THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY

A PARADIGM FOR TOP-DOWN
DFSIGN WITH PACKAGES
VYaclav Rajlich

CRL-TR-31-83

NOVEMBER 1983

Room 1079, Kast Engineering Building
Ann Arbor, Michigan 48109 '
USA

Tel: (313) 763-8000

A Paradigm for Top-down Design with Packages.

Vaclav Rajlich
Department of Computer and Communication Science
University of Michigan
Ann Arbor, MI 48109

1. Introduction.

Fackages (sometimes also called modules) are generally
recognized as an important featuwre of the new programming
languages [1,6,131., If properly used, they allow a program to be
split into manageable pieces which can be individually designed,
coded, and tested. They allow cooperation of several programmers
on o one software project. If they are powerfull and general
gnough, they extend the language by new constructs and hence they
aitend an applicability of the language. They are also intended
to play a role of reusable parts for future programs.

These and other benefits were the reasons why packages or
modules were included into ADA and other programming languages.
The basic idea of the packages is information hiding [71. Each
package implements several objects like procedures, data
structures, data types, etc. It is connected to the rest of the
program through the so-called specification (in other languages
also called interfece’). The specification lists all objects
(procedures, functions, types, variables, etc.) which are defined
in the body of the package and are available to the outside
program. However the definitions themselves are invisible to the
outside. Hence the implementation details and related
complexities remain hidden inside the package.

During the proce of program design, the role of the
designer is to develop the specifications of the packages.
A1l the beneficial reasons for using packages will materialize
only when the packages are designed in a very careful manner. The
prperience shows that the difference between well-designed and
poorly-designed packages may have an enormous influence on the
sive, effectiveness, and the cost of the resulting program.

It was argued that the d

ign of the "right" packages is an
prtremely difficult art, particularly in the situation when the
design is based mainly on designer’s intuwition. The designer has
o forsee how his specifications are going to be i1mplemented,
which may be a formidable intelectual task. In fact, he is
regquired to think far ahead, with all accompanving risks of
omissions and unforseen circumstances.

It i= ow opinion that the succesfull paradigms have to
offer very detailled design steps, and the steps should be
ndependent of each other as much as possible. Also the paradigm
should provide a rigorows methodology which will offer the
firm guidance to the designer. When the designer mastered the
detalled and rvigorous process of the design, he can alwavs
return back to less rigorous and less detailed methodology, with
the rigorouws methodology in the background. Among the methods
currently in the circulation, the designer has to choose either
the principle of information hiding (as an example, see [21), or

the rigor (as an example, see [35,11,141), but not both. Aan
overview of the currently used methodologies appears in [41.

The paradigm explained here is an extension of the stepwise
retinement T121. Stepwise refinement provides the most universal
paradigm for program design, and it was chosen as the basis for
the methodology of this paper. It was extended to include the
principle of the information hiding, and hence to cover the
design with packages. In particular, the "scope" is the basic
unit of the design, rather than a procedure of [121. Another
important difference is the higher level of rigor as compared to
(121. In particular, we included the steps of completion and
abstraction, and a thorough treatment of parameters (called
"tfirst and second reason for parameters").

The paradigm explained here has one important element of
style: All variables are local in the resulting packages, i.e.
they never appear as a part of a specification. The packages
communicate via procedure calls and types only. This style is the
most elegant style of modular decomposition of the systems, and
it was widely advocated in the literaturel13]. Also the resulting

packages avoid nesting of procedures, which again was criticized
in the literature [3,81.

The paper consists of four chapters. Chapter 2 contains the
description of the methodology. It describes the basic steps of
definition, decomposition, completion, and abstraction, on which
the methodology is based. The two reasons for procedure
parameters are introduced. Chapter 2 contains an example of the
design in ADA-like design language. Chapter 4 contains some
thoughts on conversion of the designs into programs. Chapter 5
contains a criticism of some ADA constructs from the point of
view of the paradigm.

During the program design, the program consists of two
parts: existing part., which is the part already finished (and
possibly stored in the computer), and intended part, which
consists of everything what has not been done yet [10]. The role
of a step of the design methodology is to add to the existing
part, and to subtract from the intended part.

There is an interface between the two parts of the program,
which will be called backlog interface. It rconsists of the

ctiisots which have already been used in the existing part, but
sal o wer 2onet defined. These obhects will be called unfinished
Trmy aros
‘ Ceacedires fancts o e o h have e alled but whose
v oo e aeen def tned

(I Pyrms Wb gk oate oo s g antd bt have not o

defined
(ii1) Variables whose names have been introduced but their
tvpes have not been declared.

The uwunfinished objects are interrelated by the following
relations:

(i) Relations "read", ‘"write", and ‘'"readwrite" between
variables and procedures/functions

(ii) FRelations "in", "out", and "in out" between unfinished
tvpes and procedures/fuctions. This relation describes the mode
anc type of formal parameters of procedures/functions.

vamples of backlog interfaces are in Fig. 2 and Fig. 2. In
the figures, the procedures/functions are denoted by rectangles,
the variables are denoted by ovals, and the types are denoted by
diamonds. Relations are denoted by arrows pointing in the
direction of the information flow. Frocedures, functions, and
types also contain the names of all packages in which they were
used.

Scope of variable or type V is the set ot all
procedures/functions related to V. Scope of a procedure F is the
procedure itself.

The methodology of this paper is based on the following
steps:

(i) definition

(ii) decomposition and completion

(iii) abstraction.

Each of these steps removes certain objects from the backlog
interface and may add new ones to it. Each of them also adds one
package to the existing part of the program. The steps are
described in the following way:

(1) Definition.

Definition is a step in which we define one or several
unfinished objects in terms of the primitives of the programming
lLanguage. If the object 1s & procedure, we will define its body.
I+ 1t is a variable, we will give ite type. If it is a tyvpe, we
will define its representation. These objects are then removed
from the backlog interface.

An important property of definition is that the smallest
unit of definition is a scope. Every definition step means that
one or several scopes are defined at once.

A procedure can be fully defined only if all related objects
(variables, types) are defined in the same step. If procedure F
is related to variables VY1, V2, ..., V¥Yn, and to types T1, TZ,
same step, then procedure F can be fully defined. It one or more
variables and/or types remain undefined, then procedure F can be
deftined only partially. It’'s body will have to contain calls of
new unfinished procedures F1, 2, wwas Pk which will be related
to the variables/types which remained undefined.

An important rule is the rule which we will call first
reason for parameters. It is explained in the following way: Let

F be a procedure which is related to variables Vi, 29 weea Yn
where variables V1, Le wewa Vm were defined, variables Vim+1),

detined with new unfinished procedure F1 being called in its
body. The procedure F1 will have actual parameters V1, V2,
Vm, 1.e. the body of F will be
procedure Fl is
begin

FLOVEI, V2, ooy VM)
end F1j
The rule can be justified by the following reasoning: Each
definition step produces a package. As remarked earlier, we allow
the communication between packages through procedure parameters
only, disallowing direct accessibility of data. Frocedure F1 may
inherit all relationships of the original procedure P, i.e. it

may be related to all variables VI, 2y weea¥Yn. However the
detinitions of these variables will be spread over at least two
packages: The current package where V1, 2y vevaVm are defined,

and some future packages where both F1 and some of the variables
Vim+l)y wuws Vn will be defined. Then there is the need for the
parameters FI1(V1, V2, ...,Vm). As an example of a step where
tirst reason for parameters was applied, see package DEFINE D of
Sectin 3.

(ii) Decomposition and completion,

Decomposition and completion is another step of the
methodology. In it, we decompose an unfinished object A into
several smaller unfinished objects Al, A2, ..., An. If object A
is & variable, type, and procedure, then objects Al, AZ, ..., AN
will also be variables, types, and procedures, respectively.
Moreover if A was related to B, then a nonempty subset of Al, AZ,

The step of decomposition is usually started with a
decomposition of a variable or a type. Then the related
procedures/functions are decomposed. Then the completion follows.

In the substep of completion, we inspect all new unfinished
obyects and try to determine whether they can function correctly
or whether they need to be related to some additional objects.
There are two situations which require introduction of new
chjects: First, two procedures may need to communicate with each
other, and hence there is a need for a new variable which will
-acilitate this communication. Second, variables may need an
inttializing procedures which will set the initial values. None
at these new objects were introduced by decomposition. hence we
have to have the special substep of completion. An existing part
ot the program is complete when no new objects can be introduced
by the process of completion, i.e. all communications among

proceduwres have been served by appropriate variables, and all
variables have been properly initialized.

The step of decomposition and completion again produces a
paclkage.

(ii1) Abstraction,

Abstr ion is a special case of definition in which a
variable V is declared to be of type T, where T is an unfinished
type. As in every definition, the whole scope of variable V has
to be defined. If V is read by procedure F, then the body of F
will call a new unfinished procedure F1(Viin T). This action will
be called

The purpose of abstraction step is to replace several
similar unfinished variables by one type, and similar unfinished
procedures by one more abstract procedure. The reason is
economical : backlog interface will be simplified, because several
variables and procedures will be replaced by a smaller number of
newly introduced types and procedures, respectively.

As shown in the example of the next section, the procedures
or functions may acquire several parameters either through first
o second reason or both. Hence if we have procadure
FOVLL,VE, .o .Vn) which aready has several parameters and it is
in scope of a variable W which is being defined, then its body
will contain a call of procedure FL(VL,V2,....Vn,W).

When packages are produced by these steps, then the
resulting program consists of packages organized by the
relationship of procedure calls into a directed acyclic graph. In
Lel, this relationship was called the relationship of
"seniority”. The resulting program consist of several lavers of
virtual machines, where the formerly defined backlog interfaces
have become the virtual machines.

The design methodology desribed by these steps is directly
applicable to all module or package—oriented programming
Fanguages, including new modular languages like ADA, Modula-2, or
MESA [1,6,131. In the next section, the methodology will be
explained on an example, uwsing an ADA-like language for the
demonstration.

In this section, we shall illustrate the paradigm on the
following geometrical problem:

Find the intersection of two lines LN1 and LN2, and find two
points A, B on line LNl with distance 1.0 from the intersection,
see Fig. 1.

7

N2

A X B

L1

Fig. 1

The problem will be solved in this section with the use of
an ADA-like design language. It should be immediatelly
understandable to anvone familiar with ADA or any other package
or module-oriented higher—-level language. The "used in" clause
precedes every package definition. It consists of an executable
part which 1s almost identical to ADA, and a graphical part which
describes backlog interface. The main difference with ADA is the
oecurance of "used in' clause preceding each package. The clause
lists all packages which use the objects of the given package.

As the start, the whole problem is solved as a call of one
procedure:

procedure MAIN is
begin
MAINT
end;

The procedure MAINL is decomposed in the following way:

used in MAIN;
package DECOMFOSE MAINIL is
procedure MAINIL;
end DECOMFOSE _MAINI;
package body DECOMFOSE MAINL 1s
procedure MAINI is
begin
READ LIN1j
READ 1L.N2
READ_D;
INTERSECTIONS
FIND FTS;
WRITE g
WRITE Ej
end MAINIL;
encd DECOMFOSE MAINIL;

In this text, READ LNI1, READ _LN2Z, and READ D read input data
for lines LN1, LNZ, and distande D, respectively. Frocedure
INTERSECTION Finds the intersection of LNI and LN2. Frocedure
FIND FTS finds points A and B, and procedures WRITE_A and WRITE_E
print them out. "Used in" clause indicates that procedure MAINI
is called in subprogram MAIN.

In the subsequent completion, we will introduce variables
LN1, LN2, D, X, A, and B, which will facilitate the communication
between the procedures. Their role is the same as in Figure 2.
They will not appear as a part of the executable program, but
will become a part of backlog interface of Fig.Z2.

‘LF\EAD__LNi © in DECOMPOSE_MAIN1 {-~=-- = ,}[,\Tﬁ
[Reo_Lz in secowosewerni| finz)
,[READ”D ~ in DECOMFOSE_MAINI P Dy
\INTERSECTION in DECOMPOSE_MAINI ‘i» R X)
E’F‘INDMF-TS " in DECOMFOSE mAINL &= A
[WRITE_LA in DECOMPOSE_MAINL - Y B)
[WRTTE_E ™ in DECOMPOSE MAINI =

1

Fig. 2.

Note that backlog interface contains some additional
information which does not appear in the previous package, like
names of the variables, their relationship to procedures, etc.

Next step is definition of D, which will produce the
following package:
used in DECOMFOSE _MAINI
package DEFINE D is
procedure READ_Dj;
procedure FIND_FTS;
end DEFINE_D;
package body DEFINE _Dj
D:float;
procedure READ_D is
begin
put ("Enter the distance:");
get (D) ;
end READ_D;
procedure FIND FTS 1s
begin
FIND FTS(D);

end DEFINE_D;
In this step, we defined variable D and procedures READ_D,

-FINDWPTS of its scope. In case of procedure READ_D, we were able
to define the body of the procedure completely using the standard

9

constructs of the underlying language ADA. In case of procedure
FIND_FTS, observe that the procedure is in scope of several
variables: D, LN, A, B. Only one of these variables is being
defined in this step. hence the body of the procedure must
contain a call to a subprocedure with actual parameter D,
following the first reason for parameters. Ry a coincidence, the
call of the subprocedure is the only statement of the body of
FIND_FTS. The subprocedure was named FIND_FTS(D:in float), i.e.
it reuses the name of the original procedure, which is allowed by
the principle of overloading in ADA. "Used in" clause indicates
where the procedures of the package are called. Note that the
information in backlog interface of Fig. 2 was useful for both
determining the scope of D and determining the "used in" clause.
New backlog interface is in Fig. 3.

[READ_LNL in bECUMF-OSEmMéINi . ;,fm,
'READ_LNZ “ in DECOMPOSE_MAINI { /}LNE
[INTERSECTION in DECOMFOSE_MAIN1 \ﬁ-- X
[’#iﬂﬁ:rﬂT"éf(6‘:.1r{ float) in bEéi:'?INE;P ;J' | " A
{}»RITE_A in DECOMFOSE_MAINI ,""““" o :N'gff}
WRITEB in DE:CDMF'DSE:@'# N1 =

Fig. =.

10

observe that

Next step is a step of abstraction. We
be

variables LN1 and LN2 are of the same type, and hence can
defined in the following package:

used in DECOMFOSE_MAINI;
package ARSTRACT LN is
procedure READWLng
procedure READ_LNZj
procedure INTERSECTION;
procedure FIND_FTS(D:in float);
end ABSTRACT_LN;
package body ABSTRACT LN is
LNL,LNZ:2LN;
procedure READ_LNIL is
begin
READ_LN(LN1) ;
end READ_LNI1;
procedure READ_LNZ is
begin
READ LN (LN2) 3
end READ LNh.
procedure INTERSECTION;
begin
INTERSECTIONCLNL LNZ) 3
end INTERSECTION;
proceduwe FIND FTS(Diin float) is
begin
FIND FTS{(D,LN1);

end ABRSTRACT_LN;
Note that in this step, the second reason for parameters was

applied in definition of all procedures of the package body. New
undefined type LN appears in the current backlog interface of

Fig.4.
|READ_LN(LN1: sout LN) in ABSTRACT_LN r—-><]§w:;*;é;;ﬁ;6¥“LN ’
|INTERSECTION(LN1,LNZ3in LN) in ABSTRACT. LN?r —/ii'"' f;35 i
TFINDuPTS(DEiﬁufloét;LNi:in LN) in ABSThACT LNSQ“Jrrwfi A
‘WRITE_A in DECOMPOSE_MAIN1 ‘(; . >{E
WRITE_B in DECOMPOSE MAINI =~

Fig. 4.

11

Next step is again a step of abstraction, in which points A,
B, and X are declared to be of the same type. In the step, all
procedures of scopes of A, B, and X are also defined:

used in DECOMFOSE_MAIN1, ABSTRACT _LNj

package ABSTRACT_FT is
procedure INTERSECTION(LN1,LNZ:in LN);
procedure FIND_FTS(D:in floatiLNlzin LN)j
procedure WRITE_Aj
procedure WRITE _E;

end ABSTRACT_FT;

package body ABSTRACT FT is

X.AB:FT;
procedure INTERSECTION(LNI,LNZ:in LN) 1is
begin

INTERSECTION(LNL, LNZ,X) 3
end INTERSECTION;
procedure FIND FTS5(D:in floatjLNizin LNjA,Bzout PT);
begin
FIND FTS(D,LN1,X,A,R);
end FIND_FTS;
procedure WRITE_Aj
begin
WRITE _FT(A);
end WRITE_Aj
procedure WRITE E;
begin
WRITE_FT(E) 3
end WRITE_E:
end ARBSTRACT_FTs

The new backlog interface is in Fig. S.

READ_LN(LN1zout LN) in ABSTRACT_LN b >N in ABSTRACT LN, ™,

v ’H\\ ABSTRACT FT
s

[INTERSECTION(LN1,LNZ:in LNsXzout PT) in ABSTRACTMPTbx<f

E‘INE)WFTS (D:in Hoat;LN 1rin LN;jX:zin FT3A,Biout FT) ff \
in AESTRACT_PT \
WRITE_PT(Azin FT) in ABSTRACT_FT £- .PT in ABSTRACT FT

Fig. 5.

i
al

In the last step, we will define both PT and LN. An
alternative option would be to define only one of them and
postpone the definition of the other to the following step. We
will give only specifications here;y The body of the package is
left to the reader.

used in ABSTRACT LN, ABSTRACT FT;
package DEFINE_ALL is
type LN is private;
type PT is privates;
procedure READ_LN((LNl:out LN);
procedure INTERSECTION(LNLI,LNZ:in LN3X:out FT)q
A,B:out FTy
procedure WRITE FT(Azin FT);
private;
type LN is record
end record;
type PT is record
XaYrfloat;
end records;
end DEFINE_ALL;

4. Conversion of designs into programs.

The paradigm explained in the previous two sections offers a
rigorous method of program design. It is obvious that the designs
are already very close to the future programs. In fact, there are
only two deficiencies which have to be removed:

(i) The packages are very small.

(ii) The packages contain "used in" clauses which do not
have any counterpart in ADA.

The first deficiency is removed by merging several steps of
the methodology into one so that a reasonably sized packages are
achieved. This is done by a textual processing of the design of
in the following way: Suppose that we have two design packages A
and B which we want to merge together, then we will macroexpand
bodies of procedures and definitions of types of B in places of
procedure calls and variable declarations in A, respectively.
Moreover we will copy variable declarations and "used in" clauses
from both & and B into the resulting package.

To remove the second deficiency, note that fYused in"
relationship is an inverse relationship to the combination of
"with" and "use" clause of ADA. Hence if we have two packages F
and R which are related in the design in the following way:

used 1n ...
package F;

end F;

used 1n FPyo..s
package R;

end F;

then replacing "used in" by a combination of "with" and ‘“use"
will give us

with Ryoaws use Ry ..ou3
package F;

end F;

with ...3 use ...;
package R;

end K;

Let us demonstrate the process of conversion on the design
from the previous section. As the first step, we may merge
procedure MAIN with packages DECOMFOSE_MAINI and DEFINE D to
produce one compilatiion unit called NEW_MAIN. Similarly packages
ABSTRACT LN and ABSTRACT_FT may be merged into one package
ABSTRACT. Then we will replace "used in" clauses by "with" and
"use" clauses. The resulting program in ADA is the following one:

with ABSTRACT: use ABSTRACT;
procedure NEW_ MAIN ig
D:float;
begin
READ LN1j
READ LMZ;
get (D) ;
INTERSBECTIOM;
FIND FTS(D) g
WRITE A:
WRITE E;
end NEW _MAIN;

14

with DEFINE AlL: use DUFINE AL
package ABSTRACT is
procedure READ LN1j
procedure READ LMNZ:
procedure INTERSECTION;
procedure FIND PTSDin tloat);
procedure WL :
procedure WRITE
end ARSTRACT:
package body ARBSTRACT isg
LML L LNZ2 2N
XA BTy
procedure RiEAD LNL 1s
begin
READ LM ONL g
A LN

end REA
procedure READ LND 14
begin
FEAD LM LMEY 5
end READ LM,
procedure INTERSECTION is
begin

ERGECTTUN CLNL , LNE, XD
TION;
procedure FIND FTSDrin float) is
begin
FIND _FTHD, LML, AGE)
end FIND_FTS;
procedure WRITE & 1s
bheqgin
WRTTE F1{M);
end WHITE :
procedure WRITE B 1w
begin
WEITE P71 (R
end WRITE KR
end ABSTRACT;

package DEFINME ALl
-~Hoth specitication and body of DEFINE ALL
~~ig unchanged; however we may need to specify /0
-—environment by an additional "with" clause.

w Use and with clauzes of ADA considered harmful.

Relationship of compilation units in ADA ie expressed by
"use" and "with" clawses. They specify what other compilation
unitts are necessary ftor the edecution of a given unit in which
the clause appeared, and they also determine the order of
compllation.

However the previows sections demonstrated that the "with®
and "use" clauwses of ADA create a special problem when desiogning

19

program by top-down method. The reason is that during the top-
down design, we may know what procedures, variables., or types are
needed, but we do not know which compilation unit they will be
defined in. Hence the contents of the "with" and "use" clauses
can be determined only after the whole program (or most of the
program) was designed,

This contrasts sharply with the bottom-up design. The
paradigm of bottom-up design is based on the idea of extension of
the existing language by additional constructs. For this purpose.
"use" and "with" clauses are completely natural, because 1lower
compilation wunits are designed before the higher units are. Then
there is no problem to determine in which compilation unit the
procedures, types, etc. are defined, i1.e. it 1s possible to
determine "with" and "use" clauses immediatelly.

Hence we have to conclude that "with" and "use" clauses
tand the order of compilation 1in Ada) encowage bottom—up
programming, while discowaging the top-down programming in a
substantial way. Tt was argued many times that the top-down
paradigm is prefferable to the bottom-up one [1Z21. Hence these
two programming construct encouwrage an inferior programming
practice, and should be considered harmful.

Reterenc

L11 Ada FProgramming Language, Military standard MIL-85TD-1815.

{21 Booch, G., Software Engineering with Ada, The Benjamin
Cuammings Fubl. Co, Menlo Fark, CA, 1983,

31 Clarke, L.A., Wileden, J.C., Wolf, A.L., Nesting in Ada

Frograms 1s for the Birds, Sigplan Notices Nov. 1980, 139145,

47 Freeman, Fruy Wasserman, ATy HSottware Development
Methodologies and Ada, Res. Rep.. The University of California,
lrvine, CA.

LHY Jackson, M., SBystem Development, Frentice-Hall, Englewood
Cliffs, NJ., 1983,

L&l Lawer, H.C., Satterthwalte, E.H., The Impact of Mesa on
System Design, Froc. 4th. International Conference on Software
Encineering, IEEE Catalog Mo. 79CH1479-3C, 1979, 174-182.

£71 Parnas, D.L., Designing Software for Ease of Extension and
Contraction, IEEE Trans. on Software Engineering, March 1979,

128137,

[81 Rajlich, VY., Hierarchical vs. Block Structure, Intformation
Frocessing Machines, VYol. &1, Academia Frague 1979, 23-33

P P Y

16

L1 Rajlich, V., Froblems of Module Interconnection Language, in
Hibbard, F.G., Schuman, S.A., Constructing Guality Software,
North~Holland 1978, 147-15%.

L1071 Rajlich, V., Stepwise Retinement Revisited, Res. Rep. CRL-
TR-13-8%, Computing Research Laboratory, University of Michigan,
Ann Arbor, MI.

L1111 Ross, D.T., Schoman, K.E.Jr., Structured Analysis for
Fequirements Definition, IEEE Trans. on Software Engineering,
Jan. 1977, 6-195.

L1221 Wirth, N., Frogram Development by Stepwise Refinement,
Communications of ACM, April 1971, 221-227.

L1Ed Wirth, N., Modula-Z, Res. FRep. 34, ETH, Institut fur
Imformatik, Zwich, March 1982,

L1413 Yourdon, E., Constantine, L.L.. Structured Design, Frentice-
Hall, Englewood Cliffs, MNJ.., 1979,

