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Abstract

In this paper, rigorous application of stepwise fefinement is
explored. The steps of definition, decomposition, and complefion are
described, where steps qf‘completion is a newly introduced step. This
combination of steps extends the use of stepwise refinement to medium-to-
large systems. Notions of range, active objects, and composite interface
are introduced. Verification of incomplete programs via interactive
testing is described. The paradigm is demonstrated in an example. The
relationship between the paradigm and the current programmihg.languages
is considered. It is aigued that WHILE-DO loop is a harmful corstruct

from this point of view.



1. Introduction

Stepwise refinement is one of the oldest and most widely used methods of
program design [3,4,10,11]. Recently, a new interest in stepwise refinement
has appeared in connection with software environments, where stepwise refine-
ment is the methodology supported by specialized tools of the environments
(1,2,5,6,7,8,9].

The quality of each software design methodology can be characterized by
the following interrelated criteria:

1) The generality of the methodology, i.e. the size of the domain of
application.

(ii) The ease of use of the methodology.
(iii) The consistency of the methodology.
The meaning of the first two criteria is obvious. To explain the third

criterion, we assume that a program design is a sequence of decisions which

lead to a finished program. The role of the methodology is to guide the
designer and give advice as to what decision should be made at any particular
moment, and on what particular information to base that decision. A methodology
is cénsistent if it gives appropriate guidance in all decisions to be made
during a program design. Conversely, if it gives poor advice or no advice

for some decisions, it is inconsistent.

The current stepwise refinement methodology is perfectly suited for the
design of small programs; the methodology is so easy that it has found its
way into successful introductory programming texts [3,11]. However, the
problem arises when larger programs are to be designed by stepwise refinement.
Then the methodology becomes difficult to use, and in fact, it becomes
inconsistent. The reason is that it is geared solely toward the decomposition
of objects (procedures and data). However, there is at present no organized

way to determine the full set of objects to be decomposed. It is assumed



that this set is somehow known in advance. This is particularly burdensome

in the case of variables, where the programmer is required to determine and
declare all of the variables of the‘program before starting the decomposition .
process [3,10]. This is only realistic for toy programs. For larger programs,
we need a technique diffe¥ent from decomposition; which will help us to
determine the set of all objects, and to do ‘this in small increments. In

this paper, the technique is called completion.

Another problem which hés to be addressed is the validation of partial
progr#ms. When designing medium-sized systems, the validation cannot be
postponed until the system is finished, and hence, it has to be done on
partial systems. Various methods havs b2zn propesed for such validation {9,13].
However, at the presént, the most realistic method of validation is by means
of testing. A method commonly used is to replace the undefined objects with
stubs which approximate the function of those objects. We are suggesting the
so-called interactive testing, where undefined pérts of the program are hand;
simulated by the programmer, with the stubs supporting the simulation. The
advantage is that this is a universal method, which can be applied‘in all
cases; it makes the methodology explained here consistent.

| This paper is divided into four sectibns. Seétibn 2 contains the basic
ideas, section 3 provides'én example, and section 4 contains a discussion of
some language constructs from the point of view of stepwise refinement.

Although the paper is self-contained, familiarity with stepwise refine-

ment as presented in [3,10,11] should be helpful.



2. Definitions

Programs and software systems consist of objects (procedures, functions,
variables, etc.), and their relations (procedure calls, functions calls, access
to variables, etc.). Complicated programs'consist of many objects énd many
relations among them. Even a purely mechanical process such as typing of all
of the objects in the whole program cannot be done in one stretch; it has to
be divided into smaller and more manageable.steps. Creative process like
programming is of course much slower. We must carefully untangle the web of
relations among the objeéts of the target program, and introduce objects and
their relations one aftcr the other. During prograr design, the progranm

consists at anytime of two parts: the existing part, which is the actual

program so far stored in the computer, and the intended part, which is every-
thing not yet written. At the begihning, the existing part is eﬁpty and the
whole program is intended. At the end, the‘intended part is empty and the
whole program is existing. Program design is a sequence of incremental steps,
each adding something to the existing part and deleting something from the
intended part. Throughout the process it is assumed that although the intended
part has not yet been writtén, the designer has a good grasp of its function
and its inherent structure.

For the sake of simplicity of explanation, we shall assume that the
system consists only of variables, procedures, and functions (they will be
called by the generic name "objects"). Also, we will assume that there are
only two kinds of felations among the objects. The relation "read" means
that the value of a particular variable is being read in a procedure. The
relation "write" is the complementary relation.

The range of a variable A is the variable A plus all procedures or
functions which either read or write the variable A. The range of a procedure

P is just the procedure P, and similarly for functions.



In a typical situation, the existing part contains names of undefined
variables, procedures, or functions. For example, the ekisting part may
contain a reference to a procedure '"read data", but the body of the procedure
has not yet been defined. We will call objects of this kind active dbjeéts,

and the set of all active objects at a particular time is the composite inter-

- face. The composite interface is in fact the interface between the existing

and the intended.parts of the system.

The composite interfaces are a very important documentation, on which
the design decisions of stepwise refinement is based. Although the composite
interface ic not a part of the code itcelf, we are recommencing the programme:s
to keep an updated composite interface at all times, makiné it a part of the
program documentation. Iﬁ this paper, we assume that the composite interface
is kept in a graphical form, where the active variables are denoted by ovals,
active procedures and functions are denoted by rectangles, and relations "read"
and '"write" are denoted by arrows, as in Fig.‘1.> |

The basic steps of stepwise refinement are definition and decomposition

[10]. Definition is a step in which WQ define an active object in terms of
the programming langﬁage. If the object is a proceﬂure;'we will define its
body; if it is a variable,.we will give its type. An important property of
definition is that the smallest unit of definition is a range. Evefy defini-
tion step means that one or several ranges afe defined at once. (Another rule

governing definition appears in Section 3, step 4.) Decomposition is a different

step, in which an active object is defined in terms of new active objects.
Decomposition and definition are the only steps in stepwise refinement as
presented by [10].

There is an alternative way to introduce new active objects during pfogram

design. We will call this alternative step "completion". In a completion step,



we will examine all active objects and try to determine whether they can
function correctly, or whether they need to refer to some other objeéts in
order to be able to function. There are two situations which call for the
introduction of new objects: First, two procedures may need to communicate
with each other, and hence there is a need for a variable which will facilitate
this communication. Second, a variable may nead an initializing procedure
which will allow it to function correctly. This initialization is not a
consequence of decomposition, and hen;e tne set of prdcedures haa to be
enlarged to include initialization. An existing part of a program is complete
when no newvobjacts can be introduced By the process of completion, i.e; all
commnnications among procedures have been served by appropriate variables, and
all varianes have been'propérly initializei. Completion steps are conceptually
: i

as easy as decomposition and definition, and they extend the methodology to
handle medium-size programs, where the ultinate}set of objects cannot be
predicted in advance. Our methodology will expect a completion step after

each decomposition step.

In the methodology, we also provide some supporting activities whose
value is only temporary; but which are helpful in the design process. One
of these is an update of the composite interface. As new active objects are
introduced, they are added to the composite interface, while objects which
have been defined are removed from the composite interface.

It is also useful to keep the list of all relations (based on~£g§g_and
EIEEE) among the active objects, so that the ranges are easily determined.
When a new object is introduced, new relations are added to the list; when
an object is defined, all of‘its relations will be removed from the list.

Whenever a-program part is complete, it can be tested. The testing is

based on the assumption that while no code for the intended part exists, the



programmer knows what the functions of the currently active objects are and
would be able to hand-simulate their functions. The hand-simulation is
supported by stubs which control the interaction bétween the programmer and
:he'existing‘part of the program. It is illustrated by the ekample in the
next section.

In summary, the methodology is a sequence of steps described by the
following: | |

Introduce the original main program;

REPEAT

define all objects of one or several ranges

OR
BEGIN
‘decompose selected objects;
complete the existing program.
' : END;

update the composite interface;
interactively test

UNTIL all objects are defined.



3. An Examgle

In this section, we will illustrate the methodology by an example of a
progiam which reads any date of this century (i.e. any date from 1/1/1900 to
12/31/1999), and prints the corresponding day of the week.

| We will write the program in an idealized Pascal-like language. Some
comments on current programming languages appear in Sectioﬂ}4. |

As a starting step, we will describe the whole program as a call of one
procedure:

Step 0.
BEGIN
read and calculate date
END.
3

The pfocedure is then decomposed:
Step 1. A

PROCEDURE read and calculate date;

BEGIN |
read date;
calculatq_ﬁistanée;
determine_the_day;
print_the day;

END.

(Bf QCalculate_pistance" we mean a procedure which determines the number
of days between the date processed and a fixed '"origin'" date. To keep the
number small, the distance will always be represented as the total distance
MOD 7;) |

The next step after decomposition is the completion step.. We observe
that information is passed from rea&_ﬁata to calculate distance, from

calculate distance to determine_the day, and from determine_the_day to



print_the day. Hence we need three variables which will facilitate the
communication. Corresponding to the stepwise refinement philosophy, the
question of the type of these variables will be postponed for later
consideration:
Step 2.
VAR
date, distance, day;

~Fig. 1 contains the composite interface after Step 2.*

§
>
sl

Fig. 1

read_ﬂate

calculatq_@istance'

determine the day

print_the day

Verification of tﬁe program will be done via interactive testing, where
stubs or active objects will support the interaction with the programmer.
The stubs for active data and the output will be the most general type
available, i.e. a sufficiently long string of characters, while stubs for
procedures will support a dialog with the programmer. When writing the stubs,

the composite interface in Fig. 1 is a handy tool.

* Note that the composite interface contains relations '"read" and "write"
which have not appeared in the previous code. These relations have to be
supplied by the programmer, who has an insight into the intended part of

- the progranm.



Step 3.
VAR
date, distance, day, output: ARRAY [1..60] OF CHAR;
PROCEDURE read date;
BEGIN
writeln('Execute read date.The date is:');
read(date)
END;
PROCEDURE calculate_the distance;
BEGIN |
writeln('The date is', date);
writeln('Execute calculate the distance.');
writeln('The distance is:');
read (distance)
END;
PROCEDURE determine_day;
BEGIN
writeln('The distance is', distance);
writeln('Execute determine day.');
writeln('The day is:');
read(day)
END;
PROCEDURE print_the day;
BEGIN
writeln('The day is:', day);
writeln('Execute print_the_day.');
writeln('The output is:');
read (output) -

END;
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The program, together with the stubs, would be translated into the
programming language we are ﬁsing (see Section 4), compiled, and executed.
Execution would generate the following dialog between the computer and the
programmer:

COMPUTER: Execute read date. The date is:

PROGRAMMER:  12/5/1984 |

COMPUTER: The date is 12/5/1984.

Execute calculate_the_distance.
The distance is:
PROGRAMMER: 3
COMPUTER:  The distance is 3.
Execute determine day.
Thebday is:
PROGRAMMER:  WEDNESDAY
COMPUTER: The day is WEDNESDAY.
| Execute print_the day.
The output is:

PROGRAMMER: =~ WEDNESDAY

COMPUTER; ' (finishes the execution of the'program;j

The dialog illustrated the correctness of the existing part of the
orogram. -

In the next step, we will define the variables day and distance and their

respective ranges.
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Step 4.
VAR distance:integer;
day:Array[1..9] OF char;
PROCEDURE determine_éay;
BEGIN
CASE‘distance OF 0:day:='Sunday*;
1:day:='Moﬁday'§
2;day:='Tuesd§f;;
‘ 3:day:='Wédnesday;;
4:day:='Thursday"';
5:day:='Ffiday';
6?day:='Saturday';
END
END;
PROCEDURE print_the day;
ABEGIN
writeln('The day is', day)
END;
PROCEDURE calculate;ﬂistance;
BEGIN
distance_procedure (distance)
END;

Note the way in which the procedure calculéte_ﬂistance was defined. The
procedure is in the range of both the variable distance (defined), and the
variable day (undefined), hence it must contain a part which deais'wifh both
variableé. This pért was called distance procedure. The only way

distance_procedure caﬁ deal with both defined and undefined variables is to
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equip it with an actual argument which is the known variable, and keep it in
range of the unknown variable. This is a purely mechanical and general step,
applicable wherever a procedure (or function) is in range of both undefined
and defined variables.

In a similar way, we also deal with functions, where the value to be
returned is treated as another argument. The updated comp&éite'interface is

in Fig. 2.

Lf’/’ read date
Come I

distance_procedure (VAR distance:INTEGER)

Fig. 2
For the verification process, we may fe-use the stubs of the procedure
read date and of the variable date. The procedure distancé_procedure has the
following stub:
Step 5.
PROCEDURE distance procedure (VAR distance:INTEGER) ;
BEGIN |
writeln('Date ié', date);
writeln('Execute distance procedure');
writeln('Distance is:');
read(distance) |
END;
. The dialog will have a form analogous to the dialog of Step 3.
In the next step, we will decompose the variable date and the procedure

read date:
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Step 6.
VAR date:mm;
dd;
2z}

~ PROCEDURE read date;
- BEGIN
‘ read;pm;
read dd;
read zz;
END{
The program is complete, hence no neW’objecté are obtained by the process

of completion. The current composite interface is in Fig. 3.

read mm

read_gd

reéd_;z ,

distance procedure (VAR distance:INTEGER)

SN

Fig. 3

Note that distance_procedure has not been decomposed, hence it "inherits"
arcs from all components of the former variable date. Also we made an assump-
tion that procedures read dd and read_;z will check the correctness of values
read (rejecting dates like 2/30/1982), which created the need of arrows from

mm to read dd and read zz.
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Again, at ihis moment we may test the program in the style of Step 3.
The next step is the definition of variables dd and zz and their
respective ranges. At this moment, we have to decide how robust the program
is to be, i.e. what kind of input errors it must be able to recover from.
At one ektreme, we may declare 2z:1900..1999 which means no robustness ét
all, becéuse every input error in zz will abort the run of!the program. The
other extreme is to declare zz:ARRAY[1..4]OF CHAR, in which case no typing
error will cause an abort. A compromise solution chosen here declares
2z :INTEGER, wheré the progfam will recover from many errors (all incorrect
-integers), but abort with others (non-numerical symbolsj;
Step 7. ”
VAR Ad,zz:INTEGER;
PROCm;ead_ﬂd;
BEGIN
writeln('Enter the day.');
vvread(dd);
WHILE d<1 OR dd>month length DO
BEGIN
vwriteln('incorrect. Enter a different day.');
‘read(dd);
END
END;
PROCEDURE read zz;
BEGIN
writeln'Enter the year.');
.read (zz);
WHILE (22<1900 or zz>1999)
OR February AND (dd=29) AND (zz MOD4#0)

DO
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BEGIN

writeln('Incorrect. Enter a different year.');
" read(zz)
END
END;
PROCEDURE'distance_procedure(VAR idstancg:INTEGER);

- BEGIN 4

distance:=(distance mm+dd+(2z-1900)+ (2z-1901)DIV)MOD 7;
| IF (zz MOD 4=@) AND zz#1900 AND lafe_ponth
| THEN distance:=dist#nce+1
END;
gThe §omposite interface afﬁer Step 7 (and a completion step) appears in

Fng 4. Again, we may test the program with the help of stubs.
/ Tre ad_m )

“\\\\5\\\‘\\\\\\‘ﬁ> month_length:INTEGER

-

February :BOOLEAN

late_month:BOOLEAN

distance_mm:INTEGER

Fig. 4

The logical step to select now would be to-define'mm and its range.
However, in order to demonstrate the completion step for procedures, let us

make a minor detour and decompose distance mm instead. If we want to
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rationalize this selection we may argue that at this moment, we are still
undecided about the format of mm, the options beingﬁ

VAR

mm : INTEGER;
‘and
VAR
mm:ARRAY[I;.S]OF char.
The value of distance mm will be computed in a loop, in which the lengths
of individual months are accumulated.
Step 8.
FUNCTION distarce mm:INTEGER;
BEGIN
‘gdistance_pmﬁINTEGBR;
WHILE nqt_pver DO
BEGIN
distance :=distance mm + month_increment;
next_month |
END;
When completing this program, we first notice that not_over, month_ﬁncremenf,
and next_month have to communicate through a variable. Let us call this
variable
VAR
month;

This variable is read in not_over, it is read in month_increment, and it
is both read and written in next month. - Tracing the code of function
distance mm, it is obvious that this variable is read before being written,
and hence it is not properly initialized. The program cannot work as it has

been written, and it must be completed by the appropriate initialization.
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Let us introduce the procedure init__month, and then function distance mm
will have the following form after the step of cofnpletion;
CORRECTED FUNCTION distance mm:INTEGER;
BEGIN
distance :=0;
init_month;
WHILE not-over DO
BEGIN
diStance_mm:=distance__nun + month_increment;
next_month
END
ENﬁ;
The current composite interface is shown in Fig. 5. Again the program

can be tested in the style of Step 3.

/ read—m
—>| month_length:INTEGER

February : BOOLEAN

lat e_month :BOOLEAN

init_month

not_over :BOOLEAN

month_increment : INTEGER

next_month
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In the last step, we will define both mm and month and their respective
ranges.
Step 9.
VAR
mm,month : INTEGER;
PROCEDURE read_mm;
BEGIN
ﬁriteln('Enter the month,');
read (mm) ;
WHILE mm>12 OR mm<1l DO
~ BEGIN
writeln('Ihcorrect. Enter a different month.');
read (mm)
END
END;

FUNCTION month length:INTEGER;

BEGIN
CASE mm OF
1,3,5,7,8,10;12§month_}ength:=31;
4,6,9,11 - :month_length:=30;
2 tmonth length:=29
END |
END;

- FUNCTION February:BOOLEAN;
BEGIN
IF mm=2 THEN February:=False
ELSE February:=TRUE

END;



- 19 -

FUNCTION late month:BOOLEAN;
BEGIN
IF mm>2 THEN léte_ponth:=TRUE
ELSE late month:=FALSE -
END;
PROCEDURE init_month;
BEGIN
month :=0
END;
- FUNCTION ndt_pver:BOOLEAN;
BEGIN
not_pver:=month§mm
ENb;
FUNCTION month_increment:INTEGER;
BEGIN |
CASE month of |
1,3,5,7,8,10,12:=month_increment:=31;
4,6,9,11 :=month_increment:=30;
2 | | :=month__incremeﬁf==7R
END
END;
PROCEDURE next_month;
BEGIN
month:=month + 1

END;
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4. Language Considerations

In section 3, we used an idealized Pascal-like language, In general,
we are constrained by the real-world languages in which programs are written,
In this section, we will suggest how to use stepwise refinement in some of
the current programming languages. Pascal is the language which we use as
illustration, but the comments apply to other programming languages as well.

The first, most obvious consideration is that Pascal does not allow code
to be written in the sequence suggested by stepwise refinement. Instead, the
programmer has to go back and forth, and he must respeét the order of 'statements
‘of Pascal with the resulting loss of original clarity and purpose. Some recent
syntaxfdirected‘editors [7,9] have allowed a more flexible order in which
statements may be entered, but the program - if printed out - is still
organized according to the rules of the original language. We believe that a
methodology-oriented program Qrganization”has some very importaﬁt self-docu-
menting properties, and hence this is a considerable loss.

When writing programs by stepwise refinement, procedufes and functions
of previous sections can either be considered to be closed proceduies and
functions, or their bodies can be macro-expanded at each occurrence of the
call.

Macro-expansion was used in [10,11], and it is considerably better from
the point-of-view of the efficiency of the resulting program. However, in
the macro-expanded text, the original structure and the original steps are
lost, and hence the clarity of the code is substantially diminished.

Moreover, certain Pascal constraints are not suitabie for macro-expansion
and réquire more complicated processing. The most notable example is the |

WHILE-loop.
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Suppose that we have a loop of the form
WHILE condition DO body;
where condition is a boolean function.
If it decomposes into
FUNCTION condition:boolean;
BEGIN
prepare_condition;
condition:=resu1t_p£_preparation
END;
thén the resulting text of the loop should be:
prepare_condition;
cbndition:=resu1;_9f;preparation;
WHILE condition DO |
BEGIN
body;
prepare condition;
condition:=result_of preparation
END;
As seen in this example, the decomposed body of the function "conditior
appears in two places in the new text. This fact may explain why begir
programmers find the WHILE loop so confusing. It aiso causes consider:
difficulty when specializedveditors supporting stepwise refinement in
[8] are implemented.
Note that this problem does not arise in REPEAT-UNTIL loops or in
LOOP-EXIT-END LOOP construct of ADA [12], which are more natural const:
from the point-of-view of stepwise refinement. Of course, it also does

arise when we allow closed functions to be used and do not invoke macr
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When using closed functions and procedures as the constructs for stepwise
refinement, the declarations of variables without types (as in step 2;
section 3) become meaningless, and are best dealt Qith as comments in the
text. Also note that the organization of the declaratiohs in standard Pascal
leads to an almost complete loss of the methodology-oriented ofder, with the
consequent loss in the clarity of the program.

The reasonable compromise is to combine macro-expansion or textual
processing to merge small steps, and deal with larger steps as closéd sub-

routines.
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