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ABSTRACT 

This paper investigates the nature of optimal prices for a durable good in the presence 
of continuous quality improvements. The analysis of optimal prices is based on a 
nonlinear dynamic model of sales response that relates price, quality, average life 
of a product and the persistence of quality perceptions. Numerical solutions to the 
model are derived by employing the generalized reduced gradient algorithm. The 
results show that optimal price depends on the persistence of quality perceptions 
and the average life of a product (an aspect of quality). The analysis of optimal 
results affirms results based on other models and provides insights on the influence 
that quality has on optimal pricing. The implications of the results and suggestions 
for future research are discussed. 

Subject Areas: Dynamic Opthization, Price, qua lit^ and Sales Response. 

INTRODUCTION 

This paper investigates the optimal pricing decision for a durable good in the 
presence of continuous quality improvements. It is assumed that the durable goods 
manufacturer wants to maximize discounted profits over a specified planning horizon. 
The investigation of optimal prices is carried out using the model proposed by 
Narasimhan, Ghosh, and Mendez [28], who analyzed the effect that the dynamic 
interactions of price and quality have on the sales rate of a durable good. The authors 
showed that the average life of a product (an aspect of quality) and the persistence 

*The authors wish to acknowledge the insightful comments and thoughtful criticisms of an 
associate editor and four anonymous reviewers. Their comments have significantly improved the content 
and clarity of the paper. 
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of quality perceptions both interact in important ways to determine the sales rate. 
They demonstrated that incorporating these aspects of quality in a sales response 
model makes it possible to capture the evolution of sales over time better than a 
diffusion model that does not incorporate product quality. The authors demonstrated 
the conceptual validity of the model by comparing the model generated sales to 
actual sales data. However, the model was not used to develop optimal pricing 
strategies for a durable good. 

Although the issue of optimal pricing has received a lot of attention in the 
marketing literature, there is a paucity of research papers that incorporate the effects 
of product quality on optimal pricing, in spite of the general agreement among 
practitioners and researchers alike that product quality plays a critical role in a firm’s 
ability to compete successfully. Recent literature, however, has tended to focus on 
the interrelationships among pricing, quality, the sales process and competition. The 
relationship between quality and pricing affects the sales response for a durable good 
in important ways. 

This paper extends existing literature by attempting to study the behavior of 
optimal prices in the presence of continuous quality improvements. An optimal 
control model is used to maximize discounted profits at a specified target time and 
to analyze the effect of price-quality interactions on the sales rate of a product. The 
sales response is modeled as a function of the price elasticity of demand, life of the 
product (durability), the market sensitivity to quality improvements, and the persist- 
ence delay associated with quality perceptions. We also investigate the effect of 
terminal time (i.e., short-term versus long-term orientation) on the optimal pricing 
strategies. The results of experimentation with the model indicate that there is a 
definite relationship between optimal prices and product quality. The direction and 
strength of the relationship is dependent on the average life of the product and the 
diffusion process associated with quality improvements. This result differs from 
studies found in the marketing literature that have concluded that the relationship 
between price and quality is either weak or nonexistent [ 131 [26]. The results also 
show that the ratio of average life of product to the persistence of quality perceptions 
seems to play an important role in the behavior of optimal price trajectories. This 
result may be important in the determination of promotion and advertising strategies 
for the product. 

RELATED LITERATURE 

The relationship between product quality and pricing as a determinant of sales has 
been receiving some attention in the literature. Tapiero, Ritchken, and Reisman [38], 
propose a framework for examining the tradeoffs among product pricing, reliability, 
design, and quality control issues. The authors used a “risk management” approach 
to compare alternative quality control schemes and pricing under stochastic demand. 
Since the authors investigated substitution effects of quality and pricing given the 
desired degree of risk aversion, they concluded that lower prices can substitute for 
outgoing quality. The authors address quality from an operational perspective. 
Banker and Khosla [2] consider oligopolistic competition in a model that investi- 
gates whether equilibrium levels of quality increase as competition intensifies. The 
authors do not explicitly consider the dynamic interaction between quality and sales 
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response. Lee and Tapiero [21] assess the effects of quality control on sales. Given 
a set of “sales parameters,” the authors show what the effects will be on quality 
control. 

Another stream of research in the literature investigates price-quality relation- 
ship. The main focus of these papers is the investigation of the presumed positive 
relationship between price and quality, and higher price as a signal of higher quality. 
Monroe and Dodds [26], provide an excellent review and assessment of marketing 
literature dealing with this topic. The authors conclude that investigation of price- 
quality relationship is incomplete and suggest that the dynamic relationship between 
price and quality merits a richer conceptualization. Rao and Monroe [32] have 
conducted a meta-analysis of experimental studies in marketing to examine the 
relationship between price and perceptions of product quality. Their study concluded 
that there is a positive, statistically significant relationship between price and per- 
ceived quality. Dodds, Monroe, and Grewal [9] have studied the effect of price on 
product evaluations by customers, including perceived quality. The authors used a 
designed experiment to pursue their investigation. Gerstner [ 131 empirically inves- 
tigated the relationship between price and quality and concluded that the relationship 
was weak. The author did not explore the effect of price-quality relationship on the 
sales response of products. Additional examples of this implicit, and indeed, implied 
relationship between price (as a signal of quality) and quality can be found in 
McClure and Spector [24], Besanko and Winston [5] and Bagwell and Riordon [4]. 

The literature on optimal pricing for a profit maximizing firm is extensive. 
Mesak [25] has discussed the optimal strategic pricing of technological innovations. 
Kohli and Mahajan [ 191 discussed a conjoint analysis approach to examining pricing 
decisions for new products. Cook [7] presented a framework for pricing to maximize 
profit, taking into consideration price elasticity of demand in the telecommunications 
industry. Investigations into optimal pricing decisions include Robinson and Lakhani 
[33], Dolan and Jeuland [lo], Khalish [16] [17], Narasimhan and Mendez [29], 
Thompson and Teng [39], and Dockner and Jorgensen [8]. Narasimhan and Ghosh 
[27] developed an optimal control model to study the effect of quality on optimal pricing 
and advertising decisions. The authors presented qualitative characterizations of the 
nature of optimal price and advertising policies. 

Diffusion models that incorporate pricing stem from Bass’ [3] model of new 
product diffusion. Mahajan, Muller, and Bass [22] present an excellent review of 
diffusion models and suggest new directions for research. Narasimhan, Ghosh, and 
Mendez [28] presented a dynamic model that included quality considerations in 
modeling the sales response for a product (referred to hereafter as the NGM model). 
The authors considered demand elasticity, quality, average life of a product, and the 
persistence of quality perceptions. The NGM model was shown to have conceptual 
validity in that the estimated parameter values accorded well with observed values 
and explained approximately 70% of the variation in actual sales data for a durable 
good. However, the authors did not derive any solutions based on their model. 

In summary, although considerable research exists on optimal pricing, research 
dealing with the dynamic interaction among quality, optimal pricing and sales is 
scant, and the nature of the relationship is not fully understood. It is the aim of this 
paper to fill this research need. 
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This paper uses the NGM model to investigate the optimal pricing decision. It 
differs from previous studies in that it explicitly models the dynamic relationship 
among quality, price and sales rate for a durable good. This paper also examines the 
effect of durability and the diffusion of quality improvements on sales and optimal prices. 

In the following sections, we discuss the NGM model, the optimization approach 
that utilizes the generalized reduced gradient method, and numerical solutions to the 
model under various parameter settings. 

REFERENCE MODEL 
To set the stage for the ensuing discussion, the NGM model [28] is briefly reviewed 
(omitting the conceptual discussion that leads to the development of the model). 

The full mathematical specification of the NGM model is: 

d 1 
dt 0 2  - x = - (4, x s, - X,), (3) 

EQ, = 0 2  x X,, ( 5 )  

where 
PI = Price [$I, 
q, = Quality index [O to 11, 
MI = Market potential [units], 
Q, = Quantity of units in the market [units], 
Sl = Sales rate [units/time], 
Y, = Rate at which units leave the market [units/time], 
X, = Rate at which the quality-weighted quantity of goods in the market 

EQ, = Quality weighted quantity of goods in the market [units], 
D1 = Average life of the units [time], 
0 2  = Average time of the effect of quality of goods on consumer’s buying 

a = Proportionality constant used to calculate sales rate [time-units]-’, and 
e = Price elasticity of demand. 

Price (P)  and quality (4) are inputs to the model. The price level (P)  determines 
the market potential (M) in (1) through a function similar to a demand function, 

ceases to influence consumers’ behavior [unitdtime], 

behavior (quality persistence delay), 
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parameterized by the product’s elasticity of demand. The number of units currently 
in the market (Q) is subtracted from the market potential (M) to compute the number 
of units that can be potentially sold. The product of this quantity with the “quality 
weighted” units in the market (EQ) generates the sales rate (S) in (6) according to 
a ‘diffusion process’ (see [3] and [28]). The computation of EQ is accomplished by 
multiplying the sales rate (S) by the quality level of the units (q), and integrating 
the product q x S along a distributed delay (see [ 111, [24], and [28]) that represents 
the length of time that the quality of a unit continues to affect sales by influencing 
customer perceptions of quality, as shown in (3) and (5 ) .  The distributed delay is 
parameterized by the value 0 2 ,  which represents the average length of time during 
which the quality of a product influences new sales. Also, the sales rate is integrated 
within another delay that represents the life span of the product to compute the 
number of units currently in the market (Q), as depicted in ( 2 )  and (4). This delay 
is parameterized by the value D1, which represents the average life span of the 
product. Variables Q and EQ feed back into the diffusion equation that generates 
the sales rate function (S) in (6). 

Given the state variables X, and Y,, the differential equations corresponding to 
the state space representation of the model are: 

XI M0Xr-0lDlq x Y--, 0 2  

and 

Yr 
D1 M0X,-aD2xtY,--. 

(7) 

PROBLEM STATEMENT AND SOLUTION METHOD 

Problem Statement 
Given the formulation in (1) to (6), our objective is to compute P;o,n, that is. the 
optimal price trajectory that maximizes total discounted profits (n> at the specified 
target time (7): 

n, = (PI  - C,) x S, x exp(-rf)dt, 
0 

(9) 

where C, represents the unit cost at time t, and r the discount rate. Using (1) to (6). 
the sales rate function S, can be expressed in terms of the state variables X and K 
combining the expression for l lT  with the state space representation of the model, 
given in (7) and (8), we arrive at the following optimal control formulation: 
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e 
T 

Max nT=c@21 0 (Pr-Cr) [ [$) M o X ,  - DlX, Y,)exp(-rt)dt, (10) 
P[O ,...7l 

subject to 

M o X , - O l D 1 q r X t Y r - ~ ,  Xr 

with the initial conditions: 

x,=Xo, Y o = y 0 ,  

To evaluate total discounted profits in the above objective function, we need 
to specify a functional form for the unit cost as quality changes over time. There is 
some controversy in the literature regarding the functional relationship between 
quality and cost. Plunkett and Dale [31] present empirical analysis of cost data that 
leaves the specification of cost as a function of quality inconclusive. The results of their 
study suggest that cost could increase as a function of quality. Other studies in the 
literature argue that cost decreases with increasing levels of quality (see, e.g., [36]). 

In this paper, quality is viewed broadly to include its various aspects. Specifically, 
the conceptualization of quality in this paper encompasses the various dimensions 
of quality discussed by Garvin [ 121, and the dimensions “confonnance quality” and 
“peperceived quality” discussed by Buzzell and Gale [6]. Although conformance quality 
may not act as a price differentiator for some durable goods, it is reasonable to 
speculate that it does influence long-term dimensions of quality such as durability 
and reliability, which can act as price differentiators. It should be noted that conformance 
quality influences customer perceptions of the quality of a durable good over its 
life. Perceived quality is a price differentiator and a determinant of cost. As Buzzell 
and Gale point out, a firm must manage both conformance quality and perceived 
quality successfully, to achieve superior performance. 

In the ensuing optimization scenario analyses, the composite measure of quality 
is varied from an initial value of 0.25 to a maximum attainable value of 1.  Accordingly, 
the cost function decreases as quality increases over a range and then reverses 
direction (due to increasing product diversity and complexity) as quality approaches 
a value of 1. The cost function, shown in Table 1,  was constructed by assuming a 
40% reduction in cost as quality increases from 0.25 to 0.9, and a 40% increase as 
quality approaches the maximum value of 1.  The percentage change in cost of this 
magnitude is alluded to in [36] and was verified by the practitioner who was 
contacted by the authors. Figure 1 shows the relationship between quality level and 
the percentage change in unit cost. This figure was constructed by fitting a Lagrange 
interpolation polynomial [35] to the values in Table 1. 
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lhble 1: Percentage increase in unit cost as a function of quality. 

Quality Percentage Increase 
Level (a) in Unit Cost 

0.25 18 
0.30 13 
0.40 5 
0.50 -3 
0.60 -9 
0.70 -15 
0.80 -20 
0.90 -22 
0.95 -18 
0.98 -4 
0.99 5 
1 18 

This nonlinear, asymmetric specification is a plausible representation of the 
cost function, which captures the different perspectives in current literature on the 
behavior of cost [36]. In this research, the percentage changes shown in the quality-cost 
function are applied to a base cost of $2,000. 

Solution Method 

In view of the complexity of the model, we chose not to apply a standard optimal 
control theory or calculus of variation approach to obtain a solution to the optimal 
control problem. Even though, using standard methods, the necessary conditions for 
the optimal price trajectories can be readily derived, there is no guarantee that a 
closed-form solution for the optimal price trajectories or even a meaningful inter- 
pretation of the necessary conditions for optimality can be obtained. Although it is 
possible to numerically “solve” the necessary conditions for the optimal (price) 
trajectories (see, e.g., [34]) we chose to derive such trajectories from the model, 
using a direct, numerical solution approach. 

Our solution approach consisted of specifying a finite number of points in time 
at which the price functions were allowed to change. The problem became one of 
obtaining a finite number of values for the control functions at specific epochs, to 
maximize the objective function. This problem, in general, is a nonlinear optimization 
problem [ 181. 

Even though we do not have a closed-form expression for the objective function, 
for each set of proposed controls we can numerically solve for the behavior of the 
system through time by solving the differential equations that constitute the model. 
Then the performance measure can be readily computed. 

To obtain the vector of optimal prices that maximizes the objective function, 
a numerical optimization routine was linked to the dynamic model to search the 
space generated by all possible combinations of control values at the specified times. 
This solution method is described in [l]. 
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We used the Generalized Reduced Gradient (GRG) method to solve the non- 
linear optimization problem. GRG has been used successfully to solve optimal 
control problems of the type considered in this paper [ 11. Besides, a current version 
of the algorithm, GRG2 [20], is embedded in the "Solver" component of the Microsoft 
EXCEL spreadsheet software [37]. 

The GRG algorithm is a nonlinear extension of the simplex method for linear 
programming. Succinctly, the GRG algorithm solves nonlinear constrained optimi- 
zation problems by systematically searching the feasible region for the optimal 
solution. At each step, the GRG algorithm uses the binding constraints to solve for 
n variables, (called basic variables), in terms of the remaining (m-n) variables 
(called nonbasic variables), reducing the dimensionality of the problem. T3e algorithm 
then moves to a new solution point in the direction of the gradient for the reduced 
problem, which improves the value of the objective function. These steps are repeated 
at subsequent candidate solution points until an optimum solution is identified. For 
details of the GRG algorithm, the reader is referred to Lasdon, Waren, Jain, and 
Ratner [20]. 

In deriving the optimal trajectories for price using this technique, equations (1) 
to (6) that comprise the model were numerically solved. The differential equations 
(3) and (4) were numerically integrated using the Euler method [23] to yield the 
time paths of the state variables X, and Yr. For the numerical integration, a time step 
of 0.1 years was used. This value was chosen to ensure the stability of the Euler 
method. Costs for different levels of quality were obtained by fitting a Lagrange 
interpolation polynomial [35] to the assumed quality-percentage change in cost, 
(qi, ACi), values in Table 1. The expression for the interpolating polynomial is: 

jti 

where AC(q) represents the increase in unit cost as a function of quality. 
The numerical solution was carried out in an EXCEL worksheet. The values 

for price, one of the two control variables in the model, were specified for epochs 
6 months apart; linear interpolation was used to join the semiannual prices into a 
continuous control function. The performance measure was the discounted profit at 
various terminal times, using a discount rate of 7%. 

The nonlinear optimization algorithm GRG2, iteratively varied the price vector 
to maximize total discounted profit. In essence, the Euler solution of the differential 
equations behaved as an implicit nonlinear function connecting a vector of prices 
(indexed by time) to total discounted profit at the terminal target time (a scalar). 
The nonlinear routine was used to maximize this implicit function. 

The interaction between GRG2 and the dynamic model whose performance we 
sought to optimize is illustrated in Figure 2. As shown, linear interpolation was 
performed on the price vectors from GRG2, which contained values for price at 
specified epochs to create a price trajectory. Using the price trajectory thus derived, 
specified values for the parameters and the quality function, the NGM model was 
numerically solved using Euler integration and total discounted profit at terminal 



Fi
gu

re
 2

: 
In

te
ra

ct
io

n 
be

tw
ee

n 
N
G
M
 m

od
el

 a
nd

 G
R

G
2 

al
go

rit
hm

 f
or

 o
pt

im
al

 c
on

tro
l. 

W
 

W
 

m
 

N
G

M
 

P
er

fo
rm

 L
in

ea
r 

In
te

rp
ol

at
io

n 
on

 P
ri

ce
 

I
 

1 

ve
& 

to
 C

re
at

e 

PR
Ic

E
(1

) 
1 

E
 I0

.T
) 

S
ta

rt
 a

1 
tim

e 
0 

A
dv

an
ce

 ti
n
n
 d

e
p

 dt
 

co
m

p
u

h
 v

al
rn

S
 fo

r 
st

at
e 

In
te

gr
at

io
n 

va
ri

ab
le

s 
at 

tim
e 

t 

re
ac

he
d 

v
a

fb
b

k
s

 (X
 a

nd
 Y

) 
.t
 ti

m
e 

t 
us

in
g 

E
u

k
r 

C
o

m
p

u
u

 v
al

ue
s 

fo
r m

a
in

in
g

 

R
ep

ea
l u

n
til

 te
rm

in
al

 ti
m

e 
T

 is
 

P
R

O
F

IT
0 

1 
-1-1 

PR
IC

E(
i),

 1
 =

 O,
OJ.
l,l
.S,
,T 



Narasimhan, Mendee, and Ghosh 399 

time n(7'j was computed. Total profit was fed back to GRG2, which generated 
another vector of prices. The process was repeated until the GRG2 convergence 
criteria were met. In our computations, the operating and convergence parameters 
of the GRG2 algorithm were left at the default values set in the Microsoft Excel 
Solver implementation. 

SCENARIO ANALYSES 
Given a profit maximization objective, the research questions of interest were: 

1. Is the optimal price trajectory influenced by the average life of a product? 
If yes, what is the nature of this relationship? 

How does the optimal price trajectory behave in the presence of continuous 
quality improvements? 

Does the optimal price trajectory depend on the persistence of quality 
perceptions? If yes, what is the nature of this relationship? 

Does the qualitative nature of these relationships change when a short 
planning horizon versus a long planning horizon is considered? 

The motivation for these research questions stems from the importance of the 
pricing decision to the competitiveness of the firm. We examine the case of a durable 
goods producer who is increasing product quality over time (quality disimprovements 
are not considered in our model) and must set prices to maximize profits. However, 
it is to be noted that quality is a control variable. Since our primary focus is on the 
optimal pricing decision, we do not seek optimal trajectories for quality under the 
various scenarios considered in deriving optimal solutions using the model. The 
specification of a linear trajectory for quality over time captures the spirit of continuous 
quality improvement without being unduly restrictive. 

As a firm increases quality, it is not obvious what pricing strategy is optimal 
[29]. For example, price increases in view of quality improvements may be appropriate 
under certain conditions (such as pursuing niche markets with premium products). 
Prices can also be lowered, if the objective is to maximize value to the customer 
and to achieve rapid market penetration. Similarly, it is not obvious whether prices 
should be increased as the durability of a product is increased. It is also important 
to understand the relationship between the speed of diffusion of quality improve- 
ments and optimal prices. The optimal price trajectory and the resulting profits often 
determine the amount that can be spent on advertising and promotion. This relation- 
ship is somewhat complex in that advertising and promotion can be used to increase 
the persistence effect of quality improvements. The research questions were in- 
tended to shed some light on these issues and to generate insights about the behavior 
of optimal prices. 

Several scenario analyses were done to address the research questions of interest 
by varying the parameters in the model and assessing their effect on the optimal 
price trajectories. The parameters that were varied in the scenario analyses were 
D1-the average life of the product, D2-the persistence effect of quality improve- 
ments (i.e., the average length of time that the quality of a unit continues to affect 
sales by influencing customer perception of quality), and the demand elasticity of 

2. 

3. 

4. 
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the product. The parameter for demand elasticity was set at 0.7 and 1.3 to represent 
price-inelastic demand and price-elastic demand, respectively. Although the model 
does not explicitly incorporate competition, the effect of competition on the ability 
of a firm to set prices is indirectly captured through the price elasticity of demand 
[30]. We acknowledge that price elasticity of demand could vary over the life of a product. 
However, we have chosen to use these parameter values in the sense of averages 
corresponding to price-inelastic and price-elastic demand cases. It is to be noted that 
the constant demand elasticity value of 1.3 was used to validate the NGM model. 
Also, to study the impact of a short-term versus a long-term orientation on optimal 
price trajectories. the length of the planning horizon was varied in the scenario analyses. 
All possible combinations of the following parameter levels were investigated: 

Average life of product (Dl): 

Planning horizon (7): OSxD1,2xDl years, 

Quality persistence (02): 

Demand elasticity (e): 

3, 5 ,  and 10 years, 

0.25xD1,0.5xD1, 0.75xD1 years, and 

0.7 (inelastic), 1.3 (elastic). 

In total, 36 optimal control problems were solved to derive the optimal price trajectories. 
The parameter Q and the initial values for the state variables (Xo and Yo) were set 
at the values estimated in [28]. The parameter a was not altered in the scenario 
analyses (a is a measure of the speed at which a product diffuses through a population). 
There are no external sources of data that can provide values for this parameter, so 
it has to be estimated within the model from historical data. The variation of a 
would not provide any managerial insight because there are no measures that link 
this parameter with interpretable market conditions. We tested the sensitivity of the 
optimal price trajectories to variations in a. The optimal price trajectories were 
essentially unchanged for a 50% change in the values of a. As indicated before, the 
cost function was modeled as a nonlinear function of the current quality level of the 
products. Other factors that can affect the cost function, such as economies or 
diseconomies of scale or learning effects, were not included in the formulation to 
keep the analysis sharply focused on issues of interest in this research. 

In our research, we treat the composite measure of quality as an index between 
0 and 1, 1 being the maximum attainable level of quality. This is consistent with 
the formulation in [28]. In all the scenarios, quality increases linearly from a “low” 
level (0.25) at time 0, to a maximum level of 1 at terminal time T. Since T is varied 
in the numerical computations, implicitly, the rapidity of quality improvements is 
also vaned in the various scenarios considered (that is, scenarios with lower values 
of T correspond to more rapid quality improvements than those with higher values 
of 7). Table 2 shows the parameter values used in solving the optimization problems. 

DISCUSSION OF RESULTS 

The results of the scenario analyses (optimal hajectories) are shown in Figures 3 and 4. 

Price Elastic Demand; Average Life of Product, 01-10 
Comparing scenarios 3f-A and 3e-A where DUD1=0.75, it can be seen that for the 
case T=20 (corresponding to a longer time horizon), price increases initially and 
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Table 2: Numerical values used in optimization runs. 

Parameters 
a 
e 
D1 
0 2  
T 
MO 
PO 
r 

Values 
0.00124 [units-years]-’ 
0.7, 1.3 
3,5, 10 years 
0.2501,0.5Dl, 0.7501 
OSD1,201 
2.4 million units 
$2,000 
0.07 

Control 
Variables ’kajectories 

p,  Optimal trajectories 
41 Respecified trajectory (Linearly increasing 

from 0.25 at t=O to 1 at f=T) 

State Variables Initial Values 
YO 329.64 unitslyear 
XO 248.33 unitslyear 

then decreases by the terminal time to 2,200, which is lower than the initial price 
of 3,300. For the case T=5 (corresponding to a shorter planning horizon), price 
declines from approximately 3,450 to 2,100 by the terminal time. A comparison of 
scenarios 3f-B and 3e-B, where 02/01=0.50, shows that qualitative behavior of the 
optimal price trajectories for these two cases is similar te that of the previous two 
cases for the planning horizons. However, even though initial and terminal optimal 
prices are approximately the same as in scenarios 3f-A and 3e-A, the transition 
prices are lower for these two cases. Comparison of scenarios 3f-C and 3e-C, where 
02/01 = 0.25, shows that prices decline throughout the planning horizon, and the 
transition prices are lower than those in the previous scenarios. The following 
observations can be made about the behavior of optimal price trajectories: 

0 Regardless of the magnitude of the ratio 02/01, optimal prices generally 
decline over the planning horizon (Lee, the optimal terminal prices are con- 
sistently lower than the optimal initial prices). 

0 Optimal pricing decisions depend on the planning horizon. A longer term 
orientation leads to optimal price trajectories that call for an increase in price 
followed by decreases. As time elapses and quality improvements diffuse 
through the market, price is decreased to accelerate sales and to achieve 
market penetration through “value pricing.” This price behavior conforms 
to observations made by researchers in marketing and in the area of manu- 
facturing strategy. Hayes and Wheelwright [14] have discussed the switch 
from “quality sensitivity” to “price sensitivity” as a product moves through 
its life cycle. Hill [ 151 refers to the shift from quality as an order winner to 
an order qualifier over the product life cycle. 
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Figure 3: Optimal controls derived under elastic demand. 

a. D1=3 T=lS  

b. D1=3 T=6 

2500---- 

0 1 2 3 4 5 6 

c. D1-5 P2.5 

1 

0 0.5 1 1.5 2 2.5 
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Figure 3: (continued). 

d.D=5 -10 

ssoo 
saxl 

lsoo 

4om 

SYm 

so00 

2500 

2#r) 

1- 
0 1 2  3 4 5 8 7 8 0 10 

e.D1=10 PS 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

f. 01-10 P20 

0 2 4 6 8 10 12 14 18 18 20 

Dl = Average life of the product; 0 2  = Persistence of quality perceptions; elasticity = 1.3 
A: 0 2  = 0.7501 C: 0 2  = 0.2501 B: 0 2  = 0.5001 



404 Optimal Pricing for Durable Goods 

Figure 4: Optimal controls derived under inelastic demand. 
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Figure 4: (continued). 
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0 Optimal price trajectory depends on the 02 /01  ratio as well as the length 
of the planning horizon. Higher values for 02 ,  which correspond to longer 
duration over which quality diffusion effects persist, are associated with 
higher initial prices and higher transition prices during the expansionary 
phase of the product life cycle. This optimal price behavior is observed 
consistently in scenarios 3f-(A,B,C) and 3e-(A,B,C). 

0 When we examine shorter term horizon results in Figure 3e, rates of price 
increases and decreases are higher compared to the results in Figure 3f. 
Initial and terminal prices are about the same in Figures 3e and 3f. 

Price-Elastic Demand; Average Life of Product, D1=5 
Comparison of scenarios 3d-A, 3c-A, 3d-B, and 3c-B, corresponding to DUD1 
ratios of 0.75 and 0.50, and T values of 10 and 2.5 shows that optimal price 
trajectory declines throughout the planning horizon. The initial optimal price is 
dependent on the 02/01 ratio. The larger the value of the DUDl ratio, the higher 
the initial optimum prices (compare, for example, scenarios 3d-A and 3d-B). Corn- 
parison of scenarios 3d-C and 3c-C corresponding to a 02 /01  ratio of 0.25 shows 
that the optimal price trajectory declines from an optimum price initially followed 
by a slight increase in the latter stages in run 3c-C. The price increase observed in 
run 3c-C towards the end of the planning horizon is not seen in run 3d-C, corre- 
sponding to the longer planning horizon (T=lO years). The following observations 
can be made in reviewing the behavior of the optimal price trajectories: 

0 Optimal price behavior for m D 1 3 . 7 5  and 0.50 is different from the behavior 
corresponding to 01=10 for the same 02/01  ratios. Therefore, it can be 
inferred that the average life of the product (an aspect of quality that is 
influenced by product design, manufacturing quality and materials used) 
does affect the trajectory of optimal prices. The observed differences in 
optimal trajectories also reflect the influence that average life of the product 
has on the proportion of the market that is saturated at any given time. 

0 Although the optimal trajectories are similar for DUDl values of 0.75 and 
0.50, the behavior is different for the case when 02 /01  = 0.25. This further 
underscores the linkage between optimal prices and product quality. 

0 Optimal initial prices and price trajectories are related to the value of 0 2 .  
Higher values of 0 2  are consistently associated with higher initial prices. 

Price-Elastic Demand; Average Life of Product, D1=3 
Scenarios 3a-(A,B,C) and 3b-(A,B,C) correspond to this combination of parameter 
settings. Scenarios 3b-A, 3a-A, 3b-B, and 3a-B, corresponding to 02 /01  ratios 0.75 
and 0.50 indicate that optimal prices decline from an initial price throughout the 
time horizon. However, the optimal price behavior is markedly different when 
02/01  = 0.25 (compare 3a-C and 3b-C). For the shorter planning horizon, optimal 
price trajectory initially declines, reverses course and increases for the remainder of 
the planning horizon. For the longer planning horizon (3b-C), price declines initially 
and exhibits slight fluctuating behavior as the terminal time is approached. The 
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dependence of optimal prices on the ratio 02/01 and the value of 0 2  can be seen 
in these scenarios also. 

Price-Inelastic Demand; Average Life of Product, 01-10 

Scenarios 4f-(A,B,C) and 4e-(A,B,C) show the optimal price trajectories for a rela- 
tively inelastic product for DUD1 ratio values of 0.75, 0.50 and 0.25. The optimal 
price trajectories in scenarios 4f-A, &-A, 4f-B, and 4e-B differ from those corre- 
sponding to an elastic product. Optimal price trajectory increases from an initial 
price, attains a maximum and then decreases to an optimal terminal price that is less 
than the initial optimum price. The magnitude of the price increases relative to the 
initial prices are larger in these scenarios compared to similar scenarios for the 
higher elasticity case. In scenario 4e-C, corresponding to 02/01=0.25 for the shorter 
planning horizon (T=5), price decreases from the initial optimal price over the 
planning horizon. However, in scenario 4f-C, which corresponds to the same 02 /01  
ratio for the longer time horizon (T=20), optimal price increases for more than half 
of the planning horizon, which is very different from the corresponding elasticdemand 
case. The following observations can be made about the relationship of optimal price 
trajectory to the parameters in the model: 

0 Optimal price policies are related to the demand elasticity of the product, 
as shown by comparison of scenarios 3f-A and 4f-A. Relative inelasticity 
of demand affords an opportunity to charge higher prices immediately fol- 
lowing quality improvements, thus allowing faster recovery of investments 
made in quality improvements. 

0 Price increase is sharper when the 02/01  ratio is larger. For example, when 
02/01=0.75, price increases from 4400 to 7500 in 9.5 years (see run 4f-A) 
as compared to an increase from 4400 to 6700 in 9 years when DUD1=0.50 
(see run 4f-B). 

0 As observed previously for the case of high elasticity, there is interaction 
effect between 01, 02,  and the planning horizon. Comparing scenarios 
4f-A, 4e-A, 4f-B, and 4e-B, shows that higher values for 0 2  (corresponding 
to scenarios in which quality diffusion effect persists longer) are accompanied 
by generally higher prices regardless of the length of the planning horizon. 
These results underscore, as in previous scenarios, the relationship between 
quality and optimal price trajectories. 

Price-Inelastic Demand; Average Life of Product, D1-5 
Scenarios 4d-(A,B,C) and 4c-(A,B,C) corresponding to these parameter settings 
show a variety of optimal price behavior, When DUD1=0.75 and the planning 
horizon is long (run 4d-A), price behavior is concave. Price increases from 10800 
to 1 1800 and decreases for the remainder of the planning horizon. This differs from 
the optimal price trajectory under similar conditions for 01=10, in that the initial 
price is considerably higher, price increases relative to the initial price are lower 
and price increases are not sustained as long as in the 01=10 case, suggesting a 
strong influence from the average life of the product. Scenarios 4c-A and 4c-B for 
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a shorter time horizon, show that optimal price trajectory declines from an initial 
optimal price. Scenarios 4d-C and 4c-C corresponding to 02/D1=0.25 show that 
optimal prices should decrease at first and possibly increase during the planning 
horizon. In 4d-C, price declines after year 7. The length of time over which prices 
decline and the magnitude of the decline are related to the length of the planning 
horizon. The following observations can be made about the behavior of optimal 
price trajectories: 

0 Optimal prices depend on D1, 0 2 ,  and the length of the planning horizon. 
For higher values of 0 2 / 0 1 ,  higher prices are suggested. 

The duration over which prices decline (or increase) and the magnitude of 
the decrease (increase) are influenced by the planning horizon as well as 
0 2 ,  the length of time over which quality diffusion persists. 

Price-Inelastic Demand; Low Average Life, 0113 

Scenarios 4b(A,B,C) and 4a-(A,B,C) correspond to these parameter settings. Scenarios 
corresponding to DUD1 ratios of 0.75 and 0.50 indicate that the optimal prices 
generally decline over the planning horizon. Starting optimal prices are dependent 
on the value of 0 2  (16500 versus 13500 for scenarios 4b-A and 4b-B, corresponding 
to 0 2  values of 2.25 and 1.5,  respectively). As discussed in previous sections, when 
DUD1=0.25, optimal price behavior is markedly different from that observed in 
scenarios 4b-A, 4a-A, 4b-B, and 4a-B. When DUD1=0.25, price initially decreases 
and then increases for the remainder of the planning horizon. Table 3 shows the 
optimal profits attained under the different scenarios. 

DISCUSSION OF MANAGERIAL SIGNIFICANCE 

The previous sections have presented the results of solving the optimal control 
model for a number of scenarios by varying the parameters in the model. The results 
of analyzing the individual scenarios can be synthesized into the following conclusions: 

Optimal price trajectories are dependent on demand elasticity of the product, 
which coincided with our prior expectation. While it can be reasoned that when 
demand elasticity is high, price increases will be detrimental to sales and 
profits (and that there will be greater price flexibility when demand elas- 
ticity is low), the exact nature of the optimal price trajectories cannot be 
readily discerned. The numerical solutions not only show the behavior of the 
different optimal trajectories for the two cases (high versus low elasticity) 
but also the timing and magnitude of price increases and decreases. For 
both cases of demand elasticity, prices decline as well as increase depending 
on the values of the other parameters. Demand elasticity interacts with the 
average life of the product and the persistence effect of quality diffusion. 

The ratio of average life of product (01) to the persistence of quality 
diffusion parameter ( 0 2 )  seems to play an important role in the behavior 
of optimal price trajectories. Regardless of the elasticity of demand, there 
is an interaction effect (on optimal prices) between the length of planning 
horizon and the ratio of 0 2  to D 1 .  

1. 

2. 
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’lhble 3: Optimal discounted profits. 

Optimal Profit Optimal Profit 
Scenario (in billions of dollars) Scenario (in billions of dollars) 

3a-A 
3a-B 
3a-C 
3b-A 
3b-B 
3b-C 
3 ~ - A  
3 ~ - B  
3c-c 
3d-A 
3d-B 
3d-C 
3e-A 
3e-B 
3e-C 
3f-A 
3f-B 
3f-c 

3.47 
2.55 
1.23 
7.86 
6.32 
3.66 
4.24 
3.54 
2.27 
7.47 
6.58 
4.65 
2.87 
2.60 
2.05 
4.18 
3.93 
3.30 

4a-A 
4a-B 
4a-C 
4b-A 
4b-B 
4b-C 
4 ~ - A  
4C-B 
4C-C 
4d- A 
4d-B 
4d-C 
4e-A 
4e-B 
4 - C  
4f-A 
4f-B 
4f-c 

6.37 
4.40 
1.83 

16.04 
11.55 
5.21 
7.06 
5.65 
3.19 

14.96 
12.36 
7.45 
3.53 
3.16 
2.34 
7.20 
6.60 
5.14 

~~ _ _ _ _ _ _ ~ ~  ~ 

Note: Comparisons of optimal profits in the table should be made in the light of different 
product durabilities (Dl), quality persistence (02), and discounting effects. 

To interpret this result managerially, Dl and 0 2  need to be viewed more 
conceptually, rather than as delay parameters in the model; 01 ,  which corresponds 
to the average life of the product, can be construed to represent the effect of product 
design, quality of materials used and the effectiveness of manufacturing processes. 
Although these aspects were not explicitly considered in the model, the level of 
aggregation represented by the parameter Dl reflects such an interpretation. 02 ,  
which captures the persistence effect of quality improvements is (can be) influenced 
by a firm’s marketing, sales, and promotion efforts. That is, through its marketing efforts 
(aimed at creating brand loyalty and image), a firm can influence the “quality life” 
of a product. Intensive efforts in this regard extend the quality life of a product (i.e., 
increase M and prolong positive perception of the product in the minds of customers). 

When interpreted in this manner, this result suggests that when engineered 
product quality is high (high 01 )  and the product is not heavily promoted (low 02)  
so that 02/01 is low, the optimal price strategy is to price the product aggressively 
and let the diffusion effect of quality take hold before raising prices in the wake of 
quality improvements. This insight regarding the interaction of D1,02 and optimal 
pricing is interesting from a theoretical as well as practical perspective. 

The average life of a product affects the optimal price trajectories in important 
ways. In general, higher values for Dl support higher initial optimal 
prices, thus suggesting a strong dependence between “quality” and pricing 
decisions. 

3. 
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4. The persistence effect of quality has an influence on optimal pricing 
trajectories. The higher the value of 0 2  in the scenarios, the higher the 
prices (initial prices, price increases, etc.). The value of this parameter can 
be influenced by advertising and promotion. The model characterizes the 
optimal pricing strategies to follow when such a tactic is pursued. 

Conclusions 3 and 4 above indicate that there is a relationship between 
pricing decision and product quality. In the marketing literature (see, e.g., 
[13]), correlational analysis of price-quality data has been used to assert 
that the relationship between price and quality may be weak. The optimal 
trajectories for price, derived in this paper, when viewed in conjunction 
with the quality trajectory suggest that there is a relationship between 
price and quality. One possible explanation for this difference in results 
is that empirical data analyses (using cross-sectional data) have attempted 
to correlate quality with actual prices, not necessarily optimal prices. The 
results based on our model affirm the conclusions reached by Rao and 
Monroe [32] and Dodds, Monroe, and Grewal [9]. A dynamic model of 
the type analyzed in this paper is better at capturing the intricacies of the 
dynamic, nonlinear relationships between quality and price, and therefore 
is useful for generating insights. 

The results also suggest that important interrelationships exist between 
pricing, positioning and promotion decisions, and manufacturing quality. 
Better understanding of this interrelationship will enable a firm to adopt 
appropriate pricing strategies to maximize its profit in the short or the long term. 

5 .  

6. 

SUMMARY 
This paper investigated the optimal pricing decision in the presence of continuous 
quality improvements for a profit-maximizing firm. A dynamic (optimal control) 
model incorporating demand elasticity, life of a product, and diffusion effect of 
quality improvements was solved numerically using the generalized gradient proce- 
dure to derive optimal price trajectories. The solutions show that important linkages 
exist among optimal prices, average life of the product, and the persistence effect of 
quality perception. The results affirm some ideas from existing literature and suggest 
that there is a relationship between quality and price. The results also suggest that 
a more careful consideration of quality aspects in pricing and promotion decisions 
is warranted. For example, it is possible to have carryover effects of quality on a 
product line. The model presented in this paper does this by explicitly incorporating 
the parameters D1 and 0 2  on optimal pricing. The case M>D1 would correspond 
to the situation where the quality perception exceeds the average life of the product. 

The model discussed in this paper does not explicitly address the implications 
of rapidity of quality improvements on optimal price trajectories, which is a limitation. 
This aspect of the model merits further investigation. Also, investigation of the effect 
of possible changes in the demand elasticity over the life of a product merits further 
consideration. [Received: February 27, 1995. Accepted: December 14, 1 W5.1 
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