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INTRODUCTION

The study of the temperature dependent order-disorder effect in
magnetite as manifested by the change in magnetic characteristics can be
quite revealing if one is fortunate enough to have available monocrystals
of the material. One can study directional properties which will reveal
the crystalline transition from cubic to orthorhombic symmetry. Not only
can one study directional properties of these materials with ease
experimentally, one can also invoke symmetry relationships that make the
mathematical description much more tractable. Practically all the research
reporting the order-disorder transition observed in magnetite at -155°C
is concerned with monocrystalline properties(l)g This does not mean that
polycrystals of the same material do not exhibit a like effect(2>° This
researcher studied the transition of natural and synthetic magnetite with
varying degrees of doping and oxidation and found rather surprising results
which will be reported on at a later time.

Because the material that was being studied was polycrystalline
a direct comparison with other results was not possible. To obtain the
polycrystalline magnetic behavior one must be able to average the magnet-
ization or the crystalline anisotropy energy over all possible directions
with an appropriate weighing function. Even before one reaches the averag-
ing process, one must be able to represent the total energy of the system
in a form which will make the magnetization process progress in a fashion
which will make the total energy a minimum. There are three assumptions

which are made by most people studying the magnetization process(B’)*)°



The first usually assumes that the total energy is predominantly magneto-
static and magnetoelastic energy. The second assumption states that the
crystalline anisotropy or mechanical energy can be expanded in a series of
direction cosines with appropriate anisotropy constants or strain components
which is consistant with the symmetry of the system. The third assumption
requires that in the magnetization process the magnetization vector ap-
proach the direction of the applied field by moving from an easy direction
to the applied field direction as the field is increased in a plane formed
by the easy direction and the applied field. All of these assumptions are
applicable in the studies on magnetite as verified by the comparison of
experimental results with predicted results based on the above assumptions(5x
The first two assumption will be used in the analysis to follow and the
third one will be shown to be a good first order approximation. In order

to facilitate the averaging process the energies to be considered will be
expressed in spherical coordinates rather than in polar angles. The minimi-
zation of the total energy will also be carried oubt in spherical coordinates.
A Taylor series expansion of a function of two variables is used both for
the magnetization and the crystalline anisotropy energy. The mks system

of units will be used.

DEVELOPMENT
The assumption that will be used in the analysis for both the
orthorhombic and cubic phase for magnetite are as follows:
(1) The free energy of interest for the system is the sum of

the magnetostatic and crystalline anisotropy energy.
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(2) The magnetization process proceeds entirely by domain
rotation.,

(3) The crystalline anisotropy energy can be expressed by
a series expansion in direction cosines of the magnetiza-
tion vector which are consistant with the symmetry of the
system.

() The magnetization and crystalline anisotropy energies are
mathematically well behaved above and below the low-
temperature ordering transition. This last assumption is
required if the Taylor series expansion is to be used with
any degree of confidence.

The results for the cubic configuration can be found elsewhere

in the literature(6) and are included in the Appendix.

It is assumed (l) that the free energy can be expressed by the

following equation:
E = E +E -ufH*J (1)

where

li

Eo; = isotropic energy term

Ex = energy needed to turn the magnetization from an easy
direction to some other direction

Holl*d = magnetostatic energy
For the polycrystalline samples under study use must be made of the average

crystalline anisotropy and magnetostatic energy. These averages are with

respect to the possible spread in domain orientations over the total solid
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angle of b steradians and are noted in Equation (2) by the bars.

One seeks a distribution over the allowed angular displacements for the
magnetization vector that will make the free energy a minimum. To facil-
itate the averaging over all possible orientations the cosine of the angle
between H and J which can be written in the direction cosines of H

and J as follows
1 1 1
0 = 0oy + 00y + 050 (3)

and the direction cosines which appear in the expression for Ek are

expressed in the spherical coordinates for the unit sphere as follows:

& = sin © cos P
Qp = sin 6 sin ¢ (%)
Qg = cos ©

The primes in Equation (3) and the equationsto follow denote the direction
cosines for the effective field and the subscripts denote the x, y, z axes
or <100>, <010>, <001> directions, respectively. Also, the following

reduced or normalized magnetization is defined as

- 1
g Flo

unit sphere

n 2 Ny (5)

S

where F(w’) , the weighing function, is assumed to be unity for the system
if it has no magnetic history. dw' 1is an incremental area on the unit

sphere or incremental solid angle.
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Because H is assumed fixed at all fields (neglecting demagnet-
izing effects) and Jg turns under the application of the field, it is
assumed that the spherical coordinates of H are known and those of Jg
are the variables. Invoking the symmetry requirements allows or requires
that the integration be carried out over only a fraction of the total
solid angle. The characteristics relative to this fraction of the total
solid angle are then representative for the symmetry class under study.

The crystalline anisotropy energy for the orthorhombic structure

is given by

2 L

E, = K,sin°e, + K sin®8, + K sin bo

8, + Kgsin“eb + Kisin'e,  (6)

1 N
ec + Kﬁs1n

where the angles 65, ©, and 6, are measured from the a, b, ¢ axes,

respectively, of the orthorhombic structure. Tor the orthorhombic phase

in magnetite, the ¢ axis is the easy axis which is in the <001> direction.
The average crystalline anisotropy energy for the polycrystal

with no magnetic history is given by

_ K K K :

B =2 | (sine, _KP. sine, + 2 5108 )aw (7)
C (]
K K? KI 1
s S\ (2 sinbe, + R ginke, + 2 sinte)aw
® Ke K, K,

To simplify the notation somewhat, let
- K, .
Kk = fdw (8)
®

The integrations for the case of the orthorhombic phase are carried out

over one octant so that the « appearing in the above equations is g .
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To integrate f it is best to change the direction sines into sines of the

spherical coordinate angles. This is accomplished by noting that

sin 293 = 1 - sin 2@ cos 2¢
sin 26b = 1 - sin 2@ sin 2¢ (9)
sin 26C = sin e

Using this substitution, f can be written as

Kb X X% X

1
fo= =+ 24+ 24 8 4 sin2 +-Csin e
K. K. K. K K,
1
2!
+ §§(sin be cos 4¢) - 5.-?‘--+ -55 sin 26 cos 2¢ (10)
Ko Ke  Ke
K K, 2K
+ —E(sin b sin h¢) - 224 B gin 29 sin 24
K, K, K¢

It should be evident from Equations (5) and (8) that Ek and
cannot be found unless the equilibrium conditions are known for © and ¢
in terms of ©' and @' for the particular crystal system of interest.

The equilibrium conditions are such that
B - HoHIg® = minimum (11)

or in terms of Equations (5) and (8)

_ Hollds
Ke

faw'

Qdw' = minimum (11a)

Gans(6> suggests that a partial integration of Equation (lla)

with respect to © and ¢ will yield the necessary conditions for equi-

librium. Instead of this, use will be made of Akulov's(7> assumption that
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the minimal conditions on the integrands will suffice. Either technique
will work as is evidenced by the fact that the results obtained for the
cubic system using the second approach give the same results as Gans

reported. With this approach, one obtains:

-t =0 (12)

£ 0

e

1]
O
—~
H
\Y
©
~—

fp - %
where the subscripts denote a partial differentiation with respect to ©

and ¢ , respectively, and

HJ
t = = (13)
MOKC

It will be assumed that f and Q can be expanded in a Taylor
series in two variables where the variables will be selected in accordance
with a wéak or strong field analysis. A weak field will be defined as one
which moves the magnetization vector only slightly out of line with the
easy direction. A strong field will be defined as one which is only
separated by a small angle from the magnetization vector. With appropriate
consideration of the conditions under study, f and & will be expanded

only to the fourth term. For instance,

fof) = tloyd) + X @lfél(e_el) +§% @l¢l<¢_¢l> L g:-g. eﬂél(e-el)?
; g-;—g- el¢l<¢~¢l> ‘2 %Z%z elél(e_el)(yjmyjl) oL 2 6lﬁjﬁ(ef-elﬁ
\ g-gg- 0 aiig ¢ @1%(6-@1)2 (9-4,)
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where @l¢l is a point on the unit sphere about which we would want the
‘expansion to hold. For weak fields this would be the coordinate for the
easy axis and for strong fields this would be the coordinate for the

effective magnetic field. Now if we replace (6—91) by 4 and (¢_¢l)

by B , 1t is found that f and {Q can be represented as

f = £ +Qf] +Bf, + %_(o?fll + 20Bf , + B2f,,)
(15)
1 2 2
g (032}, + 30788 5 + 308°F oy + BIT,5)
Q = 0+ 08 + By + % (0P + 20805 + B20n0)
(16)
¥ é‘<a39111 + 30%B05 + 308°0 05 + B30pp)

where the subscripts on f and { indicate the order of the partial
derivative by the number of subscripts and subscript one means with
respect to © and subscript two with respect to ¢ o

The evaluation of Equation (12) and (12a) yields Equations (17)

and (17a), respectively.

1 ,.3 2
(17)
= [0 + oy + BQ L (20 2030 c0
€ Loy +0fyy + B2 + 3 111 + 20801710 + B 00p)]
1 2
£, + Of 5 + By + 5-(a2fllg + 20Bf1 55 + BPpn0)
(17a)

]

. 1 2
¢ [0, + a0y + By + > (052&'2112 + 2080 55 + B 005 ]

In weak fields it should not be necessary to utilize the triple

subscript terms in § because of the magnitude of ¢ . Also notice that
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in the strong field case the triple subscript terms in f will be
extremely small compared to the other terms. The f's will be dependent
on the particular form of the crystalline anisotropy energy used while the

Q's will be the same in all cases.

Weak Fields

In weak fields the following substitutions are used:
o =8 and B=p-p (18)
and with these it is found that

QO = - Qll = COS 6,

- Qlllz - 9221 = gin @? (19)

2
[l
il

Iy = Qo = o = opp = 70 = 0

and the f's are

K Kl 1
fo =z _E.+ Eé. -+ ;E -+ Eg
K, K, K, K,
K oK 2K!
fi1= 2|1- 2D sin°g’ - Y, e cos?p’ (20)
H
K., 2K Ky =2
fiip= -2 |[2+20) gin2g +2 B, sin 2 ¢’
112
Ko X Ke Ke
Ty = fp =1y =f15 = f97 = fppp = fpp) =0

Let us assume that @ and P can be represented by the following

polynomials

a = ¢+ Cpt? e+ ., (21)



which go to zero as

order coefficients is not warrented at this time.

B = Dyt +Dpt? +D3t3 + ...

{ goes to zero.
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(22)

Evaluation of cubic and higher

A direct application

of Equations (12) and (12a) with the small angle approximation coupled

with Equations (21) and (22) yield for the first two constants in each

expansion

in Q,

Dy .

I

3
& &
sin ' |K

c

sin @' 1
2 1 1
K 2K K 2K
[l - sin2¢' (—E- il cosg¢' - ——C }
Ko X e Ke
(23)
cos ©'sin @' 1
- T ' e
1-sin2@’ %, 2Kb cos2p' fa |, 2
K, K, K, K.
K 2K (Ké 2Ky,
2 — + — - =+ —
sin ¢ A sin ¢ k. K
K 2KY 2K,
2 |:l - SlnzféY —-k-)- o - C 2¢' (.I_{_ai. + __KE ]
Ke c Ke K¢
(24)

K
cos®P' sin2p' + EE sin®p' sin2p’

C

As long as only the single and double subscript terms are used

there is no need to know the value for B

It does not enter the expansion for &

in terms of Dl and

in weak filds because the

first non-zero term in the expansion which it multiplies is 9221 .
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To obtain the reduced magnetization, it is then necessary to

evaluate

fdﬂ)’ (9 + 00y + %‘2_ Q1) (25)

2]
il
g i+

This proceeds in a straightforward fashion to yield

Q = 0.5+ - = * HodgH
3[(K, - K, - 2K) (K, - K, - 2K;)]1/2
(26)
) 3(Kg + 2Ky - Kp - 2Kb) . 2R
242 [(k, - K - 2K)(K, - K, - EKQ)]B/E °®

The evaluation of Ek can be obtained by the appropriate
integration of f with the values for the expansion given by Equations

(20) - (24). This will not be done at this time.

Strong Fields

For strong fields higher-order terms in { must be used because
of the raltive size of { , but the number of terms needed in the
expansion for f can be reduced. The selection of 6] and §; is such

that they can be replaced by ©' and ¢'. This means that

Q = 6-8] = -6 (o)

B =pb-f = p-p !
It is then found that

Qy = -1 =1

Qop = - sin®6'

o] = =~ cos O'sin € (&)
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The f's do not simplify as they did for the weak field case and it 1s
to be understood that the constant terms in the Taylor series for f are
evaluated at the ©' and @' point on the unit sphere. Equations (12)

and (12a) then yield the following two equations, respectively.

2
£l +0f] + By, = - ¢ (a + g— cos ®' sin ©' ) (29)
and
hil ‘ = : 2g! L 1
o+ Of1p + Bfop = - t (B sin“e' + OB cos ©'sin ©') (29a)

Again & and P can be expanded as before keeping in mind the

fact that & and P must go to zero with ¢ going to infinity.

o = f\.l+f2_+,,.. (30)
6 ¢
B

p - .2, (31)
6t

Using the first two terms in the expansion for & and B , it

is found that

f
A, = 1
1
” (32)
A, o Lo [fafa Taofe 1o fon
2 a 0 0 > 22
11 11 P 2P
fo
By = —
o0
(33)
forf fanf £.f
B, = 1 a1ty | feota 12
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These constants then give:

2
f11f7  f1of] Qoo fo°
= il (1+1 L |41 uf , fofy M2z f2 1
@ 2 0 ¢\ 1 2 2 Q|| ¢
2
R S P § forfy | foofp £1f5 1
2 i 2
20 Cl G M1%2)] ¢

Qoo [Ar Aol [B7  Bsl|2
po2el (i e 2 (34)

1 .
If we restrict the number of terms to those in = and %3 , 1t
found that Q can be represented simply as
f2

1 ' 1 o 2 1 2 2
= = -5 T t = + T fipofyf

o [ 1 -5E | e ¢3 fnfl *+ et f12f1te

1 6

. £,02 - S8 8 g p2 (35)

sinue eer2 sinde’

7 ‘ 1
The region of integration is such that ® is 7 and 6 and §

both range from O to g . The integration yields
- l l l 1 l 1 1
QO = 1"5—_;{;2_?2 K. 168[(KC-Ka—Kb)+384 Kcmg(Ka+Kb)}
+ 25 K. |K! -3 K'+K')1 + K {168 (K -K.-K.) + 384 K'- L (K'+K)
c T Vb a, a, Ké' ¢/ a” 5 b
1 ] 1 l 1 L
+ 256 K, [Ka 13—; )|+ Ky [168 (Kp-Ko-Kg) + 38L (Kb- > (KC+Ka)J
1 ! 3 1 "‘ 1 SIS
+ 256 Kb [Kb - E (KC + >‘ + m [- 16 (Kc+Kb+Ka)
+ 2h (K KE+KCK +K Ko+KoK +K KS+KEK ) - 96 KcKaKb:l (36)

Recall that

ModgH
K

S
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NUMERICAL EVALUATION

The amount of data available on the orthorhombic phase of
magnetite is rather limited. Williams<5> does have anisotropy constants
for this phase at a temperature of -196°C. Using his data, which is
tabulated below, it is found that weak and strong field magnetizations

for polycrystalline magnetite are given by Equations (37) and (38).

KC = 37OxlO2 joules/m3 Ké = 620x10° joules/m3
K, = 890x10° joules/m3 K =-400x10° joules/m3
K, =-620x10° joules/m3 K, = 120x10° joules/m3
Jdg = 502x103 amp/m3
Weak field:
0 = %— = (0.5 + 4,58 x 1o‘6H _1.28 x 107 + veo) (37)
S
Strong field:
— J 1
9= L - (1-1.33x100%9L 4726 x0tr L) (38)
Jg He 13

Equations (37) and (38) are plotted in Figure 1 with the
dashed portion indicating the region not covered satisfactorily by the
equations. Figure 2 is the corresponding plot for cubic magnetite

based on Equations (A-14) and (A-15).

COMPARTSON WITH EXPERIMENT

At this time there are no magnetization curves available for
either orthorhombic or cubic, polycrystalline magnetite in the low-

temperature range of interest. Normally the ordering transition is
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observed by cooling the sample through the transition without a magnetic
field applied and then the magnetization is measured as the temperature
rises at a field which will not saturate the orthorhombic sample but will
saturate the cubic sample(l)o A magnetic field intensity of 160x103
amperes per meter would be such a field. It is also observed that the
saturation magnetization just above and below the ordering temperature
is the same. The ordering transition does not change the saturation
magnetization. In fields large enough to saturate both phases, it is
observed that the magnetization shows no transition. Using this fact,
comparison can be made between the predicted magnetization curve at -196°C
and the change in magnetization through the transition. This is shown
in Figure 3. The Weiss and Forrer(g> curve and the other points above it
(data obtained by this researcher on synthetic magnetite and natural
magnetite) are affected by lack of purity. The two points on either side
of the predicted curve were obtained from measurements on a very pure sample
of magnetite<9). The upper most curve demonstrates what happens when the
sample is cooled through a magnetic field and allowed to warm up in the
same field. This curve was also run on the very pure sample mentioned
above. A subsequent paper will report the findings on the lithium doped,
oxidized, and natural magnetite. An apparent double transition with

these samples cannot be explained within the scope of this paper.

SUMMARY
A characterization of the magnetization process for orthorhombic

and cubic magnetic materials is developed that assumes:
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That the free energy for the system is composed primarily
of magnetostatic and crystalline anisotropy energy.

That the magnetization process proceeds entirely by domain
rotation.

That the crystalline anisotropy energy can be expressed
by a series expansion in the direction cosines of the
magnetiéation vector.

That the magnetization and crystalline anisotropy energy
are mathematically well behaved above and below the low-

temperature ordering transition.

Applying these assumptions and expressing the reduced magnetiza-

tion (Q) and normalized crystalline anisotropy energy (f) in Taylor

series of functions of two variables ( @ and B ) , the following are

obtained:

(1)

(@)

A minimization of the total free energy without restrict-
ing the magnetization vector to lie in a plane formed by
an easy direction and the applied magnetic field.
Magnetization equations in terms of anisotropy constants
and applied magnetic field (weak and strong fields) for
meono- and polycrystalline, orthorhombic and cubic material
when the easy axis is in the <001> or c¢ direction.

An evaluation of the magnetization equation for poly-
crystalline magnetite at -196°C and -153°C. At these
temperatures the easy axis for magnetite is in the proper

direction to make the analysis applicable, and the
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necessary anisotropy constants are avialable. These
equations are plotted in Figuresl and 2.

A comparison of § in fields which will saturate cubic
magnetite but not orthorhombic magnetite is made between
the predicted values and experimental values and good

correspondence is observed. This is shown in Figure 3.
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O VERY PURE WITH NO FIELD IN COOLING
® VERY PURE WITH FIELD ON IN COOLING

O NATURAL MAGNETITE —
A PARTIALLY OXIDIZED WITH NO FIELD
IN COOLING
| I | I ]
o 80 160 240 320 400 480
FIELD IN AMP/M.x 1073
Normalized magnetization for polycrystalline magnetite at -196°C

versus magnetic field intensity with an indication of results
from experiment. The experimental results give the Q's Jjust
below the transition temperature.



APPENDIX

For the cubic structure with the easy directions the cube edges,
one can limit the averaging process to the portion of the unit sphere
defined by the surface area in one-sixth the octant formed by the arcs
extending between <001> to <101> and <111> and the arc from <101>
to <111>. 1In this case the easy direction is <001> .

The crystalline anisotropy energy can be written in terms of

the direction cosines of J as follows:
By = K (0205 + 2a§ + a%a%) + K, (cBaBof) (a-1)

In terms of the spherical coordinates this reduces to

2

B, = K (sinte sin®p cos®P + sin®6 cos=8)

(a-2)
+ K (sin*e sinP cos®Pcos2e)

This then gives

1

K

5 (sinte sin?P cosP + sin®e cos®e) dAw

= (sin*® 5in®p cos®d cos2®) dw'

where w corresponds to the solid angle defined by the arcs indicated
above. To simplify the notation somewhat, let

h
(0]

B = fao' (A-4)

where f 1s the normalized crystalline anisotropy energy.

-21 -
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The normalized or reduced magnetization is, as given earlier,
Q=1 o (5)
w

In spherical coordinates this becomes

Q = %- cos® cos®' + sin® sine' cos(¢~¢')} o' (A-5)
The equilibrium conditions require that
Ek- LoHIgQ = minimum (11)
or in terms of Equations (A-4) and (A-5)
faw' - MEHJS Q0 daw' = minimum (A-6)
1

The determination of the dependence of 6 and f§ on ' and @'
proceeds as with the orthorhombic case. The analysis will be with respect
to weak and strong field conditions where "weak" and "strong" are as defined

earlier.

Weak Field

Equations (18) and (19) again apply but the values for f are
much more simplified.
f =2
11
(A-7)
fo =Ty =fp =Tpp =T1p = f117 = fopp =170 = Tpp) =0
It is again assumed that & and P can be represented by the

polynomials given in Equations (21) and (22). The first two constants in
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these expansions are evaluated and are found to be

siné'
c. =
1 o
(A-8
Cp = sin®' cose’ )
T
and
Dl = O
s 2A1 a1 1
_ sin“8' sinkg
D2 = - l6 (A'9)
Thus for weak fields
. 2 1
Q = cose' + 51229 t - % sin?e' cos®' @ (A-10)

Notice that the terms in P :do not enter into the calculation if terms in
§3 and above are neglected.

To obtain the average reduced magnetization for the polycrystal
without any magnetic history, we again assume a statistical weighing
factor of unity and note that @' varies from O to 45° and ©' from O to

cos':L -i and

V3

14
w = —
12
Gans(é) performs the integration using an iterated integral of

the following form:
h5e cos6q

~ 12
Qo= = ag' Q sin 0'de" (a-11)

where

cos '

(1 + c032¢’>1/2

coseo =



)

The integration then yields the average magnetization normalized to the

saturation magnetization given by Equation (A-12).

Q0 = 0.8312 + 0.1496 t - 0.08705 t2 + .... (A-12)
where
[ o boll
K
Strong Field
For strong fieldsEquations (27) through (35) are used and
Gans<6) shows that the normalized average magnetization equation can be

integrated as above to give

2
}55-- 0.05201 == + ..

Q = - 5
: ¢2 t3 (A-13)

105 1155 K3 5005

8 N 16 K2 N 8 Ko
Ky

Numerical Evaluation

Because the behavior of magnetite in the order-disorder
temperature range was of prime interest, it was desired to evaluate
both Equations (A-12) and (A-13) just above the ordering temperature.
The best avallable values for anisotropy constants in this region are
those of Bickford(lo). They are listed below and give the magnetization

equations for polycrystalline magnetite in either weak or strong fields

at -153°C.
K, = 42x10° joules/m3
Kr = 20x10° joules/m3
Jg = 498x103 am.p/m3



D5

Weak field: _
0 = %‘ = (0.8312 + 22.3 x 100 1 - 5.70 x 10710 B 4 ... (A1)
S
Strong field:
= 6 T
g - L - (.- 6.b2x107  1.57x10 (A-15)
J i 103

O]
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