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Abstract

This paper deals with a generalization of a model for parallel compu-
tation as formulated by Karp and Miller. A parallel computation is viewed
as a directed graph in which a node represents a sequence of operations to
be performed upon data on the node input branches with the results of an
operation being placed upon the output branches. An operation associated
with a node n may initiate if and only if, for each input branch dp to n,
the data queue length on dp is greater than, or equal to, some threshold
Tp' It is shown that a unique computation is defined independently of
the timing of the node operations. Methods are derived for determining
whether a computation terminates and for finding the number of perfor-
mances of each node computation step involved. In particular, an algo-
rithm is given which yields the number of performances of each node compu-
tation step for the set of terminating nodes of a computation graph.
Finally, necessary and sufficient conditions for data queue lengths to

remain bounded are derived.
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1. Introduction

This paper generalizes a model for parallel computation formulated by
Karp and Miller [1]. Briefly, this model represents a computation as a
directed graph in which a node ni represents an operation to be performed
upon data which lie upon the input branches to ni. The results of the
operation by node ni are placed upon the output branches of n, . A branch,
therefore, represents a data queue. With each branch dp directed from node
n; to node n, is associated a quadruple (Ap,Up,Wp,Tp), the elements of
which are interpreted as follows:

A_ - the initial number of data items on branch dp

D

Up - the humber of data items placed on dp upon the termination
of the operation associgted with n, .

W_ - the number of data items removed from dp, under a first-in
first-out queve discipline, upon the initiation of the
operation associated with node njo

T - a threshold. 1In order to initiate the operation associated
with node nj, the queue length on dp must be greater than,
or equal to Tp
It is shown in [1] that such a computation graph represents a unique
computation, determined independently of operation times. Methods of deter-
mining termination properties and the number of performances of each compu-
tation step are developed. Finally, necessary and sufficient conditions for
data queue lengths to remain bounded are derived.
In the present paper, a model for parallel computation based upon that
in [1] is given. This model is a generalization in that the operation

associated with a given node need not be fixed, but may vary throughout the



computation, provided that it is uniquely specified as a function of the
number of previous performances of the given node during the course of the
computation. For this general model, determinacy is established in the
sepse that a unique computation is determined independently of operation
times. The model is then specialized to be data dependent upon the
lengths of data queues as follows: with each branch dp’ directed from
node n, to node By is associated a quadruple (Ap,{Up(n)}, {Wp(n)}, Tp)
where Ap and Tp have the previous interpretation. The sequence [Up(n)}
specifies the number of data words, placed on dp upon the termination of
the n-th operation of node n, - {Wp(n)} specifies the number of data words,
under a first-in first-out queuve discipline, removed from dp upon the
initiation of the n-th operation of node njn

With this model we address ourselves to finding methods of determining
whether such a computation terminates and to finding the number of perfor-
mances of each node computation step involved. 1In particular, an algorithm
is given which yields the number of performances of each node computation
step for the set of terminating nodes of a computation graph. It is
found, as was the case in [1], that the maximal strongly connected subgraphs
of a computation graph, and their loops, play a central role in the analysis.
Finally, it is assumed that the sequences {Up(n)} and {Wp(n)} are periodic.
Under this assumption, methods of determining termination properties and
the number of performances of each node computation step are given, and
necessary and sufficient conditions for data queue lengths to remain bounded

are derived.



In the development it will be assumed that the reader is familiar with

the definitions and principal results of [1]. The proofs of all results
which follow in an obvious fashion from the proofs of analogous results in

[1] will be omitted.



2. The Model

Definition 1

A computation graph is a directed graph consisting of:

(1)

(11)

nodes ny,n

branches dl’d

FEE

++.,d,, where any given branch dp = (ni,nj)

27"

2}

is directed from a specified node n. to a specified node

n. .
dJ

(iii) a sextuple (CLP,Hp,ap,hp,t

(0} associated with each
PP

branch d_ = (n.,n.) where:
p i J

(a)
(0)

(c)
(d)

CLP is a given set, the alphabet.

Hp C n_ where ﬁp is the free semigroup on ézp’ with
identity ¢g. If GGHP,

Ten_, then gteH_.
b D

a mapping: ﬁp — . such that for cer,
TET
p)

h (o71) = h (o d for cen. - H h (o) = 0.
o(07) = (0) and for oen - E, b (o) =

a mapping: . — m  such that for ged
pping D . 0’

TEM L (071 =1t (0)7T and for oexn - H t (o = 0o
o is a mapping: T X 7T e 7 - 7_ wWhere n,
D p~] p2 X X Lpr x
has input branches 4 d e ee @ and for o P. )ER
p 2 e b4 ) P ) ( l) pj 5

1-1,2,...,75 o: (b (0(p))),. - 5hy (0(2.))) = (e .

1 T

The sextuple associated with each branch may be interpreted as follows:

(Zp is the set of all data words upon which Oj’ the operation associated with

node j, can operate.

which can appear as a queue on the branch dp. Hp

class of all sequences acceptable to Oj; i.e. Oj

ﬂp represents the set of all sequences of data words
is interpreted as the

cannot initiate unless the



data queue on branch dp is an element of Hp, so that Hp defines a threshold
for the initiation of Oj' The data string ap represents the initial data
dueue on the branch dp. The function hp defines, for a given data queue,
the minimal acceptable head which permits the initiation of Oj’ and the
function tp defines the data queue remaining after Oj removes data from
the head of the queue upon its initiation. Finally the function ap defines
the data sequence which is placed on the tail of the branch dp = (ni,n.)
upon termination of the operation Oi'

We shall require that the operation O, associated with a given node nj

oJ

be eligible for initiation if and only if for each branch dp directed into
nj, the data sequence on dp is acceptable, i.e. is an element of Hp, and
that no previously initiated performance of Oj is still in progress. After
Oj becomes eligible for initiation, there may be some delay before initia-
tion actually occurs. TFor each branch dp directed into nj, Oj’ upon initia-
tion, removes an initial sequence of data words on the queue associated with
dp~ There may then be a further delay before Oj terminates, at which %ime
for each branch dq directed out of nj, a sequence of data words determined
by the function aq is placed on dq” The delays mentvicned above are left
unspecified by the model and, in fact, may differ for different iritiations
and performances of the same operation.

The above constraints on initiation lead to the following definitions

of the possible sequences of initiations associated with a given computation

graph G.
Let éi be a sequence of nonemplty sets Sl,Sg,;cc,Sn,b.s, such that each
Sn - {l,Z,pao,z, 1, 2, ..., 1} where y is the number of nodes in G. Let



x(3,0) = 0 for jef{l,2,...,4} and for N > O let x(J,N) denote the number of
sets Sm’ 1 <m <N of which J is an element. A similar definition holds

for x(j,N).

Let & = (n.,n.) and let n, have input branches d_ ,d ,...,d_ . We
1Y 17 1 Pl P2 pr
define a sequence o(p,N)eﬂp for N=0,1,..., as follows: o(p,0) = 8, For

N > 1, assume that for all p, o(p,0), o(p,1), ..., o(p,N-1) have been de-

fined and let N' = max {T |T <N and ieS;}. Then if ieS; and N' exists

define c(p,N-1) = o (h_ (o(p.,N'-1)),...,h (o(p ,N'-1))]. Otherwise,
PPy 1 P, r

a(p,N-1) = g. Then, if

jesy, o(p,N) = t [o(p,N-1)a(p,N-1)]

il

jﬁSN: o(p,N) o(p,N-1)a(p,N-1).

Definition 2

The sequence é; = Sl,SE,..a, is an execution of G if and only if,

for all N > O, the following conditions hold.

(i) x(3,N) - x(3,N) e {0,1}.

(i1) If jeSy, there exists R >N such that 3esR.

(iii) If jeSy,, and G has a branch dp from n, to Dy,
then o(p,N)er.

(iv)  If é; is finite and of length P, then for each j,
there exists a node n, and a branch dp from n; to

n, such that 6(p,P)ﬁHp.

Definition 3

An execution é; of G is called a proper execution if the following

implication holds.

(v) 1f o(p,N)er for every branch dp = (ni,nj) directed into Dy

then jeS_ for some P > N.

P
6



The sequence éf is interpreted as giving a temporal sequence of
initiations of operations throughout a performance of the parallel computa-

tion specified by G. The occurrence of SN denotes the simultaneous initia-

o

tion of Oj for all jeS_ and the simultaneous termination of Oj for all 368

N N

The recursive definition of o{p,N) is given with this interpretation in
mind so that o(p,N) is viewed as the sequence of data words occurring on
branch dp immediately after all initiations and terminations associated

with SN have been effected. Thus, for example, if EESN and jeS the se-

N’
quence a(p,N-1) which is the result of the previous initiation of 0,, is
placed upon the queue o(p,N-1), yielding the data sequence o(p,N-1)o(p,N-1).
The result of initiating OJ then leaves on dp the sequence
tp(o(p,N-l)a(p,N-l)) vhich is o(p,N). Conditions (i) and (ii) of Defini-
tion 2 insure that to each initiation of O, there corresponds a termination
and that no termination may occur which is not preceded by an initiation.
Condition (iii) states that a node of G may initiate only if it is eligible
for initiation. Condition (iv) gives the only situation under which an
execution may terminate. Condition (v) of Definition 3 states that any
node of G which is eligible for initiation must eventually initiate.

Finally, it should be noted that the simultaneous initiation and termina-

tion of any operation Oj is permissible.



3. Determinacy of Computation Graphs

In this section we prove that, for proper executions of a computation
graph with given initial data, the sequence of data words occurring on any
branch is unique. Thus a computation graph represents a unique computation
regardless of which proper execution occurs. We refer to this property as
the determinacy of computation graphs. This result is embodied in Theorem
1, for the proof of which we require the following:

Lemma

Let éi = 81’82""’SN""’ be an execution of a computation

graph and let x(j,N) = n. Then o(p,N) = t£n>[a a(p,0)(pyLl),. ..

P
O&(p,N—l) ].

PROOF: We shall use induction on N. For N=1 we must have x(j,1)e{0,1}.

0
> 80 that o(p,1) = a, a(p,0) = té ) [ap,a(p,o)], If

| So that o(p,1) = tp[ap a(p,0)]. In either case, the

If x(j,1) = O, jgs
x(J,1) = 1, jes

lemma holds.

Assume the truth of the lemma for N=P. Then if x(j,P) = n,

o(p,P) = t(n)[a a(p,0)...a(p,P-1)]. Suppose j£S Then

1% Y P+1°

o(p,P+1) = o(p,P)a(p,P), i.e. o(p,P+l) = tén)[ap a(p,0)...a(p,P-1)Ja(p,P).

If n=0, the lemma follows immedistely. If n > 1, tén)[ap a(p,0) ...

a(p,P-1)] = tp[tén_l)(ap a(p,0) ... a(p,P-1))] and by (iii) of Definition

2 we must have t(n-l> (a_ a(p,0) ... afp,P-1)) € Hp. Hence

P
tp[tén—l)(ap a(p,0) ... a(p,P-1)]a(p,P) = tp[tén—l)

a(p,P-1))a(p,P)]. By iterating this argument we finally obtain

(2 0(2,0) ...

(n) .
o(p,P+l) = tp [ap a(p,0) ... a(p,P)] so that for JﬁsP+l the lemma holds.



If jeSP+l’ o(p,P+l) = tp[q(p,P)@(P;P)]

(n o -
=t >{ap a(p,0) ... a(p,P-1)}a(p,P)]
(n)y
=t [t a(p,0) ... a(p,P)
Lty e alp,0) (p,P)}]
\ I \
by the above argument, so that o(p,P+l) = téfkl’[ap a(p,0) ... a(p,P)]

and the induction is completed.

For the proof of Theorem 1 we shall require some notation. If o
has the form ¢ = 071 with O,Tenp, we write 6 é; . Let Cg be an execution.
We write N(j,s) = Min {N | x(j,N) = s}.

In what follows, primed symbols will indicate that these are symbols
defined with respect to the proper execution dﬁ' (e.g.
o' (p,N'), x'(j,N')) while unprimed symbols either relate to the proper
execution Cf (e.g. o(p,N), x(3,N)) or are independent of the executions

considered, (e.g. h, t , a ).
’ ( g p’ p’ p)

Theorem 1
Let,(i = Sl,SE,..a,SN,..,, and C?' = Si,Sé,.,,,Sﬁ,u.., be two
proper executions of a computation grapn G. If x(j,N) = s then
there exists N' such that x'(j,N') = s. Moreover, if jeSN,
then N' can be chosen such that x'(j,N'-1) = s-1 and
hp(d(p,N—l)) = hp(0'<p,N‘—l))u
PROOF: We apply induction to N(J,s) with respect to the proper execution
ZZ . Suppose N(j,s) = 1. Then se{0,1}. If s=0, i.e. x(j,1) = O, then,
since x'(j,0) = O, we take N' = O and the theorem holds in this case. If

s=l, then je8, which implies, by (iii) of Definition 2, aper. This implies,

by (v) of Definition 3, that there exists N' such that x'(j,N') = 1 with



jes' By the above lemma we have o'(j,N'-1) = ap@'(p,o) o' (p,N'-2)

N
and since aper, we have hp(o(p,O)) = hp(ap) = hp(c'(j,N'—l)) and again

the theorem holds.
Now assume the theorem holds for N(j,s) < P and suppose N(j,s) = P+1.

-1
Clearly, we must have s > 1. Then by the lemma, o(p,P) = tés >[ap a{p,0) ...

o(p,P-1)] and since jeS by (iii) of Definition 2, we must have

P+1’
c(p,P)er. Now W(Jj,s-1) < P so that, by the induction hypothesis, there

[}

We ghall prove that there

exists M' such that x'(j,M') = s-1 with jeS'

M

s. Suppose, on the contrary, that N' does

exists N' such that x'(j,N")
not exist. Then, for all R' >M', we must have o'(p,R') = tés_l)[apa'(p,o).
a'(p,R'-1)]. Let x(i,P) = t. Then N(i,t) <P, so that by the induction
hypothesis and the definition of a(p,:), to each nonnull a(p,T), T < P-1,
there corresponds an &' (p,T), such that a(p,T) = a'(p,T'). Finally, for

M,,M, < P-1, suppose that a(p,Ml) and a(p,Mg) are the results of two con-

2

secutive occurrences of ieS and ies_ , i.e. T. <T,. Then by (i) of
Tl T2 1 2

Definition 2, we must have Ml < Mg. By the induction hypothesis there exist
M3 K i ! i 1 1 ] o . . .
T4 and T2 with Tl <ZT2 with 1€STi and 1€STé
s} 1 . ° H 1 1 3 ! o ' ! !
2 there exist Ml and M2 such that ieS Mi+l and 1eS Mé+l and Ml < Mg'

to each nonnull sequence O(p,M) of o(p,P) there corresponds a sequence

By (i) and (ii) of Definition

Hence,

a'(p,M') = al{p,M) of o'(p,R') and their ordering is preserved. It follows
that, for sufficiently large R', o(p,P) C o'(p,R'). But 0(p,P)€Hp so that,
by (v) of Definition 3, there exists N' such that x'(j,N') = s and jeS'N,.
Clearly, x'(Jj,N'-1) = s-1. Finally, if x(i,P) < x'(i,N'-1), then

o(p,P) C o'(p,N'-1) while if x(I,P) > x'(I,N'-1), then o'(p,N'-1) C o(p,P).
In either case, since both o(p,P) and o'(p,N'-1) are in Hp, it follows that

hp(d(p>P)) = hp(oY(p,N'-l)). This completes the induction.

10



Theorem 1 establishes that the number of performances of an operation
Oj is the same for all proper executions of a given computation graph G.
Moreover, the n-th performance of Oj under two proper executions operates
upon the same data in both. It follows that the results of a proper execu-
tion of G are determined solely by the initial data regardless of the timing
of the operations, i.e. regardless of the proper execution considered. One
more point should be noted. The proof of Theorem 1 and its preceding lemma
requires only that the set Hp be the same at the n-th initiation of Oj for
all proper executions, and that each of the functions tp’ ap, and hp be sin-
gle valued and perform the same mapping for all proper executions at the
n-th initiation of Oj' Therefore consider modifying the definition of a
computation graph by replacing the single "threshold set” Hp by a collec-
tion {Hp(n)} such that the threshold associated with dp = (ni,nj) is Hp(n)
upon the n-th initiation of Oja Similarly, replace the functions tp(-) and
hp(*) by functions tp(k,n) and hp(-,n) respectively, and modify the recur-
sive definition of ¢(p,N) in the obvious way. Then by the above remark,
Theorem 1 holds for this more general definition of a computation graph
and its associated proper executions.

In the following development we shall investigate a particular reali-
zation of this more general form of a computation graph. More precisely,
we shall deal with a model which is specified by the following choice of
Hp(n) and tp(-,n): Hp(n) = Hp = {Gp |Gp€ﬁp and g(op) > Tp}: dere z(op) is
the length of the sequence Up with the convention Z(ﬁ) = 0, and Tp is a non-

negative integer. Let {wp(n) | n=1,2,...} be a sequence of nonnegative

» 8 o0 8

integers with W._(n) < T . If o €H we have 0 = a,8....8 .o
. p(R) <7 pp’ W (n) 7T r



here a. ¢ i=1,2,...,r. Define t (o _,n) = a, L ... a_. Tor ogH
v i Qp’ e ? ! p( p’ ) dW_D(n)ﬂ. T £ P’
t (o ,n) = Gr' et é' be an execution for the above form of a computation
P i
graph. A simple induction yiclds
-1 x(J,N)

ilo(p,M)] = 1(a) + = tla(p,R)] - & Wﬂ(n).
P R=0 n=1 +

But @(p,R) = b except possibly when 1€SR+1' For ieSR+l define
Up[x(i,R+1)] = {[a(p,R)]. Then

| x(1,N) x(J,N)

o(p,N)] = Ap + nil Up(n) - nzl Wp(n) where Ap = l(ap).
Tt follows that c(p,N)er if and only if 2{o(p,N)] > T - Thus for

dp = (ni,nj), Tp, Ap, Up(n) and wp(n) may be interpreted, respectively, as
a threshold which prevents Oj from initiating whenever the threshold exceeds
the gqueue length on dp, the initial data length on branch dp, the length of
data placed on dp upon the n-th termination of Oi’ and the length of data
removed from dp upon the n-th initiation of Oj'

Finally, we note, by (i) of Definition 2, that x(i,N) - x(i,N)e{0,1},
so that G(p,N)er implies that

x(i,N) x(3,N)
Ap + nzl Up(n) - nil wp(n) > Tp

while Z? finite implies x(i,N) = x(i,N) by (i) and (ii) of Definition 2.

We may then reformulate Definition 2 and 3 of an execution and proper

execution to conform to the present model as follows:

12



Definition 2°'

The sequence ég = 81,82,.,6, is an execution of G if and only if,
for all N > O the following conditions hold.

(1) x(3,N) - x(3,N)ef0,1}.

(ii) If JjeSy, there exists R > N such that jesR.

(iii) 1If jeSy,; and G has a branch dp from n, to ns, then

X(i:N) X(J)N)
A+ % U (n) - X W (n) >T .
AN A ACETS

(iv) If é; is finite and of length P, then for each j there

exists a node n; and a branch dp from n, to nj, such that
i

A+ I U_(n) - 5 W (n) <T_.
1 b b b

Definition 3!

An execution Z§ of G is called a proper execution if the

following implication holds.

(v) It )
x(i,N) x(J,N)
Ay ? Up(n) - ? wp(n) > T

for every branch dp = (ni,nj) directed into 0y

then jeSP for some P > N.

13



An Example

Consider matrix multiplication C = AB where

n
c = X a

1j 1 1%k §

i=l,...,m; J=1l,...,P.
Figure 1 shows a computation graph for this calculation where each
branch dp is labeled with its associated quadruple (Ap, {Up(n)},
w (n)}, T.).
@ )
Bach of the indices i,j, and k is assumed to have zero as its

initial value. Index modification is performed by the operations

01,02,...,0 as follows:

7

0, replaces k by (k+1) mod n

0, replaces j by (j+1) mod p

O3 replaces 1 by i+1.

The initial data on the branches (nl,nl),(ng,ng) and (n3,n3) consist of
markers sequencing the indices through their appropriate values. Termi-
nation of the queue associated with branch (n3,n3) is caused by the deple-
tion of the queue associated with branch (n3,n3). The values U = np and
W=1 on the branch (ns,nu) specify that any given value of the index i is
used in np consecutive performances of OM' Similarly, for branch (ng,nB).

OM fetches a, from storage

k
O5 fetches bkj from storage
06 forms the product aikbkj
07 adds aikbkj to the partial sum in a sum bucket and puts out Cij

on (n7,n7) only when it has performed n summations.

1k



At the end of the calculation (n7,n7) contains the sequence

cee,C

Cll’le""’Clp’c2l""’c2p’ ml""’cmp'

15



(m,{0},{1},1) (1,{1},{1},1) (1,{1},{1},1)

ﬁS (O,{ll,{p},p) @/ (0,{1},{n},n) =t )
] S )7/

=~
0
~
'
ot
-
[~
-
~
—

(0, {Up(r)}, {o}, Q)

(e
—~
=
S—

1

- 1 if r’ n

O otherwise

Figure 1. A computation graph for matrix multiplication.

16



4., Termination Properties of Executions

We shall assume throughout that Up(n) # 0 and Wp(n) # 0 for all n.
The case Up(n) = Wp(n) = 0 for all n is treated in [1]. We write
o =A_ -T +1, and =, = {(i,P) | d_ is a branch from node n. to node n.}.
b 1Y J 1Y 1 J

P
Theorem 3

Let G be a computation graph. Consider the system of inequalities
x(1) x(3) ,
min [o_+ % U.(n) - 2 W (n)] <O for j=1,2,...,2 (1
. Y IS b -
(1,P)eZJ. 1 1
If Zj is empty for any j or if (1) has no solution in non-

negative integers then every execution 4? of G is of infinite

length.

If (1) has a nonnegative integer solution, then every execu-
tion éz of G is of finite length, and, for any j, the number of

%
performances of Oj is x (J), the minimum integer solution of (1).

From this point on we assume that X Wp(n) = o,
Lemma 1
If, for some (i,p)ezj, X Up(n) < oo, n, terminates. (Note in
this case n, need not terminate.) TIf, for some (i,p)eZJ, n,

terminates, then nj terminates.

Lemma 2

Let G' be a strongly connected subgraph of G. Then in any
execution éi of G either every node of G' terminates or none

does.

17



5. Termination Properties of Proper Executions

We consider, in what follows, the case & Up(n) = o, as well as

Lemma 3

The node njeG terminates if and only if, for some (i,p)eZj

n. terminates. Also, if nj terminates, there exists

(i,p)er such that n, terminates and

W _(n) >

where x(k) =

Theorem_&

x(1)
o, * ? Up(n)

max x(k,N) in any proper execution of G.

Let S be the set of indices of nodes terminating in G. For

each jeS, x(J)

is given by the minimum value of x(j) in any

nonnegative integer solution of

min [0 +
(i,p)ez, p
ie3 J

x(1) x(J)
? Up(n) - § Wp(n)] < 0.

Note: The proof of Theorem 4 establishes that the set {x(j),jeS} is a

solution of (3). Since x(j) = x*(j), the minimum value of x(j) in any

nonnegative integer solution of (3), the set {x(Jj), jeS} simultaneously

minimizes all of the quantities x(j) over the set of all nonnegative

integer solutions of (3).

We call this the minimal solution of (3).

18
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Theorem 5

The following iteration scheme converges in a finite number of

steps to the minimal solution of (3), for jeS.

<9 - o
Choose X£n+l>(j) so that:

(i)  Whenever

<) (5) <) (1)

Ej Wp(k) > o, * ;z Up(k)

k=1 k=1

(n+1) oy _(n) .
X 3y = x773).

(ii) Otherwise

Xp(n+l)<j) x(n)(i)
Z W) >+ Z 0 () end
k=1 k=1
{7 (5) 1 x4
}j Wp(k)<:0p + Ej Up(k) where
k=1 k=1
x<n)(r) = Min Xén>(r) res.
(i,p)GZT

PROOF': We use induction on n to show that for all n and for jeS,

x(3) > =™ (3). For n=0, x{(3) = 0 < x(3).

Assume the result for n=r. We show it true for n=r+l. Clearly

X(r+l)(. (r)(j).

- (
3) > If X(r l)(j) = x\r)(j), the result is immediate.

X
otherwise x 1 (5) s ) (3) so that for all (£,p)ex,, (1) of the

iteration scheme applies.
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Suppose, now, that the induction hypothesis fails for n=r+l. Then

j - r+l) .
> x(J). Hence, for any (i,p)eZ,, Xé '(5)

()

> x(3). Then by

(ii) of the iteration scheme,

x(J) Xér+l)(j) 1 ) (1)
Vo s N g e e )T w0 the
k=1 k=1 k=1

\ ' —

W (k) < + U_(k o+ U_(k

Y oW <ot ) U <o V00,

k=1 k=1

the last inequality following from the induction hypothesis for n=r. But
then, for all (i,p)er,

x(1) x(J)
o, + 3 Up(k) - kzl wp(k) > 0
contradicting (3).

Hence x(n)(j) < x(J) for all jeS. Since, for each jJ, x(n>(j) is
bounded above by x(j), and since x(n+l>(j) > x(n)(j), the iteration must
terminate with some n such that x(n+l)(j) = x<n)(j) for all jeS. For this
value of n, (i) of the iteration scheme must hold for all jeS and some

(i,p)er, otherwise (ii) would yield x(n+l>(j) > x<n)(j). For each such

j, and some (i,p)ezj, (i) yields

Ej W_(k) > o + Up(k) i.e.
k=1 k=1
) (1) 2 (9)
o, + /| Up(k) - Ez wp(k) <0
k=1 k=1
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i.e. {x(n)(j), jeS} is a solution of (3).

Combining this with the result x(n>(j) < x(j) yields X(n)(j) = x(3).

Theorem 6
Let G' be a strongly connected subgraph of a computation graph
G. Then G' is terminating if and only if:
(i) For some njeG’ there exists (i,p)er such that Ei is
terminating and niﬁG', or

(ii) The system of inequalities

win fo e 5 o) - 8 ) <o (5)
in g+ n) - W (n <
(i,p)eZJ. L 1 P -

for all j such that njeG‘ has a solution in nonnegative

integers.

Theorem 7
A maximal strongly connected subgraph GS terminates in G if
and only if there exists Gr such that Gr is self-terminating

and G >G°.
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6.

Conditions for Self-Termination

The condition for self-termination for a loop with £ nodes is the

existence of a nonnegative integer solution of the following inequalities,

obtained from Equation (5) of Theorem 6.

x(1) x(1) 3
% Wl(n) >0, i Ul(n) g

and for k=1,2,...,4-1

{

!

x (k+1) x (k) |
~ 4

i Wk(n) > o + i Uk(n) |

Theorem 8

A maximal strongly connected subgraph G' of a computation
graph is self-terminating if and only if G' contains a self-
terminating loop.

Corollary 2

Let G be a computation graph contained in a computation graph

G. If G is terminating in 5, then G is terminating in G, and

every node of G accessible from a node of G is terminating in

G. Also, if njea, f(j,a) > x(J,6).

Lemma L

Let fg = 81,82,...,8

N be an execution of a loop L. Then,
if x(k+1,N) > O
x(k,N) x(k+1,N)
A, + % U (n) - S W

where W = max wk(n).
n
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PROCF: W, exists since we have, for all n, T, > Wk(n),

i

We use induction on N. For N=0, x(k+1,0) = O and there is nothing to
be proved. Assuming the result for N=P, we prove it for N=P+1l. IT

x(k+1,P+1) = x(k+1,P) the result follows from the induction hypothesis.

Otherwise k+1 € S, .. Thus x(k+1,P+1) = x(k+1,P)+1 and from Definition 2%,

x(k,P) x(k+1,P)
Ay + f Uk(n) - % Wk(n) > T,
l1.€.
x(k,P) x(k+1,P+1)
- 1 - T - o
A+ % Uk(n) % Wk(n)‘z Tp Wk(x(k+l,P+l)) > - W

The desired result now follows since x(k,P+1) > x(k,P).
In the case of a loop, the iteration scheme of Theorem 5 becomes:
X(O) (k"’l) = 0.

(n+1)

Choose x (k+1) so that:

(i) Whenever

e k+1) K1) k)
W () >0, + y‘( o (r), =P e) - x® ) Qo)
r;i ;:i

(i1) Otherwise

x(nffz(k+1) <) (1)
2; | Wk(r) >0+ EJ Uk(r) and
r=1 r=1
X(n+l)(k+l)—l x(n>(k)
W () <o+ Z U, ().
r;i r=1

In order to prove Lemma 5 we require the following.
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Lermma

P 1) > Py, =2 D) s 0D (),

PROOF:  Since x(n+l)(k+l) > x<n>(k+l), condition (ii) of the iteration

scheme applies so that

K 2™ ) x (%) (1)
) M@ et ) g W, (x).
rol r=1 rol
But, in general,
x(n)(k+l) x<nii?(k)
W (r) >0, + U, (7).
r=1 f;i
Combining these two results yields
x(n)(k) X(?:})(k)
o, * Z U, (r) > o + Z Uk(l“)
r=1 r=1
x(n)(k) x(n_l)(k)
i.e. Ej Uk(r) > }Z Uk(r)
r=1 r=1
i.e. x(n)(k) > x(n_l>(k).

Lemma 5
If I is the number of nodes in the loop L, then, for k=1,2,..,1
x(k,L) > 1 if and only if x(z)(k) > 1. Also, if x(k,L) = O, then L is self-
terminating. Since x(z)(k) = 0 implies x(k,L) = O, the condition

x(z)(k) = 0 is sufficient for self-termination.
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PROOF:  Clearly, x(z)(k) > 1 ::i?} x(k,L) > 1. Conversely, suppose

x(k+1,L) > 1. Then there exists n such that x(i)(k+l) = 0 for
i=0,1,2,...,n-1 and x(n>(k+l) > 0. Assume n > {.

Now x<n>(k+l) > x(n—l)(k+l) so that by the above lemma,
X<n-l><k) > x(n—g)(k). Applying the Lemma } times yields

(n—z—l)(

-
x(n 1)(k+l) =0 >x k+1l) = O, a contradiction.

Hence x(k+1,L) >1 —> x(ﬂ)(k+l) > 1. The rest of the theorem

follows.

We assume, in what follows, that {Uk(n)} is periodic with period Py and
{Wk(n)] is periodic with period q . Write
Py

Z Up(n)
n=1

The following inequalities are self evident.



)y W {x(k+1) - - 1)}

I W () <y Do) + (g - 1) W
x(k) )
s (k+1,T) ()

b wk(n) Efﬁk {x(k+1,N) - (qk - 1)}

n=1
X(R:N>

by Uk(n) < U, {x(x,N) + (pk - 1)}

n=1 )

By applying the first two of these inequalities to the fundamental
loop inequalities (6), we obtain the following system:
g,

x(k+1) >0 x(k) + = - a (5 -1) - (g-1).

My

Put
%%
Bk""‘l = WI{- - a}((pk - l) - (q.k - l)'

Then this system can be written in a matrix form as

T 0 .. .0 .. -a;""§(17" "BI“
a1 o . . . . 0 x(2) B,
0 -, 1 0O 0
>
i
0 o, 1 x(4) Bl
i.e. (I -a)X>8 (7)

Now apply the last two inequalities of (8) to the inequality of

Lemma L. We obtain
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Put

Tesy = 0 (5, -1) + (g, -1).

Then this system can be written

(T - A%, <7 (9)

+

where x(k,N) is the k-th component of X, and 7, 1is the k-th component of y.

The fact that A is a positive matrix yields the following:
Lemma 6

If the matrix inequality (7) holds, then for any positive integer

n
(1 -2% x> T e
It (9) holds, then for any positive integer n

(T - An)XN < e A" L D)y

Define g = ala2"°az' The matrix I—A[ is diagonal with each diagonal
element equal to 1-g.

A. Loops with g < 1

Theorem 9
g <1 -:::§> L is self-terminating.
PROCF: Suppose L is not self-terminating. Then Lemma 5 implies that there
exists P such that if N > P, x(k,N) > 1 for all k. For all such N,
(I—A)XN < 7 by Lemma 4 and inequality (9).

By Lemma 6

(I-AZ)XN = (1_g)XN < (A'Z” + oo+ ATy,
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Thus, each component of X _ has an upper bound independent of N so that L

N

is self-terminating.

B. Loops with g = 1

When g=1, det (I-A) = O so that the homogeneous system
(I -A)X = O

has a nontrivial solution, as follows.

where a is an arbitrary parameter. Thus, by judiciously choosing a, we
can arrange that each .5 i=1,2,...,4 be a multiple of quj’ J=1,2,...,1.
i.e. p

o} X., i, J=1,2,...,1. This is possible since each Ok is

J7J 1
rational. Let X be the minimal positive integer solution of (I-A)X = O
subject to these conditions. X exists, for the minimal a which yields a
solution satisfying the above conditions will yield a component-wise
minimal positive integer solution X.
Theorem 10

If L is self-terminating with g=1, then at least one component

of g is less than the corresponding component of .
PROCF': L is self-terminating, which implies that X 1is the smallest non-

negative integer solution of (6), i.e.

x(k+1) x(k)

2 wk(n) >0 + 2 Uk(n).
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Therefore

% (k+1) X (k+1) x(k) X (k+1)
h n) - + 3 - ¥ n).
5 wk(n) bX Wk(n) >0, + I Uk(n) ) Wk( )
n=1 n=1 n=1 n=1
Aseume, for all k, that x(k) > X(k). Then
x (k+1) % (k) R (k+1)
> W (n) >0, + £ U (n) - = W, (n)
S © T k Tk | K
But x(k+1) is a multiple of gy~ Hence
x (k+1) -x (k+1) x (k)
X JERL
by Wk(n) >0, + Uk\n) W x(kt+1)
1 1
Finally, x(k+1) = o %(k)
- £ X(x)
Wi
s0 that W, x(k+l) = U, x(k)
%(k)
= % U (n)
]k

since z(k) is a multiple of Py - Then we have

% (k+1) X (k+1) x(k) % (k) N
? wk(n) >0, + ? Uk(n) - § U, (n)
x(k) |
T % %%k)+l Uk(n)
x(k)-x(k)
= 0 DY Uk(n)

again since x(k) is a multiple of p, - But then §(k+l)—§(k+l) is a smaller

nonnegative integer solution of (6), a contradiction.
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This theorem leads to a finite procedure for determining self-
termination. The iteration procedure (10), is followed until either:
(i) it terminates, yielding the number of performances of each
operation, or else

(ii) for all k, x<n)(k) > X(k), establishing nontermination.

C. Loops with g > 1

Put P = Az—l + A‘l'2 + ...+ A+ I. Then Lemma 6 yields (I—Al)X > PB,

or, (1-g)X >PB, or, since g > 1

X <75 P8

From this inequality it follows that if any component of PB is positive,
the loop is not self-terminating. For if the loop is self-terminating, let

X be the minimum nonnegative integer solution of (6). Then X satisfies

X< = P (15)
so that some component of X is negative, a contradiction.

The upper bound on the values of x(k,L) given by (15) leads to the
following finite procedure to determine whether the loop L is self-
terminating or not: Apply the iteration scheme (10) until either
(1) it terminates, yielding the number of performances of each

operation, or else
(ii) some component of x(n)(k) exceeds the upper bound obtained

from (15).
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7. Properties of Queue Lengths

Define
x(1,I) x(J,N) \
N) = A + X U (n) - X W_(n).
a(p,I) 5 . p( ) . p(

The queve length on dp immediately after the x(j,N)—th initiation
of Oj is q(p,N) if the x(i,N)-th performance of 0, has been completed;

otherwise, the queue length is q(p,N) - Up(x(i,N)).

Theorem 12
Let 4 ve a branch of G from n, ton,. If n.eGr and n.eGS,
b 1 J 1 J
where Gr and GS are different maximal strongly connected
subgraphs of G, then the queuve length of dp is uniformly

bounded if and only if n, terminates.

Theorem 13
Let G' be a nonterminating maximal strongly connected sub-
graph of G. Every loop of G' for which g > 1 contains at
least one branch for which the queue length is not uniformly
bounded. Also, the queue length for every branch which lies
in a loop with g=1 is uniformly bounded.

PROCF': Let L be a loop in G' consisting of the nodes n,,n and

SYAREFEY
1 I vraet o b < G I

branches dl’dQ""’dz’ with dk directed from o, to n o,y 1 <k <¢-1,

and dﬁ directed from ny to nl. Choose a proper execution of é; , and

consider the linear form

=]

=
no

=

12 ... "1-1

F o= q(1,N) +

=]
Ch
[en]}
<h
[@]
Ci

2 25 2~5 c o e z



x(k,N) x(k+1,N)
Now g(k,N) = A + % U, (n) - by W, (n). By applying the inequali-
k 1 k 1 k
ties (8) to this equation, we obtain

a(k,N) A ¥ ﬁk x(k,N) - Wk x(k+1,N) + {Gk(pk-l) + Wk(qk-l)}.

IVIA

Substitute for q(k,N), 1 <k < /, in F yields

=
‘_l
N

JES xR oA

Ch
no
no

N
Ea

+
~—
(any]
i_J
N
be
'_l
!
’__X
~—
+
=
I.._.l
N
Q0
’,_J
1
}__l
g
+
i
o

(q,-1)1}.

g T - + N
- [Uﬂ(pl 1) Wz

Suppose g=1. Then by taking the < case in the above inequality, we
see that F is bounded above by a constant, and since each q(k,N) is bounded
below by zero, a uniform upper bound on each of the quantities q(k,N) must
exist.

suppose g > 1. Then the coefficient of x(1,N) is positive. Since G'
is nonterminating, x(l,N) grows without limit in any proper execution of
G. By choosing the_f case in the above inequality, we see that F must also

grow without limit showing that some q(k,N) must tend to infinity.
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8. Conclusion
An analysis has been presented of determination for computation graphs,
and of termination and queueing in the case that {Up(n)} and {Wp(n)} are
Periodic. An open problem is the analysis of termination and queveing in
the case that {Up(n)} and {Wp(n)} are not periodic. However, such an
analysis would appear to be of little practical value since most arith-
metic calculations which one would wish to effect by a computation graph
seem to be iterative.
Many other probiem areas immediately suggest themselves. Among these
are:
(1) the synthesis of a computation graph given a computation
to be performed
(i1) the determination of a proper execution which minimizesg
the time for a computation
(iii)  programming techniques
(iv) the allocation of storage registers for data queues and

their utilization so as to minimize the number required.
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