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Summary. The use of operational pro®les and usage-based testing has received considerable
attention recently in the software engineering literature. Testing under the actual operational pro®le
can, however, be expensive, time consuming or even infeasible in situations where the performance
of a system is dominated by infrequent but highly critical events. We consider a real application that
deals with telecommunications network restoration after network failure caused by cuts in ®bre optic
cables. We use this application to demonstrate the usefulness of traditional accelerated testing
methods to test and estimate software reliability. These methods, which have been extensively used
in hardware reliability, have an important role to play in software reliability assessment as well.
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1. Introduction

There has been considerable discussion about operational pro®les and usage-based testing in
the software engineering literature in recent years (see, for example, Musa (1993) and Walton
et al. (1995)). Testing under the actual operational pro®le can, however, be expensive, time
consuming or even infeasible in certain situations. This paper considers a telecommunications
network restoration software system that is designed to perform alarm reporting and network
restoration after failures caused by cuts in ®bre optic cables. These are highly critical events,
but they occur very infrequentlyÐabout 10 times a year on the AT&T network in the USA.
Most of the time, the system is quiescent, processing routine background transactions. Thus,
it is not practical or even feasible to do testing based exclusively on the operational pro®le.
This paper describes an alternative approach for software testing and reliability assessment.
A corner-stone of the approach is the use of traditional accelerated testing (AT) methods that
have been used extensively in the area of hardware manufacturing.
In hardware reliability, the units are tested at accelerated stress conditions to induce

failures, and the results are extrapolated, using accelerated failure time regression models, to
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predict reliability in normal operating conditions (Nelson, 1990). The two basic means of
acceleration are increasing the usage rate and increasing the aging rate. The latter can be
accomplished by increasing the levels of stress factors such as temperature, power and
humidity. AT is necessary as few units will fail under normal operating conditions in a
reasonable period of test time. AT is recognized to be a useful tool for obtaining timely
information about product reliability in hardware manufacturing.
This paper uses a real application dealing with telecommunications network restoration to

demonstrate the usefulness of these methods for software testing and reliability estimation.
Although the approach and techniques are discussed and illustrated in the context of the
telecommunications network restoration software system, they should also be useful in other
software applications. There are also other approaches in the literature for testing safety
critical systems and systems that are intended to perform under emergency conditions.
Interested readers are referred to Butler and Finelli (1993), Levenson (1991), Littlewood and
Strigini (1993), Parnas et al. (1990) and references therein.
The paper is organized as follows. The background of the application is described in

Section 2. The test design and the use of AT are described in Section 3. In our test design, we
used the operational pro®le to identify the various states of the system when a network failure
occurs. The performance of the software under these states was studied in a test environment
that was designed to simulate the AT&T network. The system was operated under several
levels of highly `stressed' environments to induce failures. Sections 4 and 5 describe di�erent
approaches to modelling the observed failures and extrapolating the results to estimate
reliability in normal use conditions. Section 4 discusses a purely empirical approach based on
Poisson regression of the number of failures. A more elaborate analysis based on a model for
the underlying software failure mechanism is discussed in Section 5. This is similar in spirit to
recent work in hardware reliability where underlying subject-matter knowledge is used to
develop better acceleration models (see Meeker and LuValle (1995)). Section 6 illustrates how
these results can be used to estimate operational reliability. The paper concludes with some
general remarks in Section 7.

2. The network restoration system

The introduction of ®bre optic technology has greatly increased telecommunications network
capacity in recent years. Unfortunately, this has also made the networks more vulnerable to
failure from `cable cuts' caused by events such as ¯ooding and construction work. A single
cable cut can a�ect hundreds of thousands of customers or circuits. For example, a ®bre cut
in the Newark, New Jersey, area in November 1988 caused the loss of over 270 DS3 pathsÐ
or over 180000 telephone circuitsÐand it took more than 15 h to re-establish service. (A
DS3 is a digital transmission system designed to transmit signals at the rate of 45 Mbits per
second.) Because of the potential for such a massive disruption of service, there is a need to
develop methods that automatically detect network failures and restore service by rerouting
the a�ected paths. The FASTARSM operations system platform is a set of systems that
provide fast automated restoration capabilities for the AT&T network (see Chao et al.
(1994)). The FASTAR technology, introduced in 1991, has signi®cantly increased the
reliability of the network and reduced the e�ect of cable cuts. For example, the record ¯oods
in 1993 washed away a major back-bone cable between Kansas City and St Louis, yet it took
only a few minutes to restore the service to more than 250 DS3 paths.
We use the highly simpli®ed network in Fig. 1, consisting of six central o�ces A, B, C, D,

E and Z, to describe the restoration process. Central o�ces can be viewed as nodes in a
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telecommunications network. The FASTAR system is a collection of computer systems that
work together to manage the various activities involved in the restoration process (Chao et
al., 1994). The components of the FASTAR system that are relevant to our discussion are
shown in Fig. 2. A central controller (`RAPID') and remote node controllers (RNCs), located
within each central o�ce, form the back-bone of this restoration system. The RNC interfaces
with various devices in a central o�ce, including the line terminating equipment (LTE),
restoration test equipment (RTE) and digital access and cross-connect system (DACS).
The restoration process consists of the following steps.

(a) Gathering and reporting alarms: if a cable cut occurred between o�ces B and C in
Fig. 1, the LTE at these o�ces would report the loss-of-signal failure to an RNC. The
RNC then uses a given protocol to determine whether the failure is real (rather than
transient) and then reports it to the central controller (RAPID).

(b) Determining and implementing alternative paths: the central controller waits for a
predetermined time before compiling a list of paths that require restoration and
initiating the restoration process. This consists of ®rst dynamically computing the best
alternative path that is available to reroute the calls. For example, the rerouted path
may go through o�ces B, D, E and C in Fig. 1. The central controller then commands
the DACSs at these o�ces to switch to the alternative path.

(c) Doing path assurance: the central controller needs to assure that the alternative path
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has connectivity. To do this, it issues a service veri®cation (SV) request to one of the
RNCs. The RNC commands the DACSs to bridge the incoming signal to the RTE
receiver port and then queries the status on that signal. Once the SV is successful, the
path is considered restored. The SV request for rerouted paths can be assigned to
RNCs that did not perform alarm, gathering and reporting (e.g. RNCs at o�ces A and
Z in Fig. 1) or to RNCs that performed alarm gathering and reporting (i.e. RNCs at
o�ces B and C in Fig. 1).

3. Test design

The interface between the RNC and the central controller was modi®ed in a new release
resulting in a major redesign of the RNC software. Thus, the new software had to be tested
and its operational reliability assessed.
As noted earlier, the RNC system is mostly quiescent, involved in background processing.

This includes activities such as processing maintenance requests, database transactions,
operator-initiated commands, RNC-initiated periodic events and RNC responses to
equipment and equipment link failures. Exceptional events such as cable cuts occur rarely.
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Fig. 2. Relevant components of the FASTAR system: IDU, indoor unit;Ð, lines; - - - -, links; , ®bre optic
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When such an exceptional condition occurs, the RNC system can switch to one of several
modes of processing (`operational states'). We used the operational pro®le to identify these
various states. Our test strategy was to induce exceptional events, to execute the RNC in each
of these states and to observe its performance. Operational reliability can then be calculated
by weighting and averaging the performances according to the probabilities of occurrence of
the various states as given by the operational pro®le (see Musa (1993)).
All the testing was done on a test environment that had been developed to simulate theAT&T

network. This test environment handles all the inputs and outputs identi®ed in the operational
pro®le and has the ability to test the e�ect of exceptional condition scenarios such as cable cuts
and network equipment failures. Simulator environments are designed with a programmable
interface. This allows the development of automated test scripts to drive the test runs. Data
from each test run can also be collected automatically via the programmable interface.

3.1. States of the system
The following were identi®ed as the important states of the RNC during exceptional
condition processing. In addition to these states, the RNC can also be quiescent, state Q,
where it is involved in the background processing activities noted earlier. The RNC does
these background processing activities even during the exceptional events.

(a) State A represents background load processing in combination with SV activity related
to cuts in the cables. In this state, the RNC merely does path assurance and SV
requests for the paths that are to be restored. It does not do alarm generation and
reporting associated with the cable-cut condition.

(b) State B is background load processing in combination with alarm gathering and
reporting activity related to cuts in the cables. In this mode, the RNC only reports
failed paths and does not subsequently engage in SV and path assurance.

(c) State C is a combination of states A and B. In this state, the RNC does background
load processing in combination with alarm gathering and reporting related to cuts in
the cables followed by SV and path assurance activity related to a cable cut.

(d) State D is background load processing and restoration activities in response to a non-
cable-cut condition. This refers to the loss of service due to events other than a cable cut
such as equipment failure or human errors. The number of paths involved in this is
small, so, in our test, we considered only the situation where the RNC performs both the
alarm gathering and reporting as well as the path assurance components of a restoration.

3.2. Acceleration factor
It was expected that at least some of the inherent software failures in the system might be due
to `interactions' between background processing and transactions related to exceptional
conditions. The usual rate of background processing was rather low, so there was a high
probability that these failures will be undetected. So, the rate of background transactions
must be increased to induce failures (similar to hardware reliability). However, we also
needed to estimate the number of failures in normal operating conditions. Thus, the test was
conducted at three di�erent acceleration conditions that corresponded to 10, 100 and 200
times the actual rate of background processing in ®eld conditions. The actual acceleration
rates in the test turned out to be lower than these intended settings. An analysis of the actual
rate of background transactions (after the test) showed that the actual acceleration rates were
10, 79 and 130. Nevertheless, we continue to use the labels acc10, acc100 and acc200 to refer
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to the acceleration settings. Whenever the actual values of the acceleration factors are used in
the analysis, this is made clear.

3.3. Order of test runs
The tests were conducted by inducing a cable-cut exceptional event and executing the RNC
system in one of its several possible states. Because of limited resources, all the states had to
be executed on the same RNC test machine. The di�erent states were executed sequentially
with the `background load only' state, state Q, run in between for 15min to `renew' or reset
the system following exceptional conditions.
There was still the possibility of the e�ect of one state carrying over to and a�ecting the

performance of the subsequent state because of the cumulative nature of system resource
usage (i.e. central processor unit (CPU), disc and memory swapping) during the execution of
a performance run. To account for such e�ects as well as other patterns or time trends
(e.g. process size growing in time due to failure to deallocate memory previously allocated
resulting in increasing performance degradation), we used a balanced design to determine the
order of state execution. The particular design, obtained from two 464 Latin squares, is
shown in Table 1. There are 32 runs in all, with each state being replicated eight times. Each
pair of states occurs equally often, and we can use this to estimate any e�ect due to prior
states. There were, however, no time trends or carry-over e�ects, so this aspect of the problem
is not discussed further.
The test was run as follows. For each background load acceleration, we tested all 32

exceptional condition states in a single run lasting for approximately 30 h. At the end of the
32 runs, the system was run for an extended period of time under low level background load
to reinitialize the system. Then, the same sequence of 32 exceptional condition states was
rerun under the new background load acceleration setting.

4. Empirical modelling of the number of failures

Table 2 shows, for each state, the number of runs (out of eight) in which there was at least
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Table 1. Sequence of exceptional condition states
applied to the RNC system test

ABCD CDBA BCAD DACB
CDBA ABDC DACB BCAD

Table 2. Number of runs (out of eight) in which at least
one failure occurred

State Number of runs for the following acceleration
settings:

10 100 200

A 3 8 8
B 0 0 0
C 1 8 8
D 0 0 0
Q 0 0 0



one failure. There were no failures during any of the eight runs for states B, D and Q. Thus,
these states are not considered further in subsequent analyses. For state A, there was at least
one failure in three of the eight times under acc10 and in all eight of the eight times under
acc100 and acc200. For state C, there was at least one failure in one of the eight times under
acc10 and in all eight of the eight times under acc100 and acc200.
A root cause analysis revealed that all the failures were attributable to the same fault: SV

requests being timed out before being processed by the RNC. The nature of this fault is
discussed in more detail in the next section. This failure indicates that some paths may not be
restored, so it is important to estimate the number of paths that are not restored because of
this failure under the usual no-acceleration condition. We discuss ®rst a simple approach
based on modelling the expected number of failures as a function of the acceleration
condition and extrapolating it to normal operating conditions.
The actual numbers of failures (number of SVs that were timed out) under each execution

of states A and C at the various acceleration settings are given in Table 3. We modelled these
failures as Poisson random variables and used Poisson regression analyses to determine
whether and how the parameters varied with

(a) di�erent acceleration settings,
(b) di�erent states of the RNC,
(c) carry-over e�ects due to prior states and
(d) CPU usage.

A log-link function was used for the Poisson parameter, and in these preliminary analyses we
treated acceleration settings as a nominal variable. The results indicated that only the accel-
eration e�ect was important, with the expected number of failures increasing as the degree
of background load acceleration increased. None of the other e�ects, including the system's
current state (A or C), prior state and CPU usage, was found to be important.
To extrapolate to estimate the expected number of failures at the normal background
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Table 3. Number of failures under states A and C at the various
acceleration settings

Run State Numbers of failures for the following
acceleration settings:

10 100 200

1 A 2 6 6
4 C 0 3 4
5 C 0 6 3
8 A 0 6 5
10 C 0 4 3
11 A 3 4 3
14 A 0 4 6
15 C 0 5 6
17 C 0 7 5
20 A 0 5 5
21 A 3 4 6
24 C 0 5 8
26 A 0 2 6
27 C 5 2 7
30 C 0 3 4
31 A 0 3 7



processing rate, we need a regression model for the Poisson parameter ��x� as a function of
the acceleration settings. We considered the regression model

lnf��x�g � �0 � �1x, �1�
where ��x� is the Poisson parameter and x � g(acceleration rate) for some function g(.). In
these analyses, we used the actual acceleration rates of 10, 79 and 130. Fig. 3 shows the
relationship between ln(mean failures) and the acceleration rates for two models: x �
acceleration rate and x � ln(acceleration rate). The lines correspond to the ®tted model from
a Poisson regression analysis. The log-linear relationship provides a better ®t, and this was
also con®rmed from a comparison of the residual deviances. The half-normal plots of the
residual deviances were reasonably linear for both models.
We can now use the regression model to extrapolate and obtain the estimated mean

number of failures at the no-acceleration setting. For the log-linear relationship with
x � ln(acceleration rate), the estimated mean number of failures is 0.17 with a standard error
of 0.09. If we used the model with a linear relationship x � acceleration rate, the estimated
value is 1.18 failures with a standard error of 0.16. The two models give slightly di�erent
estimates. On the basis of the data alone, we might choose the model with a log-linear
relationship. However, as there are only three acceleration settings, we need to be cautious in
relying exclusively on empirical models.
The dangers of extrapolation are well known, yet extrapolation is a necessary evil in AT.

There are many examples in the reliability literature where it is di�cult to determine which
regression model is reasonable on the basis of the data, and di�erent models lead to
drastically di�erent estimates of reliability. Because of this, there has been more emphasis
recently in the hardware area on using the underlying subject-matter knowledge to develop
more reliable acceleration models and to do extrapolation. For example, Meeker and LuValle
(1995) showed the inadequacy of the usual accelerated failure time models for a particular
application and used the underlying subject-matter knowledge to develop a reliability kinetic
model for the acceleration transform. In an analogous manner, we use knowledge of the
underlying software failure process to obtain more reliable extrapolation in the next section.
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Fig. 3. Plots of ln(mean failures) against (a) acceleration rate and (b) ln(acceleration rate):Ð, ®tted models
from Poisson regression analyses



5. Modelling the software failure process

5.1. The anatomy of a software failure
As indicated previously, all the software failures that occurred during the RNC system test
were caused by the same underlying fault. This fault occurred when an SV request arrived at
the RNC while a dbaudit (database audit) transaction was already being processed. Under
certain conditions, which we now elaborate on, the SV request was timed out and the path
was not restored, leading to a software failure. These failures were observed only for states A
and C; no SV request was generated under state B and the number of SV requests under state
D was too small to observe this failure.
Fig. 4 shows the sequence of the SV request arrivals and the dbaudit transactions at the

RNC system under acceleration setting acc100. The various curves correspond to the
cumulative number of SV requests under states A and C. See Table 1 for the order of the runs
A and C. The vertical lines correspond to the dbaudit transactions.
Fig. 5 provides a magni®ed view of Fig. 4 with the area between the vertical lines corres-

ponding to the duration of a single dbaudit transaction. As can be seen, several SV requests
can arrive at the RNC during the period of a dbaudit transaction. Some of these requests may
not be processed, leading to a failure. A root cause analysis of this fault revealed the following.
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The RNC software consisted of various servers which process the dbaudit and SV request
transactions. One of them was the database daemon (DBD). If a dbaudit operation was
currently being serviced by the DBD and an SV request arrived at the DBD, it was placed on
the DBD queue. The dbaudit transaction required a relatively long DBD service time, and so
all SV requests arriving at the DBD server would queue in the DBD queue. There was a
threshold setting for the time-out parameter, and if these SV requests remained on the DBD
queue longer than the threshold period they were timed out, and the restoration process for
the corresponding path was not completed.
We might conclude from this that, if the SV arrived at the RNC a ®xed time interval after

the dbaudit transaction, it will be timed out. However, the situation was more complicated
because the transactions must access several servers, and an SV request that arrived at the
RNC just after a dbaudit arrival can reach the DBD server before the dbaudit transaction
and hence be served. The data showed that the time-out mechanism depended not only on the
absolute o�set of the SV request arrival time with respect to the dbaudit transaction arrival
time but also on other factors such as how long the dbaudit transaction was resident on the
RNC. If A denotes the dbaudit arrival time and R denotes its residence or transaction time,
then all SVs arriving in the period
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Fig. 5. Magni®ed view of the arrival patterns of SV requests and dbaudits for setting acc100



�A� 0:05R,A� 0:85R� �2�
were timed out in our study. Thus, we used this as the failure interval or window in our
analysis.
Using the interval in expression (2), we can now estimate the expected number of failures at

the normal background load (no acceleration) as the number of SVs that are expected to
arrive in this window. To do this, we need to develop a model of the SV arrival process as well
as that of the dbaudit transaction process under no background acceleration.

5.2. The service veri®cation arrival process
The number of SV requests arriving at an RNC during an actual cable cut in the ®eld depends
on several factors, including the number of paths that are a�ected. Further, an SV request
can be assigned by the central controller to one of several RNCs. Thus, the actual number of
SV requests arriving at an RNC is random, and it may be reasonably modelled as a Poisson
random variable with parameter � which is allowed to vary across the RNCs, depending on
the number of paths that they can serve. Further, the nature of the restoration process and
®eld data suggest that the numbers of SV requests arriving in mutually exclusive time periods
are likely to be independent of each other. This, together with the arrival patterns in Figs 4
and 5, suggests a non-homogeneous Poisson process as a model for the SV arrival process.
Let �(t) be the cumulative intensity function of the non-homogeneous Poisson process. For
this application, �(t) should eventually reach a ®nite asymptote with ��1� � �, the mean of
the total number of SV requests.
In our accelerated test, the total number of paths a�ected by the cable cut (and hence the

number that needed to be restored) was ®xed at (approximately) 570. The actual number
varied slightly from run to run. The test under state A was run until the restoration process
was (supposedly) complete, i.e. all the SV requests had arrived. For state C which involved
both alarm gathering and reporting as well as path assurance, the test was designed to stop as
soon as a ®xed number of paths, 467, were restored. This corresponds to type II censoring.
From the well-known property of a non-homogeneous Poisson process, the SV arrival data
(cumulative times of arrival) under state A, conditional on the total number of arrivals, can
then be viewed as order statistics from a distribution with cumulative distribution function
(CDF) F�t� � ��t�=��1� (see Cox and Lewis (1966), pages 27 and 29). For state C, the data
can be viewed as type II censored data from F(t).
Among the various commonly used distributions, the two-parameter Weibull distribu-

tion

F�t� � 1ÿ expfÿ�t=���g
provided the best ®t for the data. Fig. 6 shows the Weibull probability plots of the data under
states A and C for a typical run. Fig. 6(a) is the probability plot of the ®rst execution of state
A under setting acc100. It looks reasonably linear except perhaps in small regions in the lower
and upper tails. Fig. 6(b) is the probability plot of the data from the ®rst execution of state C
under setting acc100. This plot con®rms that the Weibull distribution is a reasonable model.
We ®rst ®tted the Weibull parameters separately for states A and C. Although these values

were quite close to each other, the di�erences were statistically signi®cant. The statistical
signi®cance was mostly due to the fact that the sample sizes were large. As there was no
plausible reason for the di�erence and the values were fairly close to each other, we decided
to combine data from both states and to ®t a common distribution. The ®tted values of this
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common Weibull model were �̂ � 1808 with a standard error of 14.5 and �̂ � 1:16 with a
standard error of 0.006.
In summary, our model states that the cumulative intensity function of the SV arrival

process is proportional to this estimated Weibull CDF. It can be shown that the corres-
ponding intensity function (given by the Weibull density function) has a unique mode at
about 182 s, so the intensity of the SV arrivals peaks at about 182 s into the process and then
decreases to 0.

5.3. Database audit transactions
Field data indicated that the dbaudit transactions arrive at the rate of one every 50 h in actual
®eld conditions. Further, the arrivals are fairly regular, so for practical purposes we can take
the arrival times to be ®xed at one every 50 h.
However, there was not much information from the ®eld data about dbaudit transaction

residence times, sowe analysed the test data and extrapolated the results to estimate the residence
times under ®eld conditions (no acceleration). Fig. 7 is the box plot of the dbaudit residence
times at the three di�erent acceleration settings. This suggests that the dbaudit residence time
decreased with background load acceleration. This somewhat counter-intuitive behaviour
can be explained by the dbaudit's use of `caching' during the testÐdata from the database
must ®rst be brought from disc into memory, so the initial invocation of a dbaudit requires
extra service time and hence extra residence time. Subsequent invocations of a dbaudit
require less servicing because in-core database data can be utilized. Increased settings for
background load acceleration result in more dbaudit invocations, which explains why
dbaudit residence times decreased with background load acceleration.
We ®tted an accelerated failure time regression model (Nelson, 1990) to the residence

times at the three di�erent settings and extrapolated to obtain the residence time at the no-
acceleration setting. Among the commonly used models, the log-normal distribution pro-
vided the best ®t. Again, we considered several functions of the acceleration settings as the
regressor variable. Among these, the model with x � acceleration ®tted the data best. This
yielded a median dbaudit residence time under an unaccelerated background load of 66.5 s
with a standard error of about 3.8 s. This value was close to the median of the residence times
observed under setting acc10. This gave us con®dence in the extrapolation as there were only
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Fig. 6. Weibull probability plots of the data under setting acc100 for the ®rst run for (a) state A and (b) state B



®ve dbaudit transactions under setting acc10 and the e�ect of caching should thus be minimal
at this setting.

5.4. Estimating the number of service veri®cation time-outs
We now estimate the expected number of failures under normal background operations (no
acceleration) for our test design. The calculations discussed here are primarily of interest for
comparison with the empirical extrapolation results of Section 4. A more general discussion
of operational ®eld reliability is deferred to Section 6.
Suppose that, as in our test design, we observed a cable-cut exceptional event that a�ected

570 paths. (This is more than twice the average number of paths a�ected in a cable cut in the
®eld.) The expected number of paths not restored because of SV time-outs is then the
expected number of SV requests times the probability that an SV request will be timed out
under no background load acceleration. On the basis of our model, the probability that the
SV request will be timed out is the expected value of

F�A� 0:85R� ÿ F�A� 0:05R� �3�
where F is the estimated Weibull CDF of the SV arrival process, A is the arrival time of the
next dbaudit transaction relative to a given SV arrival process and R is the random residence
time. The expectation here is taken with respect to the distributions of A and R.
As noted earlier, ®eld data suggested that dbaudit transactions arrived regularly at the rate

of one per 50 h under normal (unaccelerated) conditions. Since the onset of a cable cut, and
hence the SV arrival process, is random, the distribution of A, the arrival time of the next
dbaudit transaction relative to a given SV arrival process, can be taken to be uniform on the
interval [0, 180000] s (or 50 h). From the results in Section 5.3, the distribution of R, the
dbaudit residence times, under no background load acceleration can be approximated by a
log-normal distribution with �̂ � 4:20 and �̂ � 0:21. Thus, the probability in expression (3)
can be written more explicitly as�T

0

�1
0

��
exp

�
ÿ
�
�� 0:05r

1808

�1:16�
ÿ exp

�
ÿ
�
�� 0:85r

1808

�1:16���
18000

�
g�r� dr da �4�
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Fig. 7. Box plots of dbaudit transaction times under the various acceleration settings



where T=18000 s, the exponential terms are the probability of an SV being timed out in the
interval [�+0.05r, �+0.85r] under the ®tted Weibull distribution and g(r) is the estimated
log-normal density for the residence times.
Using a numerical approximation, we computed the probability in expression (4) to be

2.55610ÿ4. Since expression (4) is a highly non-linear function of the estimated parameter
values, the usual techniques cannot be used to obtain standard errors or con®dence intervals.
We used a parametric bootstrap procedure (Efron and Tibshirani, 1993) to obtain an approx-
imate 90% con®dence interval as (2.33610ÿ4, 2.79610ÿ4). From these results, we estimated
the expected number of SV failures for 570 cable cuts as 0.145 and the corresponding 90%
interval to be (0.133, 0.159). It is interesting to observe that this estimated value is close to the
value obtained from the log-linear regression model in Section 4.
To compute the expected number of failures under the test scenario of state C, we must

take into account the fact that the test was stopped as soon as 467 of the 570 SV requests were
generated. This is type II censoring with a censoring proportion of about 18%. We can
approximate this by the corresponding type I censoring plan where the test is stopped after
approximately 2981 s (which is the 1:0ÿ 0:18 � 0:82 quantile of our ®tted Weibull model). In
other words, no failures can be observed if the failure window in expression (2) occurs after
the ®rst 2981 s of the SV arrival process. So, the probability of failure is now given by
equation (4) with T � 2981 s. Again using a numerical approximation, we computed this
probability to be 2:17� 10ÿ4. From this, we estimated the expected number of failures as
0.124 with a 90% con®dence interval of (0.114, 0.136). This is to be compared with the value
of 0.17 obtained from the Poisson regression model in Section 4. On the basis of the empirical
analysis there, we did not ®nd a signi®cant di�erence between the mean number of failures in
states A and C. The more detailed analysis here, which exploits subject-matter knowledge of
the underlying failure process and the test design, provides more reliable estimates, although
in this example the values turned out to be about the same.
Instead of the expected number of failures, we might be interested in a worst case scenario.

This occurs when a dbaudit transaction arrives during the period of most SV arrivals, i.e.
when the failure window in expression (2) coincides with the period of the highest intensity of
SV arrivals. We saw in Section 5.2 that the SV arrival intensity function is unimodal with a
peak at about 182 s into the arrival process. From this, we estimated the worst case number of
SV failures to be 11.3 out of a total number of 570 paths that are to be restored.

5.5. Performance analysis
To con®rm these results and also to understand better the nature of the software fault, we
developed a process ¯ow model of the various transactions and servers in the RNC software
system. Using this process ¯ow model and the SES/Workbench modelling tool, we conducted
a simulation study to estimate the number of SV time-out failures under the condition of no
background acceleration. We do not go into the details of the model or simulation study here
as these are not relevant to the scope of this paper. We note only that the results from this
study were very close to the estimated number of failures in Section 5.4.
A natural question that arose from this study was whether the time-out threshold param-

eter in the software should be modi®ed to reduce this failure rate or even to remove it
altogether. This modi®cation would a�ect the performance of the software in other areas, so
such issues had to be considered carefully. One of the bene®ts of the performance analysis
model that we developed was that it can also be used to do a cost±bene®t analysis of such
modi®cations.
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6. Operational reliability

Software reliability is de®ned as the probability of failure-free operation over a speci®ed time
in a particular execution environment. The computation of the operational reliability for the
AT&T network environment requires information about the network, such as the network
architecture, rerouting protocols, the frequency of cable cuts and the distribution of the
number of paths a�ected. Much of this information is proprietary, so we restrict attention
here to an illustrative discussion. Consider, for example, the cable cut mentioned in Section 2
from the record ¯oods in 1993. This involved 250 paths, which is slightly more than the
number of paths a�ected in a typical cable cut. We can use the results in Section 5 to calculate
the software reliability under such an exceptional condition. Then, software reliability is the
probability that all 250 paths are restored without any failures (SV time-outs). As the failure
interval in expression (2) is random, we must compute the probability of no failures over all
possible failure intervals and average with respect to the distributions of the arrival and
residence times of the dbaudit transactions. The probability of a failure in any ®xed in-
terval (a, b) is binomial with n � 250 and `success' probability p � F�b� ÿ F�a� where F(.) is
the ®tted Weibull distribution. This follows from the well-known property that a non-
homogeneous Poisson process, conditional on the total number of events, behaves like a
multinomial process (Cox and Lewis, 1966). So the probability that there are no failures in
the ®xed interval (a, b) is (1ÿ p)250. From all of this, we obtain an explicit expression for an
estimate of the software reliability as�T
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where T � 18 000 s. Again using a numerical approximation, we computed this value to be
0.977. The corresponding value for a cable cut of 570 paths is 0.971. These values are not as
close to 1 as we would like. In fact, if there are 10 cable cuts of size 250 each in a year, then
the probability of no failures in all of them is only 0:97710 � 0:79. However, the expected
number of paths a�ected by SV time-out failures is small: 0.06 for a single cable cut of 250
paths or 0.16 for 10 cable cuts of 250 each. This was deemed to be su�ciently small that the
time-out threshold parameter in the RNC software was left unchanged.
It is a common practice in the software area to measure `time' in CPU units instead of in

calendar time. A resulting measure of reliability is ®eld failure intensity as measured by the
number of failures per CPU unit. In our study, we also collected data on CPU usage expen-
ded under the various states of the RNC. The CPU usage under state A was larger than that
under state C, but this was due to the fact that there were fewer SV requests under state
C. After adjusting for this, we found no di�erence in CPU usage. The estimated number of
CPU units was 0.19. On this basis, the predicted rates of failures per CPU unit were 0.74
for states A and C and 0 for the other states. We can now use information from ®eld data on
the probability of the RNC being under the di�erent states and weight these failure rates
accordingly to obtain an overall ®eld failure intensity.

7. Concluding remarks

We have used a real application to demonstrate the usefulness of some statistical methods for
software testing and reliability estimation. This application dealt with situations where
system performance is dominated by infrequent but highly critical events. An important part
of our approach is the use of AT to induce software failures and to do extrapolations to
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estimate reliability under normal operating conditions. These methods, which have been used
extensively in hardware manufacturing, have an important role to play in software reliability
assessment as well. We have also demonstrated the importance of using the underlying
subject-matter knowledge about the failure process to do extrapolation. This is again con-
sistent with recent directions in AT in hardware reliability.
Although the techniques have been presented and discussed in the context of a particular

application, they are likely to be useful in other applications that also involve infrequent but
highly critical events. They are being used to test the next generation (optical ®bre) AT&T
network that will support synchronous optical network technology, signal multiplexing and
increased network intelligence.
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