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Operator Integ

Abstract

Alocally Lipschitz function in an open set in a Banach space is called a
primal function if its subdifferential is single-valued everywhere except a
first-category set and the projection of its subdifferential at any line segment
is single-valued a.e. on that segment. Maximal monotone operator in
separable or reflexive Banach spaces and subdifferentials of primal functions
are examples of maximal normal operators. A maximal normal operator is
the subdifferential of a primal function if and only if it is cyclically normal.
Through the definition of operator integral, we have equality formulas for
exchanging integral and subdifferential operations.
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I. In uction

The Clarke subdifferential theory [3] [4] [24] is a milestone of
nonsmooth analysis. The subdifferential of a nonsmooth function at a point
1is a set instead of a single point. This becomes the main idea of nonsmooth
analysis. However, under the usual set operations, the Clarke subdifferential

calculus has only inclusion relationship in general. For example, generally,

we have only

o(f + gx) < oflx) + ogx). (1)
Analyses, optimal control, the calculus of variations and stochastic

programming, consider the Clarke subdifferential of the integral functional f

on a Banach space X given by

flx) = 1 fi(x) p(dt), (2)
where ft is a family of functions on X. For example, in stochastic

programming (2) may be the expectation of a recourse function [1] [26]. If
we apply subgradient-based methods such as the bundle method [12],
stochasticc quasigradient method [9] and other generalized gradient
methods [25], we hope to compute the subdifferential of f through the

integral of subdifferentials of f;. In the finite-horizon case, X is

finite-dimensional. In infinite-horizon cases, optimal control and the
calculus of varations, X may be infinite-dimensional [4] [5] [6] [7] [8].

However, in general, we only have [4],

Ay f(x) u(dt) € Fr f bpldt). (3)

Our point of view for these inclusion relationships is that, if we deal

with the operators among operators of, dg and df}, instead of the operations
3



among sets of(x), dg(x) and oft(x), we will get equality relations. In [17] [18]

[19] [20], we developed in finite-dimensional spaces a maximal normal
operator theory to deal with these operator operations. In a certain sense,
this theory is parallel to the maximal monotone operator theory [2] in the
nonconvex case. In this development, we consider locally Lipschitz
functions with almost everywhere single-valued subdifferentials, called
primal functions. Subdifferentials of primal functions and maximal
monotone operators are examples of maximal normal operators. A maximal
normal operator is the subdifferential of a primal function if and only if it is
cyclically normal. If the domain is connected, the primal function is
determined up to a constant. Various functions are shown to be primal
functions. For example, continuously differentiable functions, convex
functions, concave functions, and differences of convex functions are primal
functions. More generally, semismooth functions [13] are primal functions
[19]. Besides, the Euclidean distance function of a set C is a primal function
if and only if bd Cl C has zero measure [21].

We defined function addition @ for two maximal normal operators. In
this way, the Clarke subdifferential calculus has equalities. For example, for

two primal functions f and g defined on an open set D, we have
df + g =of dag. (4)

Compare (4) with (1). Similarly we have equalities for d(f * g) and d(f/g). All

the maximal normal operators in an open set form a linear space with scaler

multiplication and function addition ®. The Clarke subdifferential operator

is thus a linear operator from the primal function space to the maximal

normal operator space.



In this paper, we generalize this idea to Banach sgaces and develop an
operator equality form of (3).

In Banach spaces, we use "single-valued everywhere except a
first-category set" to replace the "single-valued almost sverywhere" term.
Almost all the above discussions on maximal normal cperators and primal
functions can be thus generalized to general Banach spaces without involving

a measure. In Sections 2-4, we discuss maximal normal operators, cyclical
normality, and operator addition @ in Banach spaces. We call it operator

addition @ now to emphasize operator operations.

In Sections 5-6, we discuss the operator integral op-f. based upon our
definitions of maximal normal operators on finite-dimensional spaces and

general Banach spaces respectively. We establish the operator form of (3) as

ofr ft u(dt) = op-fr of; u(dt). (5).

2. Maximal Normal Operators in Banach Spaces

Let X be a Banach space and X* be its dual. For xin X and u in X*, we
adopt the convention of using <u, x> or <x, u> for u(x). We denote by | x|
the norm in X and by | [ul |* the norm in X*:

||u||*:={<u,x>:xeB]

where B is the closed unit ball in X.
Let Y be an open subset of X. Consider a set-valued operator F: Y # X*,

For any h in X, define F: Y # R by

Fpx) = <F(x), h>



foranyxinY. Let sing F: = (x € Y: F(x) is single-valued).

Definition 2.1 We call a set-valued operator F: Y # X* a maximal normal

operator if
(i) Fislocally bounded onY;

(i) Y\sing Fis a first-category set in X;

(i) foranyxe,

F(x) = w*-cl conv {u € X*: u = w*-lim F(x;), x; € sing F, xj » x};

(iv) for any line segment [x, x + h] in Y, F}, is single-valued almost
everywhere in this segment in the sense of one-dimensional Lebesque
measure. |

It is easy to see that

Proposition 2.2 If F:Y # X* is a maximal normal operator, then F is
w*-closed and for any x in Y, F(x) is a convex, w*-compact subset of X*. W

The w*-compactness follows from Alaoglu's theorem.

Example 2.3 IfF: Y # X* is single-valued and continuous (with the norm
topology) everywhere in Y, then we call F a continuous operator. A

continuous operator is clearly a maximal normal operator. By Corollary 2.2.1

of [4], if f: Y = R is continuously differentiable at x, then the subdifferential of
fat xis {f(x)}. Thus the subdifferential of a continuously differentiable

function f: Y » R is a continuous operator. |

Proposition 2.4 If X is either separable of reflexive, then any maximal
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monotone operator F: Y # X* is a maximal normal operator on Y.

Proof The local boundedness is a well-known property of the maximal
monotone operator [23]. According to Kenderov [11], a maximal monotone
operator in a reflexive or separable Banach space is single-valued everywhere
except a first-category set. Condition (iii) of Definition 2.1 follows Robert
[22]. Also see [16]. Since Fp, is monotone in [, x + h], we have condition

(iv) of Definition 2.1. ||

Note that we use first-category sets to replace sets of measure zero in
Banach spaces because of the single value of maximal monotone operators
outside these sets. In finite dimensions maximal monotone operators are

also single-valued except for a set of measure zero [14].

Definition 2.5 Suppose that f: Y # R is a locally Lipschitz function.

If F = 3f is a maximal normal operator, then we call f a primal function. W

Example 2.6 If F is a maximal normal operator and a is a real number, then
aF is also a maximal normal operator. Certainly, a continuously differentiable
function is a primal function. If X is either separable or reflexive, then

convex functions and concave function are also primal functions. Later we

will give more examples of primal functions, such as the differences of two

convex functions. [ |

3. Cyclical Normality

A maximal monotone operator is the subdifferential of a convex function
7



if and only if it is cyclically monotone [2]. We now extend this to the general

case.
We call an open set Y linearly connected if for any two points x and y in
Y, there is a finite number of line segments [xg = x, x1], [x], x9]...., [Xk-1. Xk

=yl in Y to connect these two points.

Definition 3.1 A maximal normal operator F, defined on a linearly connected

open setY, F: Y = X*, is called cyclically normal on Y if for any cycle of line

segments [x, x]], [x], x2l...., [xk-1, k], [xk. X0l in Y,

k 1
T [<F(xj+tlxis] - X)) Xj41 - x>dt = 0,
i=0 O

where Xk,] = X0 and the integral is meaningful since the integrand is

single-valued almost everywhere in the sense of one-dimensional Lebesque's

measure. | |

Theorem 3.2 A maximal normal operator F, defined on a linearly connected
open set Y, is the subdifferential of a primal function f, if and only if F is

cyclically normal. In this case, f is determined up to a constant. Suppose

that xq is a fixed point in Y, and x is any point in Y such that there line

segments [xg, x1], [x], x2]...., [Xk-1. Xk =x] in Y to connect xg and x. Then

k 1
flx) = flxg) + T [<Flxj-q + th - x3-1)), Xj - xj-1>dt. (6)
i=1 O

Proof If F =df, then
<Flxj + txj+1 - xj), Xi+1 - x> = 0Q(t),

where Q(t) = flxj + t{xi+] - X)) for t € (0, 1), and 9Q(t) = Q'(t) whenever it is
8



single-valued. Thus,

kK 1
T J<F (% + tlxi+1 - xi)), Xi41 - x>dt
i=0 O
k 1
=2 | dfxg+tlxieg - x))dt
i=0 o dt
k
=X (XH']. - xl) =0,
i=0

where xk41 = X0, for any [xq, x3], x1, x2l...., [Xk, X0l in Y, i.e., F is cyclically
normal. If F is cyclically normal, we may define a function f by (6), where
flixg) is a constant. From the lcoal boundedness of F, we see that f is locally

Lipschitz. ForanyyinYandanyhinX, [y, y + thlisin Y for 2 small t. By the
cyclical normality of F and the definition of f,
1

1
fly+th) -fly) =t | <Fly+sth),h>ds=t | Fply +sth)ds.
0 0

Thus, forany xin Yand any h in X,

supf{<u, h>: u e df(x)} = °(x; h)

1
= limsup[fly + th) - fly)l/t =limsup | Fply + sth)ds
y=x y=x 0
t40 t40

IA

lim sup {FR(2): Fp(2) is single-valued}
Z=x

< sup {<uy, h>: u ¢ F(x)}.

Therefore,
F(x) 2 of(x).

Especially, if x € sing F, then F(x) = of(x). By Propositions 2.1.5 and 2.1.2 of



[4], of is w*-closed and of(x) is convex for any x. According to (iii) of

Definition 2.1, for any x iny,
F(x) = w*-cl conv {u € x*: u = w*-lim 0f(x;), x; € sing F, x;=x}
& oflx).

Hence F(x) = oflx) for all xin Y, i.e., F = of. Clearly, such f is determined up

to a constant f{xg). |
4. Qperator Sum

Suppose that F and G are two maximal normal operators on Y.

Definition 4.1 The operator sum H = F @ G is defined by

H(x) = F(x) + G(x), if x € sing F n sing G.

H(x) = w*-cl conv {u € x*: u = w*-lim H(x;), x € sing F n sing G, x;=#x],

otherwise. ||

Theorem 4.2 If F and G are two maximal normal operators on Y, then their

operator sum H = F @ G is also a maximal normal operator on Y.

Proof The local boundedness follows the definition of the operator sum and

the uniform boundedness theorem. Clearly,

sing H 2(sing F N sing G),
ie.,

Y\sing H €(Y\sing G) U (Y\sing G)

10



is also a first-category set. For any u = w*-lim H(x;), xj € sing H, xj*x, we

may choose yj very close to xj such that yj € sing F N sing G, yj#x and

u = w*-lim H(y;). Thus,
H(x) = w*-cl conv {u € x*: u = w*-lim H(x;), xj € sing H, xj=x]},
for x not in sing F N sing G. However, this is also clearly true for u in

sing F N sing G. Finally, for any x in Y and any h in X such that Fp(x) and

Gh(x) are single-valued, obviously Hh(x) = F(x) + Gh(x). This proves (iv) of

Definition 2.1. Therefore, H is also a maximal normal operator. |

Corollary 4.3 All the maximal normal operators on Y form a linear space

with the operator addition ® and the scalar multiplication. |

We call this space the maximal normal operator space on Y. We may
also define the operator difference of two maximal normal operators F and G

by

FO&G: =Fe&(qG).
It is not difficult to see that all the continuous operators on Y, all the
cyclically maximal normal operators on Y, all the differences of two maximal
monotone operators in the case that X is either separable or reflexive, form
three distinct subspaces of the maximal normal operator space on Y. They
do not contain each other. See discussions on the finite-dimensional case

[17] [18] [19]. We may also define semicontinuous operators as in the
finite-dimensional case [19].
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As in the finite-dimensional case, the introduction of the operator sum
of maximal normal operators makes the basic calculus of the Clarke
subdifferential have equalities.

Theorem 4.4 Suppose that f,g: Y#R are two primal functions. Then their

sum and product are also primal functions and
(@) olf + g) = of ®ag;

(b) Af * g = fOog © gdf.

Furthermore, if g(x) # O for any x in Y, then f/g is also a primal function and

) 3078 = 166 (gl

Proof Because of similarity, we only prove (a). If x is in sing of N sing dg,
then

do(f + g)(x) = oflx) + dg(x) = (of @ 9g)(x).
Suppose that x is not in sing of N sing og. Since J(f + g) is w*-closed and
d(f + g)x) is convex,

(of © 3g)(x)

w*-cl conv {u € X*: u = w*-lim (of ® dg)(x;), x; € sing of N sing g, x;*x]},

€ w*-clconv {ueX*: u=w*lim Jf + g)(xj), xj e sing of N sing dg, x;»x]

e A+ P

On the other hand, for any h in X,

sup {<u, h>: uedf + gx)} = (f + g)°(x)
12



= lim sup [(f + g)(y + th) - (f + @(y)I/t
y-)x
t$0

1
= lmsup [@(f+ g (y+sthids

y=x 0
t40
1
= limsup [(@f ®dgy ly + sth)ds
y=x 0
t3$0

IN

lim sup {of @ dg)p(2): it is single-valued)
Z=X

< sup (<u, h>: u € (of ® Ig)(x)}.
Thus, d(f + g)(x) € (of ® dg)(x). Therefore, the equality holds, i.e.,

Af + g = of O 3g. n

Corollary 4.5 All the primal functions on Y form a linear space. The Clarke

subdifferential operator d is a linear operator from the primal function space
onto the cyclically maximal normal operator space. Especially, the

difference of two convex functions is also a primal function. [ |

A function is called a d.c. function if it can be locally expressed as the
difference of two convex functions [10]. Since the maximal normal operator
is locally defined, a d.c. function is a primal function too.

In the finite-dimensional space, we proved in the sense of the Lebesgue
measure that a semismooth function is a primal function [19]. In [21], Ralph

proved that the Euclidean distance function of a set C is a primal function if

13



and only if the boundary of the closure of C has zero measure. An open
questions is whether these results can be extended into infinite-dimensional

cases in the context of first-category sets. Notice that the boundary of the

closure of a set is a first-category set.

5. Operator Integral in Finite-Dimensional Spaces
In the last section, we studied the operator sum of two maximal normal

operators, which makes the basic calculus of the Clarke subdifferential have
equalities. We now study the operator integral of a family of maximal normal

operators, which will be taken over a positive o-finite measure space (T, 3,
W:
op-t Fy u(dt),

where for each t, Ft: Y # X* is a maximal normal operator and,

Assumption 5.1 For each x in Y, the set D=(t:Ft(x) is single-valued} is

measurable and the map t=F¢(x) from D to X is measurable relative to the

restriction of u to D. |

This study aims to establish the following formula:
ofr ft u(dt) = op-fr of; u(dt), (7).

where for each t, f;: Y #R is a primal function.

We first discuss in the case that X is finite-dimensional. As said in the
introduction, the left hand side may be the subdifferential of the expectation
functional term in the objective function of stochastic programming with
recourse. Finding this subdifferential is necessary for subgradient-based

14



methods, such as the bundle method, stochastic quasigradient method and

other generalized gradient methods.
The definition of maximal normal operators in finite-dimensional spaces

is based on the Lebesgue measure [17] [18]. Suppose that Y is an open set in
RI,

Definition 5.2 A set-valued operator F: Y # R™ is called a maximal normal

operator if
(i) Fislocally bounded onY;

(i) F is single-valued almost everywhere in the sense of the Lebesque

measureon Y;

(ili) foranyxinY,

F(x) = cl conv {u: u = lim F(xj), xj € sing F, x;*x}. n

All the results in Sections 2-4 can be derived from this definition in the
finite-dimensional spaces and in fact, we have results on semismooth
functions, quasidifferentials and Euclidean distance functions. See [17] [18]
(19] [20] [21]. Similarly, a locally Lipschitz function is called a primal
function if its subdifferential is a maximal normal operator. We now discuss

the operator integral based upon Definition 5.2 and given Assumption 5.1.

Definition 5.3 The operator integral H = op-fr F p(dt) is defined by
Hx) = IT Fi(x) p(dt) (8)

if F¢(x) is single-valued almost everywhere in the sense of the measure y in

T. Denote the set of such x as W. Then for other xin Y,

15



H(x) = cl conv {u: u = lim H(x;), x; ¢ W, x{=x}. |

Lemma 5.4 The set Y\W has measure zero.

Proof Let C = {(t, x): Ft(x) is not single-valued}. Then for each t, C(t) =
{x e Y: (t, x) € C} has measure zero. Thus, by the Fubini Theorem, for almost

every X, C(x): = {t € T: (t, x) e C} has measure zero, i.e., almost every x is in W.

This establishes the lemma. |

Theorem 5.5 Suppose that
(@) foreachteT, fi: Y R is a primal function;
(b) for each xinY, the map t = f;(x) is measurable;

(c) for some k() € L'(T, R) (the space of integrable functions from T to R),

forallxandyin Yand tin T, one has

|fe(x) - frp) < ko) | |x-yl].

Then the integral functional f on Y given by

flx) = br filx)u(dt)

is also a primal function and

of = ofT fi u(dt) = op-fr of; p(dt).
Proof By Theorem 2.7.2 of [4], f is a Lipschitz function on Y and for each x in
Y,

16



3Mlx) € r Ay (pdt).
Thus, when w ¢ W, of(x) = H(x), where H = op-f of; u(dt).

By Lemma 5.3, of is single-valued almost everywhere on Y. By Proposition 5

of [18], f is a primal function, i.e., H is a maximal normal operator. Thus

of = H. This proves the theorem. |

6. Operator Integral in Banach Spaces
We now study the operator integral of a family of maximal normal

operators in Banach spaces based upon Definition 2.1. There suppose that

(T, 3, W) is a positive complete o-finite measure space, that for each t,

Ft: Y » X* is a maximal normal operator under Definition 2.1, where X is a

Banach space, and that Assumption 5.1 holds.

Definition 6.1 The operator integral H = op-fr Fy p(dt) is defined by
H(x) = br Ftbd u(dt)

if F¢(x) is single-valued almost everywhere in the sense of the measure y in

T. Denote the set of such x as W. Then for other x in Y,

H(x) = w*-cl conv {u € X*; u = w*-lim H(x;), x; ¢ W, x;=x]. |

A difference from the finite-dimensional case is that the Fubini theorem
cannot be applied directly to ensure that Y/W is a first-category set. Ifa

homemorphism exists from X onto a complete measure space that maps the

17



first category sets into sets of measure zero, then the Fubini Theorem may
again be applied. Unfortunately, such mappings are often impossible to find.

An alternative is to define a topology on T in which sets of measure zero and
first-category sets agree. This is possible given our assumptions on (T, 3, )
(See Chapter 22 of [15]). The corresponding topology S = {$(A)\N:A e 3,

1(N) = 0}, where a is a lower density mapping.

Lemma 6.2 If X is separable and, there exists a sequence, {Cp} of nonempty

open sets in 3 such that every nonempty open set of § contains some Cy,,

then Y\W is a first-category set.

Proof Define C,C(t) and C(x) as in the proof of Lemma 5.4. For each t, C(t) is

a first-category set, and, for each x, C(x) is measurable. By Theorems 22.4,

22.5 and 22.6 of [15], we can introduce a topology S in T, in which, the

nowhere dense sets and sets of measure zero agree. By Theorem 22.7 of

[15], C(x) has the property of Baire with respect to 3. Hence, C has the
property of Baire in the product topology.
By Theorem 15.4 in [15], if C(t) is a first-category set and X is separable,

then C is a first-category set. The Kuratowski-Ulam Theorem (15.1 in [15])
under the assumptions on 3, implies that C(x) is of first-category for all x

except a set of first-category. All first category sets in 3 are countable

unions of nullsets. Hence, C(x) has measure zero except for a set of

first-category. W

18



Theorem 6.3 Suppose that conditions (a), (b) and (c) of Theorem 5.4 are

satisfied. Denote Fy = dft. Let W be the set as defined in Definition 6.1. If
either (d) T is countable,

or (e) the conditions in Lemma 6.2 hold

or (f) Y\W is a first-category set, T is a separable metric space, y is a

regular measure and the mapping t =0f;(x) is upper semicontinuous (w*-)
foreachxin,

then the conclusions of Theorem 5.5 hold. | |

The proof is similar to the proof of Theorem 5.5. Condition (d) or (e) or
(f) is used to invoke Theorem 2.7.2 of [4].
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