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Introduction 
Several investigators have conducted learning experiments with humans 

and with animals designed to test the validity of various stochastic* models 
for learning. Estesl pioneered in this field. Independently, but a t  about the 
same time, very similar theoretical approaches were being developed by Bush 
and Mosteller? by Miller and McGill,* and by Bales et a1.6 

The outstanding work of Bush and Mosteller, especially on the important 
problems of statistical estimation with applications to experimental data of 
various workers, was reported fully in their book on Stochastic Models for 
Learning! Recent work by Burke, Bush, Estes, Mosteller, and others is re- 
ported in a volume entitled Studies in Mathematical Learning Theory, edited by 
Bush and Estes? Especially noteworthy, more recently, is the theoretical 
approach of Luce: as reported in his book, Individual Choice Behavior, and 
in the work of Suppesg and others a t  Stanford University, Stanford, Calif. 

The present paper reports on intermittent work, started in 1951, with one 
particular stochastic learning model that I have called the “symmetrical 
model.” The characteristics of this mathematical model that are essential for 
the present paper are summarized in the next section. The symmetrical model 
has been compared with some other stochastic models in an earlier paper of 
mine3 in which a comparison was made particularly with the combining-of-classes 
model of Bush and Mosteller. Critical aspects of experimental and theoretical 
procedure and meanings are discussed there also. Suffice it to say that, for 
present purposes, the symmetrical model seems worth checking experimentally 
with respect to its range of validity. I have called this range of validity the 
“scope” of the theory. 

Although the work is discussed here in the context of individual learning in 
rats, my interest in it has been and is primarily with reference to organization 
theory. A series of earlier papers’O deal with the use of stochastic models of 
this kind as models for decision-making groups of interacting individuals. No 
attempt is made in the present paper to indicate further the use of such sto- 
chastic models in organization science, so that it is best read as a straight- 
forward paper on individual learning. 

The motivation for using rats, rather than human subjects, is threefold: 
(1) Close control, and use of extremes of reward and punishment is possible 

with rats. 

* Estes‘ referred to his model as “statistical” or “probabilistic,” and Bush and Mosteller2 
to theirs as “statistical” or “mathematical.” I have called3 the approach “stochastic learn- 
ing theory,” because the mathematical models used are ordinary stochastic processes; “sto- 
chastic learning” is now a term quite commonly used. 
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(2) Implanted electrodes in the brain of the rat can be used to provide 

stimuli that are either rewarding or punishing, and readings from electrodes 
can provide useful information regarding the rat's behavior. 

(3)  Experimental costs and difficulties are less with rats than with human 
subjects when they are utilized for extensive observation over a considerable 
period of time. 

The experiments reported here were all conducted with rats having chronic 
implants in the hypothalamic region, so that the rat  was rewarded by electrical 
st.imulation a t  the inner tip of the electrode. The rat made his choices by 
pressing pedals arranged rather symmetrically within a cage, and stimulation 
followed immediately upon pressing a pedal if the experimenter's pattern of 
rewards so required. Details of the apparatus and experimental techniques 
will be presented in a separate paper; a summary is included in Appendix A .  

The prime objective of the present experimentation is to determine whether 
or not a procedure can be devised for measuring the six behavioral parameters 
of the symmetrical stochastic learning model in a reliable manner for an indi- 
vidual rat. A later objective, granted success with the present objective, is the 
determination of rough limits on the scope of the t.heory. 

(1) Do the measured behavioral parameters remain reasonably constant for 
an individual rat with changes in such experimental variables as number of 
pedals available, strength of electrical stimulation, location of implant, type 
of reward (such as food versus implant), alteration by surgery or drugs, and 
age? 

(2) Are the measured behavioral parameters adequate to pass predictively 
from free pace to forced pace conditions, from free pace to latency, and so on? 

(3) Do the behavioral parameters vary from rat to rat, and are the parame- 
ters related to other psychophysical measures? 

Concurrently with the rat experiments, there is parallel cxperimentatior 
with human subjects utilizing monetary rewards rather than chronic implants, 
these experiments will be reported elsewhere. 

The present paper reports on the analytical techniques used to estimate 
behavioral parameters, and discusses some preliminary experimental results 
obtained with two rats. I t  is concluded by my colleagues and me that the 
behavioral parameters can be estimated reliably. No attempt has yet been 
made to determine the range of validity of these estimates, or the scope of the 
theory, as the experimental conditions are changed. 

For example: 

Symmelrical Model 
The symmetrical stochastic learning model is described by the following 

mathematical relations. We start with a more general stochastic model, 

p(t  + 1) = M""*(l), (1) 
where p ( t )  is the m-dimensional stochastic vector whose rth component is a 
probability $,(/), and where M'" is a square stochastic matrix of order m whose 
elements M:j. depend only upon r and s. I t  is supposed that. the subject makes 
a sequence of responses among a fixed finite set of alternatives, and that there is 
a probability p r ( t ) ,  a t  the end of moment t ,  that response r will occur before the 
end of moment (t + 1). The notation is such that r t  denotes the response 
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actually made after moment t ,  and s t  denotes the outcome (stimulus) following 
response r t  . 

The symmetrical model is the special case of 1, in which the following con- 
ditions are satisfied:* 

+ b"(1 - 6,j)Sri + p ( 1  - b" - ~ " ( 1  - S i j ) ( l  - S,,>(l  - S,j) 

for r = 1, 2, 

where 

, m; s = 1, 2, , n, 

l/(m - 2) if m > 2 

if m = 2, .={ 0 

and where 
0 I as I 1, 

0 5  b 8 <  1, 

0 2 c" I 1, 
(3) 

0 5 ba + ca 5 1. 

The quantities as, b", and c" are the three behavioral parameters corresponding to 
outcome s; thus, there are 312 behavioral parameters in all, since there are n 
outcomes possible. 

I t  is easily seen that 1 and 2 are equivalent to the following conditions: 

where 
A" = as - ba, 

Ba = b", 

1 - a "  l - b " - c "  

In  other words, the probability of a response r t  being repeated is a constant 
B8, plus its previous probability multiplied by a constant A";  and the prob- 
ability of a new response r is a constant E", plus its previous probability mul- 
tiplied by a constant D", plus the previous probability of the previous response 
r t  multiplied by a constant C". 

* &, is the familiar Kronecker delta, such that: 8,# = 1 if x = y, and a,, = 0 if x # y. 
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I t  has been shown3 that the symmetrical learning model satisfies the com- 

bining-of-classes condition of Bush and Mosteller if and only if the behavioral 
parameters satisfy the following additional conditions: 

C8 = 0, for s = 1, 2 ,  ..., n. (6) 
In  this special case, the equations 4 reduce to the following: 

p r i ( t  + 1) = (aa - b 8 ) p r , ( t )  + bs ,  
pr ( t  + 1) = (a8 - b8)pr( t )  + (I - as) / (m - I), for Y # rt . 

However, there are other stochastic learning models of the form 1 that are not 
symmetrical but do nevertheless satisfy the combining-of-classes ~ondi t ion ;~  
these models are not considered in the present paper. 

Parameter Estimation 
Experimental data always consist of observations on r t  and s t ,  for t = 1, 

2, . . . , N .  The possible values of r t  are r t  = 1, 2, . . , m; the possible values 
of s t  are s t  = 1, 2, - . - , n ;  and N denotes the number of successive responses 
in one experimental trial. Of course, the trials may be repeated, with N 
different in each case. 

I n  addition to the behavioral parameters aa, b”, and cB, there are also the m 
parameters @(l), which we shall refer to as the “state parameters.” The state 
parameters describe the subject a t  the beginning of any experimental trial. It 
is equally proper to speak of the “state of the subject a t  moment t” as the 
stochastic vector p ( t )  ; however, for convenience, we shall use state parameters 
to indicate the starting state for a particular experimental trial. 

Maximum-likelihood estimates would be adequate, for our purposes, but arc 
often difficult to obtain. For data r t  and s t  from a single experimental trial, 
these maximum-likelihood estimates would be defined by the following rela- 
tions. First, we define quantities j ( t )  recursively as follows: 

j c t  + 1) = G r f s t j ( t )  for t = 1, 2, . . ., N ,  (7) 
where i@:; and i(1) are defined to be the values of the parameters M:; and 
p k ( l )  that maximize the “likelihood” 

mc:, P k ( 1 ) l  = IT j S M ,  (8) 

where the estimated parameters &:; and i(1) are required also to satisfy the 
restrictions of the symmetrical learning model. A numerical example is given 
in the next section to illustrate this estimation procedure. 

If several trials are available for analysis, perhaps with different starting 
states and lengths, then the likelihood estimates would be the values of M:; 
and p k h ( l )  that maximize the likelihood 

N 

t =1 

h = 1, 2, * * . ,  q ;  K = 1,2, 4 .  

where q is the number of separate \rials and ilr, is the length of trial 1. 
case, of course, the quantities 
definition in 7: 
j ’ ( t  + 1) = Grf’*tz j ’ ( t )  

In .this 
l ( t )  are defined as follow’s, analogous to the 

for ( t  = I, 2 ,  . -, N~ ; I = I, 2, . a ,  4 ) .  (10) 



Flood: Stochastic Learning in Rats 799 
In  many instances, the experimenter will determine the sequences of out- 

comes of s t Z  in advance of the trials. If these sequences are chosen suitably, 
the calculations required to obtain usable estimates of the parameters can be 
reduced greatly. Furthermore, the state parameters may sometimes be 
determined by the nature of the experiment so that they need not be estimated 
from the experimental data. We now consider the estimation problem for one 
design of experiment that takes advantage of such simplification. This method 
is illustrated by a numerical example in the next section, but is not used ex- 
tensively in the present paper. 

If the experiment is designed to require repeated trials, each with the same 
sequence of outcomes and each with the starting state parameters all equal, 
then the parameters may be estimated rather easily. Specifically, for con- 
venience, we start by considering the following design : 

N 1 = j y 2 =  . . .  = N g = 3 ,  

jl"(l) = j2"(1) = . . . = pml = (l/m), for (I = 1, 2, , q) ,  (11) 
stl  = 1, for (1 = 1, 2, * . .  , q ;  t = 1, 2,3) .  

Furthermore, for convenience, we start by considering the case in which 

m = 3 ,  n = 2 .  (12) 
Thus, the subject chooses one from among three possible choices for a sequence 
of three responses in each of q trials, and the outcome is always the same from 
among two possible outcomes (for example, outcome No. 1). As a further 
matter of notation, since we shall presently be concerned only with the parame- 
ters al, bl, cl, from the matrices MI1, we shall temporarily drop the superscripts 
corresponding to s and have simply: 

a 

1 - a  
2 

1 - a  

1 

1 

c 

b 

- b  

c 

- b  

b 

b 

C 1 

1 - b - C  

1 
1 - a  

2 

a 

1 - a  
2 - c  __ 

b 

b - C  

c 

b - c  

b 

c 

1 - a  
2 1 - b - c  - 

1 - a  
2 

b a 

- c  G 
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There are actually 33 = 27 possible sequences of responses that the subject 

can make in one trial with three responses, each from among three possible 
alternatives represented by all the possible arrangements of the integers 1, 2, 
and 3. However, because of the symmetry of the stochastic model in use, it is 
easily seen that there are only five types of sequences that require separate 
consideration in the analysis; this is so because the first response in a trial may 
be arbitrarily labeled 1, the first subsequent response that is different (if any) 
may be arbitrarily labeled 2, and the remaining distinct response (if any) may 
be labeled 3. Hence, the five distinctive sequences of responses are: 

111 (includes 222 and 333), 
112 (includes 113, 221, 223, 331, and 332), 
121 (includes 131, 212, 232, 313, and 323), 
122 (includes 133, 211, 233, 311, and 322), 
123 (includes 132, 213, 231, 312, and 321). 

The experimental data may therefore be completely described by five fre- 
quencies, as follows: 

Flll = the number of times the first response is twice repeated, 
Fllz = the number of times the first response is once repeated, 
Flzl = the number of times the second response differs from the first response 

when the third response is the same as the first response, and 
F121 and F123 are defined similarly. 

Of course, 

Fiii 4- Fiiz 4- F121 4- Fizz 4- Fiz3 = 4. 

With this notation, by substitution in 9, we can obtain the likelihood function 
for this particular design of experiment when it yields observations F a J k  . We 
shall now derive such an expression for L[a, b, c], after some preliminary calcu- 
lations. The theoretical probability of pill of 
observing response patterns 111, 222, or 333, is as follows: 

Consider first the case Fill. 

fi i i  = piii -k p z z z  -!- p3:u = 3piii , 
where P,,L denotes the theoretical probability of observing the single sequence 
( i , j , k ) .  * , q; k = 1, 2, 3), we shall 
temporarily omit the superscript on p z (  1). 

We adopt the customary notation that a prime on a matrix denotes the trans- 
posed matrix. Since p ( t )  and p(1) are matrices with one column, or equiva- 
lently column vectors, then p’(t)  and p’(1) denote their transposition; thus, 
p’(1) = (%, Pi, %) in our present discussion. I t  will also be convenient to let 
elb denote the unit column vector with m rows, having unity in its hth row and 
zeros elsewhere; and to let J denote the column vector with m rows and all 
entries unity. 

The theoretical probability of response i a t  moment t is therefore ez’p( t ) .  
Consequently, 

Also, since p~’(1) = (1/$), for ( I  = 1, 2, 

Thus, also, p(1) = J/3  and p’(1) = J’(3) .  

Ptih = [ei’p(l)l[e~’M’p(l)l[ek”M”p(l)l = [pa(1>I[P1(2)1[pk(3)1. (14) 



a + 2b Pl(2) W 

M'p(1)  = $6 (3  - a - 2b)/2 = p2(2) (1  - w ) / 2  

(3  - a - 2b)/2 p3(2) ( 1  - w)/2  

7 (15) 

M I M ' p ( l )  = 56 

Here, for example, we have used the fact that $121 = 6P121 since the six equally 
likely actual sequences (121, 131,212,232,313,323) are all included under Pizi . 

2a2 - 4b2 + 2ab + 6b 

-a2 + 2b2 - ab - 3b + 3 

-a2 + 2b2 - ab - 3b + 31 
3 ~ '  - 3 b ~  + b Pd3) 

= (-3w2 + 3 b ~  - b + 1)/2 = $2(3) 

p3(3) (-3w2 + 3bw - b + 1 ) / 2  

a2 + 4b2 + 4ab + 6ac + 12bc - 6a - 12b - 66 + 9 

-2a2 + 4b2 - 2ab + 6a + 6b 

a2 - 8b2 - 2ab - 6ac - 12bc + 6b + 6c + 3 
W M l p ( 1 )  = %.;'a 

, (16) 

= 
P I P )  
pd3)  * 

Pd3) 
= >i 

1 + 3w2 + 2(1 - 3 ~ ) ( l  - C) 

2 - 6 d  - 2(1 - 3 ~ ) ( 1  + b) 

1 + 3w2 + 2(1 - 3 ~ ) ( b  + C )  
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The logarithm of the likelihood function 9 is, in this special case: 

= qIjlllln $111 + f112ln  $112 + f d n  plzt + f122p122 + f d 1 2 ~  

- In6 + f 1 1 J n 2 1 ,  

where f i j k  = ( F i j k ) / q  are the relative frequencies. The parameter estimates 
that we seek, therefore, are the quantities 6, s, ĉ  that maximize In L but are 
subject to the restrictions of 3. 

Useful parameter estimates might be found by solving the following system 
of equations and inequalities, if such a solution exists: 

plll = fill ) $112 = f112 1 p l 2 l  = f121 7 p 1 2 2  = f122 1 $123 = f123 1 

(20) 
0 5  a <  1, 0 5  b 5 1, 0 5  c 5 1,  0 5 b f  c 5 1. 

Of course, the system of relations 20 should have a solution if the type of 
stochastic model used is the one yielding the observations and if the number of 
observations is great enough. When the system 20 does not have a solution, 
because of the inequalities, it can be used to obtain initial values to be used in 
an iterative procedure for determining actual likelihood estimates. 

It is quite easy to find the explicit solution of 20, if i t  exists, as follows: 

72J = fill + f l l 2  1 

t = l +  2 [(1 + 3ii;(l - C) 
(1 - G)(l - 3%) 

(21) 
s =  - 1 +  (1 - G)(l 2 - 36) [(I - 3ztz2)(1 - &) - fm] 1 

ii = 3& - 25. 

After 6, 6, and 2 are computed according to 21, it is only necessary to check 
that the values found satisfy the other requirements of 20 in order to ensure 
that they constitute the desired solution; this means checking the inequalities 
and the equations for f111 and f i 2 3  . 

Exactly the same formulas apply in any case when a, b, c are abbreviations 
for a", b", c8, whatever the value of s, provided only that s remains constant 
throughout the set of trials analyzed. Accordingly, independent estimates of 
as, bS, and cs may be obtained by selecting from among all the trials just those 
for which s has the desired value for the first two responses. 

Formulas exactly analogous to 21 can also be found, in a straight-forward 
manner, when there are more than three responses in the replicated trials. 
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For example, in the case of four responses per trial, the observational data 
would be the following set of relative frequencies: 

f i l l 1  f i l l 2  fllZl fllZ2 1 f1123 , f l Z l l  fl212 , f1213 , f1221 , fl222 , 
f1223 , f1231 f1232 f1233 - 

The 14 theoretical probabilities p i j k l ,  that correspond to these 14 observed 
relative frequencies, are each a function of the parameters a, 6 ,  c. Some sub- 
set of the 14 equations pijkl = f i j k t  could be used to determine estimates of a, 
b, and c; again, it would be necessary to check that these estimates satisfy the 
requirements of 20. Alternatively, the likelihood function could be used to 
obtain estimates in this case. It is already quite clear that the algebraic and 
computational complexities mount very rapidly as the number of responses is 
increased beyond 3 or 4 per trial. 

Formulas analogous to 21 can also be found, in a straightforward but tedious 
manner, if the value of s t  is not constant over the set of responses but the 
sequential pattern of s t  is the same for each trial. For example, if the values 
of s t  are (1, 2, l),  then the case of four responses per trial would yield 14 equa- 
tions between p ; j k t  andfijkl from which the six parameters could be estimated. 
On the other hand, if the values of s t  were (1, 1,2), then the first three responses 
would yield estimates of the parameters corresponding to s = 1, and the four- 
response data could be used to estimate the remaining three parameters cor- 
responding to s = 2. As always, maximum-likelihood estimates represent a 
superior alternative procedure when the calculations are feasible. 

A fundamentally different method of estimation, whether or not maximum- 
likelihood techniques are used, would be to make estimates disregarding the 
inequalities in 20 and then “round off” as necessary to satisfy them. For ex- 
ample, if an estimate of -1.5 were obtained for some parameter, it would be 
arbitrarily rounded up to 0. Although this method has been used by others: 
we consider it unsatisfactory and only use it occasionally as the first step in an 
iterative calculation of likelihood estimates. 

We shall discuss other theoretical aspects of the parameter estimation prob- 
lem as the need arises in treating particular cases. This section is intended only 
to lay the theoretical foundation; the following section will give some numerical 
examples of estimation. 

Illustrative Estimation Examples 
Our first example is intended to illustrate the likelihood estimation method 

Assume that the experimental data are: for a simple case. 

r1 = 2, r2 = 1, r 3  = 2, 

s 1  = 1, s2 = 1, s3 = 2. 

Assume further, that pl(l) = p 2 ( 2 )  = p3(3) = %. I n  this case, from Equation 
19, we have the following likelihood function: 

plzl = (I - 3[’ ____ +23w2 + (1  - 3w)(l  - c)]. 
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To find the largest value of p 1 2 1  we consider: 
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o=---- . - -  aplzl - -9 (w - 1 ) 2  + c ( 2  - 3w), 
aw 4 

o = - - -  - (w - 1)(1 - 3w). 
ac 2 

Consequently, relative extrema exist when either: 

(w = I, c = 0) or (w = 55, c = 1). 
The latter values yield the larger likelihood, namely: 

p1z1(zel = 5.5, c = 1) = / o *  2’ 

The restrictions of 20 further require: 

b + c < l ,  b 2 0 ,  SO b = 0 .  

Finally, since a = 3w - 2b, we have as our tentative maximum-likelihood esti- 
mates: 

& = 1 ,  6 = o ,  ? = l .  

However, as we shall now see, these values are not the final maximum-likelihood 
estimates; the correct values are determined by checking the likelihood func- 
tion values on all the boundaries. 

The boundaries of our parameter region, as required by 20, are: 

a = 0 ,  b = 0 ,  c = O ;  

a = l ,  b = 0 ,  c = o ;  

a = 0 ,  b + c = l ;  

a = l ,  b + c = l .  

Wc consider these four cases in turn. 
(a + 2b),  we have 

I n  the first two cases, since w = (35) 

p121 = :,i, 35. 
I n  the third case, using 1 - c = b = (3w/2), we have: 

plzl = (3$)(6w3 - 9 ~ ’  + 2w + 1). 

This takes on the value 3’4 for w = 0 and w = 95, the boundaries on w when 
a = 0, and the interior maximum occurs when: 

d(p121) 3 - 45 
6 .  0 = -__ = (1/2)(9w2 - 9w 4- 1) or w = 

aw 

It is easily verified that 
of the fourth case also yields a; value of 
likelihood estimates are Lz = b = ? = 0. 

< ,3.d when w = (3 - -&)/6. A similar analysis 
less than 3i. Thus, the maximum- 
Exactly similar calculations. for the 
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Plll = 1 for ci = I, 6 = I, 2 = 0. 

p112 = 4.4 for ci = 0, 5 = I, c = 0. 

p121 = 3i for ci = 0, 6 = 0, 2 = 0. 

PI23 = ?’i for ci = 0, b = 0, i- = 1. 

805 
outcome patterns (s1 = s ~ )  and three responses in a single trial, yield the follow- 
ing maximum-likelihood estimates in the five cases. 

pls2 = G / 6  for d = 0, 6 = d / 2 ,  2 = 0. 

It is apparent, from these sample calculations, that explicit solutions for 
maximum-likelihood estimates could be obtained in a straightforward but very 
tedious manner for trials with more than three responses. 

We shall now illustrate the use of our estimation methods by treating two 
synthetic examples, one of which consists of many repeated trials of three re- 
sponses each, and the other of which consists of one trial with 75 responses. 
The examples are “synthetic” because the data for them were obtained by 
choosing arbitrary values for the behavioral and state parameters, fixing also 
upon an arbitrary choice of outcome sequences, and then calculating responses 
that would result by using a table of random numbers. Since this technique 
of using synthetic data is employed frequently in our work, we shall digress for 
a moment to show how this is done. 

Consider an example of a synthetic trial having four successive responses, 
the first two of which have the same outcome and the third a different outcome. 
Our preliminary data are: 

m = 3; n = 2; s1 = s2 = 1, s3 = 2; 

Pl(1) = pz(1) = pa(1) = ‘A; a1 = 0.11, b’ = 0.01, (22) 

c1 = 0.40, a2 = 0.19, b2 = 0.01, c2 = 0.50; ?J = 4. 

We next choose four from a table of random probabilities, say: 

R1 = 0.862, Rz = 0.283, Ra = 0.622, Rq = 0.461. 

The first response is, therefore, rl = 3 since pl(l) + pZ(1) < R1. The prob- 
ability vector, after the first response, is now: 

0.40 0.59 0.445 0.33 

p(2) = M”p(1) = 0.59 0.40 0.445 0.33 

0.01 0.01 0.11 0.34 

0.478 

= 0.478 

0.044 

:tor, after 

0.11 0.01 0.01 0.478 

p(3) = M”p(2) = 0.445 0.40 0.59 0.478 = 

0.445 0.59 0.40 0.044 

0.058 

0.430 

0.512 



p(4) = M'"(3) = 

ci = -0.0216, b = 0.0733, 2 = 0.5329. 

This illustrates the fact that the estimates yielded by 21 cannot always be used 
without modification because, as in this case, they may violate the restrictions 
of 3. Of course, in thii example, the true maximum-likelihood ehtirnates would 
be the values of a, b, G that maximize the quantity. 

In L(u, b,  6)  = In p~ 4- 24 In PI,, + 262 In ~ I Z I  4- 16 In plzz + 297 lrz  p12,, (23) 
where the fill,. are as given by 19 and a, b, c are subject to the restrictions of 3. 
These estimates are6 = 0.0135, 6 = 0.0483, G^ = 0.5454, forwhich In I,(d, i, 2 )  = 
- 0.94655. 

The actual 75 responses ( r t )  for a synthetic trial whose parameters were those 
of 22, produced by an I R M  704 run, are as follows: 

31321 32213 21213 23121 31233 21231 23231 31232 

32131 31332 32321 31232 '32332 12121 23231 (24) 

The sequence of outcomes ( s t )  that was used in this synthetic trial was as 
follows: 

11212 12121 12211 11112 22111 11211 22111 11111 

11211 21211 12221 21111 11211 12211 12111 (25) 

In principle, but not in practice, one can easily find the maximum-likelihood 
estimates that follow from these values of p(l) ,  r t  , and S L  by maximizing L 

0.50 0.40 0.405 0.058 0.447 

0.49 0.50 0.405 0.430 = 0.451 , 
0.01 0.01 0.19 0.512 0.102 
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in 8. We shall now describe and illustrate a method that yields approximate 
values for such estimates. 

Approximations good to one decimal place, for each of the six parameters, 
could be obtained by computing the value of the likelihood function 8 for each 
of the 116 possible sets of parameter values between 0 and 1; actually, there 
are somewhat less than 116 possible sets because of the restrictions that 
b’ + c1 5 1 and b2 + c2 5 1. Then the set of parameter values yielding the 
largest likelihood value would be chosen as the approximate maximum likeli- 
hood estimated parameters. The IBM 704 code we have used for such calcu- 
lations computes these values a t  the rate of about ll/sec., for the case repre- 
sented by the data of 24 and 26, including the successive choice of sets of 
parameter values and selection and printout of the largest likelihood value 
found for all sets. At this rate of calculation, it would require some thirty 
hours of IBM 704 time to determine the six parameter values accurately to 
about one decimal place, for a single trial consisting of 75 successive responses 
among three alternatives; obviously, some more economical scheme of calcula- 
tion must be found than simply computing and comparing among all points of a 
fine lattice in the parameter space. 

One 
consists in computing a relatively coarse lattice, perhaps starting with 36 points, 
and then computing a somewhat. finer lattice centered around the best point 
found previously, until all points of the lattice give about the same likelihood 
value. Another method consists in searching directly for the best parameter 
values by some computational scheme that tries a point, or points, and then 
moves next to a new trial point according to some systematic criterion. We 
shall call the first method the “successive lattice method,” and the second 
method the “direct search method.” We shall now present some results ob- 
tained using a successive lattice method. 

An IBM 704 code was written to make possible a lattice computation over a 
subspace of the 6-dimensional unit cube that represents the parameter space. 
This “lattice subspace,” and the fineness of the “mesh” within it, is chosen 
by the experimenter; roughly speaking, the lattice subspace can include any 
closed interval for each of the six parameters, and the fineness of the mesh 
can be chosen arbitrarily and independenlly for each parameter. The follow- 
ing example, for dat.a generated synthetically as for 24 and 25, will illustrate 
this procedure. 

m = 3 ;  fz = 2; s t  asin 26; pl(l) = p2(l) = p3(1) = 56; a1 = .01, 

b‘ = 0, c1 = ,4, a2 = .19, b2 = 0, c2 = .25; N = 75. 

The sequence of responses ( r t )  produced synthetically by the IBM 704 run 
were : 

Two schemes have been used for handling data like that of 23 and 24. 

For our present synthetic trial we chose: 

21312 13231 32312 12323 13131 21221 21323 13232 

32323 23232 31323 22313 21213 23321 23232 
(26) 

The first lattice, FIGURE 1, was used here. Thus, each parameter was allowed 
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to take on the values 0, J5, and 1 until all allowable combinations were com- 
puted. The result was: 

En L(0, 0, 0; 36, 0, 0) = 75 (-0.7285) 2 1?% L(u', b', c', u', b2, 2). 

Following this, the lattice in FIGUKE 2 was used. The best result was: 

In L(0, 0, 0; >/4, 0, 0) = 75 (-0.7207). 

FIGURES 3,  4, and 5, with three additional lattices and their best results, were 
then used. 

The example was not carried beyond this stage, but it illustrates not only the 
difficulty in using the lattice method but also its usefulness. Thus, after com- 
puting for only about 3600 points (ten minutes of IBM 704 time), we have some 
idea of the location of the likelihood estimates and also we see that the value 
of the likelihood function varies little as the parameter values are changed 
rather substantially. We shall now turn to the direct search type of method. 

___ 
a' b1 Cl a? b' 

Min. 0 0 0 0 0 
Max. 1 1 1 1 1 
Mesh 2 2 2 2 2 

___ 

_ _  
G2 

_ _ _ _  
0 
1 
2 

-. ~- ___ 
a' b l  61 a? 

~~ .~ -~ - 

Min. 0 0 0 0.2s 
0.5 0.75 Max. 0.5 

Mesh 2 P , 2 2 

There are a number of direct search methods that could be used. The steep- 
est ascent methods are a popular variety for this type of problem. One of 
these methods simply starts a t  some more or less arbitrary point in the parame- 
ter space, then computes the value of the function on some fairly small lattice 
centered on this point, then determines from these points the direction in the 
parameter space that ascends most rapidly, then moves step by step in this 
direction until progress upward ceases, and then repeats this general process 
until a relative maximum seems to have been reached. Unfortunately, the 
method of steepest ascent does not seem to work well in our type of problem, 
where the function is a polynomial of very high degree in six parameters, so 
that there is no assurance that a relative maximum is also a general maximum. 
We favor, instead, a method like that of Hooke and Jeeves," in which the 
ascent is more direct and is done without seeking the most rapid ascent a t  each 
move. Their method was coded for the IBM 704, and we have modified this 
code for our present purposes (Appendix I?). I ts  u5e will be illustrated and 
discussed in later sections, both for seeking maxima in cases like those just 
treated by the lattice method and in cases like those represented by 23. 

~ _ _  - 
ba C' 

- -~ 

0 0 
0.5 0.5 
2 2 
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a1 b1 C1 a1 b2 

Min. 0 0 0 0.31 0 
Max. 0.12 0.12 0.12 0.43 0.12 
Mesh 2 2 2 2 2 

809 

62 

0 
0.12 
2 

We turn next to a few questions that arise in considering the statistical sig- 
nificance of some of the results obtained by using maximum-likelihood esti- 
mates derived in the manner just described. 

Parameter Signijcance 
I n  the preceding section, two sets of synthetic trials were analyzed to esti- 

mate the parameter values that produced them. In both instances, the esti- 
mates were apparently not very close to the true values. Our present task is 
to develop a significance test that will indicate whether or not such discrepan- 

Min. a 0 0 0.125 0 0 
Max. 
Mesh 2 

I i . 25  I i . 25  I i . 2 5  I 2 .  0 375 I i . 2 5  1 0.25 

In L (0, 0, 0; 0.375, 0, 0) = 75 (-0.7191) 

FIGURE 3. 

In L (0, 0, 0; 0.31, 0, 0) = 75 (-0.7184) 
~. 

FIGURE 4. 

Min. 0.001 0.001 0.001 0.28 0.001 0.001 
Max. I q.061 1 i .061 1 ;.061 1 ;.34 I y.061 I 0.061 
Mesh 2 

ln L (0.001, 0.001, 0.31; 0.31, 0.001, 0.001) = 75 (-0.7190) 

FIGURE 5. 
.- ______.__ 

cies may reasonably be attributed to random fluctuations in our experiments. 
Such tests will also show how confidence intervals may be chosen for parameter 
estimates obtained in this manner. 

I n  one case, that of 600 trials each of three responses, the true values and the 
estimates were as shown in TABLE 1. The first significance test is directed 
toward a comparison of the observed and theoretical distributions, as shown 
in TABLE 2. 

From the data of TABLE 2 we find x2 = 5.12, indicating a degree of dis- 
crepancy between theoretical and observed distributions that would arise less 
than 10 per cent of the time; actually about as large a discrepancy as we would 
want to tolerate routinely. From a confidence region standpoint, we would 



-- ~ 

True 
Est.* 

a1 b1 1 cl a2 b2 L2 

- 

0.05 
0 

0.13 0 01 1 0.60 
None ::: I ::%! 

~ 

________ 
Theoretical * 
Observed 

I t  is already clear that a run of 600 trials does not narrow the critical region 
down to two-decimal accuracy for our parameters in this particular case. We 
turn now to our second type of estimate, that based upon a run of one trial with 
75 responses among the three alternatives, as displayed in 26. 

We have already noted that: 

___ 
$111 Pll? $121 p122 9123 

_ _ ~ _ _  ______ _ _ _ _ _ _ . - ~  

0.00175 0.04160 0.44900 0.04300 0.46500 
0.00167 0.04000 0.43667 0.02667 0.49500 

In L(0, 0, 0; 0.31, 0, 0) = 75 (-0.7184) = liz L(est. parameters), 

Theoretical 
Observed 

is the largest log-likelihood value obtained from the sequence of lattices used 
in approximating the maximum-likelihood estimates in our 75-response trial. 
A calculation made with the IBM 704 shows also that: 

$111 $112 $121 PI22 p123 

~-~~ - _ _ _ _  - - _ _ _ ~ -  
0.003 0.044 0.433 0.035 0.487 
0.00167 0.04000 0.43667 0 02667 0 49500 

In L(0.01, 0, 0.4; 0.19, 0, 0.25) = 75 (-0.759.5) = In i ( t rue  parameters). 
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We consider the likelihood-ratio : 

2 In X 2 In ~ = 6.165 = x2 [ $3 
This value of x2 is well within our confidence region, taking into account the 
six degrees of freedom represented by the six parameters. 

I n  general, then, we will consider a set of parameter values 8 to be within our 
confidence region, relative to a maximum-likelihood estimate denoted 6 ,  pro- 
vided the following condition is satisfied: 

2 In x = 2[1n L(e) - In ~ ( $ 1  = x2 I x:, 
where ~ 0 2  is chosen so that the probability of observing no larger value is 0.95 if 
6 were correct, if we work a t  the 5 per cent confidence level. For example, if 
an experimental trial with one animal yields maximum-likelihood estimates e^, 
and the likelihood value for another animal’s data, computed using the parame- 
ter value e^, is L*, then we will not consider the two animals to differ (on the 
basis of this experimental data) unless 

2[1n L* - In ~ ( 6 ) ]  > xo2. 

I n  other words, if we assume that 8 estimates the true value common to the 
two animals, then this test will reject the hypothesis only if the second animal’s 
experimental data yield a likelihood value incompatible with this hypothesis. 

Two rats were run in a three-choice 
experiment with the following results: 

An example will illustrate this principle. 

Rat 1: r t  = 13232 13132 32132 12132 12321 32121 31321 31312 

12213 21211 21213 13132 13131 23232 1313 

S t  = 11212 11112 11111 11111 11111 11111 11111 11111 

11212 11111 11111 11111 11111 11111 1111 

Rut 2: r t  = 13213 13223 21321 32321 32313 21311 21311 32131 

32211 31313 21313 21313 31313 23132 13132 

S t  = 11212 12121 12211 11112 22111 11211 22111 11111 

11211 21211 12221 21111 11211 12211 12111 

After several IBM 704 mesh runs, the following approximate values were found 
for the six parameters for Rats 1 and 2: 

Rat 1: (0.06, 0, 0.4; 0.13, 0, 0.6) = 4,. 
Rat 2: (0.09, 0, 0.5; 0.13, 0, 0.4) = I,. 

If we take ~ 0 2  = 12.6, corresponding to a 5 per cent confidence level based on 
six degrees of freedom, then the confidence region for Rat 2 will include any set 
of parameters 8 such that 2[ln L(&) - In L(O)] 5 12.6; in particular, this con- 
dition will test whether Rat 1 is distinguished from Rat 2 when we use 8 = e ,̂ . 



812 Annals New York Academy of Sciences 
I n  this case, we found [2 In L(d2)] = -140.46, so our condition becomes 
[-ln L(0) 5 76.531. Actually, -In (81) = 73.09, so that Rat 1 is indistinguish- 
able from Rat 2 on this basis. 

We also found several sets of parameter values within the confidence region, 
so defined, for Rat 2 .  Among these are: 

b1 = 0, a2 = 0.13, b2 = 0, c2 = 0.4, 

and 

al:  0.08, 0.09, 0.08, 0.07, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04; 

cl: 0.5, 0.4, 0.4, 0.4, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3. 

Two sets outside the confidence region are: 

On another trial, for Rat 2 with 51 responses, the parameter estimates were as 
follows : 

6 = (0.06, 0, 0.3; 0.13, 0, 0.6) with - 2  In (d) = 83.844. 

These parameter values seem very close to the ones listed above for Rat 1 so, 
on the basis of these experimental data, the two rais would not seem to be 
distinguishable. When these parameter estimates (0) for Rat  2 are used to 
determine the likelihood based on the previous 75-response trial for Rat 2 ,  we 
find -ln (8) = 74.37 5 76.53, so that again we would not distinguish any 
difference in Rat 2 between these two trials. 

The examples just discussed should suffice to illustrate our methods for es- 
timating parameters, and for assessing the significance of differences among 
them. Basically, i t  is familiar maximum-likelihood estimation with confi- 
dence regions based on the likelihood-ratio significance test. 

Preliminary Experimental Results 
Some preliminary experimental results have been obtained with two rats, 

here called Rat I and Rat J .  Unfortunately, Rat  J died before the planned 
schedule of experiments had been completed. The full schedule has also not 
yet been completed for Rat I .  

In  one type (Schedule A),  a 
probability of reinforcement was assigned to each alternative, and the number 
of reinforced responses depended upon the actual responses made by the ani- 
mal. I n  the other type (Schedule B), the sequence of reinforcements was 
entirely independent of the actual responses made. 

Schedule R 
normally consisted of repeated blocks of 12 stimuli, each block starting with six 
reinforced responses and ending with six unreinforced responses. Normally, an 
animal was kept responding for about one hour and made 100 to 350 responses 
in that period. 

Two types of experiments were conducted. 

Schedule A used the probabilities (0.2, 0.6, 0.8) or (0, 0.6, 1). 
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- 
Trial No. Rat d l  61 21 

___________________  
144 J 0.999 0.085 0.915 
146 J 0.949 0.101 0.899 
148 J 0.999 0.063 0.931 
1.50 J 0.899 0.100 0.900 
196t Z 0.999 0.001 0.998 

813 

a2 $2 

0.949 0.007 
0.949 0.151 
0.999 0.033 
0.999 0.100 
0.999 0.050 

The animal could press any one of six bars a t  each response. If the animal 
moved to the center of the cage so as to activate the photocell, after pressing 
any bar, then all six bars were reset and made active. The apparatus recorded 
the time at  which each bar was pressed and the time when the photocell was 
first activated after each bar-press. For the present analysis, the responses 
used were the bars first pressed after each resetting by the photocell; correspond- 
ing to each such response r t  , there is either an outcome s t  = 1, denoting that 
the response was reinforced, or an outcome s t  = 2, denoting that the response 
was not reinforced. Also, for the present analysis, bars symmetrically op- 
posite within the cage were treated as though they were identical; thus, there 
were three alternatives available for each response: a left bar, a middle bar, 
and a right bar. 

Every effort was made to keep the opposite sides of the cage as nearly iden- 
tical as possible. For example, the walls behind the bars were painted differ- 
ently for left, middle, and right, but the same for each direction on both sides 
of the cage. Nevertheless, it became apparent that the experimental animals 

0.772 
1.017 
0.829 

TABLE 4 
MAXIMUM-LIKELIHOOD ESTIMATES 

0.036 
0.063 
0.031 

~ __ 
22 

0.987 
0.849 
0.967 
0.700 
0.949 

__ 

~. __ 

231 
134 
269 
144 
206 
__ 
~ 

I- 

1.064 0.058 
0.944 1 0.041 

behaved differently on opposite sides of the cage, so grouping together two bars 
symmetrically placed in the cage proved to be a more arbitrary combination of 
response classes than had been intended. Consequently, the present analysis 
is offered as an example of results obtained with a somewhat arbitrary grouping 
of response classes, rather than for three response classes that might more 
reasonably be expected to satisfy the symmetry conditions upon which our 
mathematical model is based. 

The results shown in TABLE 4 were obtained using Schedule A (0.2, 0.6, 0.8) 
with Rat J ,  and using Schedule B with Rat I .  The quantity d, in TABLE 4, 
is the relevant value for ~ 0 2  working a t  the 1 per cent level with six parameters; 
that is, any set of six parameters yielding a likelihood value less than (L* + d )  
is within the 1 per cent confidence region. (In the table, L* = [-Zn L ] / N . )  
For example, on Trial 148, the following six sets of parameter values include 
three sets that are within this confidence region (L* 5 0.86) and three sets that 
are not. 

T h e  first three sets of parameter values shown in TABLE 5 differ from the 
maximum-likelihood estimates, shown in TABLE 4, by the following maximum 
amounts: 0.050, 0.100,0.131,0.100, 0.072, and 0.072. It is likely that parame- 
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_ _  - 
~ 

a’ 
~ 

0.949 
1 ,000 
0.999 
0.999 
0.999 
0.999 

- ~~ 
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_ _ _ _ _  ~ ~ _ _  
b’ 

_ _ _ _  
0.100 
0.200 
0.100 
0.100 
0.100 
0.050 

ter values could be found within the confidence region that would show even 
greater deviations. On the other hand, the second three sets of parameter 
values shown in TABLE 5 differ from the maximum-likelihood estimates, shown 
in TABLE 4, by the following minimum amounts: 0, 0.013, 0.031, 0, 0.018, and 
0.032. 

Thus only rather slight changes in certain parameter values will sometimes 
place the set outside the confidence region. I t  can only be concluded, from 
the data of TABLE 4, that the maximum-likelihood estimates are reasonably 
similar from trial to trial and from rat to rat; a more extensive experiment and 
analysis is required in order to test this apparent stability of parameter esti- 
mates and to narrow the confidence regions appreciably. 

-~ 

0.999 
0.899 
0.999 
0.999 
0.898 
0.999 

TABLE 5 
TRIAL 148 LIKELIHOODS 

___ 
0.052 
0.105 
0.001 
0,001 
0.102 
0.051 

_____ 
0.948 0.860 
0.895 0.858 
0.898 0.848 
0.999 0.920 
0.898 0.912 
0.898 0.878 

146 
148 
150 

0.900 
0.800 
0.900 
0.900 
0.700 
0.900 

TABLE 6 
MAXIMUM-LIKELIHOOD ESTIMATES 

Starling State Predicted 
~- .. ~ -~ ~____~ - ~ .___.._~.____. ~ -. 

P i ( 1 )  f a t )  PP(11 61 6 2’ 8 2  6% cz L* 
__ .~ _.__ ___ ~ ___ ___ .~ __ - 

0.937 0.112 0.875 0.987 0.086 0.890 1.010 
0.993 0.070 0.924 0.999 0.026 0.974 0.822 
0.942 0.076 0.918 0.999 0.063 0.880 1.056 

The maximum-likelihood estimates, shown in TABLE 4, were all computed 
on the assumption that the first response of each trial was equally likely to be 
any one of the three bars, thus: pl(1) = pa(1) = pa(l) = 3.i. The computa- 
tions were done on the IBM 704, using the modified search code described in 
Appeizdix U. 

Another calculation was madc, also using the search code, in which the initial 
state for each trial was taken to be the ending state for the preceding trial; 
this is an alternative to the assumption of equal probability among bars a t  the 
start of each trial. I t  is clear, from TABLE 
6 ,  that. the use of predicted starting states improves the fit of the model to the 
data, since each vnlue of I,* is smaller than in TABLE 4, where the starting 
state was assumed to be probability Unfortunately, the esti- 
mates of TABLISS 4 and 6 are not entirely reliable because the search code does 
not absolutely ensure correct likelihood values. 

The results are shown in TABLE 6. 

for each bar. 
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The starting states shown in TABLE 6, for each trial, were calculated from the 

data for the preceding trial. More specifically, the starting state for Trial 144 
was taken arbitrarily to be pl(l) = p ~ ( 1 )  = p3(1) = $5. This yielded the 
maximum-likelihood estimates for Trial 144, as shown in TABLE 4. The end 
state for Trial 144, based upon the estimated parameters, was calculated to be: 
pL(232) = 0.215, pc(232) = 0.739, pR(232) = 0.046. Since the first response 
in Trial 146 is the next one made by Rat J after the 231st response in Trial 144, 
with a rest of one hour intervening, the end state of Trial 144 was taken as the 
starting state for Trial 146. Similar reasoning applies to Trials 148 and 1.50. 

The actual schedule of reinforcements used on Trials 144, 146, 148, and 150 
led to the gross results shown in TABLE 7. The results in TABLE 7 followed from 

Center 
.___ 

31 
28 
67 
48 

Trial No. 

Scheduled 
Trial No. 

L C R 

144 0.6 0.8 0.2 
146 0.2 0.6 0.8 
148 0.2 0.6 0.8 
150 0.8 0.2 0.6 

144 
146 
148 
150 

Actual 

L C R 

0.60 0.81 0.17 
0.23 0.56 0.50 
0.09 0.59 0.82 
0.79 0.27 0.67 

TABLE 7 
DISTRIBUTION OF BAR PRESSES 

.- .- ~~ 

Number of times bar pressed 

Total 

23 1 
134 
269 
144 

~~ 

Reinforced Unreinforced I I 
I-- I 

38 18 

Right 

2 
9 

60 
20 

Left 

24 
40 
29 
10 

Right 

10 
9 

13 
10 

1 - a* 
2 

C"=-- ( I  - 6" - cs) = O for s = I ,  2. 



_ _ _ _  
Trial No. 144 146 148 

C' 0 0.018 -0.003 
c2 -0.019 -0.018 0 

behavior of synthetic rat and actual rat should help to highlight similarities and 
differences between a real rat and its mathematical model. 

Conclusions 
(1) Stimulation through electrodes implanted in the hypothalamic region of 

a rat's brain can be used efficiently to provide reinforcing stimuli in a learning 
experiment extending over a period of months. 

(2) Maximum-likelihood estimates of the six parameters in the symmetry 
model can be approximated, using a search code, in less than 30 min. of IBM 
704 time, for a trial consisting of 1000 successive responses from among three 
alternatives. 

( 3 )  Estimated values of the six symmetry model parameters are reasonably 
constant from trial to trial for a single rat, when measured in an experiment in 
which the rat has three alternatives for each response and the schedule of re- 
inforcement depends upon the responses actually made. 

(4) The very limited experimental data analyzed are compatible with the 
hypothesis that estimated parameter values are the same for the two rats 
tested, even though the parameters are measured using two quite different 
types of reinforcement schedules. 

( 5 )  The data analyzed are also compatible with the hypothesis that the com- 
bining-of-classes condition is satisfied. 

-~ ~ -~ 

150 196 

0.023 0 
-0.007 0 
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APPENDIX A 

Experimental Procedure 
Subjects and electrode implantation. The majority of the experimental work 

was carried out with two male, mature albino rats. The electrodes and im- 
plantation techniques used were those describe in detail by Olds and Milner.I3 
In  brief, the electrodes are a pair of twisted silver wires, diamel coated for 
insulation except a t  their tips, thus restricting the stimulus to that point. Each 
pair of electrodes is secured to a lucite pedestal that, in turn, is held in place 
on the skull by screws through the skull bone. This technique has proven to 
be very satisfactory for longitudinal studies using implanted rats. 

The area selected for implantation was the medial forebrain bundle, lateral 
to the anterior hypothalamus, an area Olds has rated as positively reinf~rcing.'~ 

Experimental apparatus and procedure. The reinforcing stimulus was an AC 
pulse of 10 to 25 pamp. intensity, with duration a function of the length of time 
the bar was depressed, up to an automatic cut-off time of 0.6 sec. Stimulus 
threshold values for reinforcement in this area are about 12 pamp., while cur- 
rents in excess of 25 pamp. are best avoided since they make the rats hyper- 
excitable, disrupting their performance in a choice situation. 

Following a one-week postoperative recovery period, the rats first were 
trained to bar press for a stimulus in an enclosed box with a single bar. The 
response was shaped up in the usual manner of giving reinforcements for suc- 
cessively closer approximations of the desired response, until the bar finally is 
depressed. Thereafter reinforcements are given automatically after each bar 
press, a response both rats were making a t  rates of 500 to 1000/hour within a 
few hours of training. 

The testing of rats in a choice situation necessitates the rat's return to a 
neutral choice point between responses. There are advantages to having them 
proceed to a choice point on their own, so the rats next were trained to go to 
the opposite side of the box after every bar press. This more complex response 
also was shaped up by the method of reinforcing successive approximations to 
the required response sequence. When they had learned to make this total 
response with a minimum of errors (usually within 10 hours of experimental 
sessions), they were advanced to the final training phase. 

The first apparatus used in the final phase was a large circular cage with three 
bars equally spaced around its circumference and a disc in the center marking 
the choice point. Although the rats readily transferred their previous learning 
to this three-bar condition-going to the choice point after pressing any of the 
three bars-they also demonstrated a strong bias that practically reduced this 
to a two-choice situation. Upon reaching the center choice point, they showed 
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a strong preference for choosing their next response from between the two bars 
facing them from across the cage, rather than making the inefficient response of 
turning around to return to the bar just pressed. Reinforcing the bars differ- 
entially may have overcome this bias, but it seemed preferable to start with a 
less biased three-choice situation. 

Therefore, a new apparatus was designed to incorporate two desirable fea- 
tures: (1) a choice point a t  which the rat’s visual field would include all of the 
bars from which he is expected to choose; and (2) ease in converting the ap- 
paratus to test the rats on any number of bars. The apparatus is illustrated in 
FIGURE 6, and consists basically of two fan-shaped center sections, the sides of 
which can be pivoted a t  the center point to encompass the desired number of 
removable U-shaped panels a t  each end. When the rat passes through the 
photocell beam at the choice point, the stimulus circuit is reset so he can be 

FIGURE 6. 

reinforced for his next press of any of the bars. Control circuitry makes it 
possible to run experiments using patterned or relatively random partial rein- 
forcement schedules, with either the same or differential schedules on each bar. 

I n  the initial sessions in this apparatus, the rats were run with one bar at  
each end, but they adapted so quickly to this new condition that in subsequent 
sessions they were run with three bars. Under conditions of 100 per cent rein- 
forcement, there were very few failures to return to the choice point between 
bar presses. Under partial reinforcement schedules, failures to return in- 
creased, indicating emotional outbursts rather than lack of training. The 
reversal of differential reinforcement schedules has pointed up one problem 
with this apparatus: a possible nonequivalence of the bars at  both ends. De- 
spite our attempts to eliminate all differentiating cues, the rats are discriminat- 
ing sufficiently between the ends to select different bars a t  each end. If this 
nonequivalence proves to be the case, the apparatus will be modified by re- 
taining the bars at  one end only. At the other end the bars will be replaced 
by a blank panel attached to the center section to form a cul-de-sac, with the 
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photocell relocated close to the end of this blind alley. This will force the rat 
to enter the alley to reset the device, so that on leaving the alley he can again 
face all of the bars from which he is expected to choose. 

APPENDIX R 

Search Codes 
Maximum-likelihood estimation and many other situations require an effi- 

cient computational procedure for determining the location of the largest (or 
smnllest) value of n function of several real variables. Some or all of the vari- 
ables may also be restricted to some region; common restrictions would be non- 
negativity or limitation to the unit n-cube. 

Our maximum-likelihood estimation problem is essentially that of finding 
the values for a set of real variables that maximizes the value of a polynomial 
in the variables, where the variables are restricted to a specified portion of the 
unit cube. 

Mathematically, if we let x denote the set of real variables (XI , x g  , . ‘ , xn), 
f(x) a real function of the variables x, and R the domain over which the vari- 
ables are allowed to range, then our problem is to find a set of values k such 
that f ( k )  2 f(x) for all x in R. Or, rather, our need is for a computational 
procedure that will solve this problem economically when f(z) is one of the 
likelihood functions encountered in analyzing experimental data. 

Whenf(x) is a polynomial, given explicitly as is ours in the likelihood estima- 
tion situation, there is no theoretical difficulty in finding the required values i 
by the ordinary methods of calculus. I n  brief outline, for the case when R 
is the unit n-cube, all that is necessary is: 

For each such root, 
if it is in R, test to determine whether or not it yields a relative maximum for 
f ( x ) .  Let M = f(k) be the largest of these relative maxima. 

(2) Let X = (XI, XZ , * * ’ , X,), where Xi is either xi, 0, or 1. Thenf(X) 
is the value of the function on some bounding hyperplane of the unit n-cube; 
the dimension of this hyperplane is the number of xi included in X. By the 
method outlined in (l), the largest value of f ( X )  can be determined. This 
includes the case where all X ,  are 0 or 1, representing the values at the corners. 
Let M ( X )  = f ( 2 )  be the largest of the relative maxima for the bounding hyper- 
plane defined by X .  

(1) Find the roots of the polynomialf’(x) = df(x)/dx.  

(3) The required value of 2 is the X that satisfies the condition 

f(R) >_ M ( 2 )  for all X. 
In  other words, the locations of the largest interior relative maxima are deter- 
mined on all bounding hyperplanes, and the solution to our problem is the one 
that yields the largest value of the function. When the degree of the poly- 
nomial is high, or the number of variables is large, the techniques of the calculus 
are generally too inefficient to permit their use, as is normally the case for our 
likelihood functions. Consequently, we have turned to the approximation 
method to be described now. 

Hooke and Jeevesll have developed a procedure for searching through the 
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domain R, and have used the procedure successfully on various problems. 
Their procedure involves a combination of two rather different types of search- 
ing operations: they have called one type "direct search" and the other type 
"pattern search." Only the central features of their procedure will be pre- 
sented here. 

Direct search starts with an arbitrary point x1 in the n-dimensional domain R: 
where R is defined by the inequalities: 

di _< xi 5 Di for i = 1, 2, . . , n. 

The first computational step is to comparef(d) andf(xl* + A, xZ1, + .  . , x7>), 
where A is some positive real number and where xll + A is changed to D1 if 
xll + A > D1 . If the change in the variable yields a larger value of the func- 
tion then the new value is retained. If not, xll is decreased by amount A, but 
not to a value less than dl , and the changed variable is retained if and only if 
the function value increases. The procedure is repeated with x2, then with x3 , 
and so on through x,, . If no change in the variables yielded an improvement, 
then the entire process is repeated with (A/2) replacing A, unless (A/2) < 
Amin, until the process either terminates or an improved value of the function 
is located a t  some stage. 

If xo de- 
notes the starting point of a direct search step, and x the improved point a t  the 
termination of direct search, then pattern search starts with a direct search 
from the point 2(2  - x") E 2"; as always, if any coordinate violates the con- 
dition 

Pattern search follows each instance of success in direct search. 

d ;  5 2(2i - xi') 5 D; 

then it is replaced by the appropriate value of d; or Di . I n  this direct search, 
as part of pattern search, the value off(x0) is ignored and comparisons are with 
f(3) at  each step during pattern search; furthermore, the terminal value of 
(A/2g) in use at the termination of direct search is used unchanged throughout 
the direct search portion of pattern search. If direct search from X o  yields a 
terminal point XO such that f(3') > f(%), then a new pattern search starts a t  
the point 2(g0 - %), and 5. and X become the new values for X and xo in this 
pattern search step. On the other hand, iff(?) 5 f ( X )  then pattern search is 
terminated and direct search is done about X with (A/20f1) replacing (A/2@). 

Eventually the search terminates, when A(28+') < Amin,  and the desired 
value of i is approximated by the final value of x in the search process. This 
brief description omits several important technical details, and says nothing of 
the actual computer codes used, for which the reader must be referred to the 
paper of Hooke and Jeeves." 

The search code of Hooke and Jeeves was necessarily modified slightly for 
our maximum-likelihood problem, because the domain R is not of quite the 
same form as that treated by Hooke and Jeeves. There are two additional 
restrictions on the variables, in our case, namely: 

b* + c1 5 1, b2 + c2 5 1. 

Primarily for convenience in modifying the computer code, and because the 
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change seemed adequate to take proper account of these two added restric- 
tions, t he “modified search code” actually used retained the altered value of a 
variable 6 (or c) and changed c (or 6) as  necessary to satisfy the restriction 
b + c 5 1. For example, if b1 is to be replaced by (bl + A) when (b’ + A 5 1) 
and ( b L  + A + c1 > 1) then c1 is replaced by (1 - b’ - A). The calculations 
reported upon in this paper, as using a search code, were all done with this 
simple modificat.ion of the Hooke- Jceves code. 

It is evident that the search code does not necessarily and inevitably ter- 
minate at  a point that is even near the correct one. Nor does it seem likely 
at  present that any computational procedure will soon be found that is both 
reasonably economical and guaranteed to yield an approximate solution near 
the correct one. Consequently, all of our empirical results are open to question 
on this ground. 

We have sought protection against this danger of error in several ways. 
The three principal ways were: (1) comparison of search code approximations 
with lattice code approximations in sample instances; (2) comparison of search 
code approximations with others obtained using starting points as distant as 
possible from the previous solutions; and (3) checks for agreement of solutions 
by search code techniques with a few simple likelihood estimation problems for 
which exact. solutions are known. 

Of course, the most important source of protection against such errors is the 
comparison of calculated parameters from among independent trials with 
different animals. The results reported in the present. paper were subjected 
to all of these tests, except for the incomplete calculation of parameters for 
Rat J .  




