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ABSTRACT

The transmission characteristics of an anisotropic panel formed by con-
ducting discs are investigated theoretically, for different orientation of

the principal axis of the medium. The results indicate that the best trans-
mission efficiency is obtained, for high incident angles, when the principal
axis is oriented in such a way that it is perpendicular to the plane of the
panel. It is shown by adjusting the orientation of the principal axis according
to the incident angles, that better and more uniform transmission could be
obtained through radomes of conical structure.
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I
INTRODUCTION

The problem to be discussed here is an extension of the work previously re-
ported* Our aim is to find the effect of the orientation of the principal axis of an
anisotropic panel on the transmission coefficients.

The problem discussed previouslylis the transmission of a plane electromagnetic
wave through an artificial anisotropic panel. The artificial dielectric which was under
consideration consisted of arrays of small conducting discs whose planes are perpen-
dicular to the interface of air and the panel. The resulting medium was double
anisotropic (both permittivity and permeability are tensors) with the principal axis
being parallel to one of the coordinate axes. The results of the analysis indicated
that by properly adjusting the lattice parameters it is possible to change the trans-
mission coefficient of the panel which cannot be accomplished by an isotropic panel.

It was also noted that the double anisotropic panel offers the possibility of high trans-
mission efficiency at incident angles near grazing, In the present study the above
mentioned work is extended by considering the anisotropic medium consisting of arrays
of discs which are arranged in such a way that the principal axis lies in a plane which
is perpendicular to the plane of incidence. The problem studied previously becomes

a special case of this more general problem,

Specifically, inSection II tensor permittivity and permeability are determined
as a function of the orientation of the principal axis for the anisotropic medium under
consideration. In the following section, the propagation constants in the anisotropic
panel are first derived and then the power transmission coefficients are determined
for the incident electric field is either perpendicular or parallel to the plane of

incidence. In the final section, detailed numerical results are presented.

*See list of References for Radant Analysis Reports on the previous contract.



According to this study, it appears that the best transmission efficiency is
obtained for high incident angles when the principal axis is oriented such that it is
perpendicular to the plane of the panel. It is shown that by adjusting the orientation
of the principal axis according to the incident angles, better and more uniform

transmission could be obtained through radomes of conical structure.



II

TENSOR PERMITTIVITY AND PERMEABILITY OF AN ARTIFICIAL
ANISOTROPIC MEDIUM

The artificial anisotropic medium is assumed to be made of arrays of disks
embedded in a medium with permitivity and permeability denoted respectively by €
and Mo The arrays of discs are arranged in such a way that the principal axis is

pointed in x' direction, which makes an angle o with x-axis, as shown in Fig. 2-1.
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FIG. 2-1: A three dimensional array of dists as an
artificial anisotropic medium.

xt

In the previous work (C~T Tai, et al, 1965), the principal axis is assumed to
be in x~direction (which becomes a special case (a=0) of the more general case
considered here). In the primed coordinates, the constitutive relationships of the

field vector are described by
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and u , are found in the previous work (Tai, C-T, et al 1965).

Since the field vectors in the two systems transform according to the rule
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Similarly,

B=p.H (2.11)
with
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III

TRANSMISSION OF PLANE ELECTROMAGNETIC WAVE THROUGH
AN ANISOTROPIC PANEL

3.1 Incident E~field Perpendicular to the Plane of Incidence
(Perpendicular Polarization)

We consider now the transmission of a plane electromagnetic wave through an

anisotropic slab of thickness d as shown in Fig. 3-1.
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FIG. 3-1: Incident E-field Perpendicular to the Plane of Incidence

The Poynting vector of the plane incident wave makes an arbitrary angle 6 with
the normal to the interface. The tensor permittivity and permeability of the panel are
the same as the ones defined by equations (2,9) and (2.12). The E~field of the incident

wave is assumed to be in the y-direction.



Inside the slab, the fields satisfy the Maxwell's equation for harmonically vary-

ing field ( ert), which are given in terms of tensor permittivity and permeability, as

V. (E.E)=0 (3.1)
. (&.H =0 (3.2)
Vx E=-jui.H (3.3)
Ux B = jue. E (3.4)

The last two Maxwell's equations lead teo the wave equations
VX({Tzrl. VX§> - w2
VX([?]—I. \/x TI)-— W

The sharp boundaries of the slab (see Fig. 3-1) imposes the following two con-

E

1
o=

(3.5)

mi

H

H
(o)

(3.6)

i

straints on the solution of the wave equation. Within the slab, the fields must be re-

lated to the fields on the interface sothey mustnotvary as a function of y (i.e. 8/9y=0).

In addition, the phase velocity of the wave in the x-direction must be the same as

the phase velocity in the x~direction at the interface. Because of these two constraints,

the y and x dependence of the wave equation is specified. It is only necessary to solve

for the remaining z dependence. The fields in the anisotropic slab can wnus be written

in the form (for E~vector polarized in the y-direction)
= (K. T)

E=E

1 (3.7



where

ol
H
x>
x.’&
.|.
N>
w

=i
n
i
+
N

and
K =K sin6
X o)

with Ko being the usual free space wave number.

By substituting equation (3.7) in equation (3. 5) one finds

2 2 € 2 € \

L] v + - - N

<Kz V22 K ;-1-1-\/ Ex <Kx Kz V22 Ko E-lé} E =0 (3.8)
/

2 2 €
+ - + - =
v Kz Vi, Kx KZ (v31 v13) Ko 2>Ey 0 (3.9)

€ €
K—K K V22_K2i1> E +ﬂ(2v --K2 —3> Ez=0 (3. 10)

L X Z 0 € X X 22 "o €
\ 0 \

where the €'s are the coefficients of the dielectric constant tensor € as given in

equation (2. 9).

The non-trivial solution of the above three equations is evidently given by

2 2 2 22
- + - T
Kx V33 * Kz Y11 Kx Kz <v31 VlS) Ko € 0 (3.11)
€92
Noting that Va1 =Vig and = T €y We obtain from equation (3. 11) the following
0

characteristic equation which must be satisfied by KX and Kz .



2 2 2
-~ + - =
Vll KZ 2 1/13 K KZ V33 K K 61 0 (3. 12)

:} "1 R
11’ V13 and V33 are the elements of the tensor uo u_? and are given

where v
by equation (2. 13).
Equation (3. 12) represents a quadratic equation in Kz’ the corresponding two

solutions are given by

2 2 9
+ -
K vi3 Ky —\!Kx (13 V11V33>+K0 V11 €1r (3.13)

VA Vll

The value of Kz with positive sign before the square root represents the prop-
agation constant in the positive z-direction and is represented by
+
v13 Kx P

K =X (3.14)
z+ Vll

2 2 2
P"\le <”13 “V11 V33 >+ K 7116y

The value of KZ with negative sign before the square root represents the nega-

where

tive of propagation constant in the negative z-direction . Thus, if kZ _ represents
the propagation constant in the negative z - direction, it is given by
-v,. K +P
K = A3 x (3.15)
z Vi1
Having determined the propagation constants in the anisotropic slab, the general

expressions for the fields in the three regions are given by:

10



| o/ \
— - +
E 1=E0/3> e J‘\KXX Kzo Z/) (3. 16)
E / ‘
. ' » +
= —2 \-QK +/Z\K>eJ<Kxx Kzoz> (3.17)
WM Z0 X
o
where
K =K sinf, K =K cos 6 andK=27r
X o Z0 O o A
/ \
EF =RE_ 9 e ka =K o z) (3.18)
RE / i j
B = 2 /QK +/Z\K>eJt\Kxx-Kzoz/ (3.19)
w o\ zo X : /
Region2, 0< z < d
_ il x+ Gk x-K 2
Ed= E0/3> T, e J<Kx x Kz+ z) +R1 e <Kx X Kz- zﬂ (3.20)
=d Eo F=Tm] Iﬁ A /\\ - K x+K z
H = — |p| T, (~K X+K Z|e P z+
w L (71 zt X
L /
+ R, <KZ_§2 t K ’2) e’ (Kxx"Kz— Zﬂ (3.21)

where Kz , and Kz- are given by equations (3. 14) and (3. 15). [ﬁrl is the inverse

of u and is given by equation (2. 13).

11



Region 3, z2> d

= = +

ElaT E_9 e](Kx X Kzoz> (3.22)
TE

p— - +

At —2 <—K X+K /z\>e J<Kxx Kzoz> (3.23)
W Z0 p'e

By matching the tangential components of the E and H fields at the two inter-
faces, corresponding to z=0 and z=d, one can determine unknown coefficients

T,» R;, TandR using the equations (3.16) to (3.23). The results are given below.

2K (K + v.. K -v.. K j
+
T = Z0 70 11 " 7 13 " x v (3. 24)

1 (
_ -j (K +K_> d
1 r1 r2 e z + z
o . <K +K _)d
R1 T1 r e z+ Tz (3. 25)
v - +
R:--1+T1 lil-rl e ]<Kz+ Kz -)d} (3.26)
and
T=T1 (l-rl)e-J<Kz+~Kzo>d (3.27)
where
. —vllK 13K +K0 (5.26)
1 Vll Kz - 13Kx~+Kzo

12



K +K
X z0

! K- ""13 (3. 29)
T
From equations (3. 14) and (3. 15) it is noted that
V11 Kpr V13 K 5P (3.30)
v, K _ tv K =P (3.31)
Adding the above two equations results in
K +K = & (3. 32)
2+ 2= vy

Using the relations in equations (3. 30) to (3. 32), the expressions for the coefficients

Tl’ Rl’ R and T could be expressed in a compact form, the results are summarized

below
1+r
T, = > 2P d (3.33)
l=-1 e V—
11
r{l+r)e J ;1')- d
R, = 11 (3. 34)
1-2ei2E 4
Y11
r(l-e 122 4y
R = 11
j-2e 2R 4 (3. 35)
Y11

13



and

(1 - rz) e (Kz + Kzo) d
T= | _2.,712P (3.36)
Y11
K ~P
where r=r =r = —— (3.37)
1 2 K +P :
ZO
2 2
P-\KO Vig € Kx (3. 38)
“lr
= M
and ML _1
uo

Since the interest is mainly in the magnitude of power transmissien coefficient

lTl 2 , it can easily be verified that

7] %= 2 (3.39)

From equation (3. 39), it is evident that perfect transmission ( |T|2 = 1) is

obtained when E—d is equal to an integral multiple of 7. We consider later the
11
case when VL d=7. Itis also noted from equation (3, 39) that the transmission
11

efficiency increases as the value of r decreases. For given €. and His it can

1
easily be verified that r will have the least value when a= 900, for any given value

of 6. These comments will be explored in more detail in the final section.

14



3.2 Incident E-field Parallel to the Plane of Incidence
(Parallel Polarization)

We consider now the transmission of a plane electromagnetic wave through an
anisotropic slab of thickness d, when the incident E-field is parallel to the plane

of incidence, as shown in Fig. 3-2.

gl
mi|

/ T'
N

T
! —t = x

Rf

FIG. 3=2: Incident E-field parallel to the plane of incidence.

The tensor permittivity and permeability of the panel are the same as the ones
defined by equations (2. 9) and (2. 12).
In the present case the plane wave is characterized by a Hy component such

that

Qeﬁtﬁ.f) (3. 40)

15



where

By substituting (3. 40) into the corresponding wave equation given by equation (3. 6)

which is repeated below for convenience,

-

\7x<[zj Y xﬁ> - EHE=0

one finds that Kx and K'z must satisfy the following characteristic equation,

11 'z 2 13 "'x 'z 33 x 0 (3. l)

By solving equation (3. 41) it is not difficult to show that the propagation constants in

the positive and negative z-direction are respectively given by

g K + P!

Kz'-l- = 13 gx (3.42)
11
-£._K + P!
K _= 13€x (3.43)
11
where
2

and £&'s are the coefficients of the €, F} -1 and are given by equation (2. 10). Having

determined the propagation constant, it is convenient to define the reflection and the
transmission coefficients with reference to the incident magnetic field, and the general

expressions for the electromagnetic field in the different regions are given by,

16



i - [K +
" = Ho/}\' e <Kx Kzo> z (3.44)
. H [k +K \
== (K X-X /% e—J< x X Tzo z) (3.45)
e \ zo X
0
2

where K =K sinf, K =K cosf, and K =-—,
X 0 ZO O o A

"' =R Ho/)\r e (Kx x= Kzo z) (3.46)

_.. R'H .
Er= 0 (-KZOQ-K /z\>e ]<Kxx KzoZ

\__/

oe, " (3.47)
Region 2, 0<z<d
. \
—_ -} t - - t
Hd=Ho/3\r [I“le J<Kxx+Kz+%+Rie ]<Kxx Kz- z)} (3.48)
=d Ho 1 A A -J<K x +K! ;*
= — |E t (K -
E o [] T1 <Kz+ x-K z+ /
~‘ - r
+R! <—-K' 2 -K /z\>e J<Kxx Kz-z)J (3.49)
1 z - X
Region 3, z2>d
— - +
B=T'H7Y e J<Kxx Kzoz> (3.50)

17



— ' i +
Et= 2 (KZOQ-K /i) e ) (Kxx Kzo z) (3.51)

By matching the tangential components of the E and H fields at the two inter-
faces, corresponding to z=0 and z=d, one can determine the unknown coefficients
T'l., R'l, Tt and R' as we did in the case of the perpendicular polarization. The
results have the same algebraic forms as those given by equations (3. 33) to (3. 36)
except that the coefficients KZ 4o Kz~’ P, rand v's are replaced, respectively
by K’z + K;_', P!, r'and &'s. The expressions for K'Z " K'z_, P' and £'s are
given in equations (3.42), (3.43) and (2. 10). The expression for r' is as defined

below

— 1
r'= Kzo P (3.52)
Kzo + P!

2 . . R
, which is our main interest, is given by

Thus, the expression for IT'

1

r{?= — = (3.53)
2 r' sin <P'd‘)
“’ T
1
2
- 1~ I"\

3.3 Numerical Results

As stated in the introduction, our aim is to study the effect of o (which
represents the orientation of the principal axis of the anisotropic panel) on the trans=
mission of a plane wave through an anisotropic panel. To this end, we note, from
the expression of power transmissions coefficients given by equation (3. 39) and (3. 53),
that the transmission efficiency increases as the values of r and r' decreases. From

the expressions of r, it could be noted that the value of r decreases with the increase

18



x
2 L]
This can easily be noted from the computed values of r as shown in Fig, 3-3.

in o for any given angle of incidence 6, and has the minimum value when o=

From the expressions of r', it can be noted that it becomes zero for a certain

incident angle BB’ which is usually called the Brewster angle and is given by

cos GB =/\4i(6l - 1) sin2 a + (elr - l\cos2 o (3.54)

2
For this incident angle iT" =1, indicating a perfect transmission, It can
easily be noted either from equation (3. 54) or from Fig. 3-4, that GB increases with

. s . . .
a and has maximum value for o=7, provided Er and € remains the same., This

2 1r
indicates that better transmission is obtained for high angles of incidence when « =';£ .
Figures 3-5 to 3-7 represent the computed transmission coefficient ‘Tiz for
different values of «, for several thicknesses of the panel % << 1\; and for two sets
/

of values for €. and €, Similarly the Figs. 3-8 to 3-10 represent 'T" 2 as a

function «. From these computed results for thin panel, it is evident that better
transmission is obtained when o = g',
is of interest for radomes characterized by high fineness ratio. Having noted that
a =g gives better transmission, the transmission coefficients are computed for

several thicknesses of the pane1<il << 1> and are plotted in Figs. 3-11 to 3-14.

These results will be of interest to see how the transmission changes with frequency.

especially for high angles of incidence which

Now, it is of some interest to point out the special characteristics of transparent
2
panels at oblique incidence. From equations (3.49) and (3. 53) we see that ‘Tl be-

comes unity when

— = N7 (3.55)
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FIG. 3-5: TRANSMISSION COEFFICIENT |T|2 FOR €r=2, €1r=3. 3,u1r=. 755,

(d/x=.04).
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FIG.3-6: TRANSMISSION COEFFICIENT |T|? FOR €,=2, €,73.3, uy .= . 755,
(d/x =.05) .
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FIG.3-7:  TRANSMISSION COEFFICIENT |T|? FOR €4, €,=6.6, u = . 755,

(d/x=.04) .
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FIG. 3-9: TRANSMISSION COEFFICIENT |1')? FOR €72, €,=3.3, py = . 755,

(d/A = .05).
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FIG. 3-10; TRANSMISSION COEFFICIENT | T'|* FOR €74, €,=6.6, u; =.755,

(d/x = .05) .
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FIG. 3-11: TRANSMISSION COEFFICIENT |T|? FOR €,=2, €,=3.3, u = . 755, a=90°.
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FIG. 3-12: TRANSMISSION COEFFICIENT | Tj2 FOR €.=4, €, =6.6, u; = . 755, =90°.
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FIG.3-13; TRANSMISSION COEFFICIENT | T'|2 FOR €2 €,3.3, uy =755, a=90°.
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FIG. 3-14: TRANSMISSION COEFFICIENT | T'|? FOR €, =4, € = 6.6, u _=.755, a-=90°.



and |T’|2 becomes unity when

P'd
Pd . ng (3.56)
11
Usually N =1 (which corresponds to equivalent half wave panel) is of prime
interest. Letting dt and dé represent the corresponding thickness of the pand for

which perfect transmission occurs for perpendicular and parallel polarization re-

spectively, it can be shown from the equations (3. 55) and (3. 56) that

2 L 2
’u sin o + \ju, cos  «a
d =0.5 L ir AR5 S (3.57)
/ sin2a+cosza € -sin26
\ \le J 1r
er sin ot elr cos «
d; = 0.5 (3.58)

.2 2 .2
€ € € sin ote€e, cos a=sin 0
r 1r\{ r 1r

These conditions for perfect transmission are plotted in Figs. (3-15) to (3~18). From
these plots it is noted that the necessary thicknesses are smallest for a=Z , which
may be an advantage in some cases where weight is a major factor in a radome design.

In what follows, we discuss the design of an equivalent half wave panel and pre-
sent the numerical results. The interest is to obtain high transmission for both polar-
izations for all angles of incidence up to 850.

As noted before, perfect transmission is obtained for parallel polarization when
the incident angle 6 is equal to the Brewster angle GB' It was also noted that GB has

maximum value, and better transmission is obtained for perpendicular polarization
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FIG. 3-15; CONDITIONS FOR PERFECT TRANSMISSION (|T|2=1) THROUGH EQUIVALENT
HALF-WAVE PANEL FOR €,=2, €,=3.3, u, =, 755 .
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FIG. 3-16: CONDITIONS FOR PERFECT TRANSMISSION (| T|2=1) THROUGH AN
EQUIVALENT HALF-WAVE PANEL FOR €,=4, € <6, 6, ) = . 755.
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FIG.3-17: CONDITIONS FOR PERFECT TRANSMISSION (IT'2=1) THROUGH AN
EQUIVALENT HALF-WAVE PANEL FOR €22, € -3. 3, Hyp= . T55.
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FIG. 3-18: CONDITIONS FOR PERFECT TRANSMISSION (JT'|2=1) THROUGH AN
EQUIVALENT HALF-WAVE PANEL FOR €.=4, €, .=6.6, u, = 755.
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when « =§ . Considering these observations, it is appropriate to design the equivalent

half wave panel in such a way that perfect transmission is obtained for perpendicular polar-

ization at a desired angle Gt » Which is related to the required thickness dt as

given in equation (3. 57) for « =Z Figures 3-19 to 3-24 represent the transmission

[N}

coefficient |T\ 2 as a function of 6 and o for several assumed values of 6 _. Similarly,
Figs. 3-25 to 3-30 represent ‘T'lz. Figures 3-31 to 3-34 represent ile or ‘T'!Z as
a function of 6 and Gt for o =';1 . From these figures it is noted that higher the value
of Bt, the better is the transmission at high incident angles, for the case of « =';£ .
However as Ot is increased to higher valuez, the transmission efficiency at normal
incidence is degraded for o =-;r‘ . For o < -275, the transmission efficiency is better
for normal incidence. This dependence of the transmission coefficients on o can be
taken as an advantage in order to obtain high transmission throughout the range of

incident angles. We take the case of er =4, € ¢ =6,6, and Gt = 80, as it has the

better transmission for high incident angles (u; to 6= 850) for « ='72£ , to illustrate
how one could design a panel which has power transmission efficiencies better than
95 per cent over the range of incident angles up to 6= 850. To do this, draw a line
at !T.z =,95 (and ]T' l 2 5 .95) in Fig. 3-24 (and Fig. 3-30). From these figures, it
is noted that the curves for o= 300 can be used up to 6= 350, a= 600 can be used
from 350 to 650 and o= 90O can be used for higher values of 8. To apply these

results to a cone shaped radome, one has to vary « along the radome depend-

ing on the angle of incidence as shown in Fig, 3-35,

The corresponding transmission coefficients are plotted in Fig, 3-36. It
is expected that by varying o continuously along the radome the transmission

efficiencies could be improved further.
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FIG. 3-19:
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TRANSMISSION COEFFICIENT [T|? FOR 6,=60° (d,/2=. 329), €,=2, €;,3. 3,
Myp= . T35,
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FIG. 3-20: TRANSMISSION COEFFICIENT |T|? FOR 6, = T0° (dg/x = . 342), €=2,
€= 3.3, by, =.755.
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FIG.3-21: TRANSMISSION COEFFICIENT |T|2 FOR 6,=80° (d/) = .352), €.=2,
€ 3.3, Bip=- 755.
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FIG. 3-22: TRANSMISSION COEFFICIENT |T|2 FOR 0,=60° (d;/x=.211), €,=4,
€,76. 6, uyp= . T55.
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FIG. 3-23; TRANSMISSION COEFFICIENT |T[? FOR 6;= 70° (dy/) = .215), €, =4,

€1r'= 6.6, g, = .55,
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FIG.3-24; TRANSMISSION COEFFICIENT |T|? FOR 6,-80° (d,/3=.217), € =4,
€1r'= 6.6, M1y = 755 .
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FIG.3-25;: TRANSMISSION COEFFICIENT [T'|2 FOR 6;= 600(d,/x = . 329), €,=2,
€= 3.3, uyp =.755
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FIG. 3-26: TRANSMISSION COEFFICIENT [T'l2 FOR 6,= 700 (di /X = . 342) €72, €1p=3.3,
Mip = 755.
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FIG. 3-27; TRANSMISSION COEFFICIENT |T'|* FOR 6,=80° (d/) = . 352), €,=2,
€1p= 3.3, pyp= . T55.
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FIG.3-28: TRANSMISSION COEFFICIENT |T'|2 FOR 6, = 60° (d/A = .211), €.=4,
€= 6.6, py,. = . 755,
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FIG.3-29: TRANSMISSION COEFFICIENT [T'[? FOR 6,=70° (d/=. 215),
€74, €1776.6, 1 =. T55.
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TRANSMISSION COEFFICIENT | T'|2 FOR 6,-80%(d,/x=. 217), €4,
€,,6.6, py, = . T55.
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FIG. 3-31: TRANSMISSION COEFFICIENT | TP FOR €2, €; =3.3, u,,=. 755,
a = 90° AND VARIOUS VALUES OF 6; .
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FIG. 3-32: TRANSMISSION COEFFICIENT|T|2 FOR €

@ = 90° AND VARIOUS VALUES OF Ot . d

=4, €1r=6' 6, Hyp= 755
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FIG. 3-33; TRANSMISSION COEFFICIENT | T2 FOR €2, €,73.3, i 1=+ 195,
o = 90° AND VARIOUS VALUES OF ; .
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TRANSMISSION COEFFICIENT | T'|2 FOR €4, €,%6.6, u = .55,
a'= 90° AND VARIOUS VALUES OF 6;
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FIG. 3-35: ANISOTROPIC CONICAL RADOME WITH
VARIABLE PRINCIPAL AXIS ORILNTATION ( «) .
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FIG. 3-36: TRANSMISSION COEFFICIENTS |TI2 AND | T'[? FOR €4, €,76.6,
Hqp= 755 AND et=so° WITH ¢ DEPENDING ON 6 .
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Iv
CONCLUSIONS AND RECOMMENDATIONS

Theoretical study on the transmission of a plane wave through an anisotropic
panel indicates that the transmission efficiency depends on the orientation of the prin-
cipal axis, and better transmission efficiency is obtained, especially for high incident
angles, when the principal axis is perpendicular to the plane of the panel. For this
orientation it is noted that the physical thickness of the equivalent half wave panel is
smallest which may be an advantage where the weight is a major factor in a radome
design. It was also noted that the transmission efficiency is degraded at normal
incidence, when the principal axis is oriented perpendicular to the plane of the panel.
By proper orientation of the principal axis, which depends on the angle of incidence,
it is shown that transmission efficiencies greater than 95 per cent could be obtained.
for both polarizations.

It is recommended that the future work on anisotropic panels include experi-
mental verification of the theoretical predictions. A suggested approach for the
experimental work would be to employ some low density foam as the base material.
Metallic discs of appropriate diameter would be placed on the surface of the material
and sandwiched together to form an anisotropic panel. Two or more configurations
may be considered, for example, one in which metallic discs could be oriented with
the plane of the discs parallel to the interface and for a second case, the discs

would be inclined at the other required angles.
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