of the BHH-TPF equi-join algorithm can be expressed as fol-

lows:

ENC(1) = NTT-ENCT(BHH -TFF) (A.78)

By combining Equations A.75, A.77 and A.78, the following formula will

result:
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4
i

1 {NDSy _ NBF NBS
NP| ND NBP NBIT

NDSy
ND

ENC(1) = NTT-NTSyy NDSp-

)

(A.79)

By combining Equations A.27 through A.31 and A.73 together with A.69,

the following expression for ENC(1) will result:

_NTsy _ANDsp _NDSy | NTsy
ENC(L) = NTT-NTS 1—e N0 4 |{—e NBP ||{_o WNBIT |, "AD
~ NMS-NP?* NBP _NDsp |
1—e NBP
A.B0)
(e) Deriviation of ENC(1) for the HBH-TPF Equi-Join Algorithm
Let
A,C and E be as defined in Section A.2.c and
B be as defined in Section A.3.b
The quantity ENCT(HBH-TPF) can be expressed as follows:
ENCT(HBH ~TPF) = NTSpy' NDSgP(ANBNC) (A.B1)

P(ANBNC) = P(ANBNCNE) + P(ANBNCNE)
P(ANBNCNE) = P(A|BNCNE)P(B|CnE)P(C|E)P(E)

= 1.1. NDSp NDSs _ NDSp
NDSs ND ND

and

P(ANBNCNE) = P(A|BNCNE)P(B|CnE)P(C|E)P(E)

_NBF NBS _1 |, _NDSs
NBP NBIT NGB ND
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Therefore,

P(ANBAC) = —I—-[NGB'

ND NBP NBIT|" ND

NDSp , NBF NBS |, _NDSs
NGB

} (A.82)

By combining Equations A.35 and A.82, the {following formula for
P(AnNBNC) will result:

P(AnBNC) =

1 _{NDSs NBF NBS | _NDSs
NGB| ND ~ NBP NBIT|" ND

} (A.83)

It is easy also to see that

ENC(1) = NTT-ENCT(HBH -TPF) (A.B4)

By combining Equations. A.81, A.83 and A.B84, the following formula will

|

result:

1_[NDSs . NBF NBS| _NDSs
G\ ~ND ' NBP NBIT|'” WD

ENC(1) = NTT-NTSp'NDSp N

(A.85)

Using Proposition 3, it can be shown that the following equation is true for
the HBH-TPF equi-join algorithm:

NDS;

NBS = NBIT[l —g NBIT (A.86)

By combining equations A.39 through A.42, A.44, A.53 and A.85, the follow-
ing expression for ENC(1) will result:

4 3

_NTSs _NDs, _NDSg| _ NTsg
NTT-NTS  |1=e " 4+ |1—e MEF | |1 NBIT | o~ "ND

NC(1) =
ENC(1) NGB? NP-NBP _NDSp ]
1—g NBP
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(A.87)
(f) Deriviation of ENC(1) for the HHH-TPF Equi-Join Algsorithm
Let
A,D, C and E be as defined in Section A.2.d and
B Dbe as defined in Section A.3.b
The quantity ENCT(HHH-TPF) can be expressed as follows:
ENCT(HHH~-TPF) = NTSgy' NDSg-P(AnNBNCND) (A.88)

P(ANBNCND) = P(ANBNCNDNE) + P(ANBNCNDNE)
P(AnBNCNDNE) = P(A|BNCNDNE)P(D|BNCNDNE)P(B |CNE)P(C|E)P(E)
NDS, | NDSg NDS _ NDS,
NDS; -~ NDS ND ~ ND

=1

and

P(ANBNCNDNE) = P(A|BNCNDNE)P(D|BnCNE)P(B|CNE)P(C|E)P(E)

_NBF 1 NBS _1 [ _nDS
NBP NP NBIT NGB |~ ND
Therefore,
_ 1 NDSp = NBF NBS |, NDS
P(AnBnCND) = NP-NGB{NP NGB =5~ * NBp NBIT |~ ND ]}
(A.89)

By combining Equations A.53, A.55 and A.89, the following equation will

result:

__ 1 |[wps_ nNBF nNBS| _NDS
PANENCND) = g5 NGs|\ WD * NEP NB[T[l ND ]} (4.90)

It is also easy to see that
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ENC(1) = NTT-ENCT (HHH ~TPF) (A.91)

By combining Equations A.88, A.90 and A.91, the following equation will

result:

ENCT(1) = NTT-NTSgy NDSp' 7= * ND

1__[NDS , NBF NBS| NDS
NGB| ND ~ NBP NBIT

(A.92)

By combining Equations A.52 through A.58, (A.66), and A.92, the following

equation for ENC(1) will result:

4 3
_N1s _Nos, _NDsg| _n1s
ENCT(1) = NTT-NTs  |t=e ¥ +|1=e NBP| |1 NBIT| o 3D |
~ NGB®* NP?® NBP _Nosy
1-g NBP
\ J
(A.93)

1.5. Derivations for the STPF Equi-Join Execution Models

In this section, the derivation of the ENC(1) for both the HBH-STPF and
the HHH-STPF equi-join algorithms is presented.

(a) Deriviation of ENC(1) for the HBH-STPF Equi-Join Algorithm
Let

A.C andE be as defined in Section A.2.c and

B be as defined in Section A.3.b.

The quantity ENCT(HBH-STPF) can be expressed as follows:

ENCT(HBH -STPF) = NTSy:NDSFg-P(ANBNC) (A.94)

where NDSFp is the number of distinguished values in the join attribute of the

source tuples which survive the BIT-T checkiné and are stored in one hash-



table bucket.

Following the steps used in deriving equation A.B3 which computes the
quantity P(ANBnC) for the HBH-TPF algorithm, it can be shown that

P(AnBNC) of Equation A.94 can be expressed as follows:

_ 1 [NDSs = Npr NBSs| NDSs
P(ANBNC) = wep\"nD * NEP NBIT |\ AD } (4.95)
It is easy to see that

ENC(1) = NTT-ENCT(HBH —-STPF) (A.96)

By combining Equations A.94 through A.96, the following equation for

ENC(1) will result:

_ NTT-NTSpy'NDSFg |NDSs =~ NBF NBSs NDSg
ENe() = NGE { ND t NBP NBIT|'” ND
(A.97)
For an STPF algorithm, the following equations are true:
NDSF,
il ]
NBF = NBP[l—e NEP (A.98)
and
NDSF,
= . A.99
NDSFg NBF ( )

where NDSFp is the number of distinguished values in the join attribute of the

source tuples of one triplet which survive the BIT-T checking.
A formula for NDSFp can be derived as follows:
Let

B be the event that a source value hashes to a "set” bit in the BIT-T and
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C and E be as defined in Section A.3.b.

For the HBS-STPF algorithm, NDSF, can be expressed as follows:

NDSF, = NDSs P(BNC) (A.100)

P(BNC) = P(BNCNE) + P(BNCNE)
P(BNCNE) = P(B|CnE)P(C|E)P(E)
NDTG NDT _ NDTC
"'NDT ND ~ ND
P(BnCnE) = P(B|CnE)P(C|E)P(E)

=1

and
_ NBSr 1 [I_NDT]
NBIT NGB ND
Therefore,
P(BNC) = WIEE{NGB-Nﬁgc + xif; [1—%%711 © (A.10)
For a " global hash' algorithm,
NDT = NGB-NDT¢ (A.102)

By combining Equations A.100 through A.102. the following expression for
NDSF, will result:

_ 1 |npT [ NBSy |, _NDT
NDSF, = NDSs NGB[ND + YBIT [1 ND ]} (A.1083)
Since
_ NDSs
NDSp = w5

and
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__1 |NpT  NBSr| NDT
L5 = NGB{ND ¥ NBIT |\ ND

then

NDSFp = NGB-LS -NDSp (A.104)

By combining Equations A.39 through A.43, A.85, A.97 through A 99 and

A.104, the following equation for ENC(1) will result:

(
_NTSs _NTSg _NDSF, _NDSg }
NG NTT-NTS-LS | 1—¢ ND 4o ND ||_p NBP (|{_g NBIT
()= Np-NGB NBP ND5he
1—-e NBP
(A.105)
(b) Deriviation of ENC(1) for the HHH-STPF Equi-Join Algorithm
Let
ADC
be as defined in Section A.2.d and
B as defined in Sectiori A.3.b.
The quantity ENCT(HHH-STPF) can be expressed as follows:
ENCT(HHH-STPF) = NTSgy NDSFg-P(AnNBNCND) (A.106)

Following the steps used in deriving Equation A.90 which computes the
quantity P(AnNBnCnD) for the HHH-TPF algorithm, it can be shown that

P(AnBNnCnD) of Equation A.106 can be expressed as follows:

1 NDS _ NBF NBSs

,_NDs
NP-NGB| ND * NBP NBIT

P(ANBNCND) = D

} (A.107)

It is easy to see that
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ENC(1) = NTT-ENCT(HHH —-STPF) (A.108)

By combining Equations A.106 through A.107, the following equation for
ENC(1) will result: |

ENC(1) = NTT NTSgy'NDSFg | NDS + NBF NBSs 1__N[)s
NP-NGB ND NBP NBIT ND
(A.109)
where
- NDSFp
NDSFpg NEF (A.110)

A formula for NDSFp can be derived-as follows:

For a "local hash” STPF algorithm, NDSFp can be expressed as follows:

NDSF, = NDSp-(BnCnD)

where
B is defined as in Section A.4 & :nd
C.D are defined as in Section A.3.f

By following the same steps of the derivation for NDSFp of HBH-STPF
algorithm, the following formula for NDSF, of the HHH-STPF algorithm will
result:

NDSF, =

NDS_(NDT _ NBSr| _NDT
NP-NGB| ND * NBIT| ND

For an STPF algorithm,

Ls-l{

- NDT . NBST,
NGB

ND NBIT

DT
ND
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and
_ NDS
NDSp = wp NGB
Therefore,
NDSFp = NGB-LS NDSp (A.111)

By combining Equations A.52 through A.55, A.57, A.97, A.98, A.108 through

A.110 and A.111, the following equation for ENC(1) will result:

' w
_NIS _NTS [ _NDSPp _NDSg
NTT-NTS-Ls |1=¢ 2 +e ¥ l1—¢ NBP [l1_o NBP ||
ENC() = N B2 NGB NBP ~NDSE,
1—e NBP
' ?,
(A.112)

1.8. Derivations for the STCF Equi-Join Execution Models

In this section, the derivations of the formulas which compute the param-

eters LT and LS of the STCF executiorlmodels are presented.

(a) Derivation of the LT Formula

Let

B be the event that a target tuple will hash to a "set” bit in BIT-S and

E Dbe the event that a target tuple’'s join attribute value has a match among

those of the source tuples.

Then

LT = P(B) (A.113)

In general P(B) can be computed from the following formula:
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P(B) = P(BNE) + P(BnE)
= P(B|E)P(E) + P(B|E)P(E)

Therefore,

P(B) =1

'NDS _ NBS [1 _ NDS] (A114)

~np t NBIT|'T WD

Using Proposition 1 and 3, it can be shown that the following equations are

true for the STCF execution models:

_dps
NBS = NBIT[l -¢ NB”] (A.115)
and
.=NTS
NDS = NDl1 —e M ] (A.116)

Combining Equations A.113 through A.116, the following formula for LT will
result:

=NTS _NTS
LT =1-¢ ND g D (A.117)

(b) Derivation of the LS Formula
Let
B  be the event that a source tuple will hash to a “set” bit in BIT-T and

E be the event that a source tuple’s join attribute value has a match among

those of the target tuples.

By following the same steps used in the derivation of the LT formula, it
can be shown that

-NTT _ NDT
LS = 1—e ND g NBIT (A.118)
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where NDT is the number of distinguished values in the Join attribute of the

target tuples.
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Appendix B

Values For The Parameters of The Equi-Join Execution Models

In general the parameters of the equi-join execution models can be grouped
into two categories, namely, the static parameters and the dynamic parameters.
A parameter is static/dynamic if its value (stays the same)/(changes)

throughout the study of the models’ output parameters behavior.

In this appendix, a value for every static parameter is presented. A range

of values for every dynamic parameter is also presented.

1.1. Values For The Static Parameters

In Table B.1 the static parameters as well as their values are displayed.
The values of the hardware-disk parameters are those of an IBM 3380 moving-
head disk. The disk is assumed to be modified for the parallel read/w;'ite of a
whole cylinder. It is also assumed that this modification does not ‘affect the
disk transfer rate. The time to read/write one track of the disk is taken as
the value of the time to read/write the whole cylinder (TDT). It is also

assumed that the value of the parameter TBT is the same as that of TDT.

A cylinder of an IBM 3380 moving-head disk [IBM80] consists of 15 tracks.
Thus the number of triplets within an associative cluster is 15. Also the MAUC
is equal to the capacity of the 15 tracks. It is also assumed that BUFS of the
PC’'s triplets has the same capacity as that of an MAU (cylinder). Thus the
value of BUFSC is the same as that of MAUC.
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Table B.1
values for the Static Parameters of the Equi-Join Execution Models

Parameter Type Parameter Parameter Parameter
Name Value Unit
Data LTS 100 Byte
LTT 100 Byte
LJ 10 Byte
Hardware-Disk MAUC 71x10*8 Byte
TDAC 16 msec
TSK 3 msec
TDT 16.7 msec
Hardware-PC-PB TBT . 16.7 msec
Hardware-PC NP 156
BUFSC . .71x10*8 Byte
Hardware-Triplet ’ TCD .02 msec
TCI .021 msec
TH , .102 msec
TMS .091 msec
T™T .091 msec
T™MO .179 msec
TEP .007 msec
Hardware-Master TS 1 msec
TT 1 msec

In calculating the values of the hardware-triplet parameters, It is
assumed that the triplet processor is an Intel 8086/1 microprocessor [MANBS].
In general, a hardware-triplet parameter represents an operation carried out
by the corresponding microprocessor. To calculate the value of a such param-
eter, a procedure was written, in the 8086 assembly language, which carries
out the corresponding operation. The execution times, obtained from the Intel

B0B6 microprocessor user's manual [MANB6], for the instructions in the
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procedure were added to obtain the value of the corresponding parameter.

:This section of code compares, directly, the join attribute
;value of two source and target tuples.

;The following are assumed:

JAT_PTR  Points to the join attribute of the current target tuple
BX Points to the join attribute of the previous source tuple

ES_PTR Points to the end of the source tuples.

15 TCD: ADD BX,LJ :BX points to current S tuple
15 CMP BX.ES_PTR ;End of source tuples ?
4 JGE OuT ;Jump if yes
2 MOV SI,BX. +S1 points to the join attribute
of the current source tuple
14 MOV DI,JAT_PTR ;DI points to the join
of the current target tuple
14 MoV CX,LJ :CX gets the length of the join
attribute
119 REP CMPS WORDPTR
16 JNE TCD
OUT: ;Move to process next T tuple

Procedure B.1 A Procedure for Calculating the Parameter TCD
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The procedures B.1, B.2, B.4, B.5 and B.6 are developed for calculating the
values of the parameters, TCD, TCI, TMS or TMT, TEP and TMO, respectively.
The integer written beside each instruction within each of these procedures
indicates the number of clock cycles needed to execute the corresponding
instruction. by adding the clock cycles of each instruction within a given pro-
cedure and multiplying the result by the cycle time of an 8086/1 microproces-

sor (.1 us), the value of the corresponding parameter is obtained.

;This section of code compares, indirectly, the join attribute

;value of two source and target tuples

;The following are assumed:

; JAT_PTR  Points to the join attribute of the current target tuple
: BX Points to the address field of the previous source tuple

: JADISP  Displacement (in bytes) of the join attribute from

; the start of the tuple

13 TCL mov S1,[BX] ;SI point to the current source tuple
4 CMP SI.0 ;Is it last source tuple in link list
4 JE - OouT ;Jump if yes
2 MOV BX,SI
15 ADD SILJADISP ;Advance SI to next tuple
14 MOV DI,JAT_PTR
14 MOV CX,LJ
119 REPE CMPS WORDPTR
16 JNE TCI
' OUT: ;Proceed to process the next target tuple

Procedure B.2 A Procedure for Calculating the Parameter TCI
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:This section of code calculate a typical hashing function.
:The input to the function is the Join attribute value. -

;The following have been assumed:

‘.
1
.
L
.
*

SI Points to the tuple bieng hashed
JADISP" displacement(in bytes) of the Join

Attribute from the start of the tuple
MULFACTOR The hashing function multiplication factor
DIV.FACTOR The hashing function division factor

3 TH SUB AXAX ;Clear the accumulator
15 ADD S1,JA_DISP ;SI points to the Join attribute
14 MOV CX,LJ ;CX is a counter
" 70  LADD: ADD  AX.[SI]
20 ADD S1,2 ;update SI
85 Loor LADD
" 138 MUL  MUL_FACTOR

185 DIV DIV_FACTOR :Quotient in AX, Remainder in DX

Procedure B.3 A Procedure for Calculating the Parameter TH
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:This section of code moves a source or target tuple ;within the triplet's local
memery unit

:The following have been assumed:

; SI . Points to the tuple to be transfered
; LT Tuple length (100 bytes)

; BUF_PTR  Pointer to the destination buffer

14 TM: MOV DI,BUF_PTR :DI points to destination buffer
14 MOV CXLT ;Load counter

859 REP MOVS  ;Move the tuple

15 MOV BUF_PTR,DI ;Update BUF_PTR

Procedure B.4 A Procedure for calculating the Parameter TV
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:This section of code exchange the content of two location, -
;each of two bytes long, within the triplet LMU.

:The following have been assumed:

.
1
.
’
.
]

.
4]

BX | Points to one of the locations
PTR Points to the second location

13
14
13
14
14

TEP:

MOV
MOV
MOV
MOV
MOV

AX,[BX] ;AX gets the content of first locatios
SL.PTR ;31 points to second location
DX.[SI] ;DX gets the content second locatio
[s1],AX ;Exchange

i BX],DX

Procedure B.5 A Procedure for calculating the Parameter TEP
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;This section of code moves an output tuple to the output buffer

;The following have been assumed:

.
]
.
]

BX BX points to the source tuple
LTS Source tuple length

TPTR Pointer to target tuple

LTT Target tuple length

BUF_PTR  Pointer to the output buffer

2 TMO: MoV S1,BX ;31 points to source tuple
14 MOV DI,BUF_PTR ;DI points to outpu!l bufier
14 MOV CX,LTS
859 REP MOVSW ;Move the source tuple
T 1 MOV SI,T_PTR .S1 points to target tuple
14 MOV CX,LTT
859 REP MOVSW ;Move the target tuple
BT MOV BUF_PTRDI  ;Update BUF_PTR

Procedure B.6 A Procedure for Caculating the Parameter TV.O
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In general, the proposed RDBM will have a family of hashing functions,
each is suitable for a class of the join attributes. Each hashing function will
implemented as a subroutine. Figure B.3 shows a procedure which implemeiits
a typical hashing function. This function was used to calculate the parameter
TH. In addition, the latter value of TH was multiplied by a fa;:tor of two to
account for the overhead time associated with the subroutine impl.ement.ation

of the hashing function.

The values of the hardware-master parameters (TS or TT) are dependent
on the implementation of the master/triplets communication structure
(software + hardware).‘ Since the details of such implementation are not avail-
able, TS and TT are calculated assuming that the TBUS has an effective
bandwidth of 1Mbyte/s. This is a reasonable choice since such bus is within

the current technology limits.

1.2. Values for the Dynamic Parameters

The dynamic parameters can be grouped into two categories. The first
category includes the parameters NTS, NTT and ND. The second category
includes the parameters NBP and NBIT. The parameters of the first category
depend only on the data pariicip'ating in tﬁe equi-join operation. 'Thus. the
selection of values for these parameters are independent of the specific eke-

cution model they characterize.

In this performance study of the equi-join algorithms, the parameters NTS
and NTT have equal values. This is done in order to reduce the number of
parameters which need to be varied thfoughout the performance investiga-
tion. The parameter NTS(NTT) is varied between the limits 10° and 10°. The
parameter ND is not assigned values directly, but rather indirectly through

assigning values to the quantity NTS/ND (NTT/ND). This is possible since when-
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ever the parameter ND appears in a formula of those generated for the equi-
join execution models, it will be in the form (NTS/ND) or (NTT/ND). To under-
stand the meaning of the ratio NTS/ND, recall from Appendix B that the proba-
bility P of a target tuple finds at least one source tuple with matching join

attribute value (NDS/ND). Therefore

_NTs
pe S
NTS -4
For small “ND (<.1) the expression 1-e M’ can be approximated by

NTS/ ND. That is, for small NTS/ ND the ratio 2oL

Np can be ‘mterpreted as

the probability that a target tuple will find at least one source tuple with

matching join attribute value.

The performance of the equi-join algorithms will be evaluated when the
ratio NTS/ ND(NTT/ ND) has the values .01, .1:and 1. While the values (.01)
and (.1) represent the limits of a range of values where P is small, the values

(.1) and (1) represent the limits of a range of values where P is relatively large.

In the following, the values that both NBIT and NBP will have throughout

the equi-join performance evaluation are presented.

1.2.1. Values for NBP

Two factors put an upper limit on the range of values that the parameter

NBP can take. These two factors are:
(1) The Domain Limitation
A hashing function F can be defined as the mapping
F.D-R

where D is the domain of F and R is the range of F.
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The mapping function F must be an "onto” one. That is, for every reR,

there exists at least one d €D which is mapped by Forr.

The above condition (the "Onto” condition) puts an upper limit on the
range of values that NBP can take. Recall that NBP is the range of the "hash
table” hashing function. Let D be the domain of the latter function (D has the
cardinality NDD). Then NBP must be chosen such that the "onto"” condition is
satisfied. That is, NBP must be smaller than NDD, the cardinality of the hash-

ing function’'s domain.

Throughout this study of equi-join algorithm performance it is assumed

that

NDD

NBP < 2

For the algorithms BBH-Basic, BBH-TPF and BBH-STPF, NDD is the same
as ND.

For the algorithms BHH-Basic, BHH-TPF and BHH-STPF, NDD is ND/NP.
This is because the local hashing method partitions, on the average, the Join

attribute underlying domain into NP disjoint sections.

For the aigorithmé HEH~Ba§ic. HBH-TPF and HBH-STPF, NDD is ND/NGB.
This is because the global hashing method partitions, on the average, the join

attribute underlying domain into NGB disjoint sections .

For the algorithms HHH-Basic, HHH-TPF and HHH-STPF, NDD is
ND/ NGB-NP. This is because first the global hashing method partitions the
join attribute underlying domain into NGB disjoint sections then each seétion
is partioned further, by the local hashing method, into NP disjoint subsec-

tions.

(2) The Storage Limitation
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Recall that the hash table of a triplet is organized as two separate areas,
namely, the primary and the secondary ones. The secondary area stores the
source tuples. The primary area is divided into buckets each is capable of
storing a pointer (has a size of 2 bytes) to the link list which stores all the
source tuples which hash to the corresponding bucket. The number of buck-

ets (NBP) is limited by the capacity of storage allocated to the primary area.

Let FNBP be the ratio of the upper limit on NBP (SUNBP), due to storage lim-

itation, and the average number of source tuples in one triplet.

For the "global broadcast” basic and TPF algerithms, the SUNBP is com-

puted from the following formula:

(

.F’NBP . WN-S—-YS&—P; for the globhl Broadcqst Basic and TPF

! algorithms
for the STPF and the global hash basic

._NTS | and TPF algorithms
:FNBP NGB NP |

SUNBP =

\

Recall that throughout this performance study, It is assumed that BUFSC
be equal to MAUC. This results in both the quantities NMS and NGB having
equal values. Therefore, the quantity UNBP for all the equi-join algorithm can .

be expressed as follows:

SUNBP = |FNBP:

NMS NP

NTS ]

Multiplying SUNBP of the above equation by two (the bucket size) gives the
storage capacity which must be allocated to the primary area for the given
algorithm. By varying'the parameter FNBP, the effect of the primary area
storage capacity on the pe.rformance of the equi-join algorithms will be stu-

died.
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Throughout the equi-join performance analysis, NBP will be chosen as the
highest value which does not violate both the domain and the storage limits.

Therefore,

NBP = HIN { e, SUNBP]

1.2.2. Values for NBIT

Two factors put an upper limit on the range of values that the parameter

NBIT can take. These two factors are:
(1)The Domain Limitation

Recall that NBIT is the range of the "hash-bit" hashing function. Follow-
ing the discussion of the previous subsection it can be shown that NBIT must

tulfill the following inequality;

NBIT < NP2

where

¢

for the global broadcast with TPF
I e and STCF algorithms
NDD = for the global hash with TPF
(ND/ NGB) angd tor STPF algorithms

\

(2) The Storage Limitation

Recall that the 1-bit vector(s) is initialized and maintained by the cluster
master processor. The storage capacity allocated for the implementation of
the 1-bit vectors puts an upper limit on the number of bits the vector(s) will

" have.

Let FNBIT be the ratio of the upper limit on NBIT, due to the storage limita-
tions and the sum of NTS and NTT.
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Then

SUNBIT=FNBIT-(NTS + NTT)
Thus NBIT must fulfill the following inequality:

SUNBIT for all algorithms with one vector
NBIT <
(SUNBIT/ 2) for all algorithms with two vectors,

The effect of the storage limitation on the models’ output parameters will be

studied through varying the parameter FNBIT.

Throughout the equi-join performance analysis, NBIT will be chosen as
the highest value which does not violate both the domain and the storage lim-
its. Therefore,

4

MIN {(NDD/ 4), SUNB[T}
for all algorithms with one vector

NBIT =
for all algorithms with two vector.

MIN{ (NDD/ 4), (SUNBIT/ 2)]

\
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