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LAbstract

This paper deals with a particular case of a model for parallel
computation as formulated by Karp and Miller. A parallel computation
is viewed as a directed graph in which a node represents a sequence of
operations to be performed upon data on the node input branches with
the results of an operation being placed upon the output branches.

An operation associated with a node n may initiate only if there is

at least one data item on each input branch to n. Upon initiation, n
removes one data item from each input branch and upon termination,
places one data item on each output branch. For such a computation
graph G necessary and sufficient conditions that a set of real numbers
{ti |r=O,l,..., and n, is a node of G} represent a sequence of ini-
tiation times for the nodes ng of G are given. A periodic set

(tF
1

= ti + ry} is given so that G computes periodically, and the mini-
mum period n is determined in terms of the graph parameters. A maxi-
mal computation rate periodic schedule is also given for the case that
G is required to compute synchronously, i.e. at integer times. Finally,
in the case of a synchronous computation graph G, an analysis is given

of the so-called free running execution of G and this is found to yield

the maximum computation rate of G.
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Introduction

The concept of a computation effected in a parallel fashion entails

the notion of a number of processing units with interconnected data chan-

nels, with each unit capable of performing some function, provided only

that the necessary input data is available to it. A model characterizing

such a system has been developed by Karp and Miller of IBM. Briefly this

model is as follows:

The computation is represented as a directed graph in which a node

n, denotes an operation to be performed upon data which lie upon the inw

put branches to n, . The results of the operation by node n, are placed

upon the output branches of n, . A branch, therefore, represents a data

queuve. With each branch bij directed from node n, to node nj igs associ-

ated a quadruple (A.., U,., W.., T..), the elements of which are inter-
iJ° 7 17 i

preted as
Aij - the initial number of data items on branch bij°
UiJ - the number of data items placed on bij upon the termination of the
operation associated with nio
wij - the number of data items removed from.bij under a first-in first-
out queue discipline, upon the initiation of the operation associ-
ated with node njo
Tij - a threshold. In order to initiate the operation associated with
node njg the queue length on bij must be greater than, or equal to
Tij for all input branches bij to node nj.
Let G be a computation graph with node set (ni}, For every branch
bij ilet Tij = Uij = Wij = 1 and let every directed loop of G contain at



least one initial data item. It is known (See [3] or [5].) that such a
graph represents a nonterminating computation. We seek an execution of G
which 1s periodic in the sense that if a node nj first initiates at time
tj’ it will initiate thereafter at times tj + 7, tj + 27, ..., Where v,
the period, is the same for all nodes of G. Clearly, if the computation
is to be controlled by a clock signal, such an execution is desirable.

We shall show in Section 2 that such an execution exists for all such com-
putation graphs. Moreover, it is possible to define a parameter n for G
such that the above periodic schedule is possible with y = n and under
which G computes at the maximum possible rate.

Tn Sections 3 and 4 we consider various problems which arise when the
frequency of the clock signal controlling the initiation of the nodes of
G is a priori specified. It then turns out that the maximum computation
rate periodic schedule of Section 2 is not applicable when m is not an
integer. This leads us in Section 3 to define the notion of a synchronous
computation graph computing under the so-called free running execution.
Under this execution, a node initiates at integer times if and only if
each input branch contains at least one data word. The principal result
of Section 3 is that a synchronous computation graph under the free running
execution computes at the maximum possible rate and that this rate is l/n,
In Section 4 we provide a periodic execution for synchronous computation
graphs G. This execution has the following form:

Let n = A/a where A\ and ¢ are integers, and let n, be a node of G.
Then there are integers tg < ti < Lvee < t?-l < tg + N such that 1’1:0L

initiates only at times



0o .1 a-1
0. .1 Q-1
ti+>\., ti+>\, ceey ti +Ny
0 .
toon, treen, ..., 7R,
1 1 1

.

Clearly, under this execution G computes at the maximum rate 1/x.



2.A. A Periodic Schedule

Throughout this paper, unless stated otherwise, we shall be concerned
with computation graphs G such that for each branch bij= (ni,nj) we have
Tij = Wij = Uij = 1 and such that every directed loop of G contains at
least one initial data item. Thus each node of G is eligible for initia-

tion if and only if there is at least one data word on each of its input

branches. With each node nj of G, associate a positive real number Tj,

the execution time of nj. Tj is to be interpreted as follows: if nJ ini-
tiates at time t, then at time t, one data word is removed from each of
the input branches to nj, and at time t + Tj, one data word is placed up-
on each of the output branches of nj. We say that a directed graph is

in-point connected if there exists a node n such that if ni % n, then

there is a directed path from n, to n., The node n is called an in-point.
Let G be an in-point connected computation graph with in-point n, .
Tf there is a branch from n, to n,, write n, -» n,, and let A, . be the
i J 1 J 14

initial number of data words on this branch. By n(ni) for n, # ny, we

shall mean a path (which exists by definition)

n. -on, = ... >0, —n
ko k-l 2 1
where n, = nq 5 and n, =n..
iy . i
Write k-1
S = T
112
r=1 rrlor n(n. )
i
a .
an i
S e
r
r=i, ﬁ(ni)



We shall assume that G contains at least one directed loop.

Let L be a loop of G,

where n, = 1N, .
k+1 1

Define T =

and let T = max  {n. }
L
loops L

Let 7 > n and consider the following assignment of real numbers ti to

the nodes ni of G.

: min [72A- ZT] forniyénl

“m) w(m)  wlm)

ct
I

We shall prove (Corollary 3) that an execution exists for G such that

for all nodes nj of G, nj initiates only at times tj, tj + 7, tj + 27,
0!0,0

In [1], Cuninghame-Green considers a similar problem in which
Aij = 1 for all branches (ni,nj) but for which TS is actually a branch
(rather than node) parameter 8 5 He defines a quantity A = max {2 a/ﬂ}

L L
where [ is the length of the loop L. Under the identification



N - aij = ﬁAij - T, our problem becomes formally identical with his.
Cunihghame~Green poses the problem of determining a set of initial

starting times for the nodes of G such that a periodic execution with
period n is possible and he solves this for the special case that G is

a loop. In this section we show that the assigmment (1) with y = =« is

precisely such a set of initial starting times (Corollary 3).

Lemma 1
If n, - n., then
1 J

t, + 1. <t. + 7y A ..
1 1= 4 1,d

PROOF: (1) Suppose n, = nj. Then n, - n, is a loop of G whence

i
B STsT
i,i
i.e. t, + 7. <t, + 7 A ..
i i="i i,i
(2) Suppose ny =g Then n, = 1, is a path ﬂ(ni) and we have immedi-
ately
t, A, . -7, =1t, + Lo o= T,
i1 S7 i,5 ~ T4 377 Al,J Ty

(3) Suppose n; =n. Let ﬂ(nj) be a path for which

n(nj) n(nj)



Then
t = A + :E: A-1, - T - A, + T
J 7 1,d 7 1 7 1,dJ 1
n(nj) n(n.)
= 7§ hA- T -7 Ai,j + Ty
where we write L as the loop n; —>ﬂ(nj), and % A as the sum around L
of the initial branch weights of L, £ 7 as the sum of the execution
L

times of the nodes of L.

But

2T
L
SE ST27
L
i.e

Yy L2 A-ZT > 0

L L
Hence
tj > Tl -y Ai,j = tl + Tl -7 Ai,j'

(4) Suppose n, # nys By # ny, oy # n, . Let ﬁ(nj) be a path for which

G T T
n(n, n(n.
@) o)
If ﬂ(nj) does not contain n,, then It(ni):ni —>n(nj), is a path from n,

to nl whence



Otherwise ﬂ(nj) contains n, .

where n, =
i
s

n,
d

il

n,
A |

>

=n_, and ng
1 1

Then Jr(nj) has the form

n.. Moreover n, —n,
1 i i

r

s

Then



But
Y A - :g: T > tl
7(n, ) n(n, )
and
o T
L
TE ST27
L
loe 7ZA-ZT20
L L
Hence .St 4T, -7 A

Define x(n,t) = O if and only if node n initiates for the first
time at some time t' >t. For k=1,2,..., define x(n,t) = k if and only
if node n initiates for the k-th time at some time t' < t but has not
initiated for the (k+1)-th time at some time t" < t. Thus x(n,t) is
the number of initiations of node n up to, but not including, time t.
If n; ~>nj, define

b (8) = A x[ni,(t-’fi)+] - x(ny,t)

where

x[n,, (t-7.)7] x(n.,t-1.) if n, does not initiate at time t-t..
i i i i i i

= x(n,,t-1.) + 1 if n, does initiate at time t-t,.
i i i i
by j(t) is interpreted as the number of data words on branch (niﬁnj) at
2

time t.
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Theorem 2
Let G be a computation graph. With each node ni of G asso-
+
ciate a set of real numbers {ti lti < ti l, r=0,1,...,}.

There exists an execution of G such that nj initiates

only at times t?, ti, ca0y t?’ eoe, if and only if for all
branches (ni,n.) of G we have
J r r+Ai.
t, + 1. <t. J,
i i—J

PROCF:
—>
r+A,

Let ni-a nj and suppose there exists r such that t? + T > tj 1Ja

Then
r r+A,
t, + 1, =t. 9o+ oe,.
i i J i
where eij > 0, Therefore
r+Aij r+Aij + r+Aiej
bij(tj ) = Aij + X[ni’(tj Y . Tl) ] - x(n gtj )
= AlJ + X[ni) (tl - eiJ) ] - (r+AiJ')
< A . +r - (T+A, )
- 1] iJ
= 0

r+A, .
which contradicts the condition that nj initiates at time tj 1Ja

We shall prove, by induction on n, that for all nodes nj of G, nj
initiates at time t?. Let the distinct numbers of the set {tg} be
T, <7, < 000 < Tmo For the case n=0, we apply induction on the sub-

1 2

script r of Tr’
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A, .
1,

Then if n, - n,, we have tg + 7. <%
i J i -3

Suppose r=1 and let t? = Tl.
0 0 . 0
If A,, =0, then t, + 7, <t. =T, and since 7, >0, t, <T, a contra-
1iJ i i-] 1 i i 1

diction. Hence Aij > 1 for all branches (ni,nj) so that ny can initiate
at time t§°
Assume, for all nodes n. for which ti < Tr’ r <m, that n, initiates

] 0 0
at time t.. Suppose tj =T If Aij > 0 for all branches (ni,nj) of

G then nj can initiate at time t?. Otherwise Aij = 0 for some branch
(ni,nj) so that

A, .
04 o<t o Qo0
i i—=7]

i.e. ti < Tr+ so that ti = Tq for some g < r. By the induction hypo-

1
thesis on r, n, initiates at time tg. But then n, terminates at time

tg + 7y < tg so that at time t? the branch (ni,nj) contains a data word.

This is true for all input branches to nj so that nj can initiate at
time tg, This completes the induction on r and hence establishes the
result for n=0.

Now assume, for all nodes nj of G, that nj initiates at times

t?,t?,...,t?, We prove that nj initiates at time t?+l.

1’l+l}

Let Tl <T cee < Tm be the distinct members of the set {ti

o <
Again we apply induction on the subscript r of Tr'

Suppose r=1 and let t?+l = Tl' We prove that Ain > 0 for all

branches (ni,nj). For if not, there exists a branch (nignj) such that

A . = 0., Then
id

n+l+A. .
L e .
i i—- 7] J 1
i.e. t?+l < Tl a contradiction.

Now for any branch (ni,nj)
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n+l n+l + n+l
— - - .
'j(tj )y = A,j + x[n.,(tj Ti) ] x(nj, tj )

Suppose n+l < Aij' Then

_|_
LY > :
i Jd 1d dJ

= Aij - (n+l) by the induction hypothesis on n

> 0.
ntl-A, .
Otherwise n+l > Aij and ti i defined, so that

n+l-A, .

T
i i—="]
Therefore
) n+l-A
n+l iyt n+l
1y Py + . . - s . °
13(85 ) 2 A+ xng, (8 )1 - x(ny, t50)

But Aij > 1 so that n+l - Ai' < n. Then by the induction hypothesis on n,

n+l—Aij +
x[ni,(ti Y] = ntl - Aij + 1.

n+l) = nt+l, Hence

Also, by the induction hypothesis on n, x(nj, tj
+
ij(t§ Y >1 ana n, can initiste at time £
+
Assume, then, for all nodes ng for which t? 1 < Tr’ r <m, that

1
n, initiates at times tg, ti’ ce oy t?+l. Let nj be a node for which

tj =T .- If Aij > 0 for all input branches (ni,nj) of Dy then by

the same argument as above for r=l,

b (tn+l)

15079

and nj can initiate at time t?+l. Otherwise Aij = 0 for some branch

> 1.

(ni,nj). Then
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. n+l _ .. . .
i.e. ti < Tr+l so that ti = Tq for some ¢ <r. By the induction hypo
+
thesis on r, n, initiates at times t?, t}, coey t? l. Then
P i’ i i
n+l n+l + n+l

ij(tj )y = x[ni,(tj — Ti) ] - x(nj, tj ).

But t§+l -7 > t?+la Therefore
n+l n+1ly+ n+l
- = + - +

by the induction hypothesis on n. Hence all input branches to nj contain
at least one data word at time t§+l so that nj can initiate at times t?+l,
This completes the induction on r and hence on n.
Corollary 3
Let G be in-point connected and y > n. Then there exists an

execution of G under which, for all nodes n{j of G, 1r1:J initiates

only at times tj, tj + 7, tj + 27, ooy

PROOYF:
For each node o, of G put t; = tk +ry r=0,1,..., where t% is
r+a, .
obtained from the assignment (1). Then by Lemma 1, t? +1, < tj +J

for every branch (ni,nj)° The result now follows from Theorem 2,

For an arbitrary nonterminating computation graph G, let us define

the computation rate of a node n, of G to be

x(nj,t)

o = lim
1 = ©

if this 1limit exists. 1In the case of a computation graph G under a
periodic execution with period p, we have pj = l/p independent of nj,

It thus makes sense in this case to define the computation rate of G

to be p, = 1/p.
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Theorem U

Let G be in-point connected. With y = n, the assignment (1)

yields the maximum computation rate of G under any periodic

execution.
PROOF: Consider a periodic execution under which, for each node nj of
G, nj initiates at times tj, tj+p, tj+2p, vosgs Let L be a loop of G
for which To= 1, and let A be the sum of the number of data words ini-
tially on the branches of L. Then for any node nj of L,

x(nj, tj + Ap) - X(nj,tj) = A

Thus, in time Ap, a data word on L passes once around the loop. But the

minimum time in which this can be done is % Tj; i.e. Ap > Z'Tj
- L

Note that the proof of Theorem 4 reveals that, with y = n, the
assignment (1) yields a periodic execution of G such that if a node n,

lies on a loop L with n. = w, then p. is the maximum computation rate

L
of the node nj under any (periodic or not) proper execution of G.
In the actual calculation of times tj for a given graph G, in the

case y = 1, the following observation will be found to be useful:

If n, »n,, and n,,n, are on a loop L for which n. = w, then
i J i’75 L
t, = t, +T, -mwA
J i i i,
PROOF: Let L be
nianjenk—e ces M, oD

Then by Lemma 1
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J = i,J
t. >t + T, -7 A,
k="7] J Jsk
t, >t + T -7 A
i=Tr r r,i

Therefore
i.e. equality must hold for each of the above inequalities.

Observe that all of the results of this section have been proved
under the assumption that a node nj can initiate at any time that
there is sufficient data on all of its input branches, i.e. regardless
of whether or not nj has terminated its previous initiation. If we
wish a model in which no node can initiate unless it has terminated
its previous execution, we can obtain it by simply adding a branch
(Zﬁ?nj) with A, . = 1 for all nodes nj, We call such & branch a self-

J

loop.

An Example
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The initial numbers of data words is shown on the branches. = = 15/8

corresponding to the loop

nlanzan,j-ﬂ:lu -en5-enl.

Then we have immediately,

ty = 0

ty = byt T - A, = - i
t3 = t2 + Ty = A23 = = 5/&
by, = bty Ty - Ay = - 5/8
b = by T Ty - A = 3/8

Since (n6,n3) is the only path from ng to ng, we have
tg = W hgy - Tgt by = 29/8.
Similarly,

b7

t8 = T A87 - T8 + t7 = 3,

We note that n < 7

b A76 - Ty +tg = 13/8

so that n,,n and n. initiate at times

1 "3 Ty 3 7

when they have not yet terminated their previous initiation. If this
is undesirable, we can place self-loops on Iy, n3 and n7, It then
follows that for this new graph,

T = max (Tl, T3 T7) = 5/2.

The corresponding t, are: t, =0 ty = - 1/2 t, =0 t), =0

by =1 tg = 27/k to = 19/k4 tg = 27/h.
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B. Extension to Weakly Connected Directed Graphs

A directed graph G is said to be weakly connected if the undirected
graph obtained from G by rémoving the arrows on the branches of G is
connected. We shall show how the above periodic schedule for in-point-
connected computation graphs can be extended to weakly connected directed

graphs. A subgraph G' of G is a maximal in-point connected subgraph if

there is no subgraph properly containing G' which is in-point connected.
If H is a subgraph of G, by G-H we mean that subgraph of G generated by
those nodes of G which are not nodes of H. If H' is another subgraph of
G, H+H' is that subgraph of G generated by the nodes of H and H'.

Let G be a weakly connected computation graph and G' a maximal in-
point connected subgraph of G. If G' = G, the results of Section 24 are
sufficient. Otherwise let G" be a maximal in-point connected subgraph
of G-G', It follows that in G, there is no path from a node of G" to

a node of G', Define a set of ordered node pairs
N' = [(nﬁ,ni) |n£ and n; are nodes of G' and G" respectively, and nﬁ —>m§}a

Assign real numbers ti to the nodes ni of G' by (1) of Section 24,
treating G' as a computation graph by itself. Similarly, assign real
numbers tg to the nodes ng of G". Then, by Lemma 1, for all nodes
n;,n! of G' such that n! - n;
177 1 J
t, + T, <1t, + 7A,.
i i=7J iJ
° ° " 1" " " "
Similarly, for all nodes n,n of G" such that me = n,

778

" "o
tk + Tk S tE + 7AK£

Define a real number " as follows:
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If W' =@, o = 0.

Otherwise Q"

1]

1"
( 'mif)eN'{tk + T -ty 7Ak£}
ety

Tor all n? of G" define

- "oLoon,
tl tl o4

Then, clearly, for all nodes ni,nj of G' + G"

t, + 17, <t, + YA...
i i- "] 1

(1)

+ G(r) where G is a

In general, suppose %57 = G'"+G" + ...

maximal in-point connected subgraph of G - (G' + G" + ... + G(lnl)),

i=1,2,...,r, and that for all nodes n.,n, of*é7 such that n, - n,
17 1 d
there exist real numbers ti,tj for which

t, + T, <t, + YA ..
i i-=73 1J

(r+1)

If /e? = G, then we are through. Otherwise let G be a maximal in-

point connected subgraph of G - gﬁu Then in G there is no path from a

node of G(r+l) to a node of %éf' Define

N<r) = {(nk,n£<r+l) |nk and n§r+l> are nodes of‘;g7 and G(T+L)
respectively, and n —>n§r+l)},

Assign real numbers t§r+l) to the nodes n£r+l) of G(r+l) by (1) of

(r+1)

Section 2A. Define a real number as follows:

re 0 =g, o) _ g

Otherwise
a(r+l) = max {t, +1,_ - t<r+l) - 74 ,}
(r+1) rf k ! k1
(5, ,n{F Dyt
2
(r+l) of G(r+l) define

Finalily, for all n,



19

r+1) (r+1)

t =t§l + O

)
) (r+1)
Then by the same reasoning as sbove, for all nodes ni,nj of ¢57 + G
such that n, - n,,
1 J

£, + 1, <t, + YA,
i 1- 3 1J

Since G has finitely many nodes, this process must terminate with
G=G"+ ...+ G(k) for some k. We then have

ti + T < tj + 7Aij
for all ni,nj of G such that n, —>nj, By Theorem 2, G then has a se-

quence of initiation times ti + ry, r=0,1,..., for each node n, of G.

C., A Dual Assignment

Let G be a computation graph with the property that there exists

a node n, such that for every node n, # n,, there is a path n(ni) from

nq to n, . G is said to be out-point connected, and 0y ig called an

out~point. Let ﬂ(ni) be n, - n, D e = n, — n, where n, = nq
1 2 k-1 'k 1

W
‘_l

Write A as ZE: A
r’t r+l
n(n,)

r=1 .
1
-1
and jg: T as :g: T
T
l"=1l Tf( .Li)

For 7 > n, consider the following assignment of real numbers Ti to the

nodes ni of G:



20

=

; = max [Z T -y Z A]forni,-énl
n(ni)
Then it can be proved, in a manner similar to that of Section 2A, that an
execution exists for G such that for all nodes nj of G, nj initiates
only at times Tj + ry, r=0,1,...,.
An extension of this result to weakly connected directed graphs
is possible in essentially the same fashion as in B above except that

4 ()

is taken to be

(r) _ (r+1) (r+1)
N = {(1’1/Z ,nk) Ink and n, are nodes of7£77and
G(r+l) respectively, and n5r+l) —>nk}.

Suppose G is strongly condected. Then we may choose a node ny to

be the in-point of the assignment (1) and the out-point of the above

dual assigmment. It then follows that for all nodes n, of G we have

+3

5 < ti” Moreover, if ﬁ?i} is a set of numbers which satisfy

0., + 1, <@, + 94, ., . =0
i i-3 ij

for all nodes ni,nj of G such that n, = nj, i.e. such that o initiates

only at times 6, + ry, r=0,1,..., then

k

for all nodes nk of G.
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D. Computational Algorithms

For computation graphs G with a large number of nodes the calcula-
tion of n by inspection of all the loops of G, and of ti by inspection
of all of the paths from n, to ny is a prohibitive task. Accordingly,
the following more efficient algorithms are given.

(i) Calculating =

This algorithm is duvue to Lawler [4]. Define a recursion variable

u§?>(m) as follows, where the indices i,j correspond to nodes ni,nj of

G, and m,n are recursion indices.

For m=0,1,...,

(0) )

u, . \m

=T, if n., =-n, and m = A
ij i i J

1iJ

- © otherwise,.

i

For m=0,1,..., n=l,2,...,

wM ) = 1y + maxlola™ () | 4y, = 0), mexlyjmenyy) |4y > 01).
Here ukj(m) = uég)(m) where N is such that uég-l)(m) = ué?)(m),

Let P be an upper bound on the number of consecutive branches bij of G
for which Aij = 0. Then N <P.

For all i,j, compute the quantities uij(O),

uij(l), cee ui.(M)

J
where M is an upper bound on the sum of the A's around any loop.

Then 7 = mix fuii(l), uii(Q)/E, uii(3)/3, coo uii(M)/M}° The com-
putation in this case grows as MPN2 where N is the number of nodes

of G.
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(i1) Calculating {ti} and {Ti}

il

If n, - n,, define a,. YA, . - T,. Then
i J 1j i

1J
t = min { 2 a}
* n(n,) n(n,)
1 i
where > a =9y X A- ¥ T.
ﬁ(ni) ﬂ(ni) ﬁ(ni)
Moreover, for any loop L, % a >0 since

This condition guarantees the convergence of the following algorithm which
is a slight modification of one given in [2].

1) Start by assigning all nodes n, labels of the form,[-,a(ni)]

where e(nl) = 0 (n, is the in-point of G), G(Qi) = @, n, # ng -

1
2) Search for a branch (ni,nj) such that G(nj) + 3 5 < O(ni)a

Here 0 + a = @ ). If such a branch is found, change the label on node

, 6 . s . i new 0 i
n, to [nj, (nj) + aia] and repeat. (That is, the new (ni) is

Q(nj) + aiju) If no such branch is found, terminate.

The value of 6(n,_) upon termimation is t, and the shortest path
"k

k

from o to n, is obtained by tracing the sequence of first co-ordinate

1

nodes from.nk to nl°

Suppose that G is not in-point connected and let nl be a node of G.

Then this algorithm has the virtue of yielding minimal paths from all

nodes n, of G to n, whenever they exist. Thus the set of all nodes o

1

for which upon termination G(nk) < oo represents a maximal in-point con-

nected subgraph of G. We can combine this observation with the results
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of Section 2B to yield the following procedure for computing {ti} for
an arbitrary graph G.

1) Choose a node n. of G and apply the above algorithm to yield

1
G', a maximal in-point connected subgraph of G, and a set {t, In} is a
il7i
node of G'}.
2) Determine G - G' and repeat (1) applied to G - G', yielding
a maximal in-point connected subgraph G" of G - G', and a set
{t" | o' is a node of G"}.
i'7i
3) Determine the set {ti lng is a node of G"} by the method of
Section ZB.

L) Continue in the obvious fashion until all of the nodes of G

are exhausted.

The dual computation for the set {Ti} is as follows. If n, = nj,
define a,, = 7A,. - 7., Then for any loop L, £ a > O,
ij ij J L -
1) Start by assigning all nodes n, labels of the form [-, 9(ni)]

where 9(n,) = O (n., is the out-point of G), e(ni) = 0, n, # n -

1) 1
2) Search for a branch (n,,n,) such that 6(n,) + a.., < 9(n.).
i’ i il 3
(Here o+ a = ), If such a branch is found, change the label on node
n to [ni, 9(ni) + aij] and repeat. If no such branch is found,
terminate.
° ] - 9 y i 'l = - a ki 11
Then if n  has value (nk) upon termination, T, (nk)ﬂ Again,
if G is not out-point connected, this algorithm yields maximal paths

from ny to all nodes n, of G whenever they exist. {Ti} for an arbitrary

graph G can be determined in a fashion parallel to that given above.



3. Synchronous Computation Graphs

Suppose that the node initiation times of a computation graph G
are to be controlled by a clock signal. Then node initiation times are
constrained to be integer multiples of the clock period. But if = is
not an integer the maximal rate periodic schedule of Section 2 is not
suitable. Indeed, no maximal rate periodic execution of G, with inte~
ger initiation times, is possible in the case that n is not an integer.
This remark follows from the proof of Theorem 4 where it is shown that
if p is the period of a proper execution of G, then p > m, so that if G
must have integer initiation times, we must have p > Fﬁﬂ (the greatest
integer containing w). Then, clearly, if = is not an integer, 1/p < 1/,
the maximal computation rate.

In view of this contingency, we consider computation graphs for
which the node execution times {Ti} are all positive integers, and in
which a node nj is permitted to initiate only at integer times. We call

such a computation graph a synchronous computation graph.

The principal result of this section is the determination of
‘an' execution (the free running execution), for a class of synchronous
computation graphs, under which G computes at the maximal rate l/ﬁ,
Theorem 5 considers the most general form of a computation graph,

as defined in [3].

ol



PROCF':
Assume,
t = nt+l

(1)

(2)
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Theorem 5
Let G be a synchronous computation graph. Let ég be an
execution under which, for all j, node nj initiates at
time t if and only if for all branches bij into nj, the
number of data words on bij is greater than or equal to
T,.. Let éz‘ be any other execution.

1J
Then x(nj,t) > x'(nj,t),

The proof is by induction on t. For t=0 the result is immediate.
for t < n, that for all nodes n, of G, x(nj,t) > x'(nj,t), Let
and consider node nj,

Suppose nj initiates at t=n under ég . Then

x(nj’n+l) =1 + x(nj,n) >1+ x'(nj,n) > x'(njyn+l)

and the result holds.,

Suppose nj does not initiate at t=n under both ég and. ég',

Then,x(nj,n+l) = x(nj,n)'g x'(nj,n) = x'(nj,n+l) and

again the theorem holds.

Suppose nj does not initiate at t=n under é; but nj does

initiate at t=n under é?'o Then there are two possibilities:

(a) X(nj,n) > x'(nj,n) in which case
x(nj,n+l) = X(nj,n)'z x‘(mj,n) + 1= x’(nj,n+l).

() x(nj,n) = x'(nj,n), Since n, does not initiate at t=n
under Zf but does initiate at t=n under éf', there is a
branchvbij,= (ni,nj) such that bij(n+l) < Tij and
bij(n+l) > Tij where the prime indicates queue length

under éZ', Then, in particular, bij(n+l) < bij(n+l)5
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i.e.
n,,ntl) - W, x(n,,r ..+ U, x'(a,,n+
Aij + Uij x(ni,r+l) WiJ x(nJ,n) < A1J UlJ X (nl,n 1)
- [
Wij X (nj,n)
where we write x(ﬁi,n+l) as the number of terminations
of node n, in time nt+l under ég, and primes correspond

to ég', Hence X(ﬁi,n+l) - x'(ﬁi,n+l) which contradicts

the induction hypothesis x(ni,t) > x'(ni,t) for t=0,1,...,0,

We call the execution éﬁ in the statement of Theorem 5 the free

running execution. Theorem 5 then establishes that a synchronous compu-

tation graph executes at the fastest possible rate under the free running
execution.

Note that Theorem 5 has been proved under the assumption that a
node nj can initiate at any time that there is sufficient data on all
of its input branches; i.e. regardless of whether or not nj has termi-
nated its previous initiation. If we wish a model in which no node can
initiate unless it has terminated its previous execution, we can obtain

it by simply adding a self-loop to nj for all nj of G.

2.1 gSynchronous Graphs with 1=1, U=W=T=1

We counsider synchronous computation graphs with Ti = 1 for all nodes
n,, and for all branches b,., = (n,,n,) we have U,, =W,, = T,. = 1.
i i i’7J ij iJ ij
Later we shall see how the results obtained with Ti=l may be applied to

a graph in which n, has associated with it an arbitrary positive inte-

ger execution time.
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Let n be a node of G and for k > 1, Sk(n) a sequence of (not

necessarily distinct) nodes, {no,nl, - "np+l}’ such that

(1) Doy = B = v = n; = n, with ny = n.
p+l
2 A, . >k
(2) Zg: J,J-1 =
J=1
b
OIS
JrJ-1
J=1

We call such a sequence Sk(n) a k sequence.

Put AO = AlO

A = Ay

’dtb
1
-
[}
]
W

Define A(') = AO and for 1 < j <p let

Al A, + A _ + K,
J J J=1 J

where K. = -1 if A! >1
J J-1 =

1l

= 0 if A} 0.

3-1 "

Define dk(Sk(n)) = p+ Ai - 1.

Intuitively, the significance of dk(Sk(n)) is as follows: Let w_

be the k-th data word "backed up' from node n along the node sequence
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Sk(n). Then dk(Sk(n)) is a measure of "how far away" w_ is from the
node n.
Example
3 0 )
By M By D3 8), (ng
dh(sh(nO)) =
/O 12 IO /O I3
T~ ey ) T,
n, ny ng ns n), ng Sh(no)
du(su(no)) =
Define Tk(n) = max (dk(Sk(n))}.
8, (n)

We shall be interested in tracing the progress of the k-th data
word through time along a k sequence Sk(n). To that end we make the
following definitions:

Let AO’Al""’Ap be a sequence of nonnegative integers.
€

Let € o)

02 €12 cres ep and 60, 19 tees Sp be sequences such that
(1) e, =0orl i=0,1,...,p-1, €, = 0
(2) 8, =0orl i=0,1,...,p

(3) e, =1 <= B, = - 1 1=0,1,...,p-1.

Ai(l) = A +e +3 i=0,1,...,D.
In general, if Ao(t-l), Al(t-l), oo Ap(t-l) is (t-1)-admissible,

then the sequence Ao(t), Al(t), ceey Ap(t) is said to be t-admissible if

Ai(t) = Ai(t-l) + €, + B, vhere ¢, and B, satisfy the conditions (1) - (3)

above.
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Let Sk(n) be the k sequence np+l —>np = ... 2Dy, Ny=0, and let

A= A 1=0,1,...,p=1

p-1
A = K-Z A..
b i
i=0

Then the k-th data word W "packed up" from node n lies on branch bp+l o’
J

Let Ao(t), Al(t), coey Ap(t) be a t-admissible sequence derived from

Ays Bps oo, Ap, and let r be the maximum subscript such that Ar(t) #£ 0.
Then at time t, w,_ lies on branch br+l,r and the sequence Ao(t), Al(t)’

coes Ar(t) yields the branch distribution of data words "between" node

nO and Wk’

Define Aé(t)

Ao(t) and for 1< Jj <p, let

1]

Al (t)

where Kj(t)

Aj(t) + Aj_l(t) + K. (t)

C

1

il

-1 if Aj_l(t)

v

= 0 if Aj_l(t) = 0,

Let r be the maximum subscript such that Ar(t) # 0. Define

d(Sk(n),t) = T+ Aé(t) -1
d(Sk(n),t) is the "distance" of w_ from node n at time t.
Define :k(n,t) = max {d(sk(n),t)},
5, (n)
Lemma 6
A() = A +v,ve {-1,0,1}, 7r=0,1,...,p
A1) = A 41 = e =1

0

A%(l) = A -1 :::;§> €.
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PROOF: The proof is by induction on r. Take r=0.. Then

o

and €y + B, € {-1,0,1}. Clearly,

Aé(l) = Aé + 1 ::;£>”‘ €O
A1) = Ay -1 :;:§>_ €& = O-

Assume the result to hold for r=m-1l and consider

(1) = Ao(l) = Ayt €yt By = A+ g+ By

1

Aﬁ(l) l(1) + Km(l)

= Am +e + sm + Aﬁ_l(l) + Km(l)

A (1) + A

il

Al te +B + Ai_l(l) - A Km(l) -K .

(i) Suppose Aﬁ-l(l) = A

Then K (1) = K_ and
m m
A(l) = A"+ e + 3
m m m m

i.e. Aﬁ(l) = A+

Clearly A'(1) = A'+1 => ¢ =1
m m m
A1) = Al -1 —> e, = O
(ii) Suppose Aé_l(l) = A, *+1. Thene , =1by the induction
hypothesis so that 8 = - 1. Also, Aﬁ-l(l) > 1 so Km(l) = - 1,

]

Therefore A'(1) A'+e -1+1-1-K
m m m m

A' +e¢ -1 -K
m m m

= Aﬁ + v,
Finally ¢ -1-K = 1 > e, =1
e, -l-K = -1 = e = 0.
(iii) Suppose Aﬁ_l(l) = A, - 1. Then by the induction hypothesis
€1 = 0 so0 Sm = 0. Also Aﬁ-l > 1 so that Km = - 1. Therefore
An'l(l) = A +e -1+ Km(l) + 1

A' + € + K (1)
m m m



and ¢ + Km(l) e {-1,0,1}.
Clearly, e +K (1) = 1 — e =1
e, +K (1) = -1 —_—> e, = O

Let Ao(l), Al(l), voey Ap(l) be a l-admissible sequence derived

0 1
If no such r exists, take r=0. We say that Ao(l), Al(l), vea Ap(l)

from A ’Al”'°’Ap° Let r be the maximum subscript such that A%_ = 0,

is freely derived from A

O) Al) e 0 o , Ap j—f
(1) 6r = -1

(i1) Al

]
=
m

[¢2]

]
=
H
AN
O]
IN
(o]
4
d

Lemma 7
Let Ao(l), Al(l), ceey Ab(l) be freely derived from

Ayy Ay veey Ap. Then Aﬁ(l) = Ai -1,

PROOF: Suppose r#0. By Lemma 6 we have AL 1) ¢ {0,1}, i.e.

1
0

A (1) + k(1)

1]
—
T~
=
~
+

Then Aﬁ(l) Aﬁ_l(l) + Kp(l)

= Ap(i)f+‘[Ap_l(1) + Aﬁ_g(l) + Kp_l(l)] + Kp(l)

* . ] o 3 . . . . ° . . * * o .

_ s \ '
= AW+ a () A (1) (1) K1)
+ ... + K (1

(1)

Ap(l) Foee. + Ar(l) + K

1l

r+l(l) oo Kp(l)

E + A + ...+ A +8 +K 1) + ... + K (1
ot A .t o, (1) p< )

r+1

= Ap et A+ Kp SRR S (Kp(l) - Kb)

+ ... + <Kr+l(l> - Kr+l) + € + 8.
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But since A’ = 0 we have
r-l
A\ -—
Ap = Ap + ... + Ar + Ké + ee. + Kr+l'
Hence Aﬁ(l) = Aﬁ + (Kp(l) - Kp) .. (Kr+l(l) - Kr+l) te, 5,

If r=0 we obtain the same expression for Ai(l):

I

Ai(l) A () + ...+ Ao(l) + Kp(l) + ...+ Kl(l)

b

= Ap o Ay e + By + Ki(l) + .. + Kl(l)

= A + ... +A +K + ... +K, + € +05.+ (K (1) -K
D 0 P 1 P 0 ( p( ) p)

+ ol (Kl(l) - Kl)

Ai + (Kp(l) - Kp) + oo, (Kl(l) - Ki) t e, + 8,

Now if Al > 1, p-1 >s >r then by Lemma 6 Aé(l) > 1 so that
Ks+l(l) =K, =~-1. Suppose Al = 1. Then ¢, = 1 and by Lemma 6

A1) > Al =1, dee. K (1) =K = - L.

Since r is the maximum subscript such that A%_ = 0, these are the

1

only possibilities for Aé. Hence

A'(l) = A"+ e + B,
P Y iy r

But € =0, & = ~1, i.e. A'(1) = A’ - 1.
D r Y b
Lemms, 8
Let G be a synchronous computation graph under the free running

execution. Let Sk(n), Dppp = Tp = e = Ty Boem, be a

+1 i8] e
k-sequence for which dk(Sk(n)) = Tk(n), Then for 0 <t < Tk(n)
(1) a8 @),)

(11) d(s, (n),t)

Tk(n) -t

Tk(n,t).

PROOF: We prove the result for t=l. Then by (ii), the conditions for

the lemma to hold are valid at t=1 and we have a basis for iterating the
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argument which established the result for' t=1.
If Tk(n) = 0, there is nothing to prove. Hence assume Tk(n) s 1.

(i) Consider the sequence AO’A1’°°”’Ap vhere A, = A, o, 1=0,1,...,p-1,

i+1,
and
p-1
A = k - Zgj A, .
P , i
i=0
Define, for i=0,1,...,D, 6i = - 1 if and only if node n, initiates at

t=0, Otherwise Si = 0. For i=0,1,...,p-1, put € = 1 if and only if

51+1 = - 1. Otherwise € = 0. Finally, let ep = 0, We prove that the

sequence A (1), A (1), ..., A (1) defined by A, (1) = A, + €, + B,
4 0N/ T G ) i i i

1

i=0,1,...,p is a l-admissible sequence freely derived from AO’A1’°””Ap°

Let r be the maximum subscript such that Af-l = 0, If no such r

exists tske r=0. We show that . initiates at t=0. Clearly, Ar > 0.

Suppose there exists a branch br?+l,r into n, such that Ar'+l,r = 0,
Let Sk(n) be a k-sequence By =0y = e D B D 2, where
r'=r. Then since A£_1_= O, or in the case r=0, we must have
g (Bp@) =’ + a7, -1
= ! e o0 + 200 - 2
But since A = A, + A + K
r' r' r-1 r'
= 0,
then Kr'+l = 0.
" 1 — t -
Hence dk(sk(n)) = q'+ A, + .,n+Ar,+Kq,+ cee K -1
= "o+ + e + + A -
4 Ap AT Kq‘ * Kf'+2

> Q'+Ap+w-+Ar-[q'+l-(I"+2)]-l
= Ap T oeee t AT +r

= 4 (8 (m) +1
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a contradiction. Hence A > 0 for all branches b into n. and
r'+l,r r'+l,r r

n, initiates at t=0. Now let Aé = 1 for p-1 >s >r. Then by a similar

argument to that just given we must have that n initiates at t=0.

+1
It follows that Ao(l), Al(l), ceey Ap(l) is a l-admissible sequence

freely derived from A.,A ,...,Ap. By Lemma 7, Aﬁ(l) = Aé - 1. Then if

0’71
Aé > 1,
a(s (n),1) = 4.(5.(n)) -1
= Tk(n) - 1.

Suppose Aﬁ = 1. Then since Tk(n) > 1l we must have p > 1. Then

Al € {0,1}. 1r Ay = 0 then since‘AO(l), Al(l), cee, Ap(l), is freely
derived from AO’Al""’Ab’ we must have ep-l = 1. Since Ai'l = 0 implies
Ap_l = O then 5p-1 = 0 and Ap_l(l) = 1. By Lemma 6, Ai_l(l) = 1 and
a(s,(n),1) = p-1+ Ai_l(l) -1

= (p+ A - 1) -1

= dk(Sk(n)) -1

= ﬂk(n) - 1.
Finally, we consider the case Aﬁ-l = 1. Let r be the maximum subscript

such that A% = 0. If no such r exists, take r=0. Then by the same argu-

ment as in the proof of Lemma 7, we obtain

Aﬁ_l(l) Aﬁ_l + ep_l + 6r,
Since Ao(l), Al(l), ooy Ap(l) is freely derived from AO’Al""’Ap’ we
have
ep_l =1, 6r = -1 and
Al (1) = Ao = A
so again d(Sk(n),l) = Tk(n) - 1.
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(i1) Let Sﬁ(n) be a k-sequence and suppose

d(Sk(n)yl) <d(s;(n),1). (1)
Then dk( 1?(n)) -1< d( ),1) < qk
L. 4, (8, (n)) < dk(’sl'{(n))-_'
But dk(Sw(n)) = Tk(n)
so that dk(SE(n)) = T (n).
By (1), (s, (n),1) = a(s(n)) - 1.

By (1), 8, (5,(2)) < & (5;(n))

a8 contradiction.

Theorem 9
Let G be a synchronous computation graph under the free
running execution. Then node n initiates for the k-th

time at t = Tk(n),

PROOF: Let Sk(n) be a k-sequence for which dk(Sk(n)) T (n). Then by

k

Lemma 8, d(Sk(n),Tk(n)) =0 = Tk(n’Tk(n))° Thus at t = Tk(n) every input

branch to node n contains a data word so that n initiates at time T, (n).

Finally, if w, is the k-th data word "backed up" from node n along the

k
sequence S (n) at t=0, then at t=T, (n), w,_ is the first data word "backed
k v k k

up" from node n along Sk(n), i.e. x(n,TK(n)) = k-1 and n initiates for

the k-th time at t = T (n).

Let ©(t) be the vector with components bij(t) for all branches

(ni,nj) of G.
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Lemma 10
Let G be a strongly connected synchronous computation graph
under the free running execution. Then there exists a non-
negative integer t' and a positive integer A such that for
all t > t!'

B(ten) = B(t).

PROOF: Since G has 7, = 1 for all nodes n, of G, b(t+1) is uniquely
determined by b(t), i.e.
bij(t+l) = bij(t) if there is (not) a branch b, Wwith bki(t) =0
and there is (not) a branch brj with brj(t) =0
bij(t+l) = bij(t) + 1 if for all branches b, ., bki(t) > 1 and there
is a branch b_, such that b_,(t) = O.
rJd rJ
b..(t+1) =b,.(t) - 1 if for all branches b_., b_.(t) > 1 and there
1J 1J rJ rJ -

is a branch b such that b = 0,

ki ki(t)
Consider the sequence B = b(0), ©(1), ...,. Since G is strongly
connected, the queue lengths of G are uniformly bounded above (See [3.]
for a proof of this statement.) Hence there exist finitely many vecw
= =
tors b(t) so that some b(t) of B must repeat in the sequence. There-
fore there exists a positive integer A and a nonnegative integer t'

such that ©(t'+\) = B(t'). But, by the above remarks, if

B(t'+\) = D(t'), then b(t'+\+1) = D(t'+1), etc. Hence the Lemma.

Lemma 11
Let G be strongly connected. Then for any pair of nodes n,

and nj of G,
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PROOF: Let ni —ank. Then

b (t) = A, + x[hi,(t-ri)+] - x(n,t).

5

d = = = .. b..: 3 i
Since Uij wjj Tij 1 for all branches 13 (ni,nk) of G, and since G

is strongly connected, then bik(t) is uniformaly bounded above and G is
nonterminating. (For the proofs of these statements, see [3].) Hence
x[n,, (t-t )+] x(n.,t)
i’ i i’

lim = ) = 1im - T = 1.
t - o T t = © Oy

Since G is strongly connected, there is a path from n, to n, so we

may iterate the sbove argument yielding the statement of the lemma.

Lemma 12
Let G be a strongly connected synchronous computation graph, under the
free running execution. Then for all t > £1, D(t+N) = B(t)
if and only if for all t > t', x(nj,t+x) - x(nj,t) =qQ, a

constant independent of n‘j and t.

PROOF: ——=>

Let o initiate at time t. Since bij (t) = bij(t+>\.) for all branches

b, ., nj must initiate at time t+A. Suppose nj initiates at times t

1J lﬂtgﬁ

°°°’ta where t' < tl < t2 < .o <'ta < tl+x, Then by the above remark,

nj initiates at times tl + A, t2 + N t05 + N tl + 2hy 00y 1l.€.

x(nj,t+x) - x(nj,t) = Qﬁ’ independent of t.
Now let o be another node of G. Then we obtain, similarly,
x(nk,t+k) - X(nk,t) = 0 independent of t. By by Lemma 11,
x(nk,t+rx)
lim ifﬁgj%I?XT = 1

r = o0
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Therefore Ok/a. = 1.

<é:::: J

+
= - - +
bij(tﬂ.) Ai;}’j + x(ni,(tﬂ. 1)) X(nj,t )
= A, . +x(n.,t+N) = x(n.,t+\).
WRECMESEE ALY
But X(niﬁt+>\) = X(ni)t) = X(nj,'t'*')\.) - x(nj)t)'
= + -
Hence bij (t+N) Ai’j x(ni,t) x(nj,t)
= b. . (t) °

1J

Tt follows from Lemma 12 that B(t) has period A if and only if for

all nodes n, of G, n. initiates at times

1
v, th ey, .., 107
1 1 1

° 3 o ° o 00 . . 0 ° o °

where et <t < <t <10 4,
—_ 1 1 1 1

Lemma 13
Let G be a strongly connected synchronous computation graph

under the free running execution. Then for any node n

n E&®
k = o k Toa

PROOF: By Theorem 9, for any node n of G
x(n,Tk(n)) = k-1,

Therefore
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Tk(n) Tk(n)
x(n,Tk(n)) kwl
and ()
T (n) T (n
im kT = lim kk (1)
k- * L k = o
By Lemma 12, for all t > %'
x(n,t+r\) - x(n,t) = rao
i.e
lim Eigizifﬁl lim X
t+rN - t+TA
A ) r -
= a/a
Hence by (1)
T, (n)
lim = Na.
k
k=
Theorem 1L

Let G be a strongly

graph. Then

Mo =

PROCEF':

the total number of data words on the branches of L.

connected synchronous computation

max (1,7) .

Let L be a loop, length [, of G for which npo= % and let A be

Then, since a data

word requires at least [ units of time to pass once around L, we must

have

x(n,t+4) - x(n,t) < min(L,4),

for any node n of L.

By Lemma 12,



o)

x(n,t+IN) - x(n,t) = fo

for all t > t'. By the above remark

fo < A min (£,A)

(1)

i.e. Ao > max (1,n)
(i) Suppose m >1. Let n be a node of G and let Sk(n),
np+l->npe...-»nr+l—>nr——>...—>no, 0
that dk(Sk(n)) = Tk(n). Let r be the maximum node subscript such that

n.=n, be a k-sequence such

if e o is an m-sequence Sm(n), then
gm(sm(n)) = T

r exists by the definition of dl(Sl(n)). We shall prove that k-m is

uniformly bounded sbove. Consider the (k-m+l)-sequence, 8y m+l(nr)’

np_l_l--anp = ee.on . 0. By the manner in which r was chosen, we
must have
dk-m+l<sk—m+l(nr)) = k-m (2)
and also
T (n) = a,.(5.(n)) =a (s (n)) +da (5 . (n)) (3)
We prove that
dk-m+l(sk-m+l(nr)) - Tk—m+l(nr) (1)
For let Sﬁ—m+l(nr)’ Dy B g e O be such that
O 1 B (00)) > G 8y gy ()
Then 12 nq —anq_l:—a... n,oon, ... o0 is such that
1 — 1
dk(sk(n)) - dm(sm(n)) * dk-m+l(sk-m+l(nr))
> dm(sm<n)) * dk-m+l(sk-m+l(nr))
= a (s, (n))
= T (n) a contradiction.

k
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Now suppose that k-m is not uniformly bounded above. Put s = k-m.

Then there exists some subsequence {Si} of {s} such that 8. — . But

then
Tsi+l(nr) dsi+l<ssi+l(nr))
1lim '——g—.—:_-j:—-— = 1im S,+l by ()4')
S, =00 i s, = i
i i
51
= llm S.+l by <2)
s, o0 1
= 1.
But
Ts(nr)
lim = Ma>n>1 by Lemma 13 and (1)
S —

a contradiction. Hence there exists M such that k-mlf M for all k.

Now let P be a path from n to n and let f be the total length of

o+l
the circuit defined by the sequence np+l=» np-a «o. »n and then back
to np+l via P. Let Ll, L2, ceey Lt be all of the loops making up the

above circuit, and for i=l,2,...,t let Ai be the number of data words

on Li and Zi the length of Li' Then by the choice of r,

dm(Sm(n)) = r<|{

i
|_;b>
I—'?Q

~

b
H

+

c AL /A

IN

=
.t\/1<+

e
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_ a (s,(n))
1.€, T < 1
> 4
i
i=1
i.e. by (3)
T (8) = &y By (7)) k
. <=
k t
>
1
i=1
Now since k - m <M,
(s (n))
14m dk—m+l k-m+1'\'r -0

k = k

Also, since k-m <M and since P is a path we have

1lim K = 1.
k = oo
>
i
i=1
Hence
(@)
lim T S T,

k = o0

This coupled with (1) and Lemma 13 yields the desired result.
(i1) Suppose m < 1. If k-m is not uniformly bounded sbove, we have, as

before
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which is what we wanted to prove.

Otherwise, we obtain, as before

T (n)
lim K
k — o0

< 7. (5)

If © < 1, this contradicts (1) so that k-m is not uniformly bounded
gbove. If m = 1 then (1) and (5) together with Lemma 13 yield the de-

sired result.

Corollary 15

i
=

If n <1, then A = O

PROOF: By Lemma 12, for all t > t' and for any node n of G

x(n,t+\) - x(n,t) = «
= A by Theorem 14,
But x(n,t+\) - x(n,t) = A if and only if
node n initiates at times t, t+1, ..., t+A-1, i.e. node n initiates at

times t', t'+1l, t'+2, ...,.

3.2 Computation Graphs with Ti'Z 2

These may be reduced to the case Ti=l for all n, as follows. Sup-

pose n, has T, > 2.
i i<



LL

Then replace ni by the following sequence of Ti nodes each with the execu-

tion time 1.

It should be clear that all of the dbove results concerning free
running executions of synchronous computation graphs can now be translated
into similar results for the case Ty > 1, except that n, can initiate at
unit time intervals, so that if T, > 2, n, can initiate before its previous
execution has terminated. If this situation is undesirable, we may place

a self-loop on ni°
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An Example

We can transform G into an equivalent graph G' with unit node

execution times.

G_ 1
™
O )
1 /
o
O ¥
|
i\
n 5 \
‘\\O L
\\.«.“ ,....)«g//r



L6

By simulating G' we obtain the following sequence of branch vectors:

Tl Pyp bog By Bys Pog Bgy Do Pog Pgy
ol 2 0 0. 0 1 2 0 1
1l1 1 1 0 0 o 1 1 0
>lo 1 1 1 0 o 1 1 1
3o o 1 1 1 0 o 1 2
Blo o o 1 1 1 0o 0 3
sl o o o 1 1 0 0 2
641 1 o O O 1 1 o0 1
711 1 1 o o 0o 1 1 o0

Then B(7) = B(1). Hence A = 6, @ = 3. From the above table, we
can determine the initiation times of n;, ne,gn3, n), of G, which are

the initiation times of ni, né, né, n%, respectively. We obtain

n: O, 4, 5, 6, 10, 11, 12, 16, 17, 18, ...,
ny: 0,1, 2 6, 7, 8, 12, 13, 14, 18, ...,
ngi 3, L, 5, 9, 10, 11, 15, 16, 17, 21, ...,

m: 0,1, 2, 6, 7, 8, 12, 13, 1k, 18, ...,.



b, A Maximal Rate Periodic Schedule for Synchronous Computation Graphs

In Section 3 we noted that if n is not an integer, then no maximal
rate periodic execution is possible for a synchronous computation graph.
The remark following Lemma 12 suggests the following definition:

Let A and O be positive integers. A synchronous computation graph

G is said to have a (A,0) periodic execution if for each node n, of G,

0 - .
there exists integers t 5 < ti < ooe L tg 1 < tg + N\ such that n, ini-

tiates only at times

1 a-1

ey Bl eees b

o O

t. + A, t% Ny eee, T

[T
B Q
]

t, + 2\, ti + 2N, sesy bl o+ 2N,

=

Note that if =n is an integer, then the results of Section 2 yield that s
(n,1) periodic schedule exists for synchronous computation graphs. Theorem
14 suggests the following question: Let n = h/@ where N\ and O are integers.
Does a synchronous computation graph G have a (\,Q) periodic execution?
Clearly, if the answer is in the affirmative, then under this execution G
computes at the maximal rate l/ﬁ, The principal result of this section is
to provide Jjust such an execution for a wide class of graphs. We shall

treat the cases n < 1, n > 1 separately.

A, <1

Then we cannot hope to achieve a computation rate of 1/ since 1/m > 1
whereas a node can initiate at most once per time unit. However, this max-

imal rate of one initiation per unit time for a synchronous computation

b7



graph can be achieved with ¥ = 1 under the assigmment of Section ZB.

B. n©>1

For any real number x we write rx] to be the smallest integer con-
taining x, and LXJ to be the largest integer contained in x.
Let G be a synchronous computation graph. Consider the following

assignment of integers ti to the nodes n. of G:

tg = fﬂr + ti] r=0,1,...,

where ti is obtained as in Section Z2B.

Lemma 16
1) 5T S F
1 1
11) 50 _ 4 4P k=0,1,...,
1 1
B=0,1,...,
PROOF:
(i) write = = Ma= |[n]| + R/a 0<R<o-l
Then [ nr + t,] = [la]r+Re/a+ tj]
= [n]r+ er/aﬁ-tiW
Therefore
tiﬂ' -ty = [x] + [@DR/a+ ] - [rR/a + ¢, ]
> Lx]
> 1 since m > 1.
k
(11) tio‘+5 = [ (sosp)r/a + t, ]

= [xn+p Ma+ b ]

K+ [B ot ]

- oot
i
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Theorem 17
Let G be synchronous computation graph with n = x/a, A and O

positive integers. Then G has a (A,0) periodic execution.

PROOF: Suppose ni-a nj, Then for r=0,1,..., we have

i

r
b+ Ty [nr + tiw +T,

i

[ar + b, + 7]

since Ty is an integer

< |nr + 6, + wA, ., by Lemma 1
< Trw o+ y
= w(r + A,.) + T,
(e + ) + %]
- 15y
J
Then by Theorem 2 there exists ~an - execution of G such that node

o, initiates only at times tg, ti, coosy t;s sa0ye The result now follows

by Lemma 16.

It i1s clear that for a synchronous computation graphJJG = OVA = l/ﬁ
so0 that G computes at the maximal rate,
The following computation aid may be found useful: If n, —>nj9 and

n,,n, both are on the same loop L for which To= W then

+A .
AL E IS r=0,1,...,
i J i ‘
PROOF: Let L be n, = n, DI e, PRS0 L. Then by the proof
1 J P m i

of Theorem 17,



50

Tr+4, .
6 <t,
1=
r+A :r+Ai.+A,k
t <t g
J - J
r+A, .+...+A r+A, .t...+A + A .
£y ij o1 m mi
- i : m
r r+5A
Therefore ti < ti Lo % T by adding the above inequalities
= [n(r+z 8) + ti1 -
L L

[ﬁr o Z T] -2
L L

fﬁr + ti1 since £ T 1is an integer

T L
t,
i

i.e. equality must hold for each of the above inequalities and in par-

ticular, for the first.

The obvious dual results hold for synchronous computation graphs

under the substitution of Ti for ti, i.e.

Ti = fﬂr + Ti1 r=0,1,...,

defines a (\,Q) periodic execution.
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An Example

— — \ ¥ 1 —— —
n = 8/6 = 4/3 corresponding to the loop ), - n. - ng - n, =y

p)

Teke A = 4, o = 3.

By the methods of Section 2 we obtain:

t] =0 ty = - /3 by = -3 t) = - 11/3 t5=-17/3

tg = - 22/3 by = - 13/3.

Hence
& = 0 6 = 2 w2 = 3
tg=-1 té:Oﬁ t§=2
t§=-3 t%:-l t§=0
- 3 & 2.a
t§=-5 t:;=-u t§=-3
t2=-7 t:6L=-6 té:-h
tf;:-u t%=-3 t?{,:—l



5. Conclusion

A maximal computation rate periodic schedule of node initiation
times has been presented for computation graphs G with U =W =T =1
for all branches of G. This schedule is of two forms, according as
G computes asynchronously or synchronously. Furthermore, an analysis
has been given of the so-called free running execution of G and this
is found to yield the maximum computation rate of G.

An open problem is & similar analysis for non-terminating compu-
tation graphs G in which U, W, and T are not restricted to be 1.
Another area for future research is as follows:

Suppose all nodes of G are capable of performing the same functions
e.g. each node is a computer. Then under the various periodic schedules
of this paper, what is the minimum number v of "computers" necessary to
perform the computation without decreasing the computation rate of G?

* A more general problem is the following: Suppose the node set of
G to be partitioned into sets Nl’NQ""’Nm where all of the nodes n in Ni
are capable of performing the same functions. Again, what is the mini-
mum number of "computers' necessary to perform the computation under the
various periodic schedules without decreasing the computation rate of G?
A related problem is the following: Suppose k < v "computers" are avail-
able. How can we choose the minimum value of y such that the computation
may be effected with period y and such that the k "computers" are

utilized.
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