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ABSTRACT

The phase-shift amplifier is a member of the class of double-sideband reactive
mixer circuits. Its properties have been studied throoughly for the case in which a varactor
serves as the reactive mixer element. For this case gain-bandwidths products of the order
of 109 have been achieved with noise figures on the order of 2 db. The purpose of this paper
is to study the phase-shift amplifier for the case in which a ferrite material serves as the
reactive mixer.

Reactive mixing properties of ferrites are studied with respect to the fundamen-
tal material properties. The ferrite parametric amplifier, which is also a reactive mixer
circuit, is discussed and the conditions for minimum pump power are found. The ferrite
parameters pertinent to the phase-shift amplifier are isolated and studied.

Various distinct configurations for the ferrite phase- shift amplifier are pre-
sented and optimized with respect to material and design parameters. The factors which
tend to limit gain-bandwidth product are reviewed.and the maximum theoretical and experi-
mental gain-bandwidth products are estimated. In addition, the noise phenomena fundamen-
tal to ferrites are surveyed and noise figure estimates are made. A revealing comparison
between varactor and ferrite reactive mixers is developed which tends to explain why use of
the former yields superior phase- shift amplifiers.

Although the results of the study indicate that the ferrite phase-shift amplifiers
are not practical compared to a conventional varactor version, the thesis contains a variety
of interesting investigations of important ferrite phenomena. For example, the boundary
value problem of a small ferrite sample immersed in an r-f magnetic field is solved. This
solution tends to explain the so-called magnetostatic resonances which have been observed
in ferromagnetic resonance experiments. In addition, the ability of a ferrite material to
tune a microwave cavity is studied both experimentally and theoretically for circumstances
which have not previously been considered. Furthermore, an analysis of the Reggia-

Spencer phase-shifter is conducted in which the ferrite properties most significant for the

xxi



operation of the device are isolated. The effect of tuning the phase shifter with reactive
obstacles is studied theoretically by means of the appropriate signal flow graph. Thus, the
ferrite phenomena fundamental to a variety of microwave devices are studied from somewhat

unique standpoints.

xxii



CHAPTER 1

1. INTRODUCTION

The phase-shift amplifier, which was developed primarily by Adams (Ref. 1),
has proven to be a significant contribution to amplifier technology. Gain-bandwidth products
of the order of 1000 Mc and extremely low noise figures have been achieved for this amplifier
which means that it has important application as a preamplifier in modern communication
and radar systems. These important applications provide strong motivation for the detailed
investigation of the ‘phase- shift amplifier.

Adams has shown that the phase-shift amplifier is a member of the class of cir-
cuits called reactive mixer circuits. Any linear time independent circuit becomes a reac-
tive mixer circuit when it is coupled to a nonlinear or linear time varying reactive element.
A circuit element of this type is normally called a reactive mixer. The circuit component
most familiar to electrical engineers which has reactive mixer properties is called a varac-
tor. (The varactor is a special type of semiconductor diode whose junction capacitance is a
sensitive function of the voltage across the junction.) The varactor was used by Adams in
his study of reactive mixer circuits. However, a number of other components and materials
exhibit reactive mixer properties such as certain ferromagnetic énd ferroelectric materials.

Ferrites are members of the former elass of materials.

1. 1 Statement of the Problem

Although the fundamental properties of phase-shift amplification were studied
thoroughly by Adams, many of the conclusions and practical limitations which he found were
based upon the properties of the varactor and are pot applicable directly to circuits employ-
ing other reactive mixers. The purpose of this paper is to report an investigation of the
properties of a phase-shift amplifier which employs a ferrite material as the reactive mixer.
The limitations and special advantages of the ferrite reactive mixer for phase-shift amplifi-
cation will be studied with respect to fundamental physical properties of the material.

At the outset, certain advantages of the use of ferrites can be anticipated. For

1



example, the principal source of noise in a varactor is shot noise which is not present in
ferrites because they are electrical insulators. In addition, the power handling capacity of
varactors is restricted by the small size of the junction in which reactive mixing occurs.
On the other hand, no such restriction is evident for ferrites which can be prepared in
samples of arbitrary size. Thus, it is expected that ferrites might give rise to phase-shift

amplifiers with noise performance and power capacity superior to those of varactor amplifiers.

1.2 Topics of Investigation

It has been stated that the purpose of this paper is to report a study of the appli-
cation of ferrites to phase-shift amplification. In this investigation the following topics will
be explored: |

(a) The physical properties of ferrite materials which make
them useful for phase-shift amplification will be studied.
For this study it is convenient to divide ferrites into two
distinct classes depending upon whether they are magnet-
ically saturated or unsaturated (the definition of magnetic
saturation appears in Section 1. 3. ). This distinction is
significant because the relationship between the pertinent
electrical variables can be computed analytically for only
the former case.

(b) The field distributions in a ferrite sample excited by an
r-f source will be obtained by a solution to Maxwell's
equations. An approximate boundary value problem,
valid for small samples, will be obtained by manipulation
of Maxwell's equations and will be solved exactly.

(c) The reactive mixing properties of ferrites will be studied
under the assumptions:

(1) power is supplied at two frequencies w ; and w,
Where W > w 1
‘ (2) fjlters restrict the power flow to the four fre-

quencies including: w p Py Wogtwy



It is shown in Chapter 2 that these assumptions are sig-
nificant for reactive mixer circuits.

(d) The lim{tations imposed by ferrites on phase-shift ampli-
fication will be studied with respect to the fundamental
physical properties. A comparison between ferrites and
varactors will be made on the basis of this study and the
work reported by Adams. Such a comparison is signifi-
cant because the varactor amplifiers have proved to be
very successful.

(e) A number of practical configurations of the ferrite phase-
shift amplifier will be studied experimentally and coﬁl-
pared with theoretical predictions., Wherever possible,
each configuration will be optimized with respect to
material parameters.

(f) The noise figure and theoretical maximum gain-bandwidth

product will be estimated for each practical configuration.

1.3 Review of the Literature

Adams (Ref. 1) has very thoroughly reviewed the literature which concerns the
general properties of reactive mixer circuits from the earliest work (in about 19 16) to the
present. However, the bulk of the current literature (from 1954 to present) was primarily
concerned with the varactor.

The first proposed application of ferrites as reactive mixers appeared in 1957 in
a paper by Suhl (Ref. 22). This is primarily a theoretical paper proposing the use of a fer-
rite in a parametric amplifier which is a circuit clésely related to the phase-shift amplifier.
Suhl's paper is basically a survey of three principal modes of operation of the amplifier.

The first practical ferrite parametric amplifier was an experimental extension
of Suhl's work by Denton (Ref. 23). The performance of this amplifier was somewhat mar-
ginal, being characterized significantly by an excessive noise figure.

Many variations of the configuration employed by Denton have been reported in

the literature since the publication of his paper (Refs. 54-58) but these configurations are all



parametric amplifiers. To the author's best knowledge this paper reports the first applica-~
tion of ferrites to phase-shift amplification.

1. 4 Thesis Organization

(a) Chapter 2 contains a brief survey of the important prop-
erties of reactive mixer circuits with special emphasis
upon the phase-shift amplifier.

(b) Chapter 3 is a review of the physical properties of ferrite
materials with emphasis on their reactive mixing proper-
ties.

(c) Chapter 4 is a study of reactive mixing in ferrites and
contains a brief discussion of two circuits which are
closely related to the ferrite phase-shift amplifier.

(d) Chapter 5 is a study of the physical properties of ferrites
which apply directly to phase-shift amplification. In par-
ticular, the limitations imposed by these materials on
this type of amplification is related to fundamental ferrite
properties.

(e) Chapter 6 is a report of the experimental investigation of
a number of practical configurations of the ferrite phase-
shift amplifier. The experimental and theoretical limita-
tions of each configuration are compared and discussed.

(f) Chapter 7 contains a study of the practical limitations of
the ferrite amplifier, including a revealing comparison
of ferrite and varactor reactive mixers. It also includes
an estimate of the maximum theoretical gain-bandwidth

" product for various configurations and closes with the

conclusions of this study.



CHAPTER 2

PROPERTIES OF REACTIVE MIXER CIRCUITS

2. 1 Introduction

The reactive mixing properties of ferrites make them useful in phase-shift ampli-
fication, Thus, a review of the fundamental properties of reactive mixers and reactive
mixer circuits provides the proper background for the study of ferrite phase-shift amplifiers.
The equations which describe the power flow through a reactive mixer are presented in this
chapter. The relation of the phase-shift amplifier to the general reactive mixer is explored
and contrasted to two other special classes of reactive mixer circuits. The pertinent gain

and bandwidth relations are derived in Sections 2. 5 and 2, 6, respectively.

2.2 A Survey of Reactive Mixer Properties

The term reactive element applies to a circuit element which is capable of stor-
ing energy. The ideal lumped circuit model for a reactive element is an ideal capacitor or
inductor. A reactive mixer is a nonlinear or linear time varying, energy-storage element.
Whenever two sinusoidal signals are coupled by such an element the phenomenon of fre-
quency mixing will occur, i.e., if a linear time dependent reactance is excited by two sinu-
soidal signals w P Y then the output of this mixer will contain components at the frequen-
cies Wop S MW+ nw,. This production of components wm, n is called reactive mixing. Any
linear time independent circuit (e. g., filter) whicﬁ is connected to the mixer will influence
the relative distribution of power in this spectrum and may even suppress certain components.
Adams has shown that filters which restrict the frequencies of power flow through the reac-
tive element to a desired subset of the total set W o can be successfully approximated. The
properties of the circuit formed by coupling a reactive mixer to various filters depend
markedly upon the set of frequencies at which real power flows.

The relationships which describe the real power flow through a reactive mixer

were first derived by Manley and Rowe (Ref, 2):
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where Pmn is the power entering the mixer at frequency mw 1t Dwo. The above rela-

tions were written for a lossless capacitive mixer and give the inherent limitations governing
power flow at one frequency or set of frequencies. A similar set of equations exists for an
inductive mixer. Adams has shown that a large number of circuit properties can be con-
trolled by suppressing various components of the set Qm’ o In this paper it is assumed that
filters limit the power flow to four frequencies of the set wm, o e, w P Wgr Wy~ Wy
Wo + Wy where We > w 1 and where sources are present at w 1 and wo only. It is assumed
that all others are suppressed. Adams has shown that four frequencies are enough to pro-
vide several interesting circuit effects; and few enough that analysis is relatively simple.
If w 9 > w 1 then wq may be regarded as a local oscillator (often referred to as the pump)
and w,a reference signal. The signal at frequency w 9~ Wq is normally called the lower
sideband of the mixer and the signal at Wg + Wy is the upper sideband. Many interesting re-
sults are obtainable with circuits which suppress either of the sidebands.

Although Adams has shown that the phase-shift amplifier is a double-sideband
reactive mixer (i. e., power flows at all four frequencies) and although the principal inter-

est of this paper is the double-sideband circuit, it is instructive to review briefly some of

the properties of the single-sideband circuits.

2.3 The Lower Sideband Reactive Mixer (Parametric Amplifier)

The circuit which utilizes the lower sideband and suppresses the upper sideband
is conventionally called a parametric amplifier. The Manley-Rowe relations for this situa-

tion are

'

=0 =—-— (2.3)

s Py
—+_—
w



where w g SWo Wy i. e., the lower sideband. The conversion gain, defined as the ratio ol

lower sideband power to signal power, is given by:

If power is not supplied at w ) (i. e., in the normal circumstance) then

Pﬂ <0 (2.5)
But
w
L <0 (2. 6)

S0 P1 < 0. This relation shows that more power is leaving the circuit than is entering at

w Notice that the signal frequency power leaving the circuit increases in proportion to the

I
lower sideband power leaving the circuit. Thus, the reflection coefficient at the signal fre-
quency is greater than unity. The circuit manifestation of this effect is a negative resist-
ance which appears across the terminals of the signal circuit. Circuit analysis indeed
shows this to be the case. If the lower sideband is terminated in a parallel resonant circuit

(Pﬂ < 0) then (assuming a linear time-varying capacitive mixer) at resonance the magnitude

of the negative resistance is (Ref. 3):

A%
89

2
wal

(2.7)

Where C A is the amplitude of the capacitance variation (which is proportional to pump power
and g is the total shunt susceptance of the lower sideband termination. If the pump power

is sufficiently large, the magnitude of the negative conductance is the same as the conduct-
ance of the signal frequency circuit and all the signal power entering the circuit is reflected.
This value of pump power is called the unity gain threshold, or sometimes simply the thresh-
old. When the pump power exceeds the threshold the circuit acts as a power amplifier at the
signal frequency. For sufficiently large pump power the magnitude of the negative resist-

ance will match the transmission line supplying power at w 1 and the circuit will oscillate.



The lower-sideband circuit has many other ihteresting properties which are discussed thor-
oughly in Adams (Ref. 1). For the purpose of this paper, the pertinent features of the lower-

sideband reactive mixer have been adequately summarized.

2.4 The Upper Sideband Up-Converter

The circuit which utilizes the upper sideband and suppresses the lower sideband
is characterized by the following Manley-Rowe relations (Ref. 1):
P2 P P1

22, u gL,
2 “Yu 1

el"U
=]

(2. 8)

o

where W Fwytwy i. e., the upper sideband. Rearranging, the second relation predicts

that the conversion gain Gu 1 from w4 to w, is proportional to the frequency ratio:
t

P

G'u1=-—P_u= (2.9)

|©

[y
€
[

which gain always exceeds unity. Note that if no power is supplied at w o then P1 >0, so
that the negative resistance effect characteristic of the lower sideband does not occur for the
upper-sideband circuit. This ci_rcuit is stable for any pump power, provided power is not
supplied at Pu.

By eliminating Pu/wu from the two relations and rearranging, one finds that

Py _©2

P1 == ) (2. 10)
which may be interpreted to mean that the two sources contribute to the converted power in
the ratio of their frequencies. Observe that frequency conversion in an upper-sideband up-
converter is accompanied by power gain. This implies that this circuit will function as an
amplifier at the signai frequency if the power in the upper sideband can be down converted
to the signal frequency. Obviously, a reactive mixer cannot be used for the down- conversion
because the down-conversion loss is equal to up-conversion gain. However it is a property
of resistive mixers (e.g., diode) that down- conversion loss tends to be independent of fre-

quency. Typical losses for down-conversion with a resistive mixer are as low as 6 db.



Thus, if the frequency ratio

8 > 4 (2. 11)

then the upper-sideband converter conversion gain can exceed the down-conversion loss and

the circuit can amplify the signal.

2.5 The Double-Sideband Reactive Mixer (Phase-Shift Amplifier)

The properties of the double-sideband circuit consist of combinations of the
single-sideband circuits. For example, the utilization of the lower sideband increases the
conversion gain between frequencies w4 and @y since it reflects negative resistance to the
impedance at w 1 which amplifies this signal before it is converted to w - Further, if the
power which flows at the lower sideband is sufficiently large compared to the power at the
upper sideband then the circuit oscillates at the signal frequency for sufficiently large pump
power.

It has been tacitly assumed in the preceding paragraph that the power in
the sidebands can be independently coptrolled. If the frequency of the signal w4 is low, then
the upper and lower sidebands fall in the passband of the filter used to separate the local os-
cillator wy from w ;. In this situation the sidebands cannot be controlled independently, In
this case, where both sidebands are terminated in the same conductance (i. e., that of the
local oscillator) it has been shown (Ref. 1) that the conductance reflected into the signal
circuit is
C2w 1

Agz (@, - @) (2. 12)

This expression is always positive, since W, > Wy, SO that the circuit is stable for all val-
ues of pump power. However, this circuit cannot amplify the signal at w 0 directly because

it does not reflect a corpponent of negative resistance. Amplification of the signal occurs

with sufficient conversion gain between the signal and the two sidebands in a reactive mixer,
accompanied by down-conversion to the signal frequency in a separate device. The loss
which is fundamental to down-conversion must be less than the up-conversion gain for

amplification. In this paper it is assumed that down-conversion is accomplished with a re-
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sistive mixer (e.g., diode rectifier).

Adams has shown that the distinction between double- sideband amplification and
lower- sideband amplification (i. e., parametric amplification) is somewhat subtle, since both
can be accomplished with the same element (Ref. 4). Power gain in both results from con-
version of the signal to a higher frequency by means of a reactive mixer. However, the
term amplification implies power gain at the signal frequency, so conversion to a higher
frequency must be accompanied by some form of down-conversion. Both conversions are
accomplished in a single element in parametric amplification, whereas for double-sideband
amplification, down-conversion must be accomplished with a second element. In addition,
parametric amplification is basically a bandpass technique, whereas double-sideband ampli-
fication can be either bandpass or lowpass in character. Adams has shown that these types
of amplification differ also in their gain-bandwidth product. Specifically, when the center
frequency of the signal band is low, the double-sideband circuit offers greater gain for a
given bandwidth, while at higher values of signal band center frequency parametric amplifi-
cation is superior in this respect.

Adams has shown that in an optimum configuration, the sidebands constitute
phase modulation of the carrier (Ref. 4). For this reason he has termed double- sideband
amplification "phase-shift amplification. ' Thus the phase-shift amplifier is a double side-
band reactive mixer. However, in practice, the term phase-shift amplifier is applied to any
amplifier which produces gain by first converting to a higher frequency by means of a reac-
tive mixer and then down-converting in a separate element. The down-conversion is nor-

mally accomplished by first converting the phase modulation to amplitude modulation and

then detecting with an A-M detector. Any practical configuration of a phase-shift amplifier
will be inherently a small-signal device. For this reason, phase modulation can be con-
verted to amplitude modulation by inserting a carrier component phased in quadrature with
the unmodulated carrier. The sidebands can then be coherently detected with a resistive
diode. It will be assumed in this paper that the detection bandwidth is sufficiently large that
it imposes no restrictions on the amplifier.

It is instructive to review briefly some of the properties of the phase- shift ampli-
fier and to illustrate those circuit parameters which are influenced by the physical parame-

ters of the ferrite, when this magnetic material is used as the reactive element. The
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significant dependent variables appropriate to amplifier circuits are gain and bandwidth. - For

the purpose of investigating these quantities it is convenient to refer to Fig. 2-1 which is a pro-

totype equivalent circuit for a phase-shift amplifier. Although this circuit is not necessarily

Tunable Filter

/

Pump Matched
) Source Signal Ph
wg Detector

Fig. 2-1. Prototype equivalent circuit for a phase-shift amplifier.
The parameter w, is the instantaneous resonant frequency
of the tunable filter.

the optimum phase-shift amplifier, it is a convenient prototype model for studying the appli-.
cability of ferrites to phase-shift amplifiers. It will be shown later how this circuit can be
optimized.

The ferrite reactive mixer in the circuit of Fig. 1 incorporates an inductor, the
inductance(L)of which is proportional to some signal variable s (e.g., signal current). The
tuned circuit is adjusted so that at zero signal thg pump frequency and filter resonant fre-
quency coincide. Under these conditions, the application of a signal s causes the resonant
frequency of the tuned circuit to vary at the signal frequency. When the resonant frequency
variation is small compared to the bandwidth of the tuned circuit, the effect is approximately
that of phase modulation of the pump power transmitted to the detector.

The gain of the phase-shift amplifier depends upon the magnitude of the phase
shift for a given signal amplitude. The magnitude of the incremental phase shift 8¢ produced
by an incremental change in S can be determined from the voltage transmission coefficient 7:

2 Yo

T IY v GeIB (2. 13)

where Y0 is the characteristic admittance of the line, G the equivalent shunt conductance of

the filter, and B the filter shunt susceptance. If the quiescent signal magnitude is such that
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the resonant frequency is equal to the pump frequency, an increment 8s produces a change
' Awo in resonant frequéency, and 7 can be written:
2Y

o

TE 2Y_+G+j2bw C (2. 14)

Expressing 7 in the form

7= 7l ef® (2. 15)
then the incremental phase shift 6¢ is given by:

ZCAwo

—Z—th (2. 16)

69 = -

The instantaneous bandwidth of the transmission coefficient 17| is given by:

2Y0+ G
Bp = (2. 17)

where Bp is twice the frequency difference Aw, for which |712 is half its maximum value.
The instantaneous bandwidth of the pump filter will be denoted by Bp throughout this paper

and called pump bandwidth for convenience. This qﬁantity can be substituted into Eq. 2. 16.

55 o 2Awo
P
and
2Q, Aw
op = - ———2 (2. 19)
)

where Qﬁ = wO/Bp.,

2.6 Transducer Gain and Tunability

The midband gain of the circuit can be found from 8¢, but before proceeding with
this computation it is convenient to discuss the gain definition which is most significant for

phase-shift amplifiers. This gain, called transducer gain, is defined as the ratio of signal
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frequency power delivered to a matched load to the power available from the source, It is
calculated for a down-conversion stage referred to as a "matched phase detector' (defined
below), which introduces an efficiency factor ¢. This quantity is defined as the ratio of the
signal power flowing in the load to the total sideband power which enters the matched phase
detector and can reach a maximum of 50 percent. When this definition is used, the trans-

ducer gain is given by:
G = —w— (2. 20)

where PS is the total sideband power and Pa is the available signal frequency power of the

b
source.
The transducer gain can be related to the equivalent circuit pafametei's' in the

following way. The pump voltage which is transmitted to the phase detector can be written

in the form:

V2(t) = Vp cos Eu’2t+ ¢2 + 09 cos (w t+ ¢1) } (2.21)

where Vp is the amplitude of the pump voltage, ¢2 is its phaise, 0¢ is the amplitude of the
phase shift produced by the signal, and ¢ is its phase. It is well known that in the small sig-

nal approximation the power in both the upper and lower sidebands is given by:

pp(5¢)2 ' (2. 22)

PN

u, !

where Pp is the pump power which is delivered to the phase detector at zero signal and for a

matched phase detector is given by

P =L (2. 23)

The total sideband power is the sum of the upper and lower sideband power and

is given by

P, = % P (6¢)* (2.24)
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But it has been shown (Eq. 2. 19) that

0 = - ———— (2. 25)

Thus the transducer gain is given by:

1 2
=Z_C_1?B 2Q fd_o
t Pa ! w

o]

I

P ds

1 2
3¢ P dw
2 p 1 0
———— <2 Qﬁ T As) (2. 26)
a 0

where As is the amplitude of the signal variable. It is shown in Chapter 5 that for the ferrite
phase-shift amplifier, s is most conveniently chosen as the signal frequency current A is'
If the signal source is represented by its Norton equivalent then

Clp st
Pa— ZRslAlsl

where Rs is the signal source resistance.
It is convenient to define a quantity which we call tunability Ti:

dw

SR S )
T, = == 33 (2. 27)
0] S

When this quantity is substituted into the expression for transducer gain, the result is

20 P, 2
Gy = R_ @ T)

which is the most convenient form in the study of the ferrite phase-shift amplifier.

Tunability is an important parameter in this study because of its easily discern-
ible relation to both amplifier gain and bandwidth and to the physical properties of the ferrite.
Much of Chapter 5 is devoted to an investigation of the physics of ferrites with respect to

tunability.
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2.7 Bandwidth Considerations for a Phase-Shift Amplifier

Bandwidth is another important dependent variable in any amplifier circuit. The
bandwidth of a phase-shift amplifier is limited by twb basic effects: (1) the finite bandwidth
of the parallel resonant circuit (see Fig. 2-1), and (2) the bandwidth of the signal transmission
path. The latter is often limited by a large static reactance presented at the signal poft of
typical reactive mixers.

The pump filter bandwidth influences the transmission of sideband power to the
matched phase detector, efficient sideband transmission being in fact the governing design

consideration. The actual sideband power reaching the load is given by:

- 2 2
Psb load = Psb,u l‘rul + Psb,ﬂ ITQ| (2. 28)
where T. g are the transmission coefficients at upper and lower sidebands and Psb o for
i ki
example, is the upper sideband power generated in the reactance. Thus
P (a9)* , ,
P = —g— (7 1%+ 17,1%) (2.29)
The expression for 7 was given previously, from which it is possible to compute:
4Y*
71?2 = (2.30)
\ o %\ °
(2Y0+G)+]woc > o
o}
0
4\ —
712 = ¢ -
2 wOZ
B v \@ "
2 2
. w Yo
2 .
, C (2.31)

2,2 2 2,2
w Bp + (w "-"o).

where Bp is the pump bandwidth. But for the upper sideband W, =Wt Wy and:
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w? - w " = (w-wo) (w +w0)

il

w1(2wo+w1) , (2.32)

Thus the transmission coefficient for the upper sideband is given by:

2
4<quO>
I 12 = c / (2. 33)
u

2
W, Bp

2+w12(2w0+w1)2

But if w, >>w 0 then this is given approximately by:

,Tlllz - 2 2 2 2
w Bp +4w1 W,
2
4 Yo
. B C
P
= T, (2. 34)
w
1+ <—!—>
ﬁp
1
where 8 = % B._. A similar computation for T reveals:
Py p
2
)
712 = —2 1 (2. 35)
2 w. \2
1+ ————1>
B

Assuming that the signal transmission has a lowpass character, the transducer

gain is given by:

Gylw,) 0 (2. 36)
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where 8 1 is the input bandwidth. Here Gt = Gt(O) and is identical with the previously com-
0
puted function Gt' The half-power bandwidth Wy is given by the solution to:

2 2 2 Bp>2 2 Bp ’
(w'l +Bi) Wt 5 = ZBi - (2.37)

The actual solution to this equation is not as important as some of its properties. Observe
that if Bp/ 2>> Bi the solution is w 1% Bi’ The circuit baﬁdwidth is then limited by the band-
width of the signal circuit or it can be said that the amplifier is input bandwidth limited. On
the.other hand if Bi >> Bp/ 2 then the solution is w 1= Bp/ 2 and the amplifier is pump band-
width limited. In the case that Bi = Bp/ 2 then w4 = Bi is the 6 db circuit bandwidth and the
over-all circuit bandwidth is‘ W= 64 Bi.

Another amplifier bandwidth limitation, which has not been previously discussed,
might result from the detector circuit properties. However, the bandwidths of several cur-
rently available broadband detectors far exceed the over-all bandwidth of most phase-shift
amplifiers. Thus, only for ultra-wideband circuits does the detector bandwidth tend to limit
over-all amplifier bandwidth. This situation is not considered further in this thesis.

There are other important dependent variables of an amplifier circuit such as
noise figure. These variables will also be related to the fundamental material properties so

that the optimum configuration can be determined.



CHAPTER 3

BASIC PHYSICAL PROPERTIES OF FERRITE MATERIALS

3. 1 Introduction

The objective of this chapter is to illustrate the properties of ferrites which
make them useful as reactive mixers and which suggest their use in phase-shift amplifiers.
Ferrites are a class of magnetic materials which are good electrical insulators. Thus the
chapter begins with a survey of the magnetic properties of magnetic materials. The survey
includes the steady-state energy relations, a derivation of the dynamic equation of ferromag-
netic materials and a discussion of ferromagnetic résonance. Many of the properties of
ferromagnetic resonance are referred to in Chapter 6, including the peculiar multiple reson-
ances wh{ch occur at frequencies near the main (expected) ferromagnetic resonance. An
explanation of the latter phenomenon is facilitated by solution of a boundary value problem

in Section 3. 7 which is an original contribution.

3.2 A Survey of the Properties of Magnetic Materials

A magnetic material can be defined as any material in which B H is nonzero,
where B is the magnetic flux density and H is the magnetic field intensity. OThe difference
between these quantities is the magnetic moment density of the material and is called the
magnetization (M) of the material. This definition enables a separation of that part of the
magnetic field which results from true and displacement currents, from that which results
from the atomic currents of the material. ’ The latter is the source of M. For this definition

of ﬁ, Maxwell's equation for the circulation density of the magnetic field intensity is sole-

noidal regardless of the medium:

5.7, D
VxH = J + T
where J is the true current density and é—? is the displacement current. In addition, the
condition
V.-B =0
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determines the relation:

Thus even in the absence of true and displacement currents, a nonzero magnetic field exists

provided that:

VeM # 0

The relation of M to H is particularly significant in studying the application of ferrites as re-

active mixers.

3.3 Ferromagnetic Materials

Magnetic materials can be divided somewhat arbitrarily into three general clas-
ses depending upon the relatiire dependence of M upon H. Of these three only the class known
as ferromagnetics, for which M depends most strongly upon H, will be considered in this
paper. A nonzero magnetization exists in a ferromagnetic material even in the absence of
applied magnetic field. This gives rise to a rather large magnetostatic energy which would
appear not to satisfy thermodynamic equilibrium. Quantum theory offers an explanation to
this apparent paradox in its characterization of the magnetization on an atomic scale. In
quantum theory the ultimate source of magnetization is attributed to a quantity possessed by
electrons called spin (Ref. 5). Although spin has no analog in macroscopic dynamics, many
of its properties can be explained using a semiclassical model. The electron may be pic-
tured as a body having small but nonzero charge spinning on an axis of symmetry and thus
producing a magnetic field. Regardless of ‘the validity of this model, it is an experimental
fact that electrons do possess an intrinsic magnetic moment. In nonferromagnetic materials
these magnetic moments are randomly oriented. However, in ferromagnetics the most fav-
orable energy configuration is with the moments aligned parallel. Quantum theory explains
this phenomenon in terms of a so-called exchange energy which is extremely large for two
proximate electrons having their spins aligned anti-parallel. Since the exchange energy is
part of the total free energy of a material, the latter is minimized for parallel alignment

which produces a net magnetization.
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No net magnetic field is observed external to large samples of certain materials
in which the magnetic moments are aligned only within portions of the sample volume which
are referred to as domains. Thus, a magnetic domain is a region in which the magnetization

is aligned parallel. The existence of domains can be explained by noting that the exchange

energy has a very short range effect (i. e., nearest neighbors) and that the magnetostatic
energy increases with the size of a region in which the spins are aligned. The short range
effect of exchange tends to keep spins aligned in a region or domain, while, because of the
magnetostatic energy, alignment of adjacent domains antiparallel is the most favorable en-
ergy condition. Thus, the size of the domains and their relative orientation is determined
by the condition that the total free energy is a minimum.

The relationship between the average sample magnetization and a magnetic field
can be seen by considering the effect of an external magnetic field on the domain structure.
When the mag’netivc. field is applied, the domains tend to rotate into the direction of the field.
As the field is increased the size of the domains having a component of magnetization in the
direction of the field increase at the expense of those having components oppositely aligned.
Finally, when the field reaches a certain size, all df the magﬁetization is aligned in the di-
rection of the applied field and theb domain structure no longer exist. The sample is then
said to be saturated. This is the basic process responsible for the shape of the B vs. H
curve oan ferromagnetic (Ref. 6). " The observed hysteresis may be explained by noting that
domains fail to return to their original ofientation when the applied field is removed due to
losses in the motion of domain boundaries. |

Anisotropy energy also plays a significant role in ferromagnetic material. It

receives this name because it is a function of the orientation of the magnetization relative to
the crystalline axes. For example, Landau and Lifshitz (Ref. 5) have shown that for uniax-

ial crystals the anisotropy energy is

1 2 .2
Uaniso = zﬁlMI sin® 0 (3. 1)

where 0 is the angle between the ma_gnet‘ization vector and the axis of symmetry of the crys-

tal and 8 is a dimensionless constant. If 3 > 0, then Uaniso is minimized with M along the

crystal symmetry axis sometimes called the easy axis. If 8 < 0, then Uaniso is minimized
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for 6 = _12_r (i. e., "M in the plane normal to the axis). Higher order corrections are needed to
predict. the actual direction in this case, but even to first order, the anisotropy energy is
useful for explaining the finite size of a domain wall (i. e., the region between adjacent do-

mains).

3.4 A Dynamic Equation for Ferromagnetic Materials

So far, only the steady state relationship between M and H has been investigated.
It is now of interest to examine the dynamic response of the sample magnetization to the ap-
plied field. A magnetic moment m in the presence of a uniform magnetic field H experiences
a torque E.x H. In quantum theory, it was shown that m is related to some angular momen-
tufn 's by the relation m = -y's where y is the so-called gyromagnetic ratio (y = 2. 8 Mc/Oe).

The quasiclassical equation of motion is then
= = -ymxH (3.2)

by analogy to the precessional motion of a gyroscope. If there are N spins/(unit volume)
then the magnetization, which is the dipole moment per unit volume, is given by M = N m.

Thus the dynamical equation for the magnetization is (Ref. 7):

dM

T = -yMx H (3.3)

where H is the internal magnetic field. This expression is useful for characterizing the en-
tire sample in the absence of domain boundaries (i. e., where all spins are aligned parallel).
This same equation can be derived rigorously using quantum theory and very accurately de-
scribes dynamic properties of magnetic material when it has been modified to include the

effect of losses. It is the form of this so-called equation of -motion which suggests the use

of a ferrite material as a reactive mixer and which will engage our attention for the bulk of

this paper. However, it will be important first to modify the equation to account for losses.

3.4. 1 Ferrites. In metallic ferromagnetics the losses can generally be attri-

buted to eddy currents and the nonzero resistivity of the metal. However these materials

will not find application in any of the r-f configurations dealt with in this paper because of
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their extremely small skin depth. There are, however, a large number of insulating ferro-
magnetics in which the eddy currents may be totally neglected and whose skin depths are
extremely large compared to sample dimensions of interest here. These materials are
called ferrites in reference to their magnetic structure which is described as being ferri-
magnetic. The distinction between ferromagnetic and ferrimagnetic structure is unimport-
ant to the present discussion.

The losses in ferrites cannot be explained in terms of eddy currents because the
conductivity of these materials is extremely low. The best explanation to date for losses in
ferrites assumes the excitation of so-called spin waves. These are microscopic disturb-
ances in the otherwise perfect alignment of spins,which propagate throughout the spin system
much like lattice vibrations which propagate through the crystal lattice. In fact, it has been
postulated that spin waves couple energy nonreciprocally to the lattice vibrations, thus offer-
ing a possible explanation for losses in ferrites.

3.4.2 Representation of Losses in the Equation of Motion. Quite apart from the

physical origin of the losses in ferrites, it will be important to represent them in the equa-
tion of motion. There is considerable evidence that the magnitude of the magnetization is
constant, i.e., IMI|? = const. or

dM

M - 5 = 0- (3.4_)

For this reason it is natural to assume a loss term of the form M x M (Ref. 8). This is in-

cluded in the equation of motion as

¥=-7_Mxl_{+rq—l—ﬁxﬂ (8. 5)

where @ is dimensionless and is assumed constant. The equation in this form successfully

- describes most dynamic phenomena in ferrites.

3.5 Ferromagnetic Resonance

Perhaps the most striking of all dynamic magnetic phenomena is that of ferro-
magnetic resonance (Ref. 9). If the material is saturated by a dc magnetic field, r-f power
supplied to the sample experiences a resonance absorption. In an infinite medium biased to

saturation with a steady magnetic field Ho’ ferromagnetic resonance can be predicted by the
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steady-state solution to the equation of motion which is found by substituting

M) = M et (3. 6)

and

M= (x)+ H (3.8)

where (%) is the so-called susceptibility tensor (Ref. 10). It has the following general sym-

metry:

Xy Xy 0
x = | ixg, . Xyq 0 (3.9)
0 0 xa

M w2 4w
< __0 res r
11 H 2
w

2 N
- w + 2 iww
r

M ww
X129 © ?O— 2 2 5 (3. 10)
o w - w + 2 iww
res
M w
X = =2 L
a H iw+w
o) r
where
_ 2 2
Wres = YHT%p
wH = VHO
w., = owa0 (8. 11)

where HO is the applied biasing field in the sample. Note that there is no coupling between

the component of applied field parallel to the biasing field and the transverse components.
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Also notice that the component Xa is very small compared to xl\l’ and X9 if the loss parame-
ter a is small. It will be assumed that this term can be neglected in all ferrites of interest
in this paper. Thus, only the components of magnetization normal to the biasing field will
be significant. It is well known that the power absorbed by the sample is determined by the
imaginary parts of x,; and the real parts of X, (i #j). These are a maximum for H0 such
that Wheg =@ If power is supplied to the samplé, it will experience a resonance absorption

es

as H is varied and will be maximum for w = I This phenomenon is called ferromagnetic

resonance. For low-loss ferrites (Ref. 11)

Wiog ¥ Wy T 'yHO . (3. 12)

If H0 is the field in the material, this relation is true for finite size samples as well as in-
finite samples. However, it is normally more convenient to express ferromagnetic reson-
ance frequency in terms of the external applied field. For samples which are ellipsoids of
revolution, a uniform magnetic field applied along the axis of symmetry will produce a uni-
form internal field which is somewhat smaller than the applied field due to the demagnetiz-
ing effect of the material. The internal field may be related to the applied ﬁield and the

magnetization by the demagnetizing factors:

H =H-N'M, (3. 13)
The resonant frequency for this case is (Ref. 12)
| : 4
w, = 7{[H0 + (N - N M_] [Hy + (N - N)) Mo]} (3. 14)

Only for the special case of the sphere where Nx = Ny = Nz = —é— is the resonant frequency the
same as for the infinite medium (i. e., W, = 'yHO). If the sample is small corhpared to the
electromagnetic wavelength of the r-f components of H, the internal r-f components can be
found from the externally applied fields using the demagnetizing factors. In this case, the

steady-state solution to the equation of motion is given by

M-=-®°%= (3. 15)
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where

@ = @ 1dn)L.

(3. 16)

The symmetry of the susceptibility matrix suggests a simple linear combination

which will diagonalize it. Defining the circularly polarized quantities

M+

i}

M_ + iM
X y

M = M_-iM
x oy

and

H = H_+iH
X y

4] M 10+
M X 0 0 H
M| =0 x 0]|H
MZ 0 0 a_j Hz
o - - - -
where
2 2 2 2 2
o E/I_O (wres - w”) (wres twwy) + 20" w,
- 2
Ho_ (w2 w) +40win ?
res
2 2
Xi,,:& Www (wHiw) tw,
H, (W2 -w?) +40?w ?
res r

(3. 17)

(3. 18)

(3. 19)

(3. 20)

where the single prime refers to the real part and the double prime refers to the imaginary

part. Note that x" has a resonance shape similar to that for linearly polarized fields but

that x experiences no resonance effect. Physically, this means that for only one sense of

rotation of the circularly polarized fields, relative to the direction of the biasing field, will
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the sample exhibit ferromagnetic resonance. The symmetry of the susceptibility tensor and
its functional form are extremely important in many calculations in Chapter 5.

The expressions derived above are strictly valid for cubic crystals. In non-
cubic crystals Wes is a function of not only the magnitude of H0 but also its orientation
relative to the crystalline axes (Ref. 13). This can be explained by representing the aniso-
tropy energy in terms of an equivalent anisotropy field whose magnitude and direction are
fixed relative to the crystalline axes. The total magnetic field which determines ferromag-
netic resonance must include this field. This representation successfully explains the de-

pendence of Wieg UPOD the orientation of the applied field.

In many experiments the sample is free to rotate under the influence of the
applied field. It will do so until the anisotropy field is aligned with the applied field. In this

case ferromagnetic resonance at a particular frequency will occur at a smaller value of ex-

ternal field than for a similar sample of cubic material. For a sphere the external field

required for ferromagnetic resonance at w is given by (Ref, 14):

=

1
M
0

-5 (3. 21)

o)
il
X|e

res

This result is important in the calculations in Section 5. 5 and in the experimental investiga-
tions discussed in Sections 5. 5. 3 in which an actual sphere of ferromagnetic material is

allowed to rotate until the easy axis is aligned with the biasing field.

3.6 Domain Wall Motion

At this point, it is instructive to consider the dynamic properties of a sample
below magnetic saturation. It has been shown that a magnetic field acts on a domain wall in
such a way as to cause it to move. There are additional effects which can be modeled as
effective mass and damping, so that the wall has a dynamic motion described approximately
by wa +BX+0ax = Moh’ where x is the location of the domain wall (Ref. 15). Assuming h
is an r-f field then the steady- state sozlut}&n can be found for x. The magnetization directed

X

out of the wall is relatedtox by M = —53 , where d is the wall thickness. The r-f mag-

netization is related to h by



27

M
_ o W _
M = T (3.22)

where

(3. 23)

Since energy is dissipated in moving the wall, a resonance phenomena occurs in ferrites even
in the absence of an applied biasing field. However, the Q of this resonance is quite low and

the resonant frequency is not changed appreciably by application of a biasing field.

3.7 Multiple Modes in Ferromagnetic Resonance

There is another peculiar aspect of ferromagnetic resonance which deserves

attention. The usual experiment performed in studying ferromagnetic resonance consists of
placing the ferrite in a high Q microwave cavity, exciting the cavity at resonance, and ob-
serving the reflected power as the magnetic field which biases the sample is varied. Ferro-
magnetic resonance is observed as a resonant absorption for a particular field. However, if
the sample is located in a part of the cavity where the field is highly nonuniform, there are

a number of other resonant absorptions of the same general strength which occur for biasing
fields different from that for ferromagnetic resonance (Ref. 16). The locations of these
absorption peaks are independent of the size of the sample up to a certain size but are strong-
ly dependent upon sample shape. It has been postulated that these additional resonant peaks
were actually higher order modes of oscillation of the sample magnetization than the uniform
precession which corresponds to ferromagnetic resonance. The validity of this postulate can
be established by the solution to Maxwell's equations for an experimental configuration in
which the multiple resonances are observed. The solution to Maxwell's equations is basically
the field distributions inside the sample for the experimental configuration. Thus, the field
distributions for a ferrite sample at radio frequencies will be obtained. These fields can be

found from the solution to a boundary-value problem.
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3.7.1 Field Distributions Inside Ferrite Sample. Maxwell's equations for the

region inside the ferrite surface are coupled, nonhomogeneous differential equations in the
dependent variables, electric field E and magnetic field H. The equations can be decoupled

by a change of variables to a scalar ¢ and vector potential A:

b A

= V¢ - W (3. 24)
— 1 —
E=-_VxA (3. 25)

If these substitutions are made in Maxwell's equations, and if the Lorentz gauge condition is

applied, then the potentials satisfy a pair of inhomogeneous wave equations:

vig + k¢ = -V« M (3. 26)
2% + KK = -p ¢ M
VA + KA = Ho€ ¢ (3.27)
where
K2 = k2 = 2 N
= k" = w”p e inside the sample

=k? = wzuoe o outside the sample

where M = 0 outside the sample and where yu and € are the permeability and permittivity
respectively.

Equations 3-26 and 3- 27 with the proper boundary conditions are the boundary-
value problems which we wish to solve. However, these equations are still coupled and are
difficult to solve exactly. Fortunately an approximate boundary-value problem can be obtained
from equations which can be solved exactly and which is valid for the small samples encoun-
tered in ferromagnetic resonance experiments. This approximate problem is framed in the
following way. For a sample situated in free space, the potentials may be obtained formally

ikr
in terms of the free-space Green's function, i? , in the form

ikr
e
r

] =Z:T [v-™ dv' (8. 28)

(3.29)

>
i
]
|
=
m
—,
2
=
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where

1

3
- - xNZ 2
r= ) (k- %)
i=1
The primed variables are the coordinates of the ‘source points and the unprimed variables
are the coordinates of the field points. These potentials may be expanded formally in a

power series of {ik)

0 . \1

= -2 3 Wy le. W ar (3.30)
n= ’
0 n —

- 1 (ik) n-1 oM

A = _4_11 Z n! f r '—5? dv' (3.31)
n>0

= 1 % (" n-1 oM .,

A = -E I.LOG nz>0 nl f r W dv (3.31)

Then by substituting Eqs. 3-30 and 3-31 into 3-24 there results:

4H = -v l:f V;‘—N_I dV'+ika°T’Idv'+...j|

(3.32)

—(ik)z[f g dv'+ikf'1\71dv'+...]

For all field points inside and on the sample, the magnitude of the nth term in the first brac-
ket is less than [(ka)n/n!] [ f (v« M/r)dv'l where a is the largest sample dimension. If

the sample is sufficiently small compared to a wavelength (i. e., ka << 1), then the contri-
bution of higher-order terms is negligible. A similar situation exists for the terms of the
second bracket. Its leading term is negligible relative to the leading term of the first bracket
for sufficiently small ka.

3.7.2 The Walker Approximation. The lowest-order term in Eq. 3-32 is the so-

called magnetostatic term. If

o = f (V * M/4nr) dv' (3.33)
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then ® is the magnetostatic potential. In most of the significant experiments on which the

multiple resonances were observed, the samples were no bigger than a few mils. For these
samples the approximation ka << 1 is satisfied so well that the fields can indeed be approxi-
mated by the magnetostatic term. The differential equation which the magnetostatic potential

satisfied is

vig = -V« M. (3.34)

Thus

V.M=V:x- Vg (3.35)

V.M =KvVv?2g (3. 36)

where

and where K is the diagonal component of x. For the purpose of solving this boundary value
problem, it will be assumed that the frequency is far enough from ferromagnetic resonance
that K is real. We have shown then that the boundary value problem of the ferrite sample in
a microwave cavity can, under the assumptions made, be successfully approximated by the
problem V?¢ = -K Vt2 ¢. The boundary conditions are continuity of potential and the normal
component of flux density. Tt is assumed that the cavity boundary is far enough from the
sample that it may be neglected and that frequencies involved are far enough from Woies that
K is real. That this is a reasonable assumption can be established from the solution.

This boundary-value problem was sdlved by Walker (Ref. 18) for an arbitrary
ellipsoid of revolution. He found that the potential consists of a set of normal expansion
modes whose characteristic equation has nontrivial solutions for only a discrete set of fre-

quencies. The latter are the resonant frequencies of these so-called magnetostatic modes.
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It was later shown in Ref. 19 that these modes are independent of the nonreciprocal nature
of the ferrite but depend only upon the dispersive nature of ferrite permeability. The solu-
tion for a spherical sample is a special case of Walker's general problem, but the character-
istic equation has a singularity for the spherical shape which is difficult to treat analytically.

For this and pedagogical reasons, the solution for a spherical sample is obtained in Appendix A

3.7.3 The Approximate Boundary-Value Problem. It can be seen by examination

of Eq. 3-32 that the first-order correction to the magnetostatic approximation vanishes iden-
tically, The second-order approximation can be found by collecting the terms of Eq. 3-32

to second-order. If this is done and if <I>(2) and H(z) represent respectively the scalar poten-
tial and magnetic field correct to second-order then:

72 - vol® LK

~l\7[0
"—r—-' dav' (3. 37)

where _1\710 is the magnetostatic approximation to the magnetization. The solution to the

second-order problem requires knowledge of ¢>(2) and _1\7['0. It is possible to know <I>(2) cor-

rectly only if M is known to second order. The magnetization is related to H through the
susceptibility tensor, and because V + B must vanish a pair of self consistent eqliations

(2),

(correct to second-order) can be solved simultaneously to determine &' ’:

w2 - @vel® K 0 g (3. 38)
and
v2old 4 k20 o v .32 . (3.39)

Combining these equations produces an expression for <I>(>2):

(2) k.2 - M
(1+K) Vt2 <I>(2) + % + kiz <ID(2) = -—41”— v (X) f _r_o dv' (8. 40)

inside the sample and:

vz old . ko2 s - o (outside the sample) (3.41)
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The boundary conditions at the sample are:

(2)
q)inside

+(2) —(2)
(V o, 2B +ﬁ(z)) s - (V@(Z) , & > 5
inside outside

Also <I>(2) and _A:(z) must be bounded for all space. This is the boundary value problem which

R ¢)
B q)outside

we wish to solve.

The nonhomogeneous equation (Eq. 3-40) can be solved by use of the appropriate
Green's function. The source of this equation p = (-kiz/ ar) v - [(X) KO] is derived from the
magnetostatic approximation which will be presumed known. For the free-space situation

e v I : . . T e
A0 = f M0 r ~ dv' so the differential equation for A0 is:

25 _ ==
v Ao = M0 (8. 42)
This equation must be solved using the correct Green's function for the geometry in which

—AO must satisfy the same homogeneous boundary conditions as H. By Green's identity the

solution to Eq. 3-40 will be

qsi(z) = fap_av' - f o(2) v G-GV_ o? gar

sample sur. of sample

where G is the Green's function and where Py = 4 p(1+K) 1. The potential at the sample

5 @ous, - o (2)

is not
out|

surf.

surface is known, i.e., but the normal gradient of @i

surf.

known there, so Green's function will be chosen to vanish on the surface. Thus the Green's

function will satisfy:

1 (o Tt
Vt2G+ 1+K.(VZZG+ki2 G) =-6(r-T1" (3. 43)
G = 0 at sample surface . (3. 44)

One of the boundary conditions has already been satisfied. The remaining condi-
tion of continuity of normal flux density is now introduced. Neglecting the permeability of

free-space, which is a constant factor, this boundary condition may be written as follows:
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-

20,2
(1+K) < Ly k.z‘A.- i > + iv <air @1(2)+kfxi- ) (3. 45)
surf.

where n is the coordinate normal to the surface, 7 is the coordinate tangential to the surface,
and f and 7 are unit vectors in the respective coordinate directions. Equation 3. 45 contains
one undetermined constant. This constant is the ratio of the magnitudes of the scalar poten-
tials outside to inside the sample. If p,, Were an independent source (i. e., determined by
external devices), then the above constant would be determined by Eq. 3.45. However, P

CID(Z) so it is merely a source in the mathematical sense that is

depends on the coefficient of
derived from the magnetostatic approximation. Therefore, there is an additional condition
to be applied in this problem, namely, that the magnetostatic approximation must still be

valid. In the limit of vanishing k the external potential must be equal to the internal magneto-

static potential at the sample surface. Thus the limit:

lI(.-iIg @gzu)t - @E)i) (3. 46)

sample sample

surface surface
determines the constant in Eq. 3.45. When this value is substituted into Eq. 3. 45, the latter
becomes the characteristic equation of the sample modes. Equation 3. 45 then will have roots
for only discrete values of the parameters K and v* which depend on frequency and are not
independent. The parameters K and v may be expressed in terms of the frequency at which
the sample magnetization is oscillating. Therefore roots of Eqg. 3.45 will be allowed values
of this frequency which may be identified as the resonant .frequencies of sample modes.

For any given sample size, as k approaches zero, Eq. 3.45 approaches the
characteristic equation of the magnetostatic modes, but letting k-0 for a fixed sample size
is equivalent to letting the wavélength become arbitrarily large compared to the maximum
sample dimension. The magnetostatic approximation is valid for this situation. Thus the

effect of electromagnetic propagation on the resonant frequencies of the magnetostatic modes

*See Eq. 3.47.
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may be demonstrated by independently varying the parameter k. In order to illustrate the

details of this effect, a specific example will now be presented.

3.7.4 An Example. As an example, we will solve the approximate boundary

value problem for the case of the circularly cylindrical ferrite rod between a pair of infinite
parallel conducting plates with its axis normal to the plates (see Fig. 3-1). The boundary
value problem to be solved is Eqs. 3.40 and 3. 41 and the boundary conditions which are:

the potential ¢>(2) and the normal component of flux density (Eq. 3.45) are continuous at the
sample surface; the potentials must be bounded for all space and the normal component of
flux density must vanish on the metal plates.  However, it is assumed that the sample is
saturated axially so the latter boundary condit.on reduces to the vanishing of the normal
component of magnetic field (i. e. , [V@ (2) + aa—lﬂ *fl =0) at the metal plates. The sus-
ceptibility x for this case is a tensor as shown in equation 3. 47 where the conventional notation
for the components is used (see Ref. 18). It is assumed that these quantities are independent
of position in the sample. In general this assumption could not be made for any sample shape
other than an ellipsoid of revolution, but by the method of appendix B it can be made for a

cylinder.

\\\I:s\\\’n \

st
Np

Fig. 3-1. Illustration of geometry of sample
boundary value problem.
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X
il

(3.47)

Because of the boundary conditions on the potential, the conditions on the Green's
function for the scalar potential will be: G = 0 on the lateral surface (i.e., r = a) and VnG=O

at the ends of the sample. In this case the solution to Eq. 3. 40 becomes, by Green's identity:

(2) _ . (2) '
o' = [Gp dv' - [ LV Gda', (3. 48)
sample lateral
surface

where p = kia v [(X) - KO] (1+K)_1.

The homogeneous boundary condition on the metal plates requires that the scalar potentials
inside and outside the sample must vary as cos BmZ , Where Bm = Lnd—ﬂ , and where d = length
of the sample and also the spacing between the plates.

The external potential may be written down at once from Eq. 3.41:

(2) _ +ing
q)out = B Kn(alr) e cos BmZ (3. 49)

1B

where o = (Bm2 - koz)z, and K is the modified Bessel function of the second kind which must

(2)

be chosen so ¢' ' -~ 0 as r - o0.

The Green's function for this case is:

... J (agr") C (ag7) et n(@-9") ¢og B a2 cos B Z' os
agm da Cn' (aza) Jn(aza)
(3. 50)
.- . J (ayr) C (agr") 99 (o B,Z cos B_Z' e

M da Cn' (aza) Jn(aza)

where Cn(azr) = Jn(azr)’+ I"nNn(azr) and where Cn(aza) = 0 determines I‘n and where

1

2 _ 2\ 2
a _5_._311_1_
2 1+ K
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and a = sample radius. Using this Green's function in the surface integral of Eq. 3. 48, the

latter becomes

Kn(a 1a.) J n(azzr)

Jn(aza)

+ing
e cos ,BmZ . (3.51)

CD(Z) = prde'+B

To determine p_, the equation VZKO = - _1\710 must be solved. This may be accomplished

by means of another Green's function which satisfies

v? G, = -8(r-r") 8(g-9") 8(Z-Z") .

It should be recalled that k® _Ao is the second-order contribution to the magnetic field due to
the vector potential. This quantity will be used not only to obtain [ but to write the bound-
ary condition of the normal flux density. Using Green's identity yields:

- A i
A o= f G0 Mo. dv' + a surface integral (8. 52)

o]
1 1

all space

for each component of —Ao’ The surface integral will be taken along the plates and across a
lateral surface at infinity. Since —Mo contains only transverse components, Ko will contain
only transverse components. The normal derivative of the transverse components of Ko

must vanish at the plates, so that if VnGo = 0 at the plate, then the surface integral is iden-

tically zero. This Green's function G0 then becomes:

K'n(ﬁmr') In(er) et in(Q)-(Zs')'cos BmZ cos BmZ'

G0 = rsr'
B, da [In (8,2 K (B a)-1(8 a)K (Bma)]
(8. 53)
t + 1n(¢"¢ ') 1
. - Kn(er) In(er ) e cos BmZ cos ﬁmZ .
Y ' - ' a
B_mda ':In (B_2) K (B_2) - 1(B_2) K '(B, 2) ]
<I>0 is the magnetostatic potential which was determined in a previous paper (Ref. 19):
B r s
d = Irl _— eim¢ cos BmZ . (3. 54)
° /1+k
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Here a unity coefficient has been arbitrarily selected, without loss of generality. Using the
expression found for the magnetostatic approximation to the potential and the susceptibility

tensor, the magnetostatic approximation to the magnetization can be found:

M =<K§9——ivm>§+<iv—g—g+K%>?. (8. 55)

However, the potential is known as a function of r, §, and z rather than x, y, and z. Thus it

is convenient to express the components of M in terms of these coordinates:

_xlor a8, 20 a) . (or 28, 20 29
Mox _K<ax ar T 3% a) 1V(Z)y or * 3y ae)
(8. 56)
_ o 28, 20 38 or 98, 30 39
Moy—w<8x ar ' 3x 8> +K<y ar+8y ae)
It may be shown that:
or _
X - cos 8
or _ :
é—;- sin 6
96 _ _sind
ox r
00 _ cos @
rrii (8.57)
Then:
_ ¢ sing o\ . . o, 08  cosB 098
M, = K(cos0 5 - 505 25) - w(sino 5o+ 922 7)
(3. 58)
. 09 sind 99 . 09  cosf 03¢
Moy~w(cosé)ar m 89) +K(smear+———r 89)

It is shown in Appendix C that if these quantities are substituted into the equation for the vec-
tor potential, then for the mode characterized by n and m (Ref. 19) of the magnetostatic

potential the vector potential is:

T cos Bm Z i(no+ 1o

A = 9 (K-v) A(r) e + (K-v) B(r) ei(no- ne (3. 59)
ox f(mowai n_+ 1

n-1
o)
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im Z
i cosﬁm

i(n+1)6 i(ln -1)6
Agy = W [(V-K) ASC'))” e ° + (K-v) B(r) e ° :I (3.60)

where Ano+1 and Bno_1 are defined in Appendix C.

The source for the integral equation for ©

(2)

can be computed in the following

way:

X A = (KA _-ivA )&+(ivA _+KA )Y
.o ox oy ox oy
VXA = L (KA _-iwA )+ > (ivA_+KA_)
o] ox 0X oy oy (0):4 oy
_ 2 . _sinf 9 .
= cos § 5 (K A - W Aoy) T 78 (K A - Aoy)

cos f

. d . .
+ sin6 3 (wAOX +K Aoy) + =0 35 (onX +K Aoy) (3.61)
But this may be shown to be:
AlD)
- T cos Bmoz inoe . (r) no+1 (n0+ )
VexrA, = f(n_ma) € (K-v) An0+1 T

(ng- 1 Bnr) 1
+ (K+v)? [B'(r)l - ° :I (3.62)
Using this quantity the first term in Eq. 3. 51 can be evaluated:
k 2
v o i ( =, A 1
prdv =g SOV XA dv
in 6
0
k.2 cos Bm zZe r
* o8 Mo € @ T @z Cn (@) [ Jyegr) [(K'”)z <A'(1;)1
o n, 2 n, 2 2 o} o %
ot (x) s (g @ )
+( r)An+1> + (K+v) (B' 17T Bn—l :Ir dr (3. 63)
0 0
-1
N (r") A ) 2 (@) 0T (1) o
+Jarf C(a )[K n+1+ - no+1 + (K+7v) Bno-l_ - Bno_1 r'dr
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If the above expression is defined as ¢(2) then it may be substituted in Eq. 3. 45, and apply-
ing the condition (Eq. 3. 41) the characteristic equation results. This was done in Appendix

C, yielding the characteristic equation:

K (2 a) J!(292) v ki2
K (@a) - (1+K) o, T@ata - 7 fFa H(K, ) (3.64)
%1 n\% . < m )
n ./ 1+K

where H and the derivation of this equation appear in Appendix C.

The roots of the characteristic equation (Eq. 3.64) may be obtained graphically

nof=

1
by defining y = a(k.? - Bmz) (1+K) 2 as the independent variable and plotting both sides of

i
Eq. 3.64 as a function of y for each n and m. The two resulting graphs for each n and m will
intersect in an infinite number of points (yn mﬁ) which are the roots of Eq. 3.64. A similar
technique was used (Ref. 19) to obtain the roots for the magnetostatic approximation by de-
fining X = Bma (1+ K)'% and obtaining Xn ml” From the form of Eq. 3. 64, it can be seen that
it reduces to the characteristic equation of magnetostatic modes (Ref. 19) for ki =0. The

fact that y = iX for ki =0 is a consequence of the particular form in which the internal ex-

pansion modes were written.

From the sets of roots Y hme and Xn - the normal expansion modes and hence
internal fields are specified for either the magnetostatic case or the second-order approxi-
mation. Thus a careful investigation of these roots will constitute a specification of the
salient features of the effect of propagation on the magnetostatic approximation. There are
five such features: (1) the roots specify a set of corresponding resonant frequencies @ me’
(2) the effect of imaginary parameters on W g G0 be demonstrated; (3) the values of Y ame
are shifted from an me for ki > 0 by an amount which depends on the sample shape;

(4) values for W me correct to second order are size dependent whereas the magnetostatic
values are size independent; (5) sample modes are possible in a frequency region not predic-

ted by the magnetostatic approximation.

3. 7.5 Resonant Frequencies. Each root of Eq. 3. 64 (yn mﬂ) corresponds to a
particular frequency (wn mﬂ) because each value Yme corresponds to the values kn ml and
Kn me and because both k and K are functions of frequency. Physically the value of K is de-

termined from the frequency of oscillation of the assembly of magnetic moments which pro-
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duce the magnetization of the sample. Therefore the normal expansion modes each corres-
pond to an oscillation of the sample magnetization. Energy can be coupled into the sample
from external microwave circuitry at each of these frequencies so that they may be consid-
ered sample resonances. In actual samples there will be losses so that a finite, measurable
Q will exist at each sample resonance. These resonances have been observed experimentally
and their characteristics noted (Ref. 16).

3.7.6 The Effect of Imaginary Parameters. The resonant frequencies will be

real for all frequencies such that 2y is real. However, when ay is imaginary the character-
istic equation contains a ratio of Hankel functions which is in general complex. The roots
in this case are complex and cannot correspond to resonant‘ sample frequencies. For all

w < w, = Bm(uoeo)'l/ 2 the parameter 2y is real and resonant sample modes can exist. It
is interesting to note that for ay imaginary the external potential is proportional to H( 1)(a1r)
which in the present convention represents an outgoing wave. Thus the sample modes exist
in a frequency region in which the external fields are evanescent.

It is also possible for ay to have imaginary values but the effect of this on the
roots of Eq. 3. 64 is much less severe. The internal potential is proportional to Jn(azr) and
this function enters the characteristic equation as 2 Jn' (ozza)/Jn(atza) which is a real ratio
whether a9 is real or imaginary. Therefore Eq. 3. 64 has real roots independently of

whether a9 is real or imaginary.

3. 7.7 Effect of Sample Shape on Roots. It has been shown that y=iX for k=0

and that the resonant frequencies derived from y reduce to those of the magnetostatic modes
for k = 0. Physically this corresponds to an infinite wavelength which is physically incorrect
for a time dependent field. However, it has been demonstrated that, for samples sufficiently
small compared to a wavelength, k may be neglected relative to terms of the order of 1/a for
a first-order approximation. Letting k = 0 in the second-order approximation is a somewhat
artificial means of representing this situation. If k is replaced by 1k in Eq. 3. 64 and 7 var-
ied from zero to unity the effect of propagation on the roots of the characteristic equation

can be demonstrated. It is found that for the roots corresponding to real ay the roots shift
by a larger amount for large @ than for small a, where @ is the aspect ratio of the sample

(%). This means that the magnetostatic approximation is better for a long thin cylinder than
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for a flat thin disk provided the maximum size in either case is small compared to a wave-
length.

The latter phenomenon may be explained by comparing the nature of the magneto-
static solution with the second-order solution. The axial components of the scalar potential
of both consist of standing waves which is also the correct form for the exact solution. The
approximation exists in the radial component and is better for small radii (thin cylinders)
than large radii (flat disks) since ka is smaller for the former than for the latter. Thus the
magnetostatic approximation is more correct for a thin cylinder than a flat disk. This situ-
ation, in which the validity of the magnetostatic approximation depends on sample shape,
reflects the artificiality of the homogeneous boundary condition at the plates for the magneto-
static approximation (Ref. 19).

3.7.8 Size Dependence of Sample Modes. It was demonstrated in Ref. 19 that

the resonant frequencies of the magnetostatic modes are independent of sample size but de-
pend strongly on sample shape. This result occurs because the sample dimensions enfer the
characteristic equation for the magnetostatic modes only in the sample aspect ratio. How-
ever, it is not possible to specify Eq. 3. 64 entirely in terms of this ratio. Rather it is
necessary to know the actual radius and length of the sample to compute Yome Therefore
the resonant frequencies which are specified by Y hme depend on the actual sample size, a

fact which is consistent with experiment (Ref. 16).

3.7.9 Resonance outside the Frequency Region of the Magnetostatic Modes.

From the literature (Ref. 20) it has been shown that magnetostatic modes can be classified
as volume modes or surface modes depending upon whether 1+XK is positive or negative, re-
spectively. It has also been shown (Ref. 18) that magnetostatic modes cannot exist in the
frequency region w < 'yHi, where Hi is the internal bias magnetic field and y is the gyromag-
netic ratio. However, the approximate solution, correct to second order, shows that modes
can exist in this region provided the sample size exceeds a certain minimum. This can be
shown with reference to the definition of y and with the observation that K > 0 when w < )/Hi.

Specifically,

D]
n
[N
N
-
-7
— [
+ 1
= =)
B N
\_/
o=
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S0
1
1 a (kiz - Bmz) :
(1+K)? = 7 > 1 for w <yH, (8. 65)
Then
g > —oomt for w__ < yH (3. 66)
(k- 6,)% nmt = 7 |
i m

However for samples of this size a ki > Yome (1- Bmz/kiz)_l/z, which is not necessarily
small compared to unity, and so the predictions based on the second-order solution are not
valid. Nevertheless the exact solution involves the same Green's function for the scalar po-
tential., Even though the latter is not sufficient by itself for writing the boundary conditions,
it forms a part of the final characteristic equation and therefore determines, at least in part,
the resonant frequencies of sample modes. The functional form of the exact potential is

proportional to
[ 2 23 '%]
Jn a(ki - Bm )2 (1+K)

as it appears in the characteristic equation, and so the definition of y can be used for a

graphical solution for the roots. Thus there is a set of values

o=

1 ;
Vome = 2 &% - 8,°)° (1+K)

nm{
which determines the sample resonant frequencies. For a sample resonance less than y Hi’
it is necessary that (1+ Kn mﬂ) > 1, which once again implies a minimum sample size. This
result is not surprising since for sufficiently large samples the sample resonances depend
less critically upon the dispersive properties of the material. That is, for sufficiently large
samples, resonant modes are observed even for non-dispersive scalar media.

1f a, is defined as the critical sample size where
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then resonance below the region of magnetostatic modes is possible for all samples exceed-
ing this size. This critical sample has a minimum for each root of the characteristic equa-
tion as a function of frequency. The location of the minimum is determined by the ratio of
the saturation magnetization to the internal biasing field. If A is that ratio then the frequency

for the minimum sample size is

@ iy = YH [(1+2) -(n + Az)%] .
Computation of the actual critical size requires determination of the roots of the exact char-
acteristic equation. Nevertheless, it has been demonstrated heuristically that sample
resonance below ¥ Hi occurs for sufficiently large samples. This result has great signifi-
cance for the noise properties of ferrite parametric amplifiers and is discussed further in
Section 4. 5. 6.

3.7.10 Conclusions. It has been shown that the effect of electromagnetic propa-

gation on the magnetostatic modes is the following:

(1) The resonant frequencies shift with the inclusion of propaga-

tion by an amount which depends on the sample shape.

(2) The resonant frequencies are size dependent.

(3) They can exist outside the frequency region of the magneto-

static modes.

These results are fundamental to the second-order approximation. However,
for the particular example considered it was found that no sample resonances are possible
above a cutoff frequency which depends on the spacing of the plates. The present investiga-
tion has extended Walker's lowest order approximation to include the second-order effect of
propagation and has explained certain features of the multiple ferromagnetic resonances

which are not explained by the magnetostatic approximation.

3.8 Summary

In this chapter the physical properties of ferromagnetic materials were dis-
cussed. It was shown that the magnetic properties are determined by the magnetization (M)

and its relation to the magnetic field.
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It was shown that ferrites are a special class of ferromagnetic materials. A
survey of the pertinent energy relations in ferromagnetic media was presented, and the dy-
namic differential equation which relates M andﬁ was derived. The steady-state solution
to this equation was obtained under the condition that the sample was biased to saturation.
This solution successfully explains the important phenomenon of ferromagnetic resonance
which was described in some detail in the chapter. The approximate boundary value prob-
lem for small ferrite samples in r-f maghetic fields was solved for the purpose of explain-
ing the multiple modes in ferromagnetic resonance. Certain properties of these modes and
of ferromagnetic resonance are of extreme importance in deriving fundamental properties

of ferrite phase-shift amplifiers and will be referred to extensively in subsequent chapters.



CHAPTER 4

REACTIVE MIXING PROPERTIES OF FERRITE

4. 1 Introduction

In the previous chapter, the steady-state solution of the equation of motion (i. e.,
excitation by a single sinusoidal source) was developed. In this chapter the mixing proper-
ties of ferrites, which are predicted by the equation of motion, are studied under the small
signal approximation. It is assumed that filters restrict the power flow to only four frequen-
cies. For this purpose the steady-state solutions of the equation of motion under the excita-
tion of two sinusoidal sources at frequencies w4 and wy are obtained. These solutions are
written in a matrix equation which defines the so-called pumped susceptibility tensor. It is
then shown that the power crossing the sample surface at each of the frequency components
produced by mixing in the sample, as well as at the excitation frequencies, is determined by
the components of this susceptibility tensor and the field distributions of the various compo-
nents. These power relations and the susceptibility tensor components are then used in
Sections 4. 5 and 4. 6 to investigate the properties of the lower- and upper-sideband up- con-
verters, respectively, and to lay the groundwork for the double-sideband reactive mixer or

phase-shift amplifier analysis.

4.2 Steady-State Solution of the Equation of Motion for Double Excitation

In order to study the reactive mixing properties of ferrites, it is convenient to
consider the excitation of the sample by two sources at different frequencies (i. e., w 1 and
Wy, aSSUME Wy > w 1). Mixing occurs as predicted by the equation of motion. It is assumed
that filters restrict the power flow to just the four frequencies w p Wo Wit wo, and lower
sidebands produced. In the steady state the magnetic field and the magnetization have the

general form:

45
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_ et et et iw t
M=Mz+ M,e + M, e +M, e +M e +c.C
(o) 1 2 { u
(4. 1)
_ _ lwgt _dwet lwpt it
H= Hz+ H,e + H, e + H, e + H e + c.C
o 1 2 {1 u

where c. ¢. denotes the complex conjugate, and the z-axis has been chosen in the direction of

the biasing magnetic field.

If these expansions are substituted in the equation of motion and terms of equal

frequency collected, the following set of equations are then obtained:

w My = 77 [Myu H, + Myl Ho- M, Hyu h sz Hyl B My2 H, 1
- M, Hyz] + —M‘-"-(-)— (-iw, My My - oy My M, - fog M,y M)
iquyu = IEVIO qu + Mz2 qu * le Hx2 B qu I-Io ) Mx2 Hzl
B Mxl Hz2:l M ML0 (iwu Mo qu Ty Mg Mxl +iwg Myy Mx2)
iwﬂMxﬁ =Y [Myﬂ I-Io * Myl* H2z + My2 H, 1* ) Mo Hy!Z - M Hy1>‘<
- ™ Hy‘z‘:] + Mio (~iwg M Moy - ) M, Myl* - iwg M, M,
Mgy = -7 [Mo Hyg + My Hyy" + My  Hop - Mg Ho - Mo H " - M, sz]
+ ﬁ“-{-)— (fw, My M, +iwg M, * M o+ iw, M o Mxl*)
WM = -y E\/Iy1 Ho+ Mo, sz* + Myz* H, + Myﬂ* H,g+ Mg Hzﬁ*
- M, Hy1 " My I'Iyz* - M, Hyu - M, Hyﬁ* - lel* Hyz:l

_oa . . * . *x . * . *
Mo (1(.01 M0 Myl + iw, My2 +iw, MZ2 Myﬁ + iw, Mzﬂ My2 +iw Mz2 Myu)
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. _ * * * . *
w lM =Y [Mo Hxl * Mzu Hx2 * Mz2 qu * Mzﬁ HXZ + MZZ Hxﬂ

_ - * - * _ * _ * o .
Mleo Mx2 qu qu HZZ Mxﬁ sz Mx2 Hzﬁ] + M0 (wlMo Mxl

. * . * . * . *
+ iwg Mz!l sz +iwgy Mzu sz +iw, MZ2 Mxﬁ +iw MZ2 qu)

isz = -y [M H +M

v2 By *qu+M H *+M_ H . +M . H

yl yu 'zl yl "zl yl 7zt

MyHog- M, - M, Ho" - My Hoy leHyﬂ:l

a . . * : *
- Mo (w2 M0 My2+uuuMZ1 Myu+ lwleuMyl

+ iwﬁ leMy!Z + iwleQ Myl)

. o * *
m)2My2 =77 l:Mo Hx2 * Mzu Hxl le qu * Mzﬂ Hxl * le Hxﬁ
_ - * * - _ :
Mo Ho = Myy g - Myq Hpy ™ My Hyp - My sz]
__01_ . . * . *
* M0 (1w2 Mo MxZ oy le qu Wy Mzu Mxl
+ dwy My M, + i M, M) (4.2
BMZ
It has been assumed in these equations that |M/| = M, and that —— = 0. Tt is useful at

this point to justify these assumptions on the basis of the small signal assumption. The ma-
terial is saturated magnetically, so that in the absence of r-f excitation the magnetization is
aligned along Ho and /M| = M0 exactly. The application of r-f fields causes the magnétiza-

tion to precess around the direction of Ho forming an angle ¢ with that direction. The trans-

verse component I\—/It is related to M by the relation

IM, | = IM| sing = M, sin ¢ (4.3)

since M| is assumed constant. In the small signal assumption ¢ is very small and in fact

to a very good approximation
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But the longitudinal component
82
M, =M (1-%5) (4. 5)

which to first order in ¢ is MZ = Mo (i. e., it is constant). Therefore, the z-directed com-
ponents of magnetization at the four frequencies can be approximated by zero in the small
signal analysis. A considerable simplification results if this approximation is substituted

in the above equations.

4.3 The Pumped Susceptibility Tensor

The equations may be written in a matrix equation of the form

H=T.M (4. 6)
which when inverted is the steady state solution to the equation of motion:
M= (x-H (4.7)

It is most convenient to regard the transverse components of magnetization and magnetic
field at the signal and sideband frequencies as variables, and the pump frequency components
as the parameters which couple them. This is done, not of necessity, but simply to mini-
mize the number of elements in (}=() for each of computation. Any component can be interpre-

ted as the source, which permits a convenient designation for any particular configuration.

4,4 The Power-Flow Relations

The definitions for voltage and current have somewhat less significance in micro-
wave circuits than in low-frequency circuits. However, the concepts of power and power
flow have the same physical significance as in low frequency circuits. For example, the
Manley-Rowe (Ref. 2) equations, which have great utility at microwave frequencies, relate
real power flow and exchange. Our objective here is to relate power flow to the magnetiza-
tion and magnetic field in the sample of ferrite. It is then possible to use the results in
studying the particular way in which the ferrite acts as a reactive mixer.

Consider a sample of ferrite biased to saturation along an axis which is being

excited by two r-f sources and which is producing the upper and lower sidebands internally



49

as a result of mixing. Since we are interested in power, and all power measurements take
place outside the sample, it is natural to begin with the quadratic relation which measures
the power flow across a closed surface external to the sample. That quadratic relation is

the following:

P =

@ =3Re[ (Bx®)-ds=3Re[ V- (ExE)av (4.8)

surf volume

Df =

where P_ is the net power flow out of the surface at frequency w when E and H are the total
fields on that surface at frequency w. For a closed-surface integration over the sample sur-
face, then the volume integration extends over the entire volume of the sample. The inte-

grand on the right-hand side of the equation can be expanded using Maxwell's equations:

V-ExB*  =H'VvxE+E- VvxH

B (-jwp)r B+E*: (-jwe) * E (4. 9)

For most ferrite materials at x-band € is approximately a real scalar for all frequencies of
interest in this report. Substituting the above in the expression for Psw produces;
_ 1 s = ok, =,
P = Re -jw f Hw (n H)w dv (4. 10)

Sw 2 i
S

where the subscript w refers to those components which vary at frequency w. But
L= “o(=1+ ? (4. 11)

and since —I_Iw . T{w* is entirely real, the expression for P_ = reduces to:

Ho® " k. (¥ .
P, =5 Im{, H X-H), (4. 12)

s
Thus, it is clear that once the pumped susceptibility and field distributions are known, the
net power leaving the sample at any frequency can be found.
In the absence of pumping (i. e., excitation at a single frequency only) Eq. 4. 12
reduces to that for the power absorbed in a sample. As an example of this, consider exci-

tation of the sample at frequency w T assuming that the field components are transverse to
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the direction of the biasing field. Due to the symmetry of the susceptibility tensor, Psw re-

duces to a simple expression:

Bow
__0 2 . =
P -—2——Im{’ X, H?dv+i [X,H

S

*xH, zdv (4. 13)

1 1

Assuming the fields are linearly polarized then H*xH=0 and, assuming that the sample is

a sphere of low loss material, then Wieg = Wy = yHO., Then

2

L w QW Wi W
Po=- m H [ 1HI? qv (4. 14)
(sz-wz) +4a2wH2w2 v

S

If this function is plotted vs. Wiy for a fixed excitation frequency, then the shape of the curve
shows some similarity to that observed in ferromagnetic resonance experiments for spheres

(Ref. 21). Actually, H in the material is not independent of the orientation of the biasing

field relative to the crystalline axes due to anisotropy, so the dependence of Psw on Wy is

somewhat more complicated than indicated above.

4.5 The Lower-Sideband Ferrite Reactive Mixer

The use of ferrites in a lower-sideband reactive mixer, which is commonly
called a parametric amplifier, was first proposed by Suhl (Ref. 22). His proposal was
prompted by the discovery of the so-called magnetostatic modes and the observation that the
equation of motion for ferrite predicts the proper coupling between fields at different fre-
quencies. The high-Q magnetostatic modes suggested a ready means of filtering the lower
sideband and suppressing the upper sideband. If the sample is placed in a microwave cavity
then in addition to the resonant magnetostatic modes there is a set of gavity modes whose
resonant frequencies are perturbed somewhat from the empty cavity values. Suhl proposed
three basic types of possible amplifier operation, distinguished according to the type of res-
onance which was used to filter the lower sideband and signal. The so-called magnetostatic
type of operation uses two magnetostatic modes; the electromagnetic operation uses two
cavity modes which the sample tends to couple; and the semistatic operation uses one mag-
netostatic mode and one cavity mode. The distinction between these basic types of operation

is artificial since neither the so-called electromagnetic modes nor the magnetostatic modes
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are really independent energy storage resonances. The distinction between the two mode
types is really based upon the crudeness of the approximate analysis of the fields inside the
cavity.

For each of these semi-distinct types of operation Suhl computed the threshold
pump field intensity, which is defined as that field for which the characteristic roots of the
equation motion cross into the right half plane. It is interesting that the Suhl threshold is
also that pump power for which the gain of the circuit is unity. In principle, this computa-
tion is useful but, in practice, it has the drawback that detailed calculations of the actual
threshold are impossible to make due to lack of exact knowledge of the field distributions.
In addition, he overlooked the effect of pumpiné on the susceptibility tensor, which tends to
make his threshold calculations in error on the low side. The purpose of this section is to
consider the parametric amplifier in the more modern theory in which it is known to be a
special case of reactive mixer.

The pumped susceptibility tensor is found for the lower- sideband configuration
and using it the threshold is computed without making any assumptions about the field dis-
tributions. It is assumed, in the following analysis,: that resonant modes are available for
separating the lower sideband but no assumption will be made concerning their field distri-
butions in developing the general threshold relation. The sample is assumed to be located
in a microwave cavity which is resonant at the pump frequency to facilitate pumping.

4.5, 1 The Lower-Sideband Pumped Susceptibility Tensor. For the lower side-

band circuit the set of equations of motion is reduced to the following four:

s _ * E3 _ s
iw 1Mx1 Y [Myl Ho + Myll sz + Myz szZ MO Hy 1] iow lMyl

iw lMy 1

1}

* .
Y [Mo Hxl - Mg Ho - My Hyp- Mo Hy ] +iow M, 4
. x _ * * * _ * . *
iw, M Y[Myﬂ HO +M ,H + M HZI MO Hyﬂ ] +1anM

217z y17z2 y2 yi

. * _ ¥_ * _ * . x| . *
wﬂMyJZ v [Mo Hxﬁ Mxﬁ H0 Mx2 HZ1 Mxl'Hz2] mw}ngﬁ (4. 15)

It is instructive to speculate about the relative orientation of the two source field distribu-

tions for maximum coupling before solving this set of equations for M(H). Observe that if
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no power is supplied at the lower sideband, then, in the small-signal approximation, Hzﬁ =0.
Thus, the only component of coupling in the first equation is Myﬁ* Hz2’ that is, the coupling
comes entirely from the longitudinal component of the pump. For maximum pumping effi-
ciency the pump field intensity should be z-directed (i. e., parallel to the biasing field). The
most successful ferrite parametric amplifier built to date uses this parallel pumping scheme
(Ref. 23). If H2t =0, then Mt2 = 0, and by a similar argument it may be shown that the

most efficient use of signal power occurs if the signal field is tranverse to the pump field.
Using these orientations for the field distribution, the equations of motion may be written

in matrix form:

—Hxl— —wo + ia wq —iwl )/sz 0 7 FMxl—1

Hyl iwl wo+ia w4 0 szz Myl

Hix* i v sz* 0 w, - ia w, iw!Z ' Mxﬁ* (4.19
Hiyj i 0 Y sz* -iw, w, - ia Wy MYQ*

The steady-state solution to the equations of motion is found by inverting this matrix. The
inverted matrix, which we call the pumped susceptibility tensor, was found to first order in

sz and appears in Appendix D. It has the general symmetry

X117 X X33 = Xy
X192 T %91 X34 = "X43
(4. 17)
X3 7 %94 %31 T Xy
X14 T X3 X32 T Xy

Notice that the terms X13s X140 X315 X4y ete., are proportional to the pump field intensity.
These terms represent the coupling between the signal and lower sideband fields.

4.5.2 Power Flow at the Signal Frequency. The net power leaving the sample

at the signal frequency can be found:
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w1 -
_ 1o = K, 3
P ,=—9"1 / H' X-H d
Vs
* * * * * *
= w, Im [f (Hy "X H +H Xg Hyp+ Hyy Hyg Xyg" + Hp "Xy Hyo
* * * * * *
+ H1y X21H1x+H1y X22 H1y+Hly X23 Hﬂx +H1y X24 H!Zy )dlzl (4. 19)

but using the symmetry relations this becomes:

p o2t X H?P@+ [X B *xH - zdv
wl > "2 ™ 11 1271 X%y
= k= % g R
+ [XgH -H aw+ [X,H xH zdv] (4. 20)
The field distributions were assumed to be linearly polarized so 1—11* xI_{1 = 0. If the sample

is an ellipsoid of revolution, then the biasing field will be uniform inside the material and

the tensor elements will be independent of position in the sample. Using this fact and the

form of Im X1 found in Appendix D, and assuming w 1 far from ferromagnetic resonance,

the expression for the power may be written:

Wl Aw ° +w,)
1o o) 1 2 = %, 7k
=—| - J P w+mX [HY H

—wl) v

Pwl

s
+ ImX14fH1 xHﬂ z dv (4. 21)
The first term in this expression is negative and represents the signal power dissipated in
the sample. In terms of the equivalent circuit (see Fig. 4-1) it represents the power dissi-
pated in the input circuit conductance. In this equivalent circuit the resonant magnetostatic
modes are represented by parallel resonant circuits and the coupling between them by a
sinusoidally varying capacitor at the pump frequency Wy - The other terms in Eq. 4. 21
represent the power reflected into the input from the lower sideband. It is well known that
this is a positive power; however it is instructive to examine the exact form in which this

occurs in territes, and to compute the unity gain threshold power for which Pwl-O.
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0 b

)
N

Fig. 4-1. Equivalent circuit of lower-sideband reactive mixer or parametric
amplifier. The frequencies w{and wy are the resonant frequencies
of the correspondingly labelled circuit. Gy includes the
source, and the load and stray conductances
of the input circuit.

4. 5.3 Power Flow at the Lower Sideband. Adams has shown that the impedance

reflected into the signal cirquit contains a negative real part only if real power is dissipated
at the lower sideband circuit (Ref. 24). For this reason it is necessary to examine the pow-
er flow at the lower sideband. The amount leaving the sample is given by:

Ho“p = = Ko = =
P =—Eme£*-Mﬂdu:| = - — I'meﬁ-M*dv] (4.22)

wl 2 L

The latter form is most useful because of the particular nature of the pumped susceptibility
tensor for the lower sideband (i. e., M1 couples to M*). Using the symmetry relations
among the tensor components, and the assumption that the fields are linearly polarized, the

expression for the lower sideband power may be written:

[0)

Lw ow,(w % +w,?)
ol oL L L JH, 1P
—wﬁz)

+Im [X; H H dv+ImXgy [ H xHy* 2 dv (4. 23)

If no power is supplied at the lower sideband then Pwﬁ > 0 because the only source of power
at w I is the mixing in the sample. The first term is negative and represents the sideband
power dissipated in the sample. The sum of the other two terms must be positive from the

condition Pw 0 > 0. If the lower sideband frequency is far from ferromagnetic resonance
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(w z—w w) aQw 4 W (w -w)

o 174 and Xg, 17070 "1 (4. 24)
w0 (W 2 -w,? (w
wl 0)0 wﬂ

Xy, = —P

31 — 2
(w

(0]

where wp = 'yHZ2 :=yhp. Continuing under this assumption:

ww?-w,w, _ w ow (w, - w,
2p Oz 17¢ - I f HQ.H]_dU _< zp 02 J 21 - X
(wo -wl)(w —wg) Vg (wo -wl)(wo -wﬂ)
_ ozu.)ﬂ(wo2 + wﬂz)
Re [ HyxHy zdv)> + — J 1H, 1" du>0 (4. 25)
Vs (woz_wﬂz)

This inequality can be used to show that the power reflected into the signal circuit is positive.
In Appendix D it was shown that X5 =Xgq and Xg9 = Xqye Using these relations in Eq. 4. 21,

the power reflected into the signal circuit may be written:

= %k * = kT K, _
mX;; [HY H dv+ImX, [EFxH " zdv =

{ 0

w (Ww?-w,w,) _ _
—FPk o I L o E*E*w
@ 2%- w2 (w?-w? 1

o 1 o} [

(4. 26)

w ow (W, - w,) o
- p o f 1 Rele*xHﬁ*'sz
(wz_wz)(wz_wz)

o 1 o L

w(woz—wlwﬁ) _
= P Im [H,-H, dv

2 2 2 2 1 ¢
(wo -wl)(wo -wi)

w_w (w W) _
+ zpoﬂ 21 RelexHﬂ-sz
(wo _wlz) (wo 'wﬁ)

But this quantity is larger than or equal to:
dw,(w ?+w,?)
L0 L [P > 0 (4. 27)
CRETE.
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as proved in Eq. 4.27 independent of w 1 W9 Wo Therefore, for sufficiently large @y
(=yhp)’ Pw 1 > 0, corresponding to the condition that more signal power leaves than enters
the sample. This is equivalent to a power gain at the signal frequency.

4.5.4 The Threshold Pump Power for Parametric Amplification. The threshold

pump power can be found by eliminating the amplitudes of the signal and lower-sideband field

distributions from the two expressions

Pw1=o

p >0 . (4. 28)

wl

This process yields the threshold completely independent of any assumptions about the field

distributions, though the actual pump power does depend upon the field distributions. Before
making such a calculation, it will be necessary to discuss what is meant by the amplitude and
phase of a pair of complex field distributions. The field distribution can be written as a com-

i6(r)

plex function of the coordinates in the form of |H(r)!| e The phase ¢(r) will always con-
tain a component which is independent of position in the sample (i. e., 8(r) = ¢O + (r)). This
component represents the time phase of the field distribution in the same sense as the time
phase for the lumped parameter equivalent circuit. For example, the fields in an ellipsoid

of revolution are of the form F(¢,n) eine

where 6 is the angle measured about the axis of
symmetry and F is real (Chapter 3). The phase of this function depends upon the choice of
the coordinate axes. Thus the quantity which will be called the time phase of the field dis-
tribution will be that part which is independent of the choice of spatial coordinate axes. The

amplitude of the fields can be defined rather arbitrarily but a reasonably good choice is as

follows.

a® = [ IH, 1% du (4. 29)

Vs

where a is to be considered the amplitude of the fields. Then the field distribution can be

written

) i, i
H(r)=ae ' h(r) and Hz(f') =be “ hﬂ(;')

i i (4.-30)
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There is another property of the phase which is fundamental to parametric ampli-

fiers, i.e., the signal power reflected to the input circuit is proportional to (Ref. 25)

Im (4.31)

e .
The midband gain of the circuit corresponds to the maximum of this function which occurs at
Bo-0y-98, = (G + 2om). (4.32)
It has been assumed in Eq. 4. 26 that ¢2 = 2n7 thus
=T -
~(¢1+ ¢Q) =5+ 2(n-k) 7 (4. 33)

at midband. Using this relationship in Eq. 4. 26, it may be written

T

J—

p 2 _ 2= x=

Y RCIG [(w0 wlwﬂ) Imfabe h1 h, dv
1 [}

T
]5_* - & abw H
+ wo(wz—wl) Re fabe h"xh," - zdv| =

=% T % = kT ok
H = (woz-wlwz)Re{’ h,"+ h dv+wo(w2-w1) Im{, h;"xh czdv  (4.34)

S S

but for the threshold condition this quantity must equal

— [ B R (4. 35)
\'

It is convenient for the computation of the threshold to assume Pw 0= 0, which is equivalent
to the assumption that all of the lower sideband power is dissipated in the sample, or that the

sample itself provides the lower-sideband termination. Using this equality Eq. 4. 26 becomes:
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ab w

2

P 2 EE _ R
o [(wo -wlwﬁ)Re f h1 h!Z dv+wo(w2 wl) Im{’ hlxh!2 zdv:]
o [

2 2
_wl)(wo Vs S

(w
ab?w,(w?+w,?) _
= Lo L /35 B*aw (4. 36)
(w?%-w,? v £ £
¢

o] S

If a and b are eliminated between Eqgs. 4.34 and 4. 36 then the threshold pump field intensity

can be found:

2 2 2 2 2 S LTk
a wlwz(wo +w, )(wO +w1) {, h1 h1 du{l h!Z hﬂ dv
s
(vh)? = = (4.37)
p Fle
e 2 - T+ . + - - _ .
F1 = (wo wlwz) Re f h1 h d1)+w0(w2 wl) Im{, hIXh!Z z dv
Vs s
- % T * = k_T %
F2 = (f.uo2 - wlwz) Rej‘; h1 . hﬁ +wo(w2- wl) Im{’ h1 xhﬂ « 7 du

S S

Observe that the threshold is infinite if the field distributions at w 1 and w g are orthogonal
over the sample, or equivalently the coupling between these fields is zero. In samples

which are ellipsoids of revolution, the field distribution is always of the form

A(r) = hind) e’ (4. 38)

where 9 is the aximuthal coordinate and f(n £) are real functions of the other coordinates.
For such samples the only nonzero values for the integrals in F1 and F2 will occur for ny =
-n,. For any other combination ny and n, hp - o, For this case both integrals will be en-

tirely real and only the first term in F1 and F2 will be nonzero. The threshold in this case

can be written:

ot wlwz(wo2 + wlz) (cuo2 + wﬁz) {] flz(n £) dv {, fﬂz(n £) dv
(vh)® = = s - (4. 39)
p 2
(w,* - wwy)? {’ £(n &) £,(n &) dv

S

where for finite hp ny=-n.
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4, 5.5 The Field Distributions for Minimum Threshold. It is characteristic of

existing ferrite parametric amplifiers that their thresholds are very large. For this reason
it would be of considerable interest to find the pair of field distributions which minimize hpz.
The approach to be followed in computing this minimum isvto assume a field distribution f 1
for the w 1 field, find the distribution fg which minimizes hp’ and then find the combination

which minimizes that form. For this purpose the quantity F is defined:

J tfmoav [ £208 dv
v v
F =2 5 - (4. 40)

R NCERACER.Y
v

]

Minimizing F minimizes h . Thus the procedure is to find f!Z for which F is stationary and
then to show that this is 2 minimum for F.

The fﬂ for stationary F is found by substituting f2 = f;z + bbf, thereby defining
)
F(b). The fﬂ for which F(b) is stationary is fﬂ and the condition for stationarity is F'(0) = 0
o
(Ref. 26). Differentiating

2 2
J v [ (5, +boD)
v Vs

Fb) = —> - (4. 41)
( f £1(£;, + b09) dv)
with respect to b, evaluating at b = 0, and setting F'(0) = 0 yields
F(0) [f fiotdv [ £8, qu+ [ 11, v fflafch]
2
=2 [ffdv [1, ofdv (4. 42)
Then, using F(0), this equality can be written
f o,
[ of - n dv =0 (4.43)
Jif, @ 1 *av
(o] (o]

The solution to this equation is £ 1= f, . One then finds that ¥(0) = 1, independent of f It
o



remains to be shown that this stationary value is a minimum. For this purpose it is conveni-
ent to form the expression F- F(0) = F- 1 and show that F-1 > 0, which establishes that F(0)
is 2 minimum.
2 2
Jifa 1% - ([ 11 @)

F-1 = (4.49)
St v ®

To show that this quantity is never negative, consider the expression:

v

\4

5 ffl: ) £, 5(rg) + £, 2(r ) £,5(x,) - (£4(r ) £, (r)) + £,(xy) fﬂ(rz)):l dv du,

2 2
Jife)au, [120) dw, —  [ie)f(r) dv; [ 1y(ry)1,(ry) dv, (4. 45)
‘but one cannot distinguish ry from ry in definite integrals so:

= [t [P - ([11 @) >0 (4. 46)

This is the so-called Cauchy inequality. Thus F-1> 0, so F(0) is indeed a minimum which
means that hp is a2 minimum for f 1= fﬁo'

It has already been shown that n, =-ng, thus h !Zo*‘ The minimum threshold
occurs when the signal and lower-sideband field distributions are complex conjugates. It
might appear at first thought that field distributions which are complex conjugates have the
same frequency. However, the physical significance of conjugate field distributions is that
they are identical spatial distributions which precess in opposite directions around the bias-
ing field. It is a peculiar property of ferrites that identical field distributions which precess
oppositely have different resonant frequencies. This was demonstrated by Walker for the
magnetostatic approximation (Ref. 18) and further in Chapter 3 for the second-order approxi-
mation. Thus, the so-called degenerate operation (i. e., wy=w 1) does not correspond to
minimum threshold. On the other hand the frequencies of such modes will be close to one
another. Denton (Ref. 23) observed that the pump threshold was smallest for mode pairs

whose frequencies were closest. Although there is some doubt concerning which magneto-
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static modes he actually used, it is advanced here that the mode pairs for which he observed
smallest threshold were in reality modes whose field distributions were complex conjugates.

4, 5.6 Estimate of Minimum Threshold. It is possible to estimate the minimum

pump threshold power from h

p min
ww(w2+w2)(w2+w2)~
yh . =0 120 1 o : < o fw.w (4. 47)
pmln ((‘L)z_(u('u)2 12
174
(AP
172
hpNAH p
w
)

But w 1 and w 2 will be of the order of W Thus, h =~ AH where AH is the linewidth of

p min
ferromagnetic resonance which is typically of the order of one oersted. For a low-loss
cavity the loaded Q at resonance might be of the order of 1000 at f0 = 104 Mc. From the for-

mula for Q one can relate the pump power to the stored energy.

~ o p h?v (4. 48)

stzonres o"op ¢

At this resonant frequency the cavity will be of the order of 10° 5 m®.

Using these values,
one obtains PS = 3mw as a fairly crude estimate of the pump power necessary for unity gain.
The particular ferromagnetic parametric amplifier that has proved to be most
efficient is the one developed by Denton. The important aspect of this amplifier is that it
operates on a continuous basis with a much lower pump power than achieved by previously
developed amplifiers. A small sphere (0. 045-inch diameter) of single crystal Y ttrium
Iron Garnet is mounted in a half-wave X-band cavity which is resonant at 9196 Mc. The
ferrite is mounted in a region of maximum pump magnetic field and is biased with a dc field
parallel to the pump field. When the pump power was set at 500 mw, a gain of 20 db with a
bandwidth of 100 kc at 4560 Mc was observed. Unfortunately, the amplifier noise.figure is
about 14 db and is nearly independent of the sample temperature (Ref. 53). Denton has
shown that this noise is produced by spin waves which are pumped into oscillation by the

large pump power. It appears to be fundamental to this type of amplifier. However, it has

been shown by Suhl (Ref. 47) that spin waves tend to be excited only at frequencies above y Hi
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where Hi is the internal biasing magnetic field. It was shown in Section 3.7.9 that sample
resonance below -yHi is possible for sufficiently large samples. It is possible thét a low-
noise ferrite parametric amplifier could be built using these low-frequency sample reson-
ances.

It will be shown later in this paper that many of the difficulties of this amplifier
are fundamental to ferrites and cannot be significantly improved. On the other hand, there
are many distinct contrasts between this amplifier and the ferrite phase-shift amplifier which

tend to imply the superiority of the latter.

4.6 The Upper-Sideband Up-Converter

It was shown earlier that the upper-sideband converter does not reflect power in-
to the signal circuit. Contrasting its equivalent circuit with that of the lower-sideband device
shows that no negative resistance effect is possible with an upper-sideband converter. How-
ever, the Manley-Rowe relations predict that the power in the upper sideband comes primar-
ily from the pump (Ref. 29). Therefore, a rather small amount of power at the signal fre-
quency can control an arbitrarily large upper-sideband poWer provided the upper-sideband
frequency is sufficiently large compared to the signal frequency. The circuit can be used as
an amplifier if the signal power can be recovered from the upper sideband.

In this chapter, the use of ferrites in upper-sideband reactive mixers is studied
merely to illustrate the particular way in which this circuit differs from the lower-sideband
mixer and to contrast it with the double-sideband mixer. The pumped susceptibility tensor
for the upper-sideband mixer will be found. Then it will be shown that dissipation of power
in the upper sideband does not cause signal frequency power to be reflected into the input, as
is the case for lower-sideband dissipation. The particular way in which this relates to the
tensor symmetry and field symmetry is of interest in this comparison. Then the effect of
losses on the conversion gain will be computed to show the way in which intrinsic ferrite
losses reduce the conversion gain from the ideal as predicted by the Manley-Rowe relations.

4.6. 1 The Upper-Sideband Pumped Susceptibility Tensor. There are four im-

portant steady state equations of motion for the upper sideband mixer. The optimum pump-
field orientation is longitudinal (i. e. , along the biasing field) for the upper-sideband convert-

er just the same as for the lower-sideband mixer. The following relations are valid for
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longitudinal pumping: H2 = sz % and M p= 0. In this case the equations of motion reduce to:

iw M =-er H+M ,H ,-MH -icw M
u -’ xu yu o yl "z2 0 yu u’yu
w, Myu = -y M0 qu - qu :] i@ W, M <u
— . (4. 49)
1u)lMXl = -y M 1H +Myupr o y} 1aw1
m,1My1 = Y| M H - M H - M zp:l_ ew, M,
These can be written in tensor form:
(H ., [vH +icw - iw yH ¥ 0 T
x1 0 1 1 z2 x1
. X *
Hyl w4 (7H0+1aw1) 0 7H,q Myl
Y M =
0
qu yHZZ 0 (y HO + ia wu) - iwu qu
LHqu i 0 'yHZ2 lw, yHO + ia wu_ hMqu
(4. 50)

Note in particular that the fields H1 couple to Mu rather than Mu* as in the case of the lower-
sideband mixer. This fact will be important later in illustrating the difference in the roles
of the two sidebands.

Once again the pumped susceptibility can be found by inverting this matrix. This

is done in Appendix E where the following symmetry is noted:

11 © %22 X33 = Xy
X12 = %91 %34 = %43
(4.51)
X13 = %94 X31 = X4
X14 = "Xo3 X39 T "Xyq

4.6.2 The Power at the Upper Sideband. Using this symmetry, and assuming

linearly polarized field distributions, one can determine the power leaving the sample at the

upper sideband:
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w K
__uo T O.{ * T k.G
P.=— [Imf XggH H *dv+im [ X3, H*H dv
u v v
S S
+ Im fX32ﬁu*x_ﬁ1' zdu:] (4. 52)

4,6.3 The Power at the Signal Frequency. Similarly, the power leaving the

sample at the signal frequency is given by:

W 4
— 1 0 u -_ * : v *l_
Pw1 =—5— Im [foHl Hi dv+ [XH" H dv
+ fXM_I-Tl*xﬁu' zdv:l (4. 53)

It is convenient to assume a sample shape such that xi]. are independent of position in the

sample. It is shown in Appendix E that

Im X33 < 0 (4. 54)
a wu(wo2 + wuz
Im Xy, = Xjy = - — 21 (4. 55)
(@, - w,)

However, if no power is supplied to the sample at the upper sideband then

P >0 (4. 56)
wu -

for which

2 2
] awu(wo +w. %)

u = T Ok T *.H
RS JE, B d+mX,, [H* H
(0] u
+ InXgy [H *xH i+ zdv > 0 (4. 57)



Thus,

+wu2) = _
— JH,HEYd >0 (4. 58)

s . . * _ _

If it is assumed that the pump flgld is real then wp = wp and Xg1 = X135 X1y = X9 Note
that this imposes no fundamental restriction on any of the following calculations since the
pump signal and upper sideband have a unique phase relationship at any operating point.

Using this assumption, and the values found for the tensor elements in expression 4. 58 yields

expression 4. 59.

2 .
w (w " +w wJricw (@ +w,) o
Im | - p( 0 . u 12) 2o u2 1 fHu*‘H d
(wo _wu)(wo _wl)

2a W @1 iwo(wu +w 1) .
+ S [H xH zdv| >0 (4. 59)
(wo _wl)(wo _wu)

But for low-loss ferrites @ << 1, so expression 4. 59 can be approximated by:

“p

2 2 2 2
(wo _wu)(wo -wl)

2 = % .=
[(wo +wuw1) Im fHu Hldv

+ o (v, +wy) Re fﬁu*xl_{l- zdu]> 0 (4. 60)

But
m [H* Hd=-Im [H"H w (4.61)

and
Re fﬁu*xﬁl- zdv = —R’e,fﬁl*xﬁu- z dv (4. 62)
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Then:
wp 2 = * .
- YA [(wo +wuu)1)Ime1 "H dv
o) o 1
- % =
+wo(wu+wl)RefH1 xHu- zdu:l <0 (4. 63)

Using this same set of approximations for the expression for signal power yields

WL aw(wz+w2)
_ 170 1o 1 = ok,
Pwl— 5 - JESH @
o} 1
w — o —
- P (w2+ww1)lme1 *H_ dv
(wZ_wZ)(wz_wZ) o u u
o] u o) 1
= *_= .
+w (W +w)Re [H*xH zd{l (4.64)

The first term in Eq. 4. 64 is obviously negative; the second and third terms are shown to be

negative by Eq. 4.63. Thus,

P <0 (4. 65)
“iq

for all values of H P This statement is equivalent to the observation from the equivalent

circuit that a positive resistance is reflected into the signal circuit by the upper- sideband

mixer. Notice that the sense of the inequality (4. 63) was the result of the fact that the signal

component H., coupled to M_, rather than to M_*,
1 u u

4.6.4 The Up-Conversion Gain. The upper-sideband mixer does not reflect

negative resistance at the signal frequency as does the lower-sideband mixer. However, the
Manley-Rowe relations predict a conversion gain from the signal to the upper sideband for a
lossless mixer. For this reason it will be of interest to compute the signal and upper-side-
band power in the absenée of loss, and then consider the effect of losses on conversion gain.

For a lossless ferrite the parameter a = 0 and Im Xgg = Im X417 0. From Egs.

4, 52 and 4. 53, we find:



o, w, XyIm [H* H dvo+X|,Re [H xH 2z
== (4. 66)
) 1 Xi,tm [H* ‘H dv+XyyRe [H"xH * zdv

P
w

where it has been assumed that Hp is real. But Xél -X! 3 and for the lossless case

1
X" = X:'3'2 = 0. Thus, for a lossless ferrite reactive mixer we have:
P
“u “u
P = - oo (4. 67)
Wy 1

which is the appropriate statement of the Manley-Rowe relations for upper-sideband reactive
mixers (Ref. 28).

4,6.5 The Effect of Sample Losses on Conversion Gain. For lossy ferrites the

convé®sion gain is given by:

P 7 X " m . 2
oy 9y XgyIm [H* B dv+X],Re [H*xH - zdv+Xy [ IH I®
Pwl “1 x311mfﬁu Hy dv + Xy, RefH xH,* zdv- X}y fIH 12 qu
(4. 68)
It has already been shown that:
.. -
Xy, Im [H*-H qw+X], Re [H*xH -zd > -X}, [ IH I®dv (4. 69)

and since X'l'1 and X§3 are both negative the numerator is smaller than for lossless ferrites

and the denominator is larger. Thus

-t (4.70)

which fact is already known about upper-sideband reactive mixers (Ref. 28). That is, the
effect of losses is to lower the conversion gain of upper- sideband reactive mixers from that
predicted by the Manley-Rowe relation.

The upper-sideband up-converter can be used as an amplifier at the signal fre-

quency provided the power in the upper sideband can be down-converted. However, down-



conversion cannot be accomplished with a reactive mixer because the down-conversion loss
is the same as the up-conversion gain and no net gain would result at the signal frequency.
On the other hand, if the local oscillator power is added to the upper sideband, then an ordi-
nary resistive diode can accomplish the down-conversion. The down-conversion loss for
this case will be greater than 6 db, so up-conversion gain must be relatively large for net
signal frequency gain.

Certain observations can be made about the coupling in ferrites which is respon-

sible for up-conversion gain. For certain field distributions the integrals

and

can be zero, and there is then no coupling and of course no up-conversion gain, However,
for the case in which the field distributions are nonorthogonal, the conversion gain is less -

than that predicted by the Manley-Rowe relations primarily due to losses rather than coup-

ling.

4.7 Summary

In this chapter the reactive mixing properties of a sample excited by two r-£
sources were investigated. The steady-state solution to the equation of motiqn for this ex-
citation was determined and represented in a matrix equation which defines the pumped sus-
ceptibility tensor. It was shown that power flow and power conversion are determined by
the components of this tensor and by the field distribution in the sample at the frequencies
where real power flows. This general theory was applied to two specific cases in which the
power flow was restricted by filters to only three frequencies. In the first case the three
frequencies included the two r-f sources and the lower sideband, while in the second they
included the sources and the upper sideband. The lower-sideband reactive mixer is the
familiar parametric amplifier configuration for which the unity gain threshold pump power
was derived. The field diétributions for minimum threshold were obtained by a variational

technique and an estimate of this minimum threshold power was found. The conversion gain,
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and the effect of losses upon this gain, were found for the upper sideband circuit. The sig-
nificance of the study of these two reactive mixers is the groundwork which it lays for the

double-sideband reactive mixer, i.e., the phase-shift amplifier.



CHAPTER 5

THE FERRITE PHASE-SHIFT AMPLIFIER

5. 1 Introduction

It has been demonstrated that a signal can be amplified with an upper-sideband
up- converter whose upper-sideband power is converted back to signal frequency power. To
obtain gain, it is necessary only that the up-conversion gain be greater than down-conversion
loss. A natural extension of this idea is the use of the double-sideband up-converter as an
amplifier. In this case, the power in both sidebands is converted to signal frequency power.
This technique of up-converting to both sidebands and then down—'converting was discussed in
Chapter 2 and given the name phase-shift amplification. The purpose of the remainder of
this paper is to consider the application of ferrites to this type of amplification. In this
chapter, the limitations imposed upon the circuit by the ferrite properties will be investigated.

It was shown in Section 2. 5 that phase- shift amplifiers can be divided into two
distinct classes depending upon the passband of the signal. If the center frequency of the
signal band is high, the sidebands can be separated from the pump by means of filters and
the circuit properties can be predicted from the properties of the single-sideband circuits.
However, when the center frequency of the signal band is low, the sidebands are too close to
the pump to be separated effectively from it, so that both sidebands tend to be loaded by the
conductance of the pump filter. -Adams has used the term dependent loading to describe this
circumstance. The discussion of the remainder of the paper will be restricted to such am-~
plifiers.

In this chapter, the limitations imposed upon phase- shift amplification by the
physical properties of ferrites are discussed. In Section 5. 2, the pumped susceptibility ten-
sor is derived in a way which determines the orientation of the field quantities for maximum

gain. It is then shown that the optimum field orientation implies a simplified analysis of the

70
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amplifier in which the ferrite properties are represented by the quantity which is called tun-
ability. The tunability for three distinct configurations are considered: 1) magnetically sat-
urated bulk ferrite; 2) magnetically unsaturated ferrite material; 3) thin-film ferromagnetic
samples. Fundamental limits on tunability for these three configurations are determined,

and the maximum expected tunabilities are determined for each and compared.

5. 2 The Double-Sideband Pumped Susceptibility Tensor

Although the ferrite phase-shift amplifier is properly represented by a pumped
susceptibility tensor together with the components of magnetization and magnetic field at the
four frequencies, analysis of the amplifier tends to involve unwieldy calculations due to the
large number of components. However, coupling between a pair of fields in ferrites depends
upon their relative orientation, so that there is some orientation for which that coupling is a
maximum. For these specific orientations, the fields can be expressed in terms of their
magnitudes and orientations relative to some reference, such as the direction of the biasing
magnetic field. A considerable reduction results in the complexity of the analysis. .In par-
ticular, if it is assumed that the fields are oriented for maximum coupling, then the ampli-
fier can be represented by the field amplitudes and distributions only, which significantly
simplifies the amplifier analysis. The field orientation for maximum coupling can be found
from the pumped susceptibility tensor. Thus, the determination of this tensor is the first
step in the analysis of the ferrite phase-shift amplifier.

The pumped susceptibility tensor is found by inverting the matrix of the equation

(5. 1):

1quXu = -y [Myu Ho + Myl sz - Mo Hyu + Myz Hzl] - ia @y M .
1quyu = —y[MO qu - qu H0 - sz Hzl - MXl HZZ] + ia Wy qu
iwﬂsz = -y [Myﬁ H & + M;l sz + Myz H’Z"1 - M, Hyfz ] -iew, Myﬂ
1wQMyQ = -y [MO HXQ - MXﬂ H -M ZH;I- M;1H22]+ i@ w, Mxﬂ
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inMX = -y l:M Ho + M HZ +M Hz - Mo H :I - i Wy M
2 p) Vo 21 Yy A p) p)
B *
iw,M =-y|M. H -M H -M  H -M H ]+iawM
2 Vg L0 % Xy © X) 2y X, 214 2 X,
[~ * *
1w1M = -y | M H0 +M HZ + M HZ —M0 H :I-»iawlM
%1 L Y1 ¢ %2 Yu %2 Y1 Y1
iw,M. =-y|M.L H -M_H -M_  H -M_ H +idw, M (5. 1)
1 ¥4 [0 Xy X, 0 X, 2 X, zz] 1 X4

5.2, 1 The Pumped Tensor for Circularly Polarized Fields. The magnetization

components at the upper- and lower-sideband frequencies are a measure of the conversion
gain. An examination of these components reveals that coupling takes place between longi-
tudinal components of magnetic field and transverse components of magnetization, It is use-
ful to consider the set of components which tend to maximize the magnetization at the upper
and lower sidebands. It is then possible to determine the relative orientations of the signal
and pump fields which produce the maximum sideband power. Though this can be accom-
plished by inverting the matrix of the set of equations (5. 1), the work involved is rather
formidable. Fortunately, no essential information is lost if it is assumed that the trans-
verse field components are circularly polarized. In fact, circularly polarized fields were
used in many of the experiments which were performed in this study on the double-sideband

.

reactive mixer. For such fields, the equations of motion are reduced to four in number:

quui =¥yH, Mui:t'y MOHu*inZlMZi inzlei iiaquui
w, Mﬂi = Ty H0 Mﬁi‘iy M0 Hﬁi +y sz(Mli)* ty H;I(Mzi) tidw) M!Zi
wy My" = IyHOM;iy MOHZii'szlMﬂi in;‘lMui + 10 Wy My*
wlMli = :'yHO Mli:t'yMoHli:b'y sz(Mﬂi)*:t'y H;Z Mui :!:ioza)lMli (5.2)

In principle, the inverse of the matrix of these equations could be found. It could properly

be called the circularly polarized, pumped susceptibility tensor. However, the above matrix
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is not square and no mathematical technique is known for inverting a nonsquare matrix. On
the other hand, because coupling tends to take place between axial field components and
transverse magnetization components there are two extreme cases which can be considered
for which the matrix of the above equations is square. The matrix will be inverted for these
two special cases and from these it can be determined which field orientations tend to give
rise to maximum power conversion. The two special cases are:
(1) the signal field H, axial and the pump field H, totally trans-
verse and circularly polarized;
(2) the pump field axial and the signal field totally transverse
and circularly polarized. (It will be shown later that, be-
cause of its nonresonant characteristic, the left hand polari-
zation H is not of interest.)

5.2.2 The Pumped Tensor for Case (1). The pumped susceptibility X+ can be

found for Case 1 above by inverting the matrix of the following set of equations:

. + + +
(wu—'yHo-lawu)M = 'yMOHu +'yHZ M,

u 1
. + + * +
(wg-'yHo- 1aw£) Mz = 'yMo Hﬂ +'yHZIM2 (5. 3)
. + + + % +
(wz-'yHo—101(.02)M2 ——'yMOH2 +'yHZlMﬂ +'yHZ1Mu
or in matrix form
~ ~ 1,
H,"] wy(1-10)-y H 'yH;I 0 M,
yM |H, | = y H we(l-ia)-y H y HY M. | (5.4
Y Mol P2 zy 2 o z, 2
+ . +
EN 0 0 wu(l-la)—'yHoj M,

For a small-signal analysis, the tensor need only be evaluated to first order in yHl. Thus,

the determinant D is given by:

D = [wﬂ(l— ia) - v Ho] [wz(l- iQ) - v Ho] [wu(l- i) - vy Ho] (5. 5)
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Using Eq. 5.5, we can find the susceptibility components:

2 *
v M Y M0 Hz
nn = __“—“(91_) 12 © ' - X3 =0
11 vyH - w,(1-ia 1 _ .
o { [yHo - wﬂ(l wt)] ['yHO w2(1 1oz)]
y2M_H
) _ 0 Zy . _ v Mo
21 ~ . . 22 T yH - 1-1ia
[)/HO - wﬁ(.l— wz)] [’yHo - wz(l- wz)] 5o w2( i)
2 *
v MO HZ1
Xg3 = ) 3 (5.6)
[’yHO - wz(l— 101)][ yHo - wu(l— 101)]
2
0 Y Mo Hz1 Y Mo
X = X = X = ——————
31 32 . . 33 H - 1-1i
l:'yHo—wz(l-w):l[yHO-wu(l- 101)] Y5, wu( i)

The magnetization at the upper sideband frequency can be found from these ten-

sor elements:

2 +
+ v“"M H H
+ yMO Hu 0z 2

w T vH, - wy(1-10) ) [yHo- w2(1—iai| [yHO- wo(l-ia)]

The upper-sideband power will tend to be largest when the second term is largest and for this

M

(5.7)

reason we will compare it with the corresponding term for Case 2.

5.2.3 The Pumped Tensor for Case (2). For Case 2, the set of equations to be

inverted is given by (5. 8):

. + +
(wu-yHo—wwu)Mu = 'yMoHu +7/HZ M

. +
(wﬂ - yHO- 1aw!Z) Mﬂ

]
1
<
2
o
jar
=
+
+
<
ja s
N
2

(5. 8)

. + +
(wl-yHo—wzwl)Ml = yMOH1 +y H (MIZ
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* -
Note that H1+ tends to couple to (M!Z+) (which, incidentally, is not necessarily equal to M,
unless Mx = MX* etc.). For this reason, it will be convenient to replace the second of equa-

tions 5. 8 with its complex conjugate. The resulting matrix to be inverted is:

[ +*7 [ . * T Fae + T
(Hﬁ ) W, -yHo + iow, Y HZZ 0 (MJZ )
- + _ i * +
Y Mo H1 = Y sz wl(l ia) -y H0 Y Hz2 M1
+ . +
Hu 0 Y sz wu(l- ia) -y H, M,
- - - (5. 9)
The determinant D is:
D = l:wz(1+ia) oy HOJ [:wl(l- i) - H0:| [wu(l- Q) - Ho:, (5. 10)
The components of the pumped susceptibility tensor are:
2
v Mo L4 Mo I'Iz2
X4 = ———F7—% Ko = X,, = 0
Wy - e tvie) "2 Lp ) (v |8 - wi(1-10)] B
0 2 0 1
*M_H
4 0z v M0
%21 © 12 ©
[}'Ho— w1(1+1a{| ['yHo- wl(l—wz):l 'yHo— 0)1(1-10[)
2
4 Mo sz
Xgq = (5. 11)
[’VHO - wl(l- 101‘);] [’}/Ho - wu(l- 1a)_J
2
v“"M_ H
0 "Zg Y M0

=0 X

X = - X  e—— e
31 32 , . - - i
[yHO -w 1( 1- 1oz):| [yHo - wu( 1- wz)] 33 yHo wu(1 i0)
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The magnetization component at the upper sideband is .given by:

2 +

Yy M ) Y ‘Mon Hl

+ 0 u , 2

Mu - -yHo-wu(l—ia) ) H - w,(1-ia) H - (1-ia) (5. 12
5o 1 L YHy T Yy k

5, 2.4 The Optimum Field Orientation. The most meaningful comparison between

the two cases is the comparison of the second term on the right of Eqs. 5.7 and 5. 12 under
the condition that the field intensities IHll and IHzl are the same. It would appear by com-
parison of the two. terms under this condition that by properly selecting Ho (1 e., ferromag-
netic resonance) either term could be made the larger. However, there is a physical restric-
tion to the lower limit at which ferromagnetic resonance occurs. It is not ordinarily obser-
ved much below 1 Ge (Ref. 29). For this reason it is not possible to make 'yHO - Wy arbi-
trarily small in all cases. In particular, if the signal pass band has a low pass characteristic
(e.g., dc up to 100 Mc), then the frequency difference yHO - w may be quite large. On the
other hand, the pump frequency is ordinarily selected in the microwave spectrum where
ferromagnetic resonance is a prohounced phenomenon and where 'yHo - wgy can be made quite
small. From this it can be concluded that for those circuits in which the signal spectrum is
lowpass, Case 1 is optimum when ferroinagnetic re>sonance is near to the pump frequency.

In summary, then, it has been shown thatythe optimum sideband conversion takes place be-
tween HZ1 and M pz. Any transverse component of signal and longitudinal component of pump
will contribute negligiblyv to sideband power, yet will increase the stored energy and dissipa-
ted power at their frequencies and must be considered undesirable. Thus, the optimum field
orientation consists of axial signal field components and transverse pump components. It
should be recalled that the physical significance of this orientation is that it maximizes coup-

ling between the fields at the two frequencies.

In addition, this orientation is significant because it suggests a means of synthe-
sizing the prototype model for the phase-shift amplifier which was presented in Chapter 2
(see Fig. 2-1). That prototype is repeated for convenience in Fig. 5-1. Because it is
parallel to the biasing field the signal field can be regarded as a time-varying component of
that field. But the instantaneous biasing field determines the permeability at the pump fre-

quency, so the effect of the signal field is to cause the permeability to vary at the signal
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frequency. If the sample is part of an energy storage element, and if the latter is part of a
tuned circuit as shown in the figure, then the resonant frequency of that circuit varies at the
signal frequency. Synthesis of the prototype model of the phase-shift amplifier is accomp-
lished by placing this time-varying resonant circuit between the pump source and a phase

detector.

Tunable Filter

/

P
' gg&’ ce — Matched
) 62 C=xl(s)g+— *! Sn)a Phase Load

Detector

Yo

Fig. 5-1. Prototype ferrite phase- shift amplifier.

Adams has shown that the gain bandwidth product for a phase-shift amplifier tends
to be an increasing function of pump frequency (Ref. 30). For this reason, and because fer-
rites tend to be nonlinear at microwave frequencies, it will be assumed that the pump fre-
quency is in the microwave spectrum. A microwave cavity provides a convenient resonant
circuit. Thus the prototype model for a ferrite phase-shift amplifier consists of a microwave
cavity which contains the ferrite sample and which is placed between a source and a matched
phase detector. The sample is biased normal to the direction of the pump magnetic field and

the signal field is applied parallel to the biasing field.

5. 3 Amplifier Analysis Based Upon Tunability

It was shown in Chapter 2 that the transducer gain for the prototype circuit of

Fig. 5-11is given by:

2¢P ,
G, = R (2Q, T) (5. 13)

t

where the tunability Ti was defined



18

dw

dis

o]

T, = L
1 w
0]

As stated in the introduction, this quantity depends markedly upon the material parameters.
The purpose of this chapter is to illustrate this dependence. However, for this purpose it is

convenient to define a slightly different tunability:

r. 1 %
T w d

0
where h is the magnetic field* in the sample at some specified point (e. g., sample center).

If this field is produced by the signal frequency current, then T is related simply to Ti:

This definition has the advantage that it tends to separate that part of the tunability Ti which

is determined by the material parameters (i. e., T) from that which is determined by the
signal frequency circuit (i. e. , gil). However, it should be emphasized that, although it is
s

convenient to study these quantities separately, optimization of Gt requires optimization of

T..
1
e

Since the signal frequency circuit is linear, we can write

h

i
s

dh
dls
and this quantity can be determined with respect to the signal frequency field distribution.

For this purpose, we define the signal magnetic field H(r) by the relation:

H(r) = hi(r)

where T(r) = 1at the specified point where the tunability is measured. But if the signal-fre-
quency current produces H it must flow through an inductance L (see Fig. 5-2) and from the

magnetic energy relation we know:

*Magnetic field at the signal frequency.
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Fig. 5-2. Equivalent signal frequency circuit illustrating
coupling between the signal field and the sample
R __ is the equivalent shunt conductance
of the signal coil.

from which it can be deduced that:

L (5. 14)
's [ plfl® qu

Using the definition of T and the above relation the transducer gain can be written in the form:

2¢ Pp L
G = —— (Q, T)?
t 2 {

R, [ plfl® au
Thus, the observation that the optimum field orientation enables a convenient synthesis of the
prototype ferrite phase-shift amplifier has reduced the analysis of the amplifier from a com-
plicated set of calculations involving the pumped susceptibility tensor for the double-sideband
reactive mixer to the above expression for transducer gain.
Although Gt is a simple function of T, it is a complicated function of the material

type and configuration.” Of all the parameters in Gt’ only ¢ a.nd'Pp are independent of the
material. On the other hand, if the material losses are small relative to-the cavity losses,

then Qﬂ tends to be independent of material. ‘The parameter which depends most strongly on

material is T' where



T' = L

) (f wlfl? dv)é

Optimization of Gt necessarily involves optimization of T' with respect to sample shape, size,
orientation and material type. The optimization of a variety of amplifier configurations is
considered in the next chapter.- 'However, before this can be accomplished the dependence of
T upon the sample parameters must be known. The remainder of this chapter is devoted to

a study of this dependence.

5.4 Dependence of Tunability upon Sample Parameters

The tunability T for the prototype ferrite phase-shift amplifier has been defined:

where W, is the cavity resonant frequency and H0 is the biasing field. * Aside from its sim-
plicity this definition is advantageous because it is independent of whether or not the sample
is magnetically saturated. This means that the phase-shift amplifier, unlike the single-
sideband mixer circuits, can be mathematically studied for unsaturated samples. To be
practically useful for studying phase-shift amplifiers, the tunability must be related to ma-
terial parameters. The following section, in which this relationship is derived, is an exten-
sion of the ordinary cavity perturbation technique. The extension is convenient since the
perturbation technique can be used to compute the frequency perturbation of the cavity
resonant frequency from its empty-cavity value (Ref. 31). This is more information than is
needed, since only the variation in loaded-cavity resonant frequency due to variation in the
biasing field need be known to compute tunability. The precision to which the field distribu-
tions mhst be known for a good approximation to a;—};) is not nearly as severe in the latter
case. Perhaps more importantly, the validity of the approximation proves to be independent
of the sample size in the latter case.

The tunability is computed in the following way. The steady biasing field Ho is

_ 1
applied to the sample for which the sample permeability is ﬁl and the cavity is resonant at

*Note signal field parallel to biasing field.



81

Wy The fields in the cavity at this resonant frequency are El and I-_‘Il. If the biasing field is

changed to H_ then the permeability is changed to [.=J.2, the fields change to Ez and ﬁz and the
5 :

resonant frequency to Wo. At all times these fields must satisfy Maxwell's equations:

VxE1 = —iwlul- H

1

VxH1= 1w161-.E1
_ _ _ (5. 16)

VxE2 = -lwg g ° H2

VxH2= 1w162-E1

For most ferrites the conductivity is extremely small and the permittivity may be regarded

as a scalar ¢ which is independent of Ho' Consider the quadratic relation:

V. (_El*xﬁ2+§2xﬁ1*) = ﬁ2 . Vx—E_1*+ 1_131* Vxﬁ2
+ T{? Vxﬁ2 +—E2 VxI_II (5. 17)
But from Maxwell's equations this can be written
v. @1*Xﬁ2+§2"ﬁ1*) = iwlﬁz . (;:1.1' ﬁl*) - 1w, Hl* . (sz . I_-Iz)
- i(w - wy) e EME, (5. 18)

Then both sides of the equation can be integrated over the cavity volume and Gauss' law

applied:

[ v (El*Xﬁ2+EZXﬁ1*) dv = f(El*xﬁ2+E2xﬁl*)' nds
v s

- i{, [wlﬁz- (hy" H)*- 0 Hy* = (g - Hy) - (w-wy) e E " Ez]‘dv (5. 19)
c

But the boundary conditions at the cavity wall are
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where n is a unit normal vector at the cavity wall. Thus we obtain:

“'.,=°_‘* - ““*'=.—' _ - w X, R -
wl{, Hy* (g H)* dv wzf H" (B Hy) dv- (w, w2)e£ ESf Egdv = 0

v
¢ ¢ ¢ (5. 20)
awo
Since we are only interested in 3H ° it will be convenient to let
H =H +6H
0, 04 (o}
then
iy = Byt 00
wg = Wy ¥ 0w
E2 = E1 + 0 E1
H2 = H1 +6H
If these quantities are substituted in (5. 20) there results:
=, CH * _ x , (T =\ . o -
{, dv w (H, +0H) (g HY - (w + 0w) B« (i +0p) - (Hy+ 0H)
c
+aweE1*- (E{+0E) =0 (5.21)

This can be rewritten, correct to first order, as:

6w [ e_ﬁl*- §1+ﬁ1* .
v
c

=1

= _ T LB VRLT KL S .=
(c Hy dv= wl{, H, (ul Hl) H, (ul Hl) dv
c

+6H" (L

a ﬁl)*-ﬁl*- (- 6H) dv (5. 22)

=]

X, s .7/
+w1{r °5u1-H

C

1 1

Upon close examination of (5. 22), it is clear that this can be reduced. Notice that:

SO

H (Hy H)*-H* (B H) = 2iImHE, - (;il- TII)* (5. 23)
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This can be reduced even further using the symmetry of tensor permeability. For any non-

zero biasing field the tensor permeability will have the general form:

Byp “idpg O
no=ling kg O

0 0 K,

LeCraw and Spencer have shown that a ferrite must have this symmetry regardless of whether

or not it is magnetically saturated (Ref. 32). Then using tensor notation, ﬁl (- ﬁl)* can
be evaluated:
—Hlx— | b el O —H’;x_
Hiy el ok O || Hy
LHIZ... i 0 0 “zt LH*iz_
(5. 24)
(B ] [ w1 Hy * tug By
= Hly ot “Tz H*IKX’L ‘“tlHiy
le By H);.z
L — L. -

% E3 N * * . LS % * % *
Hyy Hpy Hpp + g Hyy Hyp = Tayg Hyg Hpp + gy Hyy Hyg + 0y Hyy Hyp

ook m L mR L ok m m kL A * *
= pypHyr Hy+rippp HyxHym e 24 p " Hy Hy)

Two special cases of polarization will occur in most normal applications, these being linear

polarization for which'ﬁ1 X ﬁ'l* =0, and circular polarization for which u 19 =0. Thus

(5. 24) reduces even further to

g .7 * * *
B Hygw Hyp +p, Hy Hyp

For most ferrites at frequencies of interest Im b, = 0 so

- . T % * 7" 2
Impg Hy s By +p) Hy Hy™ = opgy" Hyl (5.25)
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We next examine more closely the last term in Eq. 5. 22, i.e., 6H* (ul . ﬁl)* - Hl* .

(uy- OH)
* s * *
OH, Big thp 0 H
SH- (n,- H)* = | 6H -t * 0 H, *
(g Hy H12 11 ly
* *
GHZ 0 0 K, le
* * . % *
OH, Byg Hyg vingpHy
_ . * *
= | °H Tk Hy + by Hyy
6H “zH1z*
= “11* Gﬁt-ﬁlt*+iu12* G_ﬁxﬁl* 2+ i, OH, le* (5. 26)
- o _ - -
Hiy Hyp ik 0 oH
* = = x|, . . . ]
H; (ul- SH) = H1y iug K11 0 6Hy
*
Hy, 0 0 u, 6H,
* Cs "
Hx HypOH - ipp0H
_ * L]
= Hly 1u126HX+ “115Hy (5. 27)
*
le p‘zéHz
= ullﬁl*-é ﬁ+iu12 6_ﬁx1_{1*- 2+p.zﬁHz le* (5. 28)
Thus

OH + (1by ﬁl)*- H*  (p- 0H) = 2ip,,"0H - H*

+21u12"5ﬁxﬁ1*- z (5. 29)
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For all frequencies differing from ferromagnetic resonance by more than yAH in low loss
ferrites, u 11" and p 12" are small quantities. Thus to a good approximation, except very
near ferromagnetic resonance, the above term can be neglected. These reductions can be

substituted in Eq. 5. 22:

. LR L3 e . * *
8w fv €E By tpgy Hyr Hy o, Hy Hyw dv
C

=w1{r ﬁl*- (61 H) dv (5. 30)
C

But for the tunability we are only interested in the change in resonant frequency, i.e., in the

B

real part ofwl(sincew1=w0+ i—z-. Taking the real part of Eq. 5. 30
T . P X 'ty .7 X ' *
dw, [f €Eyr By vpygy Hypw Hy v 0, By Hyy d"]

-62—’8 1) dv (5.31)

/ “11”ﬁ1t . ﬁlt* dv = Rew, f ﬁl* . (6711' H
v 1
The second term on the left side of Eq. 5.31 is small compared to the first term for low-loss
ferrites, and may be completely ignored. It is consistent with our small-signal assumption
(i. e., MZ = 0) that only transverse components of 61_1 are non-zero. Thus the right side of

Eq. 5.31 may be written:

= LT Ok, . 5 LT k.
Re [wl {’ (5“11 Hy - Hy "+ 5[.1.12 Hy xHy z) dv] (5. 32)
c

and once again, for either linear or circular polarization,

——
Opyg(Hy xHy) =

Then Eq. 5. 32 can be written:

v . 1 X _B_ nigmg .x@m X
“’o{, Spyy (Hyy» Hy)dv+ g {, Sy (Hy t Hy') dv
] S

= =
wo{, Spy, Hy s Hy" v (5. 33)

IR

1t
s
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where the integration is taken only over the sample since 671 = 0 outside the sample. Then

solving for éwo
t (1 . *
wo{, Sy (Hy s Hy™ dv
= - S )
6w0 = (5. 34)

W .7 X ' . T X ' *
{, €E Byt py Hy o Hyp v "H Hym dv

¢

The initial assumption for this problem was that w 1 is a complex frequency of cavity reson-
ance. Thus fields El and ﬁl are the fields at resonance which implies that the electric

energy stored is the same as the magnetic energy stored. That is:

E B X = [ . CH. *a oy ! x
{, eEy- Efidv fv yg Hygr Hypvow Hy Hy modv
C C

Then Eq. 5. 34 can be written in terms of the permeability and magnetic fields only.

J o ouy Hy s Hytdy
1 S
- -1 (5. 35)

a:
7 Mo = Mo TH OH,

Using this relation, the tunability can be found from Eq. 5. 35.

onyq —
J = @y By
1 awo 1 Vs' o}
T=o" TH, 3 e : (5.36)
t . ]
o 70 {, Ppg Hypw Hyp +w"Hy Hp o odv

Notice that the tunability will be largest for those field distributions with no axial (i. e., along

HO) component. For such field distributions Eq. 5. 36 becomes:
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1
j 8x11
aHO

Vs

2
|H1t| dv

~

i

1
Dol =

Z (5. 37)
2 : 1
f IH 1% dv + J Xy 1Hyl" dv

v \'4

c s

It should be noted that the derivation of (5. 31) is independent of the type of polarization as-
sumed. If circular polarization is assumed then x11' - (xi)' in (5. 31) where the + refers to
the forward and backward precessing fields in the sample with respect to Ho' In this case

|H1ti 2 is the absolute value of the total transverse field; i. e.,
2 _ 2 2
IHltI = IHXI + IHy|

The expression (5. 37) can be used to find the tunability for an arbitrary sample
in a cavity, as long as losses can safely be ignored. This latter condition is approximately

satisfied for low-loss ferrites at frequencies away from ferromagnetic resonance. For fer-
0X 44"

0Hg
ever, for ferrites above saturation the Polder susceptibility describes the magnetic state of

rites below saturation, it would be necessary to measure to compute tunability. How-

the sample quite closely (Ref. 33). Even for this case, it is difficult to compute T unless

X,
. 11
X1 and aHo

lution which are biased along the axis of symmetry. Because it is relatively easy to obtain

are uniform throughout the sample. Such is the case for ellipsoids of revo-

low-loss samples in ellipsoidal shapes, and because spheres were used in experiments,

specialized expressions for tunability applicable to these geometries will prove useful.

5.5 The Tunability for Magnetically Saturated Samples

The tunability will be studied for a small sphere of low-loss ferrite at frequencies
far enough from ferromagnetic resonance that x"" << x'. The restriction to a small sphere
is not necessary for the validity of Eq. 5. 37. Rather, it affords a simplification in the ex-
pression which renders T more easily calculable. It will be shown later that the insight
gained from the study of Eq. 5. 37 will enable us to predict a maxir?um tunability for any
configuration. For a spherical sample biased to saturation, 8:—1%10 and X11' are independent

of position and can be factored out of the integrals in Eq. 5. 37. For the small sample ap-

proximation then:
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2 2
{, IH |2 dv >> {, IH, 1% dv

c s
Thus, Eq. 5.31 can be written
2
i {, 1H 1% dv
T--1 aél s - (5. 38)
o [ IH, [* dv
Ve

It has already been remarked that Eq. 5. 37 (and, of course, Eq. 5. 38) is independent of the
polarization of the fields. Because circularly polarized fields were used in experimental
determinations of T, such polarization will be assumed in the following computations for
which xu' must be replaced by (xi) ', The right-hand polarized component will be assumed

since it leads to the largest T. Away from ferromagnetic resonance,

e yM (vH, - 1)

('yH0 - )2 +a® 12

(Ref. 33). Substituting this in Eq. 5. 3s, thus:

, TR B - (-
1 df | Y Mo[('yH0 -f)" - et i ] Vg
- 2
f, dH, |f=f li(’yH0 - fo)2 + a? foz] [ 1HI? dv
[o} v
[
H -f)®-0a*f 2]
= a[(y 0 ‘:) - 20 A (5. 40)
{(yHO SEARET ]

It was shown that Eq. 5. 40 is independent of first order variations in the r-f magnetic field
distribution. Thus for small changes in Ho’ "a'" will be approximately independent of Ho'
It will be convenient in subsequent calculations to disregard any variations in "a", but it
should be remembered that the validity of any expression is restricted by this assumption.

It will be important at a later point to notice that, for small enough samples, " is roughly

proportional to the ratio of sample to cavity volumes.



5. 5. 1 Properties of the Tuning Curve. Equation 5. 40 can be solved by rearrang-

ing and integrating. However, the integration is rather complicated and the solution is the
inverse of the desired function in transcendental form. Fortunately, it is possible to sketch
the solution to this equation for various values of the parameter a. For very small values of
H0 the cavity frequency is near its unperturbed value and the slope dt/ dH0 is nearly zero.

As the magnetic field is increased, the frequency difference between ferromagnetic reson-
ance and cavity resonan‘ce is decreased, and the slope dfo/dHo is increased. Two fairly dis-
tinct tuning profiles [i. e., fO(HO)] can result depending upon the relative size of a. For very
small "a", the cavity resonant frequency is perturbed up to some maximum frequency, and
dfo/dHo reaches a maximum when ferromagnetic resonance and cavity resonance are very
close together. This situation is depicted in Fig. 5-3 by the dashed curve and is the normal
circumstance in ferromagnetic resonance experiments. However, if "a'" is relatively large,
then as ferromagnetic resonance is brought near cavity resonance the slope df 0/ dH0 increas-
es to a maximum of y. "For this case it is impossible for ferromagnetic resonance and cavity
resonance to coincide. This latter situation is depicted in the solid curve of Fig. 5-3, and

will be discussed both analytically and experimentally in the next few paragraphs because it

is this circumstance which is most useful for building phase-shift amplifiers.

Fig. 5-3. Cavity resonant frequency vs. applied magnetic field for two
different sample sizes. The parameter ay is related to the larger
.sample while ay is related to the smaller, so that ay >> aj.
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Several interesting properties of the curve labeled a; can be observed. The

curve has a horizontal tangent where

fo(lioz) = yHo

and as H0 - 00, When cavity and ferromagnetic resonances are equal, the slope is negative.

In addition, if fo is a microwave signal then the slope dfo/dHo is very small near H 0= 0.

Thus for very small HO the cavity resonance is only slightly pérturbed, but as H0 is increased
fo - vyH o decreases and the slope increases, reaching a maximum value. A further increase
in H0 causes the slope to decrease to a minimum value and then back to zero as H0 - 0, The
general shape of fo(HO) is shown in the figure.

5. 5.2 Solution of the Tuning Curve Equation. Of even greater interest is the

curve labelled g, for which it has been assumed that "a" is sufficiently large that IHO - fo/yl

is several times larger than the ferromagnetic linewidth. In this case, Eq. 5. 40 reduces to:

dat
dH
o

= a - (5. 41)
(vH, - 1)

It is convenient to solve this equation for the dependent variable y where y = yHo- fo‘ Equa-~-

tion 5. 41, written in terms of the new variable, has the form:

7 - - (amyy?) (5. 42)

[¢]

This equation is difficult to solve directly for y(Ho). However, the inverse function Ho(y)

can be found by straightforward integration:

y 2

-@| -H )= [ L9 (5. 43)
(0] 0. 2
i Yo a-vyy

where for convenience H0 , the initial value for Ho’ is chosen as zero. The solution can be
i
written at once using integration tables:

H, - y:yo R S <a+y«/a7><a'yo"ay (5. 44)
14 2y Jay a-yvay a+yof27
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Several interesting properties of the solution are evident upon close inspection. The unper-

turbed resonant frequency of the cavity is quite large, so y o << - Ma/y) and:

a
Y=Y, a Yo +«/7—
—H0 = + log | — (5. 45)
2y /a2
Y V27 7, - JE
Y

For a real solution, y >,/(a/y), ory < - /a/y). A graph of the solution to this differential
equation is given in Fig. 5-4, assuming Y << -./(a/y). Observe that this solution approaches
+/(a/y) exponentially for large Ho‘ Thus, the curve fO(HO) approaches the curve 'yHO expo-
nentially for large Ho’ and that the frequency difference between cavity resonance and ferro-

magnetic resonance approaches a constant value which depends upon a/y and therefore upon

-y, MZ = exp (_Ho R y;YO) 27;/57‘}

.
Y

3

Fig. 5-4. Graph of the solution y(HO).

the ratio of sample size to cavity size. It is worthwhile to check the validity of the assump-
tion which was made in deriving the simplified form of Eq. 5.40. That assumption was that

'yHo— f0 >>a f’o = yAH where AH is the ferromagnetic linewidth. But it has just been shown
that y < -,/(a/y) which means 'yfo— Ho > . /lae/y). But:

v

a = % MO—U—-S- (5. 46)
C

yM v_f
Thus, if —OU—S—Q S 10 yAH, the assumption is valid. This dictates that

¢
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v 2
s g 100(yAH)
5 > M (5. 47)
c oo
which for YIG is approximately
v
=5 107 (5. 48)

o

That is, this approximate theory is valid.if v s S 10-5 Ve
daf
Another, and even more important, fact is that H—H—o- has a maximum value. This
)

can be shown by finding the maximum value from Eq. 5.41 which leads to

U
5. 41 which leads to

daf
2aly - 2
d*f dH_
> =0 = - e (5. 49)
dH0 (y Ho - 1)
dfo
Clearly, o = v, independent of the size of a. - This result is extremely significant for

max
phase-shift amplifiers, since it predicts that the tunability for any cavity which is tuned by a

sample near ferromagnetic resonance has the maximum value:

T = (5. 50)

Y
max f

e}

It is important to note that this result is not fundamental to ferrite-tuned cavities but results
only when the ferrite is operating near ferromagnetic resonance. This result may be attri-

buted to the fact that the Jnonlinear properties occur in the frequency région in which the

ferrite is also most dispersive. Ina succeeding section, it will be shown that tunability of

unsaturated samples near zero bias can actually be larger than y/ fo' However, it is first of

interest to give experimental evidence in support of the prediction Tmax = 'y/fo.

5. 5.3 Experimental Verification of Maximum Tunability. An experiment was

performed which tends to support the validity of Eq. 5. 40 and the approximations which lead

to Eq. 5.41. A Sphere (diameter . 100") of highly polished YIG was mounted in the center of a

circularly cylindrical cavity. The cavity was excited in the TM110 circularly polarized mode,
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and the entire structure was placed between the pole faces of a large, regulated electromag-
net. A pump field transverse to the biasing field was used. Resonant frequency vs. applied
magnetic field was measured (see Fig. 5-5). The resonant frequency was measured with a

high-Q reaction-type wavemeter. The magnetic field at the sample location (He) was deter-

mined, based on a measurement of the field at a convenient location outside the cavity. The
cavity was then removed and the field at the sample location was then célibrated with respect
to these measurements by measurements of fields with the cavity removed. This procedure

determines He quite precisely because the cavity is nonmagnetic, and the sample is small.

Gauss
. ‘Q/ Meter
= probe @
Swept Circularly Reaction
Microwave Polarized Wave |+ y-axis
Oscillator Cavity Meter x-axis

/" Magnet \ =

Sweep Output

Fig. 5-5. Block diagram of circuit used to measure magnetic field
relationship at resonant frequency. The external magnetic
field at the sample location can be found from
its value at the magnet pole faces.

The sample was loosely mounted, so that upon application of the field it could be rotated un-
til the easy axis was aligned with the biasing field. From Section 3. 5. 1 it is known that fer-

romagnetic resonance is given, in this case, by:

B 4 WK
fres = 7<He * 3 UM ) (5.51)

He is the externally applied field, and for YIG % ;}% =~ 57 Oe. The effect of anisotropy
o}

has been accounted for in the computations by placing

H0 = (He + 57 Oe) (5. 52)

According to the assumptions, expression 5. 41 can be written in the form:
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dfo Afo

= 5. 53)
dH 2 (
) (y HO - fo)

For the sample used in this experiment Z—S = 2x 107 3, so that the condition (5. 48) is satis-
fied and the above equation is valid. The zoefficient A was empirically evaluated at one
point and % compkuted at seven other data points. The accompanying data in Table(:i f5- 1
and the grap}? illustrate the excellent correlation between theoretical and measured T

o}

(see Fig. 5-6).

fo = cavity resonant frequency
He = external magnetic field
GHe = incrementaf change in He

Table 5-1. Tuning Rate Data

df
t(G) | H,(KOe) | H (Oe) E}’IO; Mc/Oe
9. 225 2. 580 0 0. 05
9. 230 2.955 105 0. 12
9. 241 3,031 181 0. 20
9. 260 3. 132 282 0. 40
9. 285 3. 184 334 1. 28
9. 308 3. 202 352 1.78
9.340 | 3.220 370 9. 22
9. 380 3.238 388 2. 55
9. 426 3. 256 408 2. 60
9. 470 3. 274 424 2.70
9.519 3. 292 442 2.75
9. 570 3.310 460 2. 80
9. 622 3.328 478 2. 80
A is evaluated at the first point:
of At
ol = 0.05
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A(9. 225 x 10°)

- AY. 649X V) (5. 54)
115 x 10*
A =6.3
dfo
Using this value for A the theoretical and experimental values for qE are shown in Fig. 5-6.
o}

The rather good correlation between theoretical and experimental results tends to verify that
the maximum tuning rate is that of ferromagnetic resonance (i. e., 2.8 Mc/Oe).

Another rough check on the validity of this equation can be made by estimating A.

3 |
28i— — — — —— — —— — —— — —— — — — —— — — —
2 b

+ Computed points
O Measured points

YIG Sphere . 100" diam.

] ] J
100 200 300 400 500

AH (Oe)

Fig. 5-6. Graph of tuning rate dfo/ dH,, of circularly polarized cavity
with . 100" diameter sphere of YIG. O0H is the variation in
biasing field from the arbitrary starting
point He = 2. 85 KOe.

2
) f |H1tl dv )
v Mo Vs Y Movs
A = 5 ~ v (5. 55)
f IHltlzdv c
Ve

where
r = 2.8

47rMO = 1700 Gauss

1

-3
VS/vc ~ 2x 10



for which A = 3. 4. This value compares favorably with the empirical constant 6. 3. Thus,

in this experiment the tunability has been found to be a function of sample size and to have a

value not greater than y/ fo.

5.5.4 An Alternative Viewpoint to Maximum Tunability. Another interesting

explanation for the observed maximum tunability near ferromagnetic resonance can be seen
from the equivalent circuit for this configuration which is presented in Fig. 5-7. In this

figure the cavity has been represented at one of its resonant modes W and the sample has

N\
/

Y|

Al
A
LAl

res

Equivalent circuit of ferrite loaded cavity where w, is the

cavity resonant frequency and wygg is the
ferromagnetic resonsnt frequency.

Fig. 5-1.

been represented as a resonant circuit which is inductively coupled to the cavity. The coup-
ling coefficient k is determined by the sample volume and by its location in the cavity. This

circuit is equivalent, with respect to the cavity input, to the circuit shown in Fig, 5-8,

rE

1
Z
ef

Z - -~ g
T

1

T

Fig. 5-8. Equivalent circuit for Fig. 5-7 with respect to the
input terminals. Z,.¢ is the impedance reflected
to the primary of the transformer.

For the case just considered, ferromagnetic resonance is sufficiently far from cavity reson-
ance that the reflected impedance Zreﬂ is almost entirely reactive (i. e., Zreﬂ =] 1/]wc).
Variations in the bias field produce variations in the magnitude of the reflected reactance

and serve to vary the cavity resonant frequency W, It was shown for this case that the rate
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at which w, varies per unit change in signal field is the gyromagnetic ratio (i. e., 2.8 Mc/Oe).
However when ferromagnetic resonance is near w, the perturbation approximation of the pre-
vious case is not valid and a somewhat different technique must be used to compute the tun-
ability.

When ferromagnetic resonance is near the empty- cavity resonance, then the
equivalent circuit consists of two strongly coupled tuned circuits of nearly equal resonant
frequency. It is well known that the magnitude of the driving point impedance for this circuit
is similar to that shown in Fig. 5-9. The concept of tunability is applicable at both w 1 and

Woe This parameter is proportional to:

1,2~ T a”

[Z 1

freq

Fig. 5-9. Magnitude of the driving point impedance for
two strongly coupled resonant circuits.

It is well known (e. g., Ref. 51) that these frequencies (i. e., w 1 and wz) are related to the

uncoupled resonant frequencies:

where WL, = Wleg and k is the coupling coefficient. The tunabilities which can be de-

fined for this circumstance are:



dw
T 5 = 1 L2
1, w1,2 dH
- 1 dCL’res
w1,2 dH
=2£7’ =X (5. 56)
1,2 o

Thus it has been shown that the tunability, for the configuration in which a magnetically

saturated ferrite sample is used to tune a microwave cavity, is fundamentally limited tofl
o

5. 6 Tunability of Magnetically Unsaturated Samples

As stated previously, an analysis based upon tunability is applicable to both
saturated and unsaturated samples. The principal difference between these cases is that no
simple functional relation fo(Ho) can be found for the latter. However, a number of experi-
mental measurements have been performed to determine u(HO) for various ferrites for val-
ues of HO below magnetic saturation and such information is available in graphical form in
the literature. Examination of these curves reveals that ferrite materials are the most non-
linear near ferromagnetic resonance and near zero bias field (Ref. 34). The dependence of
x' upon H0 at f = 6. 2 kMc for high density Mn Mg ferrite of low coercive force has been given

t

in an article by Weiss (Ref. 35) ( Here we use the simplified notation x' for Xll)

ox'
oH IHO-—O
(5. 57)
X'|g .o = -81
(o]

The properties which make a ferrite useful in a phase-shift amplifier can be

seen qualitatively by examining a typical B-H loop of these materials as shown in Fig. 5-10.
It is difficult to define a field at which it is fully saturated, because saturation in ferrites
occurs very gradually, However, a convenient measure of saturation is the field at which

B=.9 Bmax' This field can be labelled HS. An estimate of the maximum slope %% in



terms of these quantities is, referring to Fig. 5-10,

TR’
max C S

i /'Hc H H H, H H

Fig. 5-10. B-H loop and permeability for typical ferrite.

Materials which tend to saturate for small magnetic fields generally tend to be most useful
in ferrite phase-shift amplifiers. Such materials are generally referred to as square- loop
materials and it is known that Hc is some significant fraction of Hs' Thus, magnetic mater-
ial with a low saturation will generally be optimum for phase-shift amplification. The
material reported by Weiss has these desirable properties and is perhaps the best material
for our purpose which has been reported in the literature.

1

If it is assumed that 5%{)(— is approximately independent of position in the sample,
o}
tunability can be estimated from Eq. 5.38. For purposes of comparison with the saturated
samples, the tuning rate can be found from the tunability. This number will tend to be the

largest for the condition

[ 1HI% dv

v

s - (5. 59)
J 1HI%dv

v
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for which the tuning rate is given by:

df f .
0 _ _ o 9x
dH0 - 2 aHO
H =0 H =0
o o
= 350 Mc/Oe (5. 60)

The result (Eq. 5.60) appears significant when compared with the tunability of the
ferromagnetic resonance configuration and suggests that the unsaturated sample which com-
pletely fills the cavity tends to be optimum. However, it was shown that the transducer gain
varies inversely with sample volume, while the unsaturated sample must fill the cavity if the
large tuning rate is to be obtained. This tends to offset some of the apparent advantage en-
joyed by the larger tunability. For this reason a more meaningful comparison betwéen these
two configurations can be made on the basis of the parameter T' which has already been

defined:

T = LY (5. 61)

<] u £3(r) dv)z

It is of interest to compare the maximum value of T' for the material reported by

Weiss and for the configuration at ferromagnetic resonance. The signal field which tends to

maximize T' is that for which the integral

f _ulf(r)lzdv
v -v
c s

is a minimum. This integral is minimized for the condition

f(r)

1 inside the sample

0 outside the sample

and the minimum value for this condition is By Vg But since it has already been demonstra-
ted that T depends upon vy for both configurations, there is a vy for each for which T' is
maximized. Figure 5-11 illustrated T(VS) for both configurations. From these curves it is
clear that, for ferromagnetic resonance conf‘iguration, T' is maximum for Vo= Vo and that

while for the other configuration, T'is maximum for Vg = Ve
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350 Mc/Oe

atl. reported by Weiss

Ferromagnetic Resonance
| s

Ve

2.8 Mc/Oe

A 4

Fig. 5-11, Tunability vs. sample volume. Curves have no
physical significance to the right of Vo
and are not to scale.

Though computation of Vem is very difficult, an order of magnitude estimate is
possible, leading to only an order of magnitude estimate of T'. However, this provides an

adequate comparison since the estimate of T for the unsaturated case was based upon an

t
estimate of %— which is good to only an order of magnitude. It has been shown that, if

o
A > 10 5 Vs then the curve labelled 2g in Fig. 5-3 is the appropriate tuning curve. For VS

smaller than this value, ay is appropriate. Thus Vem = 10 5 Ve is an order of magnitude es-
timate, where v, is the empty cavity volume.

A similar estimate of maximum T' can be made for an unsaturated sample in an

optimum configuration, i.e., with the sample completely filling the cavity. Since the dimen-

=

sions of the ferrite filled cavity are reduced from the empty cavity values by the factor (ue) 2,

For the material reported by Weiss n = 1and € = 16 for which

v
~ _C
Vs £ 70

where v is the volume of an empty cavity.



102

The sample permeabilities at the signal frequency tend to be quite different for
the two cases. The ferromagnetic resonance configuration is magnetically saturated so Hg
=~ 1 for this case. However, for the Mn Mg material reported by Weiss pg = 70.

Using these estimates the T' for the two cases are given approximately by:

™ = 2.8
t /107%y
) c
10°
& for the ferromagnetic resonance
fy Ve _—
configuration
and
T = 350
£ s Ve
o] 70
350 .
& for the unsaturated case using the (5. 62)
£ JT
° ¢ material reported by Weiss.

Since these estimates are only good to an order of magnitude, it is impossible to
conclude that either is superior, even though the T value for the unsaturated material ex-
ceeds that near ferromagnetic resonance by more than two orders of magnitude. An experi-
mental investigation of these two cases reported in the next chapter shows which of these
configurations tends to be optimum for phase-shift amplification.

It has been shown that the threshold for a ferrite phase-shift amplifier is propor-

tional to the integral

[ wltl? dv

where f(r) is the signal field distribution. From this it was shown that the minimum thresh-
old tends to be proportional to sample volume assuming the signal field is large in the sample
and small outside. In this case, a small-sized sample is clearly optimum which suggests
that thin magnetic films might be successfully employed in phase-shift amplifiers. For this

reason, it is natural to study the tunability of thin films.
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5.7 Tunability of Thin- Film Samples

The tunability of bulk ferrite samples is determined by the dependence of the
permeability at some r-f frequency upon the magnetic field at some lower frequency. Recall
that optimum coupling occurs in ferrites when these two fields are physically orthogonal.
Thus it is natural, in investigating tunability of thin films, to consider the dependence of
r-f permeability in a thin film upon a low-frequency magnetic field which is orthogonal to the
permeability components. This relationship has been investigated on the basis of the free
energy in the sample and is reported in the literature (Ref. 36).

For frequericies below about one hundred megacycles thin films can be charac-
terized by the so called quasi-static theory. For a single domain with magnetic fields h1
and h2 applied simultaneously, the free energy of the sample is given by (Ref. 36)

M 2

W = Ksin® ¢ - h, — cos® cosy - h2 % sing cosy + LS sinzw

1“o 0 Ko

where M is the magnetization, K is the anisotropy constant, and both ¢ and ' are defined in

Fig. 5-12,

\
~
'easy' v

axis

Fig. 5-12. The schematic representation of a thin film (single domain)
illustrating the coordinate system and the
applied magnetic fields.

Clearly this function is minimized with respect to y at =0, and it can be minimized with

respect to ¢ by placing %}1 = 0. The result of this latter calculation gives:
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hy by !
sing = ' 1+ T cos® (5. 63)
k k

Zp.OK
where Hk =M

is the so-called anisotropy field.

This function is extremely useful for representing the response of the thin film to applied

fields:

B, = p.o(h1+Mcos¢)
(5. 64)
B, = o (h2+Msin 8)

The nonlinear coupling between h1 and h2 is potentially useful for phase-shift amplification

because the stored energy in the field h2 can be controlled by the field hl'

A convenient prototype for illustrating this phenomenon is shown in Fig. 5-13

(Ref. 37).

Magnetic film

h hl
2 7 .
7 11
~Z \m -
\ /7717 A7 7
L
iy /
Ly

Fig. 5-13. Schematic illustration of the use of a thin film
magnetic sample for phase- shift amplification.

In the small-signal approximation sing = ¢ and the coil inductance Lz will be approximately

independent of h,, though it is a very sensitive function of hl' The proper use of an element

2’
with this property in a phase-shift amplifier is shown in Fig. 5- 14.
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p L1 . Phase
um §

P > r"‘"' L2 § T Detector | Load
isig}

Fig. 5-14. Tllustration of the use of the thin film prototype
in a phase-shift amplifier.

The inductance L2 is incorporated in a resonant circuit at the pump frequency; the inductance
L1 is used to produce variations in L2 and can properly be called the signal circuit inductance.
The performance of this circuit can be predicted successfully if the tunability of L2 is known.

The most useful tunability is defined by:

(5. 65)

The inductance L2 can be approximated by the low-frequency model up to UHF
frequencies, due to the extremely small size of such a single-domain thin-film sample.

Using this approximation, the inductance L2 is given by:

>

2
L, = —
2 iy
MA 1
:LO 1+AH 5 (5. 66)

k 1 1

Y H,

k

where L0 =Ky Nk2 is the inductance of the air-core coil L2, Arn and A are, respectively,

the cross-sectional area of the material and coil, and k1 and k2 are given by:

h, = klil

hy = ky iy
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The tunability is given by

MA

m
2
2AH. 2 1+El—
K i

T = k (5. 67)

A M 1
1+ =
% (=)
1+ 5

L

which is maximum at i, = 0(i.e., h,= 0). Thus at i = 0 the tunability is given by:

MA_k
m 1
zAHk2
T = — A (5. 68)
1+ 1
AH

k

This quantity tends to be optimized for the smallest possible Hk and the largest Am/A. How-
ever, Hk is determined by the material composition and by the technique used to deposit the
film. Typically, Hk is not less than about 1 of 2 Oersteds. The cross-sectional area of the
film, relative to the total cross section of film and substrate, is determined largely by prac-
tical considerations of strength, but generally the tunability is optimized for the smallest
possible substrate.

Although it is not strictly a ferrite the material which has received greatest
study lately as a thin film and which has a low Hk ( 2 Oe) is permalloy of the approximate
composition Ni - 80 percent, Fe - 20 percent. It is vacuum-deposited in thin films on thin
glass substrates of the order of . 006" thick. A typical film will be in the order of 2000 to
10000 g thick and of the order of 1 cm wide. Further, for a sample cut to dimensions per-
haps 1/4" by 1/4", the thin film will tend to be a single magnetic domain. Such a sample
was used to prepare an inductor in the form of the prototype model. The inductance L2 was
measured vs. the current il for a coil L1 consisting of 40 turns. The results of this meas-

urement, made at 8 Mc, are shown in Fig. 5-15 (Ref. 37).
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Fig. 5-15. Plot of the variable inductance Lg vs, applied current iq
in Lq (40 turns) in sample prepared according to the
prototype model - Fig. 5-10.

The tunability of this circuit near i1 = 0 can be estimated from the slope of the curve Lz(i).

For an L1 consisting of 40 turns of wire wound close to the sample, the tunability is approxi-

mately:

1

The theoretical limits for tunability can be seen from a somewhat more sophisti-
cated model of the inductor than the static approximation. Smith (Ref. 36) has shown that
thin films experience ferromagnetic resonance in much the same way as bulk ferrites. For
this reason it can be shown (Ref. 52) that the small-signal equivalent circuit of the trans-

verse winding (i. e., Lz) of the thin-film configuration is as shown in Fig. 5-16:

)|
11
(@]
Q.
™o
o
Do

Fig. 5-16. Small-signal equivalent circuit for the transverse
winding labelled L2 in Fig. 5-13.
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The values of C, G and L2 have been determined in Ref. 52:

2

C - 2 (1+a)

Y 41er2>\2m

a

G = —/———mmm

k9 Aom

ks A

2 "2m
L, = ———— (5.170)

2 Hk+H1

where k2 = H2/ 12 , and A, is the maximum saturation flux linkage due to M. The resonant

2m

frequency is given by:

Wieg = Y /4n M(Hk+ Hl) (5.71)

where for permalloy films 47 M = 104 Gauss. Using this formula, the tunability is given by:

dw

res 1

1
= ——‘Z(Hk;H_l) (5.72)

independent of ¥ and M, This is the theoretical maximum tunability for any given resonant
frequency. For example, the tunability at 400 Mc is about . 25/0e. Notice that this is a rela-
tively large tunability compared to that observed for bulk ferrites and compared to the value
observed by Pohm.

In addition to the large tunability for this configuration there are also, unfortun-
ately, large sample losses for which the circuit Q tends to be very low. Pohm has shown
that the Q due to material losses is given by:

u)r(1+'oz)2

Q= e (5.73)
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For permalloy films @ = . 015, so that at 400 Mc:

Q =1

Thus, although the tunability of this configuration is relatively large, its low Q tends to
eliminate the possibility of using this configuration in a phase-shift amplifier. On the other
hand, if the pump frequency is well below ferromagnetic resonance, then the material losses
are less important and a higher circuit Q is possible. For example, ?ohm observed Q = 14
at 30 Mc for this configuration. In addition if the material loss parameter @ can be reduced
by an order of magnitude, then the Q at 400 Mc will be increased to roughly 10. Certain of
the techniques which were used to develop narrow linewidth bulk ferrites could, in principle,
be used to significantly improve the thin film Q. It will be shown in the next chapter that a
Q of 10 enables the construction of a phase-shift amplifier with a reasonable gain-bandwidth
product.

It has already been shown that various bulk ferrites can be meaningfully compared
on the basis of T'. However, the comparison of bulk ferrites to thin films must account for
the difference in optimum pump frequency. For this reason it is convenient to compare the
product f o T;nax where f b is the appropriate pump frequency. Table 5-2 has been construc-
ted for this purpose. It reveals the importance of the thin-film configuration for phase-shift
amplifiers. It will be shown in the next chapter that phase-shift amplifiers of reasonable
gain-bandwidth product can be built if the material @ can be improved by an order of magni-
tude. Q's comparable with those of bulk ferrite samples should be possible for single crys-
tal films grown on polished substrate. If this improvement in film Q proves possible, the

thin film will definitely be the optimum configuration for ferrite phase~shift amplifiers.
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Table 5-2 Comparison of Tunabilities

Configuration T hax £, Vs, min 1 T;nax £ T;nax
(Me) 1 (in?) (Mc/Oe, /i)
ol taperaisd | 0.035/0e ~ 10* 0.2 70 | 0. 07/0e, /in® 700
P ey | 28 x 10740 | = 10* [2x 107 | 1 |0 14/0e/i” | 1400
oy Bohrn) (observed | 1/ (120 0¢) 50 |107® 1| 8/0e/i’ 400
Thin film at 0. 25/0e 200 |107® 1 | 240/0e /i’ | =~ 10°
5.8 Summary

In this chapter the ferrite phase-shift amplifier was considered.

It was shown

that there is a field orientation at which maximum coupling and, correspondingly, maximum

phase-shift amplifier gain occurs.

For signal passbands centered at very low frequencies,

it was shown that the signal field should be oriented parallel to the biasing field and the pump

field should be transverse to that field. For this orientation a particularly convenient proto-

type amplifier configuration can be synthesized, which is conveniently represented by the

parameter which we called tunability.

be proportional to the parameter T' which is defined:

T!

T

([ u122() av) ?

It was further shown that the transducer gain tends to

where T is the tunability, f(r) the signal field distribution, and u the permeability component

at the signal frequency. The remainder of the chapter was devoted to a study of the depen-

dence of tunability upon material parameters.

The dependence of T upon the sample shape was investigated for a number of

basic prototype configurations.

bility, and tends to be proportional to the slope

o
oH
o}

Tunability depends upon material shape, size, and permea-

, where Ho is the biasing field and u is
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the appropriate permeability at the pump frequency. It was shown that, for bulk ferrite sam-
ples, this quantity tends to be largest near ferromagnetic resonance and near zero biasing
field. It was shown that tunability near ferromagnetic resonance is limited to v/ fo’ where ¥y
is the gyromagnetic ratio (y = 2. 8 Mc/Oe) and f0 is the pump frequency. This limitation can
be attributed to the fact that ferrites are most dispersive near ferromagnetic resonance, and
is fundamental to operation near that operating condition. On the other hand, no fundamental
restriction can be determined for the ferrites near zero bias because no analytic expression
for w(h) is known. However, it was shown that the optimum material for operation near
zero bias is that with a square B-H curve for which g—% is large. The largest reported
value for this slope in the literature was given by Weiss: %1% =~ ,07/Oe. Using this value it

was shown that the tunability at x-band is limited to about

350
Tmax = fo /0e

In spite of the disparity between the tunabilities for zero bias and for ferromagnetic reson-
ance, it was shown that on the basis of the parameter T' neither is superior by an order of
magnitude.

Perhaps the most promising configuration is the thin-film permalloy variable in-
ductor, whose tunability T' is nearly two orders of magnitude larger than that for the best
bulk ferrites. The most significant limitation on the thin-film configuration is the extremely
low Q at useful pump frequencies. However it is expected that the Q of the thin film induec-
tors will be improved by techniques which led to improved Q in bulk ferrites. The develop-
ment of such an inductor will considerably enhance the potential of ferrite phase-shift ampli-
fiers.

This chapter has reported an investigation of the limitations which are imposed
upon ferrite phase-shift amplifiers by material. In the next chapter the limitations of sev-

eral circuit configurations on amplifier performance are considered.



CHAPTER 6

PRACTICAL CONFIGURATIONS FOR THE FERRITE
PHASE-SHIFT AMPLIFIER

6. 1 Introduction

This chapter is devoted to a study of the circuit properties and limitations of fer-
rite phase-shift amplifiers based upon the physical properties of available fnaterials. The
dependent variables appropriate to such circuits are transducer gain, bandwidth and pump
power. However, because the transducer gain is proportional to pump power, a more signi-
ficant dependent variable is defined which we call threshold. The threshold is that pump
power for which the transducer gain is unity. Thus:

Gy = 'PL

th

where Gt is the transducer gain and Pth the threshold. The threshold depends strictly upon
circuit configuration and material parameters and for that reason is directly comparable
between various configurations. It is additionally useful for deriving optimum configurations
and for developing design curves for them. This is done in the present chapter for several
configurations, taking full account of the limitations which have been found for the tunabili-
ties in the previous chapter. A comparison is made between the various configurations on
the basis of their optimum performance. A discussioﬂ of certain practical considerations
such as noise figure, etc. is deferred until the final chapter. In Sections 6.2 and 6. 3 config-
urations using magnetically unsaturated bulk ferrite samples are considered. In Sections
6.4, 6.5, and 6. 6 configurations using bulk ferrite samples biased near ferromagnetic reson-
ance are discussed. In Section 6.7 the thin-film,. variable-inductor configuration is consid-

ered.

112
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In Section 5. 3 the transducer gain for a ferrite phase-shift amplifier was found:

2t P (QQT)Z L
G, = P = (6. 1)
Rsf plir)1? dv
space

where:
¢ = detection efficiency
P_ = pump power

Qﬂ = loaded Q of the pump frequency filter (Fig. 5-1)

T = tunability of the pump frequency filter

L & = inductance of the signal frequency coil

Rs = signal frequency source resistance

f(r) = signal frequency magnetic field distribution

For reasons which will become clear, it is useful to rewrite Eq. 6. 1 in terms of
a slightly different set of independent variables. For example, it can be seen with reference
to Fig. 5-2 that the input bandwidth can be written:

R

S
By =T

provided the Q of the signal-frequency coil is sufficiently large. The significance of making
this substitution into Eq. 6. 1 will be clear when it is demonstrated that the ferrite phase- shift
amplifiers tend to be input-bandwidth limited. In addition, it can be seen from the definitions

for Q,ﬂ and T that a further substitution can be made in Eq. 6. 1:

w
o 1

QT = 5= = —

g Bp w, dh

where w, = filter resonant frequency and ﬁp = pump bandwidth (Section 2. 1). Thus:

dw
_ 0

1
QT = 5~
{ deh
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If these substitutions are made in Eq. 6. 1, the threshold power for a ferrite phase- shift

amplifier can be written:

B Sl 6.2

th dw 2
2t =2
dh

This expression is extremely important to the study of the practical amplifier configurations

discussed in this chapter. It will become clear in this study that, because the ferrite ampli-
fier tends to be input-bandwidth limited, the threshold per unit input bandwidth (i. e. , Pth/ Bi)
is an important parameter for comparing the various configurations.

In many of the configurations discussed in this chapter it will be seen that the sig-
nal is not coupled efﬁciently‘into the sample. This circumstance is manifested by a large

value for the integral:
f wlir)1? av

The effect of this poor coupling is a large threshold for the configuration. Note that this inte-
gral is influenced by the design of the signal-frequency circuit, and is nearly independent of

the sample electrical properties. The optimum design of the signal circuit is that for which

1(r) 1  inside the sample

0 outside the sample (6. 3)

For this optimum design, the integral reduces to:

f pli@)1? av = Vg (6. 4)

In the optimization of the various configurations discussed in this chapter, it is
desirable to consider optimization with respect to the design of this circuit. For this reason
the substitution Eq. 6.4 will be used in computing each optimum threshold. On the other hand,
it should be noted that the field distribution Eq. 6. 3 might be incompatible with certain con-

figurations.
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6.2 The Reggia Tunable Filter Configuration

The first configuration to be considered uses the tunable, bandpass filter pro-
posed by Reggia (Ref. 39). Physically, the filter consists of a rectangular, ferrite slab
which is placed in a waveguide and whose faces normal to the waveguide axis are silvered
(see Fig. 6-1). The transmission characteristic of this structure is that of a bandpass filter
with an insertion loss of approximately 1 db and a bandwidth of approximately 100 Mc (see
Fig. 6.2). The silvered faces present reactive shunts to the dominant mode and tend to tune
each other out at frequency £ 1 of Fig. 6.2. The frequency (f 1) at which this occurs is the fil-
ter resonant frequency, and depends upon the electrical length of the material. However,
the electrical length depends upon material parameters which can be varied by means of an
applied magnetic field Ho' The equivalent circuit for the filter is as shown in Fig. 6.2, in
which the variable resonant frequency is modelled by a variable inductance. It is clear,
through reference to Fig. 2-1 that this filter is applicable to a phase-shift amplifier circuit.

A block diagram of the amplifier is shown in Fig. 6-3.

-~

to phase
detector

in

Fig. 6-1. Reggia tunable bandpass filter for use as
phase-shift amplifier.
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Fig. 6-2. Transmission characteristics and equivalent circuit
for Reggia tunable filter.
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Fig. 6-3. Block diagram of ferrite phase-shift amplifier
which uses Reggia tunable filter.

One of the primary purposes of this chapter is to find the optimum design for each
configuration which includes, of course, finding the optimum with respect to material parame-
ters. For this reason it is logical to determine the dependence of the threshold upon materi-
al parameters. The study of the dependence of Pth on the choice of material and upon the
sample shape and size cannot be restricted to a single variable in Eq. 6. 1. Rather each
must be studied individually and careful attention must be paid to possible interdependence

between them. It is convenient to refer to Fig. 6-4 for the definitions of the appropriate

dimensional variables.
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Fig. 6-4. Illustration of sample dimensional parameters
for Reggia tunable filter.

6. 2. 1 Dependence of Filter Properties on Sample Parameters. The variations
of the resonant frequency fo and pump bandwidth Bp’ with resbect to variations in sample di-
mension, can be measured directly by means of a swept microwave oscillator and a high-Q,
reaction-type wavemeter. The results of these measurements for low-density Mg Mn ferrite

are shown in Figs. 6-5 and 6-6, respectively.

Silvered

.52

.48 |-
£ inches

.46

.44 = MnMg ferrite

.42 | | i 1
9.0 9.5 10. 0 10. 5

£ (kMc)

o

Fig. 6-5. Dependence of the center frequency of the Reggia filter
upon length and width (see Ref. 39).
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Fig. 6-6. Dependence of filter bandwidth (matched load) upon
sample width for fixed length and height.

The measurements were made in a reduced-height waveguide having a height of 0. 200", Note
that the resonant frequency fO varies inversely with £. This tends to support the explanation
that the resonant frequency is that for which the reactive shunts tend to tune each other out.
The dependence of the filter bandwidth upon width, at a fixed length, is shown in Fig. 6-6.
These measurements were made with a swept microwave oscillator, a high-Q
(= 5000) reaction-type wavemeter and a precision variable attenuator. The attenuator and
frequency meter were adjusted to locate the frequencies at which the transmission of the fil-
ter to a matched detector is down 3 db. The precision of the measurements are of the order
of the wavemeter bandwidth (i. e., = 2 Mc). In each case, the samples were cut to a toler-
ance of 0. 001" and were prepared with silver faces using Hanovia silver paste. An explana-
tion for the shape of the curve in Fig. 6-6 can be found by noting that Bp is determined by
losses which occur at two distinct places in this configuration, i, e., in the material and in
the finite conductance of the silver coatings. For very thin samples the losses in the mater-
ial, which are proportional to sample volume, are negligible relative to the losses in the sil-
ver faces. As the sample thickness increases from a very small value, the width of the sil-

ver faces also increases and the equivalent shunt conductance increases. This is the reason
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that Bp decreases with increasing w in the region 0. 100" < w < 0. 175". However, for
w > 0.200" the losses in the sample tend to dominate. They tend to increase with increasing
thickness, with the result that Bp increases.

Additional measurements reveal other interesting properties of Bp, It was ob-
served that, for materials other than the Mn Mg reported in Fig. 6-6, Bp(w) differs from the
curve in Fig. 6-6 only for larger w. This can be explained also by noting that sample losses
depend upon the nature of material. Thus 8 p(w) will be the same for all materials provided
w is small enough that the losses in the silver faces tend to dominate.

From a series of measurements it was 1ound that Bp is minimum in the region
0.200 < w < 0. 225, depending upon material type and the quality of the silver coating. If a
good quality silver paint is used, the minimum bandwidth is approximately 60 Mc and the in-
sertion loss is of the order of 1to 3 db.

The tuning rate of the filter, dwo/dh, is rather difficult to define because of the
nonuniformity of the signal field in the sample. * Perhaps the most useful point in the sample
at which to measure h is its geometrical center. At this point in the sample the field has its
smallest value. This field can be computed from the magnitude of a uniform applied external
field by means of a table of approximate demagnetizing factors published by the U. S. Depart-
ment of Commerce (Ref. 40). Measurement of dwo/dh at the center has the additional advan-
tage that the value observed when the sample is placed in a uniform external field is larger
than dw o/ dh > where ha is the applied uniform field. For this reason, the former value can
be used to compute the upper bound for dwo/dh, which is useful for estimating optimum Pth‘

There is another difficulty in measuring dwo/ dh, which results from the difficulty
of determining 6w0 for the Reggia filter when éwo << Bp. This is the normal circumstance
for this configuration. ﬁowever, Owo produces a phase shift of ¢ which can be measured

very precisely by means of the bridge circuit shown in Fig. 6-7.

*Recall that h = amplitude of signal field in the sample (denoted by H, in Fig. 6-1), thus
6h = 6H .
0
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x-band
Source

The measurement procedure is as follows:

This guantity was measured vs. sample width for a variety of common ferrites; the results

Incremental Probe
Gaussmeter ‘\o- H,
\____/
Variable Experimental
Attenuator Reggia
Tunable Filter
-3db
Precisi Precision
reason Variable
4 Variable
Attenuator Phase
Shifter

-3db

Fig. 6-7. Bridge circuit used to measure incremental
phase shift produced by 6H0.

1) The bridge is balanced for zero VDC at f

source ~

2) The applied field H0 is changed by 6Ho and GHO is recorded.

3) The precision phase-shifter and attenuator are adjusted to rebalance bridge.

4) ¢ is read from phase-shifter and recorded.

5) 6HO inside sample is computed from Ho by means of approximate demagnetiz-

ing factor.

The desired quantity dwo/ dh center is given by:

dw
0

dhcenter

are plotted in Fig. 6-8.

_p o G
P dl'lcenter

vDC

A
[ N

(6. 5)
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W inches

Fig. 6-8. Plot of tuning rate vs. width w for 3 common ferrites.

A similar measurement was made of dwo/dh vs. sample length; the results are

shown in Fig. 6-9.

B dwo
< (Mc/Oe)
. 400"
i w = . 140"
Mn Mg Ferrite
-7 f = 9800 Mc
1 | 1 |
0.5 1.0

? inches

Fig. 6-9. Dependence of tuning rate upon sample length for Mn Mg
ferrite at 9800 Mec.

This measurement was made using the bridge circuit of Fig. 6-7 and the previously described
measurement procedure. Observe that the tuning rate tends to be proportional to length.

An explanation of the data reported in Fig. 6-9 can be found from our explanation
of the phenomenonkof resonance in the Reggia tunable filter. The filter is resonant at the fre-

quency at which the susceptance of one shunt reflected to the location of the second short
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tends to resonate with the latter. That is, the two obstacles tend to tune each other out at

some frequency. The resonant electrical length for this effect ¢ is given by:

9 = v ! (6. 6)

where 71 is the effective propagation coefficient for the section of the waveguide. But it has

already been shown that:

Lo _, @
dh p dh
d'y1
=Bp£_d—}—1— (6.7)

For samples which are sufficiently thin, the bandwidth is determined by the sample width and
is independent of length. The propagation constant depends upon material and is nearly
independent of length, Thus, our explanation of the resonance phenomenon for the Reggia
filter has correctly predicted that the tuning is proportional to sample length. According to
the theory developed in the previous chapter, Mn Mg material has the largest dwo/dh because
it has the largest dx/0h. Measurement of this material shows that g—i = 0,004/0e. How-
ever, it has been reported by Weiss (Ref. 35) that a Mn Mg ferrite which has a low coercive
force has been developed for which:

3% = 01/0e

Assuming the explanation of the dependence of dwo/ dh upon material parameters is correct,
the tuning rate for this material is 15 times as large as the measured value for the low-
density Mn Mg ferrite. This material was not available for the measurements reported in
Fig. 6-8 so no check on this prediction has been made. However, the calculation of the opti-
mum ferrite phase-shift amplifier assumes that this value is correct; should this configura-
tion prove to be promising, experimental verification would be warranted.

6.2,.2 Optirhum Threshold. Using the information which we have gained about

the dependence of the factors of Pth upon the sample parameters, it should be possible to

find the optimum design by finding the minimum value for the quantity
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Py B [ ul@)1? au

A dw 2
28\
Pth Bz“ovs
1 5 P 058 (6. 8)

Bi - d(.uo2
280 T

The circuit is optimized by the same set of conditions which minimize the right-hand side of

the inequality. The proper material for this minimum was shown to be the Mn Mg ferrite
dw
reported by Weiss (Ref. 35) because —2 s largest for that material. It has been shown

dh
that E‘;‘l& is approximately proportional to sample length and, of course, A is proportional
to length. Assuming, then, that Bp is independent of length, the threshold is minimized by
the longest possible sample length. However, the length is determined by the desired pump
frequency and sample width. Thus, there is an optimum sample width for which Pth is min-

imized. Although the exact form of Bp(w) is not known, it is possible to approximate Bp near

its minimum by the relation:

Bp ~ T (6.9)
dwo
Then, because both A and an are proportional to w, the threshold is proportional to:
2y2
P~ (b+w”) (6. 10)
th 3
w
which is minimized by the condition:
w = Vb (6. 11)

But this is the same width which minimizes Bp. Thus, the optimum width is that for which
the pump bandwidth is minimized. In summary, it has been found that the optimum phase-

shift amplifier uses the Mn Mg ferrite reported by Weiss of the dimensions:
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x = height of waveguide
¢ = greatest length for desired f0
W =

width which minimizes Bp.

The optimum threshold for the Reggia tunable filter configuration is found by sub-

stituting these values into the expression

2
Pth m _ Bp Hs Vs (6. 12)

i dwo 2
(=)

But for minimum Bp, w is approximately 0. 200", at which Bp = 50 Mc and £ for resonance at

9050 Mc = 0. 500". The initial permeability g for the low density Mn Mg material reported

by Weiss is:
By = 100

Then, assuming the maximum detection efficiency (i.e., { = %) the threshold is given by:
Mo 990 watts/Mc (6. 13)

The same calculation was made for the low-coercive-force Mn Mg material reported by

Weiss. The result is approximately
—=—= = 1watt/Mc

It was shown in the preceding chapter that if either the pump or signal circuit
bandwidth is much larger than the other, then the smaller tends to limit the overall circuit
bandwidth. The phase-shift amplifier which uses the Reggia tunable filter is clearly input-
bandwidth limited for all pump powers below the kilowatt range. In addition, the actual

threshold per unit bandwidth is greater than Pth m/Bi because
b

S i@ av >> p_v (6. 14)
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for any physically realizable configuration. Nevertheless P th. m is a useful number for es-

9,

timating the performance which can be expected from ferrite phase-shift amplifiers of this

type.

6.2.3 An Experimental Model. As a comparison with this optimum circuit, an
experimental phase-shift amplifier was constructed consisting of a ferrite block in a reduced-
height waveguide. The signal-frequency coil was wound around a ferrite core and mounted
coaxial with the sample outside the waveguide as shown in Fig. 6-1. The sample was a rec-

tangular block of low-density Mn Mg ferrite of dimensions:

£ = 0,400"
x = 0.200" = height of waveguide also
w = 0,175"
fo = 9350 Mc
’Bp = 120 Mc

The measured threshold input bandwidth relation was:

Pth = 30 watts/KC Bi(KC)
for which
P P (Mn Mg)
_th 150 _thm — "~ (6. 15)
Bi Bi

Although this circuit is not optimum with respect to sample dimensions, this is not the prin-
cipal reason for the large disparity between Pth and Pth, m’ The latter comes largely from
the fact that the magnetic circuit of the signal frequency circuit is not optimum and that a
large magnetic energy must be stored at the signal frequency to produce sufficient signal

field in the sample. This large energy is responsible for reducing the input circuit bandwidth.
A redesign of the signal circuit is necessary before the actual threshold per unit bandwidth is
of the order of Pth, m/ Bi' However, even if such a design could be developed, and Pth, m
could be approached, the resulting phase-shift amplifier would require such large pump pow-

ers for reasonable bandwidth that this configuration must be considered impractical.
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6. 3- Distributed Ferrite Phase-Shift Amplifier

It was shown in Chapter 2 that the optimum double sideband up- converter is a
phase modulator, the double sideband amplifier being given the name phase-shift amplifier
for this reason. This is also the reason that the essential function of ferrites in phase- shift
amplifiers is to effect phase modulation. Thus it is natural to search for the ferrite config-
uration which tends to produce the largest phase shift for a given applied field. Perhaps the
most prominent of these configurations is the one developed by Reggia and Spencer (Ref. 41).
It is a distributed circuit in which the propagation coefficient is varied by means of an ap-
plied field and is an interesting contrast to the configuration of the preceding section.

Although it can be argued properly that the Reggia filter of the previous section
is, in reality, a distributed circuit, it is clear that the effect of the ferrite block can be
represented by a lumped resonﬁnt circuit at some reference plane. However, no such
lumped-parameter equivalent circuit is possible for the Reggia-Spencer phase-shifter. The
prototype model is shown in Fig. 6- 10 and consists of a section of waveguide which contains
a cylindrical ferrite rod located coaxial with the waveguide. The ends are tapered to facili-
tate impedance matching. A coil is wound around the guide in such a way that it can produce
an axial magnetic field along the rod. The phase shift across the section is varied by means

of this applied field due to its control over the material parameters.

1
GILSAII:

1,

n

Ferrite rod

Fig. 6-10. Prototype model of distributed phase modulator useful
for phase-shift amplification.
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6. 3. 1 Threshold Relation for the Reggia-Spencer Configuration. If pump power

is propagated through this section to a matched phase detector, and if the signal power is
supplied to the coil, then the configuration is a phase-shift amplifier. However, because the
structure is nonresonant, the concept of tunability and the threshold relation derived in Sec-
tion 6. 1 are not applicable for the amplifiei"s description. On the other hand, it is meaning-
ful to compute the quantity —g% (where ¢ = electrical length of the section) which can properly
>be called the phase sensitivity of the section. The phase sensitivity is important for the
determination of a convenient threshold formula for this configuration. For this purpose it

can be shown that the transducer gain is given by:

e (%) p
C(dh) p (6. 16)

G = —_—
Bi f pli(r)1? dv

t

where all of the symbols have their usual meaning. From this the threshold can be deter-

mined:

B, [ wlt(r)1® av

2
2t ()

P

th (6. 17)

Thus the significance of the phase sensitivity parameter has been established.

Optimization of the threshold with respect to material parameters requires a
knowledge of the dependence of the phase sensitivity upon these parameters. However, be-
cause of the nonuniformity of the Reggia-Spencer structure along its axis, it is difficult to
determine the functional relation between phase sensitivity and material parameters. On the
other hand, this functional relation can be found for sections of infinite uniform structure
whose cross section is the same as the Reggia-Spencer cross section at the center. 1If the
ends of our prototype model are suitably tapered, then its phase sensitivity is approximately
the same as for an equal length of the infinite uniform structure. - For this reason it is desir-

dg ‘

able to compute ah for the infinite structure.

6. 3. 2 Determining Phase Sensitivity. The phase sensitivity for the infinite struc-

ture can be found from the relation:
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@ _, 48

dh dh

where § is the complex propagation constant which can easily be found in the following way.
Let E 1 and ﬁl be the fvields in the uniform waveguide for the value of the applied field h;. *
Similarly, let ;:11 and Bl be the permeability and propagation constant for that field. Further,
quantities fz, TIZ, TLZ and Bz can be associated with an applied field h2. It is usaeEf:ul to start

with the following quadratic relation which contains Bl and [32 explicitly (where a—zl = BiEi

ete. ):

. H x| * _i(a. - T o«H KLk
Vi (Egy xHy*+ By x Hop) - 1(Bg- By) EgyxHy*+ Ep* xHy,

i " * . 5 . H - B . Y . H * =
+iw H1 (u.2 H2) H2 (ul Hl) 0 (6. 18)
Here the subscript t refers to the components transverse to the waveguide axis. The para-
meters 32 and Bl can be expressed in known quantities if this quadratic relation is integrated
over a normal cross section. Using Gauss' two-dimensional theorem, this integration can

be written:

w X m ok . _i(p - T T X, F * )
fL Eo xH *+E;*xHy - n dL-i(, Bl)[s (Eg xHy*+E *xHy) - nds
g

i v * = | u . = . T * -
+ lwé Hy "+ (g Hy) -Hy o (kg HY™ ds = 0 (6. 19)
m

where Sg is the waveguide cross section and Sm is the cross section of the material. L is
the curve formed by the intersection of Sg with a plane cross section of the waveguide. The
first term is zero due to the boundary conditions at the waveguide wall. Since for our appli-
cations only small changes in the applied field will occur, it is of interest to consider the
above equation for the condition h2 = h1 + O0h. In this case ;=12 = [.=l.1+ GTL, ,82 = Bl + 68,

Ez =E1 + OE, ﬁz =ﬁ1 + 0H for which the above equation can be written, correct to first

order, in the form

*At the signal frequency.
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: = = . = = = =k
2i0BRe [ EyxHy* ndS = iw [ H ¥ py- Hy- Hy (- H)' ds

58 = % m (6. 20)
The special case of interest here is h1 =0, for which the permeability is a scalar and is

nearly real for low-loss ferrites. The above expression then reduces to:

' 2
, fs ox' |H|* ds

Z 2
0 S/ IH, 1" ds
S
g

where Z0 is the wave impedance of the fields Elt’ Hlt’ and x' is the real part of the diagonal

component of the susceptibility tensor. * The change in the propagation constant is real, which

means that.varying the applied magnetic field introduces a phase shift across a length £ of

0¢ = £6B. The phase sensitivity %— is given by the relation:

ox' 2
f a—h—lHltI ds
aw L9ty Sy
& - 37 - (6.21)
0 [ IH 1" ds

S
g

which, when far above cutoff for the mode El’ H, reduces to:

é h lHltl ds

d¢ . 274 m

=T . (6. 22)
m f IHltl ds

S

g

*Here we use the simplified notation for this component.
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Assuming the signal field 6h is uniform throughout the sample, and that the sample is located

where the fields are largest, then the above reduces even further to:

dg . 7L ox (6. 23)

where it was assumed that the fields are confined largely to the material. Observe that the
phase sensitivity depends upon the diagonal component of susceptibility but is independent of
the off-diagonal component to first order. Thét is, \the phase-shift property is independent
of the nonreciprocal nature of ferrites. This same effect was observed independently by
Weiss (Ref. 35) in a phenomenological theory of the operation of the Reggia-Spencer phase-
shifter.

The phase shift per unit length is the parameter which best characterizes a par-
ticular material and sample design. This quaqtity is largest under the condition for which
Eq. 6.23 is valid. Using the largest published value for % (Mn Mg ferrite reported by

Weiss) the maximum phase sensitivity per unit length is given by:

1.d¢ -1
7 dh =X onh
max max
~ %il (6. 24)
m

where Am is the wavelength in the material. For most Mn Mg ferrites, e = 16 and u = 1, so

A =—> =0.7cm = 0.3 in. Thus
m m
1 dg _
I E =11 rad/Oe
max
= 60°/0e (6. 25)

This value compares well with the largest observed value (20°/inch Oe) (Ref. 41).
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6. 3.3 Dependence of Phase Sensitivity on Sample Parameters. The measure-

ments of Reggia and Spencer tend to support Eq. 6.22 and the validity of the assumption lead-

ing to Eq. 6.23. The quantity which we have called phase sensitivity

dé
dh

is approximately proportional to length for rods of a fixed diameter and of a given material.

The phase sensitivity near h=0 is plotted in Fig. 6-11 from the data of Reggia and Spencer.

20 |-

d¢

a5, (deg/Oe)
15 |
10 ' f = 9100 Mc
5 - rod diameter = . 275"

ferramic R-1
1 1 ] 1 1 1

1 2 3 4 5 6 £ inches

Fig. 6-11. Phase sensitivity vs. sample length.

Equation 6. 22 predicts that the phase sensitivity also depends upon the cross-
sectional area of the rod relative to the cross-sectional area of the waveguide. If the field

H1 were uniformly distributed across Sg, then formula 6. 22 would reduce to:

However, Reggia and Spencer have shown that the fields tend to be concentrated in the ferrite,

so that the actual ratio of the integrals exceeds Sm/sg' Figure 6- 12 illustrates the depend-

ence of phase sensitivity upon the ratio of the areas, Sm/Sg. Notice that the curve levels vout for
Sm/ Sg 2> 0.20. This can be explained by observing that the fields are not uniformly distribu-
ted throughout the waveguide cross section but tend to be largest in the material. This tend-

ency increases as Sm/ Sg increases until at some value of this ratio:
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f IH,I? dv
Sm 1
[ e
IH, ¢ dv
s 1
g

15 F
dg
& (deg/Oe)
10 0 = 4,00"
f = 9100 Mc
Ferramic R-1
5 -
Sm/sg
| 1 1

.02 .04 .06 .08 .10 .12 .14 .16 .18 .20

Fig. 6-12. Phase sensitivity vs. the ratio of the cross-sectional areas
of material and waveguide.

In the experiments of Reggia and Spencer this effect occurs for Sm/Sg =0.20. An experi-
mental Reggia and Spencer phase-shifter was build and tested which consists of a rod whose
cross-sectional area Sm =0. 18 Sg. Thus the apprbximate relation (6; 23) is valid for this
experimental circuit.

In addition to the dependence upon length and cross-sectional area, and phase
sensitivity of a Reggia-Spencer phase-shifter depends upon frequency. According to Eq.
6. 23 %% is proportional to frequency. This result tends to be supported experimentally by
Reggia and Spencer.

6. 3.4 Experimental Measurement of Phase Sensitivity. The validity of the ex-

pression (6. 23) for phase sensitivity was tested for the experimental Reggia-Spencer phase-
shifter. This device consists of an 8'' ferrite rod of 0. 275" diameter which is placed along

the axis of a section of waveguide. A coil was wound around the waveguide so as to produce
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an axially-directed, applied magnetic field h. The rod is tapered at both ends for impedance-

matching purposes, which tends to make the section resemble electrically a section of the

infinitely-long prototype model. The rod material was manganese-magnesium ferrite for

1
which % =~ 0.004/0e. The permittivity of the material is high (= 16) and the permea-
h=0 A
bility is nearly unity, so the wavelength in the material will be of the order of Am =] s;zlace .

which at 10 kMc is about 0. 75 cm. Using these values, the phase-shift sensitivity was com-

puted:

d¢ [ 207
Fiy ~<——0.75> 0. 004/0e

1R

0. 4 rad/Oe (6.27)

The measured value was 0.25 rad/Oe, in close agreement with our prediction, considering
the rather crude approximations which were made.

6.3.5 Optimum Threshold for the Reggia-Spencer Configuration. It is possible

to use the information which has just been gained about the dependence of phase sensitivity

upon material parameters to estimate the optimum threshold P th. m
i

P L. v
hem .88 (6. 28)
i 2 ¢ d¢
dh
In this expression the integral
f p 15(r) 12 dv

has been replaced by its minimum value, which is appropriate for determining the optimum

threshold.

The threshold can be optimized with respect to sample dimensions by noting that

The numerator of (6. 28) is smallest for the smallest Sm but the denominator is minimized

dg

for the largest an which also depends upon Sm. Examination of Fig. 6- 13 reveals that the

threshold is minimized for Sm/sg =0.2.
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Since the threshold also tends to be inversely proportional to length, it might
appear that the optimum threshold occurs for infinite length. However, there is another
effect which influences this conclusion which has been neglected to this point. The sideband
power produced by the phase modulator is attenuated by the losses in the material. For a
sample of length ¢ the attenuation is l_zaﬂ where @ is the attenuation constant of the guide.

200 -1

For this reason the threshold power is proportional to e £ This function is minimized

for length:
1
m 2a

4.3

?
where Iﬁ is the insertion loss per unit length. The optimum length for this configuration is
lm, and the optimum cross-sectional area is 0. 20 Sg' The insertion loss of the experimen-
tal phase-shifter is about 0. 2 db, for which the optimum length is about 20 in. Using these

values, the threshold for the optimum configuration is given by:

1
P e 0.2S8 )¢
thym _ “s( g) (6. 29)

Bl —dg 2
dh

For the Mn Mg ferrite reported by Weiss %;ﬂ 20" = 20 rad/Oe, and u = 100, yielding
Pth, m
———E’——— = 1, 5 watts/Mc (6. 30)
i
For the Mn Mg ferrite used in the experimental amplifier %% =~ 1rad/Oe, and Ky =~ 50,
20”
yielding
Pt
5 - 6'70 watts/Mc (6.31)

1

6. 3. 6 Experimental Reggia-Spencer Amplifier. An experimental amplifier was

constructed using the previously constructed experimental Reggia-Spencer phase- shifter.

The threshold power was 200 mw and the input bandwidth was 0. 4 ke. Thus:
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an axially-directed, applied magnetic field h. The rod is tapered at both ends for impedance-

matching purposes, which tends to make the section resemble electrically a section of the

infinitely-long prototype model. The rod material was manganese-magnesium ferrite for

]
which %% = 0.004/0Oe. The permittivity of the material is high (~ 16) and the permea-
h=0

A
bility is nearly unity, so the wavelength in the material will be of the order of hm ~ _Space

4 )
which at 10 kMc is about 0. 75 cm. Using these values, the phase-shift sensitivity was com-

puted:

dg [ 207
ah —<0' 75) 0. 004/0¢
=~ 0.4 rad/Oe (6.27)

The measured value was 0.25 rad/Oe, in close agreement with our prediction, considering
the rather crude approximations which were made.

6. 3.5 Optimum Threshold for the Reggia-Spencer Configuration. It is possible

to use the information which has just been gained about the dependence of phase sensitivity

upon material parameters to estimate the optimum threshold Pth m
i

tg’m e (6. 28)
i 2 ¢ ds
dh
In this expression the integral
f w li(r) 12 dv

has been replaced by its minimum value, which is appropriate for determining the optimum
threshold.

The threshold can be optimized with respect to sample dimensions by noting that

The numerator of (6. 28) is smallest for the smallest Sm but the denominator is minimized

dg

for the largest b which also depends upon Sm. Examination of Fig. 6-13 reveals that the

threshold is minimized for Sm/Sg =0, 2,



134

Since the threshold also tends to be inversely proportional to length, it might
appear that the optimum threshold occurs for infinite length. However, there is another
effect which influences this conclusion which has been neglected to this point. The sideband
power produced by the phase modulator is attenuated by the losses in the material. For a
sample of length £ the attenuation is ﬂ_zaﬁ where ¢ is the attenuation constant of the guide.

200 -1

For this reason the threshold power is proportional to e 4 This function is minimized

for length:

QmZZ—a-

4,3

I
where 'I!Z is the insertion loss per unit length. The optimum length for this configuration is
lm, and the optimum cross-sectional area is 0. 20 Sg. The insertion loss of the experimen-
tal phase-shifter is about 0. 2 db, for which the optimum length is about 20 in. Using these
values, the threshold for the optimum configuration is given by:

1
P 0.28 )¢
thym _ € “s( g) (6. 29)

Bi <—% >2
dh

For the Mn Mg ferrite reported by Weiss —g%—‘ =~ 20 rad/Oe, and p = 100, yielding
£=20"
Pth, m
—E’— = 1. 5 watts/Mc (6. 30)
i
For the Mn Mg ferrite used in the experimental amplifier % =~ 1rad/Oe, and g ~ 50,
20”
yielding
Pth
5 - 670 watts/Mc (6.31)

6. 3. 6 Experimental Reggia-Spencer Amplifier. An experimental amplifier was

constructed using the previously constructed experimental Reggia-Spencer phase-shifter.

The threshold power was 200 mw and the input bandwidth was 0. 4 ke. Thus:



135

—— = 2.5 watts/ke (6.32)

It is interesting to note that even though the sample geometry is not very close to optimum,
the threshold per unit bandwidth is only about 4 times as large as its minimum computed
value. This configuration approaches the optimum much more closely than the previous con-
figurations primarily because the signal-frequency energy tends to be coupled more com-
pletely into the sample.

6.3.7 Comparison of Configurations of Sections 6. 2 and 6. 3. Another interest-

ing comparison between this and the previous configuration is that the threshold of the former
is about 3 orders of magnitude smaller than the latter. For an explanation of this result, it

is convenient to compare the phase sensitivity for each. For the Reggia-Spencer circuit

as _
- 0.62/0e
For the Reggia tunable filter we measured:
o _ 1 %o
dh dh
Bp
= Oa 04/0e

Perhaps an even more revealing comparison can be made on the basis of phase sensitivity

per unit length:

(1) % %?};— = 0.03 for the Reggia-Spencer circuit

(6.33)

@ § 9 - 0.08 for the Reggia tunable filter
This comparison suggests that the large threshold computed for the Reggia configuration of
Section 6. 2 is the result of itg non-optimum sample length. It should be recalled that the
sample length was chosen £ = 0. 500" for the desired center frequency. However, it is clear

that this is not the optimum length for the configuration.
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6.3.8 The Tuned Reggia-Spencer Configuration. In this section it will be shown

that the sensitivity of this circuit can be improved by reducing the excess pump bandwidth.
The pump bandwidth can be reduced by placing reactances at either end of the Reggia-Spen-
cer phase-shifter, thus making a tuned circuit. Note that this resonant structure is com-
pletely equivalent to the éonﬁguration discussed in Section 6. 2. An equivalent circuit for
the resulting structure is shown in Fig. 6-13, where #(h) is the electrical length of the sec-
tion which is a function of the applied field h. It will be convenient for analysis purposes to
assume B1 = B2' Relatively little useful information is lost in this assumption. The effect
of these obstacles on sensitivity, g—fl , and qn the pump bandwidth will be computed next.
Perhaps the most convenient analysis tool for microwave circuits is the signal-
flow-graph technique. The signal-flow-graph is a method of writing a set of equations where-

by the variables are represented by points and the interrelations by directed lines, enabling

a direct picture of signal flow. The flow graph technique of circuit analysis is a somewhat

¢(h)

iB iB

Fig. 6-13. Equivalent circuit for the tuned Reggia-Spencer
phase-shifter.

more natural concept for distributed circuits than for lumped circuits because one's thinking
in the former case is adapted to incident and reflected voltages rather than stationary volt-
ages and currents. The points in a flow graph for a microwave circuit represent incident or
reflected fields (or voltages) and the directed lines represent transfer functions bétween the
adjacent reference planes at which these fields or voltages are measured. When microwave
network equations are written in scattering matrix form, the corresponding ﬂow.graph is

particularly useful because in this case the flow graph of a system of cascaded networks is



137

constructed simply by joining together the flow graphs of the individual networks. The alge-
bra of flow graphs leading to solutions by direct inspection has been developed by S. J.
Mason (Ref. 42). The solution is available directly by application of the non-intersecting
loop rules developed by C. S. Lorens (Ref. 43).

The flow graph for the above equivalent circuit is shown in Fig. 6-14, where a,
and bi are the amplitudes of the forward and backward traveling wave at location i, and where
r=- 5% with y = Yl . In all of our applications, the section is assumed to be terminated
in a matched load for vc(r)hich FJZ = 0. The transmission T from ay tob 4 is the quantity sought.

From the standard flow graph solution, T is given by:

2 -i9
T = % (6. 34)
1-T% e

-je
a.1 1+I‘b2 e a3 1+1"b4

oJ® by 14T a,

b, 1+Ta

1 2

Fig. 6-14. Flow graph for tuned Reggia-Spencer
phase- shifter.

Y . B e s s
where for ?(; =] ?g = jb, is given by:

- . _db_
T = T+ (6. 35)
Then solving for T in terms of b:
-i¢
T = 2 (6. 36)

[1- (b%4) + jb] + (b?/4) csc 2¢ - j(b%/4) sin 2¢

This expression can conveniently be written in the form:

T = IT] &3@+6) (6.37)
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where:

ITI? = <1+ (0%/2) (cos 20 - 1) + (b?/16) (cos 2¢ - 1)*
+ b% [1- (b/2) sin 26 + (b?/16) sin® 2¢]> -1
= [1+ (b%/2) (cos 26 + 1) - (b°/2) sin 26 + (b*/8) (1~ cos 2¢] ™. (6. 38)
b (1-2 sin2g)
tang = (6. 39)
1+ (b%/4) (cos 2¢ - 1)
Substituting the identities:
1+cos2p = 2cos®¢
1- cos 20 = 2sin® ¢
Equation 6. 38 can be written in the form:
ITI? = 1 z
1+ b? sin® ¢(% - cot¢)
or
- 1 s 1 (6. 40)

1+b2(% sin ¢ - cossb)2

If B is capacitive, both b and ¢ are linear functions of frequency and | T! ? i{s a transcendental
function of frequency as shown in Fig. 6-15.

The transmission vs. frequency is that of a series of bandpass filters whose center frequen-
cies occur where b(g— sin @ - cos ¢) = 0. Any of these bandpass filters can be selected for
the pump filter. If this tuned structure is to be used as a phase-shifter amplifier, the pump
should be supplied at the center frequency of the pass band. It will be shown presently that

maximum phase modulation results if this frequency condition is met. For high frequencies
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IT|?

freq.

Fig. 6-15. Graph of |TI® vs. f assuming b and ¢ are both
linear functions of frequency.

the center frequencies of adjacent pass bands will be spaced so that ¢i 0" o =7 where
2

i+1,0

¢1 o is the electrical length at the center frequency W5 The bandwidth of each pass band
H

can be found by solving the equation:

2

% (b sing - 2 cosg)? = 1

-g— (b sing - 2 cosg) == 1 (6. 41)

for w. A graphical solution illustrates the bandwidth associated with each (see Fig. 6-16).

1
G(9,b) = (b sing ~ 2 cos®)

(6. 42)

The poles of G(¢,b) are the center frequencies W, The intersections of G(¢, b) and :tl;-
define the band edges. Note that the bandwidths are narrower for higher center frequency.
The actual bandwidth at the higher frequencies can be found more conveniently by examining

the graphical solution to the reciprocal of the previous expression (see Fig. 6-17).

1
G(g,b)

]
H.
T o

b sing - 2 cos¢ (6. 43)

1}
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|

Fig. 6-16. Graphical representation of solution for bandwidth
of the pass band of T.

For high enough pump frequency at a given shunt capacitance, b >> 2 and (b sin¢ - 2 cos9)

=Db sing. But near the center frequency Wi 0= ¢oi + AQ.

Fig. 6-17. Reciprocal graphical representation of functions
in Fig. 6-16.
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¢ = o ¢
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o

so
¢o Awi i
Ag, = where Aw, = w .- w
i w i oi

oi

Also near the center frequency w0

]

sin¢k sin (kr + A¢k) = sin A¢k

4

A%y

The approximate bandwidth condition is:

nAs = &l
bksmA¢k = :l:b

k
For which
¢O Awk ) —2
wo lOk ©
ok
and
4w
B, = 2Aw, = ok
k k ¢ . b?
ok
w

(6. 44)

(6. 45)

(6. 46)

(6. 47)

Thus the bandwidth can be reduced by increasing the b or by selecting a longer sample for

which ¢ok is larger. It will be shown next that reducing the excess pump bandwidth increas-

es the total phase sensitivity.

The phase sensitivity for the reactively loaded Reggia-Spencer section is

4

an (¢ + 6) where:
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2

b*
b——4—sm2¢

1+ (b%/4) (cos 2¢- 1)

tan 6 =

By a simple differentiation it can be shown that

2
i b —Z— (1- cos 26) - b sin2¢ + cos 26

dh T 4

28
h

Q@

1 b2 . 2
vy (b sing - 2 cos¢)

Then regrouping the terms slightly and factoring gives

1- cos2¢ (bz_ 4b sin 29 . 4(cos 2¢ + 1)) -1
96 b? 4 1- cos?2¢ 1- cos2¢

|
©

b? . 2
1+ e (b sing - 2 cos9)

but the factors have already been found for the quantity in brackets; i. e.,

2 _ _4bsin2¢ 4(cos 26 + 1) _ _ 2
b 1- cos2¢ M cos2¢ (b - 2 cotg)

also

1- cos2 _ sin® ¢
4 - 2

Substituting these functions in the above expression gives:

6
h ~ 2

QD

5 bz<1-%(b$in¢‘2008¢)z>%
dh

b? . 2
1+ T (bsingd - 2 cos¢)

Note that
1 1 . 2
-3 (b sing - 2 cosg)” < 1

and

2

1+ 2 (bsing - 2 cos9)® > 1

(6. 48)

(6. 49)

(6. 50)

(6.51)

(6. 52)

(6. 53)

(6. 54)
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thus
20 o b 3¢ (6. 55)
oh < 2 oh '

where the equality holds at each center frequency at which (b sing - 2 cos¢) = 0, Thus the

phase sensitivity is improved most at each of the center frequencies where:

[\

a6 b* 9
0.5 2 (6. 56)
Notice also that:
20
Lim 2% = 0
pe0 22
oh
That is
9(p+6 d
Hped) % (6. 57)
b=0
20
Lim % = -1 except at the center frequencies .
b—-o0 H

That is, Lim i%j'ﬁfl = 0 which must clearly be the case since b~ is the case of a shorted
b—c0
waveguide section for which varying h can have no effect on the phase of the transmitted signal.

At each center frequency the total sensitivity will be improved by the factor

2
1+b7or:

8(p+6) _ (1+92f) c (6. 58)

Q

If this increased sensitivity is substituted in the expression for optimum thresh-

old there results:

i”s s (6. 59)
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But it has already been shown that b? is inversely proportional to pump bandwidth, so it can
be concluded that reducing the pump bandwidth by tuning this structure improves the thresh-
old. In this way it has been shown that a tuned r-f structure is optimum for ferrite phase-
shift amplification.

It is illustrative to compute the optimum threshold for this configuration under
the condition that the pump bandwidth is the same as that used in the calculation of the opti-
mum for the Reggia tunable-filter configuration. From Egq. 6. 45, the bandwidth can be
related to b?. For the experimental Reggia-Spencer phase-shifter, 8 = 50 Mc corresponds

to b? = 8, Thus

and the optimum threshold is given by:

P Lo v

fom .58 (6. 60)
i dg
25 ()

which, upon substitution of the appropriate optimum values yields

P

—’—tg T = 60 mw/Mc (6.61)

1

The threshold of the experimental configuration in this circumstance is:

Pih, m
— = 100 w/Me (6. 62)

1

The disparity between these two thresholds can be attributed to the inefficient coupling of the
signal into the sample and to the relative insensitivity of the material in the experimental
model.

A comparison between the optimum threshold per unit bandwidth of this configura-
tion and that discussed in Section 6. 2 is meaningful because of the basic similarity of the

models. The superiority of the presént case can be attributed to its near optimum length.
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6.4 Use of Samples Operating Near Ferromagnetic Resonance

It has already been demonstrated that ferrite permeability tends to depend
strongly upon the applied magnetic field, optimiZations occurring near zero applied field and
near ferromagnetic resonance. The two configurations considered so far have met the for-
mer condition; it is of interest now to consider taking advantage of the latter.. Perhaps the
simplest configuration in which ferromagnetic resonance can be excited as shown in Fig.

6- 18 and is the same as that used for the tunability measurements reported in the previous
chapter,

A circularly cylindrical microwave cavity is excited from a waveguide by means
of a Bethehole coupler. The hole is properly located so that circularly polarized fields are
excited. Though it.is not necessary for the fields to be circulzirly polarized, it was conven-

ient to use a cavity prepared for the measurements of the previous chapter.

Coupling Port

Matched
“J*— Termination
YIG Sphere
P, __-' =~ C
in 3 ircularly Polarized
, t-;’ Cavity
Variable \
Short Coupling ,‘

Port ™ Matched Phase

Detector

Fig. 6-18. Illustration of the experimental ferromagnetic
resonance phase-shift amplifier.

It was shown in the previous chapter that the cavity tunability for such a structure
operating near ferromagnetic resonance reaches a maximum value of U‘y_ , provided the
fields have the optimum orientation (i. e., pump field transverse to the biasing field and -sig-
nal field parallel to the biasing field) and provided the sample is sufficiently large relative
to the cavity. It is of interest to compute the threshold power for this configuration and com-

pare its optimum with that of the configurations discussed previously in this chapter,
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6.4. 1 Threshold Relation. The threshold pump power Pth is given by

B. B2 [ ult(r)® av B.BEu v
P, = — P - > LD ‘z’ g (6. 63)
2¢y 28y

The optimum threshold is given by the right-hand side of the inequality as usual.

The pump bandwidth of this circuit is determined more by the cavity design than
by the material because the sample is very small and because the maximum tuning occurs
far enough from ferromagnetic resonance that the ferrite losses tend to be small. For a
properly machined cavity with plated surfaces, the unloaded '@ can be as high as about 104.
However, the actual cavity will be loaded rather heavily in order to couple most of the side-
band power into the load. The loaded Q of the cavity which was used in the experiments of

the last chapter was about 1000 at x-band, for which Bp =~ 10 Mc.

6.4.2 The Optimum Threshold. The optimum threshold for this bandwidth can

be computed by observing that the sample is saturated, for which:

and:
2 =
S M@ dv| o= ou vy

where we will assume that the sample volume is the minimum for which T =}’— as found in
0
the preceding chapter:

10y

<
R

For the cavity used in the experiments of Chapter 5, v, = 1.2x 10'6 m®. Under these con-

ditions the minimum threshold is given by:

P

—-t-%:—“l = 0. 1 mw/Mc (6. 64)

1

Although the sample size is not optimum, it is useful to compute the minimum

threshold for the . 100" sphere of YIG which was used in the measurements of Section 5. 5. 3.
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For this sample the optimum threshold is given by:

p
%ﬁ = 1mw/Mc for . 100" YIG sphere (6. 65)

1

An experimental amplifier circuit was constructed using the 100" diameter
sphere of YIG as described above, located in a resonant circularly polarized x-band cavity
(Q = 1000). The signal coil consists of 30 turns wound in the form of a flat circular coil of
radius 0.6 cm. The measured input bandwidth of this circuit is 100 ke with a pump thresh-
old of 1watt and a pump bandwidth of 10 Mc. Thus the threshold per unit input bandwidth is

given by:

P, = 10 watts/Mc Bi(Mc) (6. 66)

th

6.4.3 Comparison of Optimum and Experimental Thresholds. The disparity be-
tween the optimum threshold and the observed experimental threshold can be attributed to
the inefficiency with which signal energy is coupled to the sample. To expand this explana-

tion, consider the relation

Jupl@®av = Ap v (6. 67)

If the signal energy were perfectly coupled to the sample, A would be unity. This circum-
stance was assumed for the calculation of the optimum threshold. To account for the large
difference between the experimental threshold and the optimum threshold A would hé,ve to be
104.

To test the assertion that the disparity of the threshold results from inefficient
coupling the active signal field distribution for the experimental amplifier must be deter-
mined and used to compute A. The orientation and spacing of the sample and signal field
coil of the experimental amplifier are shown in Fig. 6-19. The sample is located on the axis
of the coil at a distance x = a. The assumption that f(r) is uniform throughout the sample is

reasonable provided the sample is small compared to coil dimensions or is located at a

large distance from the sample. It is shown in Appendix F that:

3

A =29x10 (6. 68)
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Observe that this figure 9 x 103 compares favorably with the observed value 104 and our

assertion is proved.

Fig. 6-19. TIllustration of location of sample relative to signal coil
in configuration of Fig. 6-19.

The calculation above has suggested that a more efficient means must be found
for introducing the signal field into the sample without Storing large amounts of signal energy,
compared to the simple arrangement of Fig. 6-19. One possible configuration which satis-
fies this criterion employs a toroidal sample. The signal field for this shape tends to be
confined to the sample. In this case most of the signal field which is produced is useful for
tuning the cavity. However, there are severe practical difficulties which limit the use of
such a sample shape. The most important of these is the difficulty of introduction of the
pump field into the sample. Nevertheless, the possibility of a suitable design exists, so that
the problem remains of developing a ferrite phase-shift amplifier which approaches the opti-

mum.

6. 5 Use of Ferromagnetic Resonance to Proyide Pump Filter

Sincé ferrite samples possess an intrinsic resonance, it is not essential to place
the sample in a cavity to separate the various sidebands. That is, ferromagnetic resonance
provides a convenient filter for separating the upper and lower sidebands from other un-
wanted components. One possible filter is illustrated in Fig. 6- 20. Three mutually perpen-
dicular coils Ll’ L2, and L3 are wound about the sample. Coupling between any pair of coils
(e.g., L, and L2) is zero unless a magnetic field is applied along the intersection of

the plane of these two coils. This field biases the sample to ferromagnetic resonance. When
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biased in this way, the nonreciprocal nature of the material will couple these otherwise un-
coupled coils. Thus, the transmission from L1 to L2 is tuned at ferromagnetic resonance
when a field H0 is applied of proper direction and strength. This circuit can be used as a
nonreciprocal filter for signals transmitted between a source connected to L 1 and a load con-
nected to L2. The field of the third coil h3 is parallel to H0 and causes variations in that
field which tend to vary the frequency of ferromagnetic resonance. The tunability for this
circuit is the same as the maximum tunability of the cavity described in the previous section

(i. e. —X—). Clearly this circuit can be used as a phase-shift amplifier if the pump is con-
' W _

o
nected to Ll’ the phase detector to LZ’ and the signal to L3.

Fig. 6-20. Illustration of ferromagnetic resonance amplifier
requiring no resonant cavity.

This circuit is similar in many respects to that described in the previous section
in which the ferrite is used to tune a cavity. The tunabﬂity of this circuit is the same as the
maximum tunability of the cavity (i.e., T = wi),‘ and the minimum pump threshold is still

given by:
(6. 60)

Perhaps the most significant difference between the two circuits is the fact that the coupled-

coil circuit operates exactly at ferromagnetic resonance, while the cavity tuning circuit
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operates off ferromagnetic resonance. As a consequence of this, the material linewidth
completely determines bandwidth in the former circuit and for this reason Bp can be no less
than yAH. In the latter circuit, by contrast, the bandwidth can be controlled by controlling

the cavity parameters.

6.6 Use of Magnetostatic Modes to Accomplish Pump Filtering

A circuit of the type described above can be designed having a pump bandwidth
smaller than yAH, In particular, certain of the magnetostatic modes can be used to couple
the r-f signals in the same way as ferromagnetic resonance. They have the advantage, how-
ever, of having a narrower linewidth. In some cases their linewidth is as little as one-third
of the pump bandwidth; potentially, then, Pth can be reduced by a factor of 9 below the value
obtained using ferromagnetic resonance. Such a tremendous improvement in input bandwidth
can be important in circuits which tend to be input-bandwidth limited.

Although there are advantages to using magnetostatic modes in a phase- shift
amplifier, there is also a diffiéulty in using them due to the problems of coupling energy in-
to them. They tend to be excited mdst easily at their resonant frequency in the presence of
highly nonuniform r-f fields. This idea can be exploited through the use of a transmission
type filter such as that shown in Fig. 6-21. The ferrite sample is placed in a small hole

which has been cut in the wall of guide No. 2, and a magnetic field is applied such that the

YIG Sphere

Fig. 6-21, Illustration of magnetostatic phase-shift amplifier.



151

sample can support magnetostatic modes. If power P1 is supplied in guide No. 1, then the
fields will be very nonuniform in the vicinity of the sample and for a frequency near the
resonance of a magnetostatic mode the latter will be excited and energy will be coupled into
guide No. 2. A bandpass transmission characteristic will exist from guide No. 1 to guide
No. 2. As the biasing field is varied, the resonant frequencies of the magnetostatic modes
vary at a maximum rate of 2. 8 Mc/Oe. If a signal coil is now mounted so that the field which
it produces is parallel to the biasing field, this structure can be used to make a phase-shift
amplifier having a bandwidth smaller than yAH and a sensitivity proportionately larger

than that obtained for ferromagnetic resonance.

6.7 The Thin-Film Phase-Shift Amplifier

It was shown in the previous chapter that thin-film variable inductors are useful
for the construction of phase-shift amplifiers. It was further shown that the equivalent cir-
cuit for the transverse winding of the prototype configuration is a resonant circuit whose
resonant frequency is controlled by the current in the other winding. The proper use of the
inductor in a phase-shift amplifier is shown in Fig. 5-14.

6.7. 1 Threshold Relation for the Thin- Film Configuration. The threshold for

this configuration is written most conveniently in the form:

R

P, = —>5 (6.70)
th
2¢(Q T)*
where
dL
1 2
T = « — —% (6.71)
i 2L2 d11

For the configuration of Fig. 5-13, Ti has a value of approximately 0. 25/ma at ferromagnetic
resonance. Recall that although this tunability is relatively large, the Q at resonance is ap-
proximately unity. It was previously suggested that, using certain techniques which yield a
high-Q bulk ferrite, an improvement in thin-film Q by an order of magnitude should be pos-
sible. Assuming this can be accomplished (i. e., Q = 10) a pump bandwidth of approximately

40 Mc would be obtainable at a resonant frequency of 400 Mc. For the configuration reported
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by Pohm, the inductance of the coil labelled L1 is about 4 ph. Assuming the signal is sup-

plied by a source with a 50  output impedance the input bandwidth is given by

Rs
51 = 217L1 (6.172)
=~ 2 Mc
and the threshold per unit bandwidth is
Pth
5 =~ 0.01 mw/Mc (6.173)

6.7.2 Experimental Model. For the actual configuration reported by Pohm the

tunability is approximately 1/120 ma and the Q = 10, yielding:

—— = T mw/Mc (6.74)

It should be emphasized that, although these configurations are not necessarily optimum,

they have relatively small thresholds compared to those of the bulk ferrite configurations.

The investigation of the thin-film configurations is somewhat incomplete due to the difficulty
of obtaining suitable samples. However, the above threshold relations are sufficiently encour-

aging that further investigation of this configuration is justified.

6.8 Comparison of Thresholds for Configuration in Chapter 6

A comparison of the various amplifier configurations considered in this chapter
can be made on the basis of the threshold per unit input bandwidth. For this purpose Table

6- 1 has been constructed.
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Table 6-1 Comparison of Thresholds

P
Amplifier _t_}é,_m_ Theoretical —%’ﬂ Experimental
Configuration i i
watts/Mc watts/Mc
Reggia Tunable Filter 4
Mn Mg Laboratory 200 3x 10
Mn Mg from Weiss =1
Reggia-Spencer 3
Mn Mg Laboratory 670 2.5x 10
Mn Mg from Weiss 1.5
tuned .06 100
Ferromagnetic Resonance -3
a. . 100" sample in 10 10
microwave cavity
b. optimum circuit 107° No Experimental
with respect to model
sample size
~ Thin Film .01 =~ 7

6.9 Conclusions

It is clear from this table that the ferromagnetic resonance configuration is the
optimum bulk material amplifier. However, the thin-film amplifier has a much lower exper-
imental threshold and is"potentially the best overall configuration. The development of thin
films for UHF and higher frequencies will permit magnetic phase-shift amplifiers of video

bandwidth to be built.



CHAPTER 7

PRACTICAL LIMITATIONS ON THE FERRITE
PHASE-SHIFT AMPLIFIER

7. 1 Introduction

The implication of the threshold calculations of the previous chapter is that arbi-
trary gain bandwidths are possible for each circuit provided only that sufficient pump power
is available. However, there are several practical limitations which influence this possibil-
ity. A number of factors such as saturation and noise generation tend to limit the pump
power which can usefully be applied. The purpose of this chapter is to estimate the maxi-
mum useful pump power, and from this to estimate maximum gain-bandwidth products..

In addition to the maximum gain-bandwidth estimate, various practical effects
influencing amplifier performance are explored. In Section 7. 2 the advantage of a one-port
phase modulator, rather than the two-port device assumed previously, is described. The
noise phenomena in ferrite phase-shift amplifiers are discussed in Section 7. 5. Section 7. 4
contains a revealing comparison between ferrites and varactors which tends to explain why
the latter have proved to be so much more successful in amplifier configurations than the
former. The final section (7. 6) includes a summary of the work reported in this paper and

a list of the important conclusions.

7.2 Advantage of the Use of the Circulator

It has been assumed in previous discussions of the phase-shift amplifier that the
phase modulator is inserted between the source and the load, so that the power transmitted
to the load is phase-modulated. The disadvantage of this circuit 'is that some of the sideband
power is reflected to the source where it is dissipated in the source impedance and is, there-
fore, not useful for amplification of the signal. Since the practical circuits which we are con-
sidering operate with a microwave pump frequency, a circulator can be used to make a one-
port phase-shift amplifier. The circulator can separate the sideband power which is reflec-

ted from the phase modulator from the pump power, so that all of it can be delivered to the

154
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phase detector. A transformer can be used to match the phase modulator to the transmission
line supplying the power.

The performance of a phase-shift amplifier which uses a circulator is best char-
acterized by the sensitivity of its reflection coefficient to the signal magnetic field. The lat-
ter can be found from the phase-shift sensitivity, which has already been computed. It was
pointed out in the introduction that in the optimum quiescent condition the pump frequency is

the same as the center frequency of the filter. The phase characteristic under this condition

has also been exhibited:

_ wAC
Ap = 2Y0+G (7.1

where G is the admittance of the pump filter at center frequency.

A circulator permits the microwave circuit shown in Fig. 7-1:

Phase Si ]
Detector lgna
-— -— Ferrite Adjustable
) ——— Tuner == \iodulator [— =  Short
Pump

Fig. 7-1. Microwave circuit for the ferrite phase-shift amplifier
using a circulator.

Adams has shown that the real part of the admittance looking into the phase modulator should
match the transmission line (Ref. 48). If this conductance is different from Yo’ then a slide
screw tuner can be used which functions as an ideal transformer so that the admittance look-

ing into the tuner from the circulator is Yo' The transformer ratio for this condition is
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The reflection coefficient of the transformed load is given by:

Yoo Yy,

P =55
YO+YL

il

pyt ap
where P, = 0 for the optimum phase-shift amplifier, and

Yo
jw AC —=-
Ap 0] G

Y
-9

2Yo+]wOAC G

w AC
. 0
U Te!

IR

But

wOAC

AP = 2Y0+G

Y

ap = JM(FO * %)

The sideband power delivered to the matched phase detector Ps

given by:
P = —%(Ap)z P
br p
Y 2
-1 0o 1 2
2
= (.Y_O + _1..> P
G 2 Sui

(7.3)

(7.4)

by the one-port device is

(7. 5)

where Ps is the power delivered to the phase detector by the two-port device, as shown in

bt

Fig. 2-1. Notice that if Y0 =~ G, which is commonly the case in the circuits which were
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measured, then:

2P (7.6)

P s
br bt

S

IR

That is, approximately twice as much sideband power is delivered to the load by the one-port
device as by the two-port device. In general, the gain for the one-port phase-shift amplifier
will tend to be 3 db greater than for the two-port amplifier, all other conditions being the
same., This improved gain can be explained by considering that all of the sideband power
produced in the one-port circuit is delivered to the load, whereas in the two-port circuit ap-
proximately half the sideband power is returned to the source where it is dissipated in the
source impedance. Thus, whenever possible the phase-shift amplifier should be built as a

one-port device for the additional 3-db gain over the two-port device.

7.3 Nonlinear Effects

The analysis in the preceding chapters was based upon the small-signal approxi-
mation. This approximation can be examined further to determine whether reliable predic-
tions can be made concerning high-power operation of ferrites. The small-signal approxi-
mation reduces the equatiqn of motion to its linearized form, which is useful for explaining
ferromagnetic resonance and other ferrite r-f phenomena. However, in each of these, this
small-signal theory becomes less and less valid as the r-f power is increased. One example

of this effect is the phenomenon of ferromagnetic resonance saturation. The power absorbed

M
at ferromagnetic resonance is roughly proportional to —I'JE which is given by Mo/Ho in the

small-signal approximation. According to theory, this lgvel should decrease due to the de-
crease in MZ as the r-f power level is increased. This effect, called saturation, does in-
deed occur, though at a power level two or three orders of magnitude smaller than predicted
by simple theory (Ref. 46).

An explanation of this effect was offered by Suhl (Ref. 47), who found that energy
can be taken irreversibly from the uniform precessional motion of the magnetization, which
is characteristic of ferromagnetic resonance, and transferred to the crystal lattice of the
sample. Fundamental to this process is the excitation of spin waves, which are wave-like

modes of energy propagation in the magnetic lattice of the material analogous to crystal lat-

tice vibrations. Suhl showed that spin waves can be parametrically pumped by the uniformly
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precessing magnetization, which occurs at or near ferromagnetic resonance, when the pre-
cessional amplitude exceeds a certain level. He found that the spin waves, parametrically
excited at the lowest r-f power level, are those which propagate along the direction of the
biasing magnetic field (i. e., z direction). The computed power level for excitation of these
spin waves agrees very well with the observed power level at which saturation occurs. This
fact, together with the fact that these z-directed spin waves can cause a reduction in Mz’ ex-
plains the effect of r-f saturation very satisfactorily.

7.3.1 Power-Limiting Effect of Spin Waves. There is another aspect of r-f

saturation which is very undesirable for ferrite amplifiers. The fact that spin waves are
parametrically excited by the r-f source means that they extract energy from it. The power
so extracted is not useful for pumpiﬁg the sample. The spin waves act to produce a power-
limiting effect, and in fact ferrites are actually used in some circuits to build power limit-
ers. Denton (Ref. 23) showed in his ferrite parametric amplifier that an increase in pump
power above the spin-wave level predicted by Suhl produced a negligible change in circuit
gain.

7.3.2 Spin Wave Threshold. The ferrite phase-shift amplifier which uses a

sample biased near ferromagnetic resonance is subject to the same type of pump power limi-
tation as Denton's parametric amplifier. Any increase in pump power above the critical Suhl
level (or saturation level) will not produce a proportionate increase in transducer gain. The

critical pump field intensity at which saturation occurs at ferromagnetic resonance was

shown by Suhl to be:

AH 2AH
crit ~ 2 (7.7)

M
which is of the order of 0. 1 Oe for low-loss ferrites. The pump power necessary to produce

this field intensity can be found from the cavity Q and size:

wOU
Ps = Q (7. 8)

where U is the stored energy at resonance and Q is that of the unloaded cavity. Assuming
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the pump field is uniformly distributed throughout the cavity

_1 e
U= 2 ‘uoh Ye
But:
“o
Q = N
p
So:
2
- Bp Fo hcrit Ve (7. 9)
s crit 2 ’

For the circularly polarized cavity used in these experiments:

and:

B. =~ 10 Mc (7. 10)

Substituting these values in PS crit 8ives:

P g = 100 mw (7. 11)

If this value of pump power is compared with the threshold relation (Eq. 6. 66) a maximum
input bandwidth can be found which is of the order of 10 kc. The corresponding maximum
theoretical value for this is found from Eq. 6. 64 to be 100 Mc.

On the other hand, Suhl has shown that away from ferromagnetic resonance the

critical pump field for saturation is given by:

w-w w-w
ho o~ res 2AH o res . (1. 12)
crit Y Ms vAH crit ©

res

Clearly it is an advantage to operate away from ferromagnetic resonance to avoid saturation.

However, operation must be sufficiently close to Wes to attain maximum tunability. In the
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experiments performed with the . 100" sphere of YIG, maximum tunability was reached at

W= Wes
= 6

yAH
for which:

h,.q = 0.6 0e (7. 13)

Using this value of critical field intensity, the saturation power level can be computed from:

2

P . h? .
s crit _ _crit ~ 36 (7. 14)
. 2
crit res h® .
crit
w
res
or
Pcrit ~ 3,6 watts (7. 15)

for which Bi m =~ 0. 36 Mc (Eq. 6.64). Thus, operation away from ferromagnetic resonance

ax

is advantageous for pumping efficiency, although the pump frequency must be close enough to

resonance that the cavity tunability is maximum. The value of w-w s for which Tm is

re ax

achieved depends roughly on the sample size:

v
(w-w_ ) = —U—S- ¥ Mw (7. 16)

For a given Pcrit the approximate sample size will be given by

v 0.1v_ Mw
. S _yMuw P —— (7. 17)
Yc (yaH)? ¥, (AH)?

Pcrit

At this point an additional advantage can be seen in using the magnetostatic modes whose
resonant f_requenciés tend to bé displaced from ferromagnetic resonance. Certain of the
modes are sufficiently remote from ferromagnetic resonance that the saturation power is of
the order of a few watts. The advantage offered by unsaturated samples is perhaps even

clearer in this respect.
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It can be concluded from the above discussion that there is a definite advantage
in using the ferrite to tune a cavity as opposed to using ferromagnetic resonance as the pump
filter. That is, the pump frequency can be remote from ferromagnetic resonance and yet
maximum tunability can be achieved. It was shown that pump saturation for this case occurs
at a much higher pump power than at ferromagnetic resonance.

7.3.3 Pump Saturation Effect in Magnetically Unsaturated Samples. The mag-

netically unsaturated samples clearly avoid the difficulty of the spin-wave pump saturation
effect. However, there are certain nonlinear effects in unsaturated materials which are un-
desirable for phase-shift amplifiers. The most unfortunate of these is hysteresis, which has
been totally ignored in the discussion thus far. The phenomenon of hysteresis is responsible
for losses.in magnetic materials, but the exact mechanism is not fully understood.

Another very undesirable nonlinear effect in unsaturated ferrites results from
the highly nonlinear permeability. This effect is particularly pronounced at high power lev-
els and has the effect of gain saturation with respect to pump power. This effect is illustra-
ted in Fig. 7-2 where hysteresis is ignored. The r-f or pump permeability is the slope of

this curve, which tends to decrease for H ; Hl‘ It is the variation of this slope with respect

Fig. 7-2. Flux density vs. ‘applied field for a material
with negligible hysteresis.
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to another applied field which enables this material to function properly in phase-shift ampli-
fiers. However, since the slope becomes much less sensitive to the applied field as H ex-

ceeds H,, the material tends to look more and more linear as H exceeds H1 in the r-f cycle.

P
Recall that the transducer gain is proportional to pump power as long as H << Hl‘ Thus
when the pump power exceeds P(Hl) (i. e., the pump power at which the pump magnetic field
= Hl) the gain per unit pump power (i. e., Gt/Pp) is a decreasing function of Pp. Thus the
same property which tends to make ferrites useful in nonlinear reactance circuits (i. e., low
HC and low saturation field) tends to limit the pump power at which gain saturation occurs.
There is a rather sharp break in the curve B vs. H for most materials so that H1 is rather
well defined. For example, H1 for Mn Mg ferrite reported by Weiss (Ref. 35) is of the

order of 1or 2 Oersteds. The pump power for this field can be estimated in the same man-

ner as for the saturated case:

¢ (7. 18)

Assuming the cavity used for this estimate is the same as that used for the estimate for the

ferromagnetic resonance configuration is can be shown that:

P|yo1oersteq = 10 Watts (7. 19)

Thus, the maximum useful pump power for the unsaturated configuration is approximately

10 watts, yielding a maximum theoretical input bandwidth of 6 Mc.

7.3.4 Nonlinear Effects in Thin Films. The nonlinear effects in thin films tend

to be the sa:me as those in saturated bulk ferrites provided the thin film is small enough that
it has a single magnetic domain. This circumstance is quite normal for thin-film phase-
shift amplifier configurations. Thus, the nonlinear effecté which result from the excitation
of spih waves tend to limit the useful pump power for this configuration near ferromagnetic
resonance. However, since the thin-film variable inductor can be operated successfully re-
mote from ferromagnetic resonance, spin wave saturation does not necessarily limit the use-
ful pump power for this configuration. However, not enough is known of nonlinearities in

thin films at the present time to predict the useful limit on pump power. For that matter,
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since the thin film configuration is not necessarily input-bandwidth limited, the actual pump
power limitation may never seriously restrict the amplifier.

7.3.5 Maximum Gain- Bandwidth Estimate. The significance of the pump satur-

ation effect is that it tends to limit the ultimate gain-bandwidth product. It has been shown
that the pump threshold for any configuration is proportional to the input bandwidth, and
that the pump power for each configuration is limited by the so-called nonlinear effects. In
addition, it was shown that most ferrite phase-shift amplifiers tend to be input-bandwidth

limited. Assuming this to be the case the gain-bandwidth product is given by:

BGt = BiG

_ 1 max (1. 20)

BG = X (7.21)

Using this relation, the values for Pmax determined in this section, and K from the previous
chapter, the maximum gain-bandwidth product is estimated for a variety of configurations

and reported in Table 7- 1
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Table 7-1 Maximum Gain Bandwidth

B G, B G,
Configuration max max
Theoretical Experimental
Reggia Tunable filter
a. Mn Mg ferrite of Weiss 10 Mc No experiment
b. Mn Mg ferrite 50 ke 0. 33 ke
Reggia-Spencer (untuned)
a. Mn Mg ferrite of Weiss T Mc No experiment
b. Mn Mg T ke 4 ke
Ferromagnetic Resonance
a. 0. 100" YIG sample 100 Mc 1Mec
b. Optimum sample size 10 Ge No experiment
Thin film unknown 10 Mc

7.4 Comparison of Ferrites and Varactors

A comparison would be useful between ferrites and varactors for application in
phase-shift amplifiers since amplifiers using the latter have proved so successful. It has
been shown that tunability is an important parameter for characterizing the reactive mixer
in a phase-shift amplifier. On the other hand, the tunabilities which have proved most con-
venient for discussing the various reactive mixers are not directly comparable. For example,

the ferrite tunability is defined:

T =L _0 (7. 22)

T-_L 0 (7. 23)

and is measured in (volts)” 1. A direct comparison of these parameters is clearly meaning-
less. A universal parameter, which can easily be related to these tunabilities and which can

be used to predict the performance of a phase-shift amplifier, must be found.
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The ferrite amplifiers studied have tended to be input-bandwidth limited, where-
as the varactor amplifiers tend to have extremely large input bandwidths. It is useful, there-
fore, to define a tunability with respect to a parameter which is easily related to the input
bandwidth. The quantity which relates the input bandwidth to tunability is the amount of sig-
nal energy which must be stored to produce that tunability. Thus, we are led to define a
quantity termed energy tunabilify TE:

dw

(o]
T. = — (7. 24)
E o w, 5w

where W, is the center frequency of the pump filter and W is the stored signal energy reguired
to produce Gwo. In the ideal case the input circuit of a phase-shift amplifier is entirely reac-
tive. This reactance is due in part to the reactive mixer and in part to the surrounding struc-
ture (e. g., mounts, etc.). In the interest of uniqueness, the latter contribution to the reac-
tance of the input circuit will be ignored.

For greatest utility, energy tunability should enable a computation of the trans-
ducer gain. That this is indeed the case can be seen through reference to the equivalent
circuit of an arbitrary phase- shift amplifier (Fig. 7-3). If the phase modulator contains a
reactive mixer whose energy tunability in a particular configuration is given by:

Aw

T = 0 (7. 25)

1
E w
o)

3

A

then the phase sensitivity of the phase modulator is given by

AP

—— =Q, T 7.26
avw LE (7.26)

This circuit will deliver sideband power Psb to a matched phase detector

1 Ap |2
P, = 3 WP 7. 27
sb 2<AJW> P (.21
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Ferrite
Reactive
Mixer
(e.g., Phase
Mod. )

Resistive
Down
Converter

Detector)

(e.g., Phase |

Pump

Fig. 7-3. Equivalent circuit of general ferrite

phase-shift amplifier.

If the detection efficiency is {, the midband transducer gain

Py

G = =

t Pavail

t

2\ avw/ Pavau

G, is:

Load

(7.28)

where Pavail is the available signal-frequency source power. The relationship between

p and the stored signal energy is found from elementary circuit considerations.

avail

The ideal signal-circuit impedance for a phase-shift amplifier is almost purely

reactive, being inductive in the case of the ferrite amplifier (L) and capacitive in the case of

the varactor amplifier. For the ferrite amplifier, the stored signal energy is given by:

Yy

which at midband becomes:

2
a Vs
R 4R
S S
2L
R avail
avail

(7.29)

(7.30)



167

For varactor amplifiers the stored energy is given by:

I P
We =3 Cv
which at midband is:
V 2
1 S
We = 3 RC g
s
V 2
_ S
- 2RsC 4R
s
2Pavail
= B — (7.31)

Thus a single expression relates the stored signal energy to the available source power of
all phase-shift amplifiers having reactive input impedances.

Using the above relation, the transducer gain is given conveniently by:

o f20 0\ D
t aviw] B

¢(Q,T.)? P
——’Z—B-‘?——E (7. 32)
1

(9]
1

Thus, the input-bandwidth threshold pump power and transducer gain are uniquely specified
by TE, for a given Qﬁ.

The maximum energy tunability of ferrites can now be compared with that of a
commercially available varactor. It was shown previously that the stored signal energy for

ferrite reactive mixers is given by:

Wy, = %hz f u[f(r)]zdu

v

% pw_ h®v (7. 33)

where f(r) was defined earlier in the chapter. The maximum energy tunability is deter-

mined by the smallest energy for which the field in the sample is h. This energy must at
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least equal the energy stored in the sample (i. e. , Wh = % B h? US). Note that, using this

limiting value, the actual energy tunability is over-estimated by the ratio:

fp.[f(r)]zdu z

Ay, (7. 34)
Thus the energy tunability which we consider is given by:
d
Tgp = w—lo u:vs Twh‘l (7. 35)
But the maximum energy tunability for saturated ferrites is given by:
Teh max = o m zv (7. 36)
) s's

A similar calculation is now made for the varactor. The stored signal energy

for a varactor is given by:

W = %CUZ (7. 37)

where C is the varactor capacitance at the signal frequency and v is the signal voltage ampli-

tude of the varactor. Using this quantity yields the varactor energy tunability given by:

dw
-1 J2 "o
TEe - w, '\/; dv (7. 38)

It is most meaningful to compare the ferrites and varactor energy tunability for the same

pump frequency. It is then sufficient to compare the product w, T For the 0. 100" sphere

E
of YIG described in Section 6. 4 this quantity is:

B 5
W, TEh = 4.6 x 10° Mc/, /Joule (7. 39)

Aw
0

Av

For an ordinary MA450 series varactor measurements show that =~ 700 Mc/volt. A

conservative estimate for C, which includes the varactor mount and other stray capacitance,
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is approximately 10 pf. Thus:

_ 8
w, Tpe = 3 x 10° Mc/, /Joule (7. 40)

This computation shows that the energy tunability for a currently available varactor is about
three orders of magnitude larger than the upper bound for the 0. 100" sphere of YIG. The
two energy tunabilities would be equal for a sample 6f 0.010" diameter. Unfortunately, this
comparison is somewhat misleading since the maximum energy tunability for the ferromag-
netic resonance configuration cannot be successfully approached at this dimension. The
principal reason is, of course, the difficulty of coupling the signal energy tightly into such a
small sample.

Though a similar comparison could be made for the two unsaturated configura-
tions, it can be seen from Table 7- 1 that both of these are several orders of magnitude
smaller than the ferromagnetic resonance configuration. However the thin film tends to be
comparable with the varactor by virtue of its small volume. The energy tunability for the
experimental circuit described earlier can be computed from the signal-frequency coil in-

ductance and the tunability. The stored signal energy is given by:

1 .. \2
ELs(l'lo)

where LS =~ 5uh. From the curve of Fig. 5-15, the energy tunability can be shown to be:

3
T = 2x 107 (7. 41)

E / Joule

which is only about an order of magnitude smaller than the varactor. Thus, when thin films
can be utilized at microwave frequencies they will be competitive with varactors for the con-

struction of phase-shift amplifiers.

7.5 Noise Phenomena in Ferrite Phase-Shift Amplifiers

Although an ideal, lossless reactive mixer contributes no excess noise in a
phase-shift amplifier, an actual reactive mixer deviates from this ideal. In addition to the
noise contributed by the reactive mixer, Adams has shown that the second stage or down

conversion is inherently noisy (Ref. 48). In fact, in many cases this is the dominant noise
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source in a phase-shift amplifier. In this section, the sources of excess noise in ferrite
phase-shift amplifiers, and their relative importance, are studied. First, the sources of
noise associated with using ferrite as a reactive mixer are considered. Next, the noise
contributed in the second stage is discussed, and a minimum noise figure is computed.

7.5.1 Survey of Noise Phenomena in Ferrites. There are a number of basic

noise sources associated with the ferrite phase-shift amplifier. Perhaps the most obvious
of these is the thermal noise which results from the equivalent resistance in the signal-fre-
quency circuit. Not so obvious, however, is the noise which results directly from the pres-
ence of the material. Since ferrites tend to be electrical insulators this noise is not shot
noise, but it may be thermal noise. It has been observed to be somewhat dependent upon
pump power and independent of sample temperaturve for a wide range of temperatures. It
tends to occur for conditions under which the sample is lossy, and so can presumably be
explained by the phenomena responsible for ferrite loss.

The thermal noise due to stray loss in the signal-frequency circuit, even though
small, is important because it is amplified. It might be expected that stray losses could be
made negligible by suitable design of the signal circuit to minimize stray loss. However,
physical constraints limit the design of this circuit. For example, losses can be minimized
by winding the signal coil with wire of large cross-section but the wire size is restricted by
the necessity for minimizing signal- coil disturbance of the r-f field. The signal circuit can
be designed for optimum noise figure with respect to these constraints, but the optimum is
typically the design for minimum loss. The excess available noise at the load due to the
stray losses in the input-circuit coil, .assuming the circuit is input-bandwidth limited, is

given by:

N. =kT_ B 5 G (7. 42)

where Rs is the source resistance, R the equivalent series resistance, Ts is the source
temperature, Bi is the input bandwidth and Gt is the transducer gain.
The explanation of the noise which is induced in the sample depends upon the con-

figuration, because the loss mechanisms tend to differ for different configurations. For
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magnetically saturated ferrites near ferromagnetic resonance, the losses have been success-
fully explained by Suhl (Ref. 47) as resulting from the excitation of spin waves which were
discussed in a previous section. Spin waves carry energy and contribute noise in a manner
analogous to lattice vibrations in a conductor. However, there is considerable theoretical
and expérimental evidence that their excitation is nearly independent of the temperature of
the crystal, which tends tov explain the observed temperature independence of noise power
generated in a ferromagnetic sample. The tendency of spin waves to be excited above a cer-
tain threshold level of r-f field intensity implies that the power loss and hence the noise of a
ferromagnetic sample is negligible up to a certain r-f power level. Denton (Ref. 23) found
this to be the case in his ferromagnetic parametric amplifier. Thus the excess noise due to
spin waves will tend to be unimportant for pump powers far below this threshold.

A different loss mechanism explains the losses in samples far below magnetic
saturation. The losses in this case are believed to be the result of the motion of domain
walls although the exact energy conversion mechanism from domain wall motion to the ac-
tual energy dissipation phenomenon is not well known. The noise associated with this mo-
tion has been explained by the so-called Barkhausen effect (Ref. 49) which is a result of the
fact that the permeability curve for a material is not a smooth continuous curve but is made
up of small discontinuous jumps. These discontinuities can be explained from the domain
theory and the observation that the domains tend to reverse individually in a random man-
ner. For this reason, the random domain wall motion in a pumped sample contributes
excess noise which is not thermal in nature but depends strongly upon the pump power. In

| addition, it is known that the individual domains are magnetically saturated, so spin waves
can propagate in them and presumably can contribute to excess noise. As would then be ex-
pected, unsaturated or multidomain samples tend to contribute more excess noise than the
saturated samples due to the Barkhausen effect. Thus, it is expected that configurations
employing magnetically saturated samples are optimum with respect to noise figure.

The excess noise in the thin film consists of both Barkhausen and spin-wave noise
unless the sample is sufficiently small that it is a single magnetic domain. A sample such as
the one described in Chapter 6 is sufficiently small that it is essentially a single domain and
hence can contribute no Barkhausen noise (Ref. 50). In addition the normal operating condi-

tions include biasing the sample far from ferromagnetic resonance where little spin-wave
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noise tends to be produced. However more information than is currently available is re-
quired about thin film noise mechanisms before comparison of their excess noise to that con-

tributed in bulk samples.

7.5.2 Second-Stage Noise.  The second-stage noise is fundamental to phase-shift

amplifiers, because up-conversion must always be followed by down- conversion in a resis-

tive mixer which is fundamentally noisy.. On the other hand, the contribution of second-stage
noise to the overall noise figure of the amplifier tends to be small if the up-conversion gain
is large. Adams has discussed the second-stage noise and shown that the excess available

noise power it can deliver to a matched load is given by (Ref. 48):

Nm = (Fmd- 1) 2kT BmC (7.43)

where Fm is the noise figure for a double-sideband mixer with zero correlation between the

d
sidebands, ¢ is the detection efficiency, T is the mixer temperature, and ﬁm is the band-
width of the entire circuit past the mixer. Adams has also shown that for a matched phase

detector ZC(Fmd— 1) = 5,

‘7. 5.3 Estimate of Minimum Noise Figure. It is of interest to estimate the

noise figure of a ferrite phase-shift amplifier assuming that all sources of excess noise in
the amplifier have been accounted for in the discussion. The definition for spot noise figure
is:

Nexcess

F =1+ T<—’I‘—B_G— (7 44)
st

where BS is the bandwidth of the narrowband filter used to determine spot noise. This filter
is normally placed at the mixer output and is sufficiently small that it limits circuit band-

width (i. e. , B= BS).' It is convenient to select BS = Bi. For the ferrite phase-shift amplifier
F is given by:
2 C(Fmd_ b Nierrite
(1. 45)

R
F=1+55+ +
RS Gt kTBsGt

Wher,e,Nf is the excess available noise power due to the material at the mixer output.

errite



173

Examination of the expression for noise figure reveals that it tends to be mini-
mum for some particular pump power. This can be seen most easily by representing
Nferrite(Pp) as shown in Fig. 7-4. In addition, it should be recalled thét the transducer
gain is proportional to pump power up to the Suhl threshold Pth and tends to be constant

above that power. Assuming the transducer gain is proportional to pump power up to the
Suhl threshold and constant for pump powers greater than that value, the idealized noise
figure vs. pump power is as shown in Fig. 7-5. The minimum noise figure based upon this
idealized model occurs for Pp = Pth‘ The actual noise figure is shown in the dashed curve
and has a minimum near the Suhl threshold.

Ferrite

Spin Wave
Noise Power

Suhl Threshold Pump Power

Fig. 7-4. Ideal approximation of dependence of excess material
noise on pump power. For saturated samples

P th is the Suhl threshold.

Fig. 7-5. Noise figure vs. pump power assuming N . ., e(Pp)

as shown in Fig. 7-4. The solid curve is the ideal
and the dashed curve the actual F.
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The noise figure is also optimum for some particular source resistance. Assum-

ing the pump power is below the Suhl threshold, we can write noise figure as

R 5Rs
F = 1+-R—+K—P (7.46)
s p

where we have written Gt =K Pp/Rs which is minimum for:

R?% =KP R
s P
, KPpR
RS =_5——
or:
G R
R, = & (7. 47

F . =1+= (7. 48)

Note that this estimate is under the actual noise figure by an amount due to the actual excess

sample noise at P th'

7.6 Summary and Conclusions

This paper has reported the results of an investigation of the ferrite phase-shift
amplifier, which is basically a double-sideband reactive- mixer circuit. Reactive mixing
occurs in the material between a reference signal and a local oscillator of much higher fre-
quency. It was assumed that filters are available to restrict the power flow to the set of
frequencies including the signal, the local oscillator and the upper and lower sidebands.
Although the phase-shift amplifier is a double-sideband circuit, the two single-sideband cir-
cuits were discussed briefly as an interesting contrast to the phase-shift amplifier circuit.

A rather complete study of the phase-shift amplifier circuit properties was con-

ducted by Adams. For this reason the circuit properties of ferrite phase-shift amplifiers
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were not emphasized. The principal interest in this paper has been the study of those phys-
ical properties which tend to make ferrites useful in phase-shift amplifiers, and those prop-
erties which tend to limit them in this application. Using these properties the theoretical
optimum ferrite phase-shift amplifier performance was computed and then compared with
the performance of experimental configurations. In each case, explanations were offered
for the disparity between theoretical optimum and the practical circuits. The noise proper-
ties of the ferrite phase-shift amplifier were studied and used to compute the minimum the-
oretical noise figure. The ferrite properties which tend to limit the applied local oscillator
power were studied and used to compute the maximum useful local oscillator power. The
results of this study led to an estimate of the maximum theoretical gain-bandwidth product.

In this study the following original contributions were made:

1. The boundary value problem for ferrite samples in an r-f magnetic field which
are small compared to a wavelength was solved, correct to second order in (a)), which a is
the sample size and A the wavelength. This problem is an extension of the lowest-order ap-
proximation, which was termed the magnetostatic modes. This portion of the thesis was
published in the Journal of Applied Physics (Ref. 17).

2. It was shown that the properties of ferrite reactive mixers can be specified
by the so-called pumped susceptibility tensor which is the matrix form of the steady-state
solution to the equation of motion, including the fields at all frequencies where real power
flows.

3. Using the pumped susceptibility tensor appropriate to the lower- sideband cir-
cuit or parametric amplifier, the unity-gain pump-power threshold was found. It was learned
that this power is minimized if the signal and lower sideband field distributions are complex
conjugates, and if the pump field is uniform throughout the sample and directed along the
field which biases the sample.

4. The pumped susceptibility for the upper-sideband converter was found and
used to predict the power flow at the upper-sideband and signal frequencies. The ratio of
these powers was shown to deviate from the value predicted by the Manley-Rowe relations
due to losses in the sample. The effect of these losses on the conversion gain, which was

demonstrated by Adams (Ref. 1) for varactors, was similarly reported in this section.
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5. The pumped susceptibility tensor for the double-sideband circuit was found
assuming the fields were circularly polarized. The optimum field orientations for maxi-
mixing the power converted to the sidebands was shown to consist of a signal field directed
parallel to the biasing field and a pump field transverse to that field.

A method of synthesizing the prototype model of the phase-shift amplifier was
suggested by the optimum field orientation in which the ferrite is used to tune a filter which
is resonant at the pump frequency. This prototype is synthesiz.ed if the filter is placed be-
tween the pump and a matched phase detec_tor. It was shown that a quantity which we call
tunability is useful for measuring the performance of the ferrite in tuning the resonant cir-
cuit. Tunability is defined as the percentage change in resonant frequency per unit applied
field and tends to be proportional to the percentage change in sample permeability per unit
applied field. Because the gain-bandwidth product tends to be proportional to pump frequen-
cy and because ferrite tunabilities are large in the microwave spectrum, a microwave pump
source was assumed in all calculations and was used for all experimental measurements.

6. The tunability was studied for a variety of configurations and found to have
interesting properties depending upon the configuration. It was shown that for bulk ferrite
samples, the tunability is largest for two bias conditions: 1) near ferromagnetic resonance,
and 2) near zero bias. Near ferromagnetic resonance it was shown that tunability is limited
fundamentally to f_'y_ , where y is the gyromagnetic ratio and f0 is the pump frequency. Near
zero bias, no fund:mental limit could be found but it was shown that the best materials are
those for which the B-H loop is 'square.' That is, those materials which tend to saturate
for small magnetic fields are optimum. Perhaps the best material in this respect which
has appeared in the literature was reported by Weiss. Using the published data for the ma-

terial reported by Weiss, it was shown that the tunability is approximately 353 Mc /Oe

o]

0. 035/0e at x-band.

The tunability of a thin film variable inductor was measured and found to be
about 0.2/0e at 10 Mc. - Unfortunately, the currently available thin films were found to suf-
fer from excessive loss at frequencies above VHF, which limits their applicability in phase-
shift amplifiers to frequencies somewhat below this range. However, further research in

thin films may lead to the development of low-loss films in much the same way that low-loss
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bulk ferrites (e.g., YIG) were developed. The realization of thin-film phase- shift ampli-
fiers which compete with varactors versions must await such a development.

7. It was shown that ferrite phase-shift amplifiers which employ bulk ferrite
samples tend to be input-bandwidth limited. There are two important reasons for this limi-
tation: 1) the r-f permeability of ferrites is relatively insensitive to the signal-fredquency
magnetic field for which the tunability is relatively small; 2) the signal energy does not tend
to be coupled strongly into the sample for sample shapes which are convenient to use-in
phase-shift amplifiers. The optimum sample shape with respect to 2) above is a toroid.
However, it was shown that even the phase-shift amplifiers which employ optimum samples
tend to be input-bandwidth limited.

It was further shown that the thin-film configuration is not necessarily input-
bandwidth limited. This result can be attributed to the relatively small threshold per unit
bandwidth, and to the relatively narrow pump bandwidth necessary for gain at low pump fre-.
quencies.

8. It was shown that'the transducer gain for ferrite phase-shift amplifiers is
proportional to pump power for small enough power. However, for large pump powers the
gain tends to saturate due to certain ferrite nonlinearities. The limiting nonlinearity in fer-
rite phase-shift amplifiers is different for the two principal bias conditions. For samples
biased near ferromagne'tié resonance, the Hmiting nonlinearity is attributed to spin waves
which tend to be éxcited étboire a certain power threshold. Any pump power greater than
this level tends to be disSipated in the ’sampie and is not useful for increasing the gain of the
circuit. For samples biased near zero ap"plied'magn’etic field, the limiting honlinearity is
magnetic saturation of the material. It was shown for this case that the maximum useful
amplitude of the magnetic field is of the order of the coercive force for the material.

This pump saturation effect is significant because it tends to limit the gain-band-
width product of the bulk ferrite configurations. Other factors which contribute to this lim-
itation dre: the linear relation between pump threshold and input bahdwi‘dth; and the input
bandwidth limitation which is characteristic of these circuits.‘ The configurafion which is
biased near ferromagnetic resonance is the optimum bulk fefrite configuration in this re-

spect.
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The maximum gain-bandwidth product for the thin-film configuration is limited
by spin-wave excitation, but this effect tends to be less significant in this case because these
configurations do not tend to be input-bandwidth limited.

9. It was shown that the excess noise in ferrite phase-shift amplifiers comes
primarily from the stray loss in the signal circuit, the material itself and from the detector.
The two principal sources of noise in the bulk ferrite material were shown to be spin-wave
noise which is produced near ferromagnetic resonance, and Barkhausen noise which is pro-
duced near ferromagnetic resonance, and Barkhausen noise which is produced in all unsat-
urated samples. In single-domain thin films, at frequencies away from ferromagnetic
resonance, neither of these noise contributions will be present. It was shown that the noise
figure of a ferrite phase-shift amplifier is a function of pump power and is minimized for
some particular power. For the ferromagnetic resonance configuration, the minimum
occurs for a pump power near the Suhl threshold. However, the detector excess noise tends
to be the most significant noise in ferrite phase-shift amplifiers. Assuming that sample

noise can be neglected, a minimum noise figure was computed and shown to be:

10. A comparison was made between varactors and ferrite reactive mixers on
the basis of energy tunability, which was defined as the tunability per unit square root of
active signal energy. In the case of ferrites the active signal energy is that which is stored
inside the sample and for varactors it is the energy stored in the junction capacitance. This
tunability is a measure of the maximum tunability per unit input bandwidth and is a good quan-
tity to use for comparing varactors and ferrites because the latter tend to be input-bandwidth
limited. On the basis of energy tunability it was found that only the configurations which are
biased near ferromagnetic resonance are comparable with varactors, and these are compar-
able only for physically unreal conditions. However, it was shown that the thin films are
comparable with varactors in their optimum configurations. -

The general conclusion which can be drawn from this study is that ferrite phase-
shift amplifiers which use bulk ferrite samples will probably find application only if a nar-

row bandwidth is unimportant. However, it appears that the thin-film variable inductor
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might ultimately be useful in these amplifiers particularly after the development of films

whose losses at UHF are small. It is believed that this paper has shown from fundamental

grounds that further attempts to synthesize wideband ferrite phase-shift amplifiers using

bulk samples should not be considered, but that the thin-film phase-shift amplifiers show

definite promise and should be explored.



APPENDIX A

MAGNETOSTATIC APPROXIMATION FOR SPHERICAL SAMPLE

We wish to solve the following magnetostatic boundary value problem:

2 . g ¥ _ . . _
A o + 1K 0 inside the sample (A-1)

v = 0 outside the sample (A-2)

where the boundary conditions are continuity of the potential and the normal component of
magnetic flux density. Because the solution for a sphere is sought, a spherical coordinate
system will be considered whose center lies at the center of the sample and whose z-axis

lies along the field which biases the sample.

Fig. A-1. Coordinate system convenient for solution to
boundary value problem.

The solution for the potential outside the sample is well known:

Pgl(cos 6)

imy (A-3)
e
rn+1

g = A

180



181

However, the solution for the potential inside requires further thought. Notice that if the

following definitions are made:

X =X

v =y (A-4)
1

z' = (1+Kfz

then the differential equation for the potential inside the sample reduces to

vig =0 , (A-5)

where the use of the prime indicates that derivatives with respect to the primed coordinates

are taken., The equation of the surface in the primed coordinates, i.e.,

1
x'2+y'z + Z = r 2 , (A-6)

is no longer that of a sphere. Rather it is that of an oblate or prolate spheroid according to
whether K is greater than or less than zero, 'respectively. The advantage of making the

definition of the primed variables is that the solution to Eq. A. 1 is known in these variables.
Further, their relation to the actual coordinates can easily be computed. Let the spheroidal
variables be ', 8', ¢' for which n' = o is the equation of the sample surface. The solution

to Eq. A. 1 in these variables is:
: '
¢ =B an(cos 0" P:l(i sinh 7) e1m¢ (A-T)

where it has been assumed that K < 0 for which the surface will be an oblate spheroid in the
artificial coordinates.

These artificial coordinates are related to the actual coordinates by the relations:

X = X' = acosh? sinf cos¢
y = y' = acoshn sinf sin ¢
1
z = sinh 1 cos 6

z _ __a
1+K J1+K (A-8)
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From these relations the sample surface can be found in terms of known quantities.

' a sinh
r, = z = 9 cos 6"
1+K /1+K 9'=0
- L. 3 t
ro=x' = a cosh o sin 6 T (A-9)
2
Thus
tanh no = 1+K
Substituting this quantity in the equation of the surface it can be shown that:
r
a = .__._0_
cosh M
= -Kr (A-10)
0

But for oblate spheroids K < 0 so this quantity is positive. Notice also that on the sample

surface that

1}

»
1

r, sin 6 cos ¢ a cosh A sin 6' cos ¢'

I

and y r, sin 6 sin¢ = a cosh no sin ' sin @'

for which it is clear that ¢ =¢'and 8 = 9",

For matching of the boundary conditions it will be necessary to find the deriva-
tives of the potential in terms of the real coordinates. These can easily be evaluated by the
chain rule once the derivatives of the artificial coordinates with respect to the real coordi-
nates are known. For this purpose we make the following computations. Let the coordinates

X, ¥, Z be given by
X = f(n',@',¢'), y = gin',6,8", z = k(n',e"¢')

For convenience the primes will be droppedy in these calculations. The desired derivatives,



o etc., can be found:

ox

0X
where

J
and where:

>
1]

a sinh 77 sin 8 cos ¢ X
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1 9(y,z)
T W6,p

= T , etc.

a cosh 7 cos 0 cos ¢

n 0

Xy = -a cosh 1 sin 9 sin ¢ yn = asinhn sinf sin ¢

Vo = a cosh 7 cos 6 sin ¢ Vg = a cosh 1 sin 6 cos ¢
_ acoshncos$ _ -asinhnsinéd

zZ = Z, = ———— z, =0

L 1+K 6 /1+K e

om _ 1 d(zx on _ 1 3xy)

oy 3 2(8,9) oz  J 23(0,9)

39 _ 1 a(y, z) 4 _ 1 3(z,x) 30 _ 1 a(x,y)

ox J ale,m ey I agm oz I a(g,n)

39 _ 1 ay,z) 9 _ 1 3(zx 24 _ 1 3xy)

oax J 3(n,0) ay T 3(n,0) az T 3(n,0)

sinh 7 sin 0 cos ¢
sinh 17 sin @ sin ¢

cosh 17 cos 9

/1+K

1+K

cosh 1 cos 6 cos ¢
cosh 17 cos 8 sin ¢

- sinh 77 sin @

14K

- cosh 7 sin 0 sin ¢

cosh 1 sin 6 cos @

(cosh® 7 cos® 0 sin 6 cos® ¢ + cosh 7 sinh? 7 sin® @ sin® ¢

+ cosh® n cos® 0 sin 0 sin® ¢ + sinh® cosh n sin® § cos? ¢)

(A-11)
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cosh® 7 cos® 0 sin 6 + sinh® cosh 7 sin®

~/1+K

cosh 7 sin 0 (cosh®  cos® 6 + sinh? 1 sin® 6)

Z/1+K

3y 9y
a6 0@
2z 2z
ap _1 36 3¢ | _ coshn sinhy sin® 9 cos ¢
ox J (1+4K)J
sinh 1 sin 8 cos ¢ coshncosfcos¢ - coshnsinb sing
sinh 17 sin 6 sin ¢ cosh 1 cos 6 sin ¢ cosh 1 sin 6 cos ¢
cosh 1 cos 6 -sinh 17 sin § 0

+/ 1+K

. 2
cosh® 1 cos® 6 sin 6 cos® ¢

A/ 1+K

1+K

+ cosh 7 sinh® 7 sin® 8 sin® ¢

cosh® 1 cos® 6 sin ¢ sin”® ¢ , coshn sinh? 7 sin® 0 cos® ¢

cosh 7 sin 0

cosh® 1, sin 8

./ 1+K

./ 1+K

1+K
dy 9y
20 _ 1 0¢ an
0x J 9z oz
9 an

Ct] bt

1+K

(cosh? 7 cos® 6 + sinh? n sin® 9)

[cos® 6 + (1+K) sin® 6]

cosh n sin 0 cos ¢ sinh 77 sin 6 sin ¢

cosh 1 cos 0
1+K

(A-12)

(A-13)

(A-14)
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cosh® 7 sin 6 cos 6 cos ¢

- cosh 7 cos 6 cos ¢ (A-15)

/1+K J

oz 2z
1%
Tlex  ax
¢ an
0
1
J

- cosh 71 sin 6 sin ¢

cosh® 7 sin 9 cos 8 sin @

2 . .
cosh? n cos® 6 + sin”® i sin® 6

cosh n cos @
1+K

sinh 1 sin 6 cos ¢

J1+K J

y Y
1 an 06
Moz 2z

n 060
. | sinh 7 sin 6 sin ¢
1
J cosh i cos 6

/ 1+K

_ (cosh® n cos® 6 + sinh?

cosh 11 cos 0 sin ¢

- sinh 7 sin @

/J1+K

1 sin® ) sing _ ¥  sing

/1+K J

oz 9z
1 on 00
Tlox  ax

on 006

cosh 7 cos 6

1 ./ 1+K
J

sinh 77 sin 6 cos ¢

(cosh® 1 cos?® 6 + sinh® 7 sin® 6) cos ¢

B coshn sinf (A-17)

- sinh 77 sin @

./ 1+K

cosh 1 cos 6 cos ¢

cos ¢

/14K J

coshnsind (A-18)
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1 sinh 1 sin 6 cos ¢ cosh 1 cos 0 cos @
oz J =0 (A-19)
sinh 7 sin 0 sin ¢ cosh n cos 6 sin ¢

0z 0z
20 o9
o _ 1
dy ~ J | ox X
a0 o9
- sinh 7 sin 6 0
1 ./ 1+K
J cosh 1 cos 0 cos ¢ - cosh n sin 6. sin ¢
. 22 .
_ Sinh 77 cosh 1 sin” 6 sin ¢ (A-20)
JTE 3
90X 9x
g _ 1 a6 o9
oz ~ J
3y %y
26 ¢
1 cosh n cos 6 cos ¢ - cosh 7 sin @ sin ¢
J cosh n cos 6 sin ¢ cosh 7 sin 0 cos ¢
_ 1 2 .
= j(cosh 7 cos 0 sin ) (A-21)
9x  3x
30 1 a9 an
0z J ay ay
L) an
1 |- coshnsinésing  sinhy sin 6 cos ¢
J cosh 7 sin 8 cos¢ sinh 77 sin § sin ¢
_ _ cosh 7 sinh 7 sin® 6 (A-22)

J

These quantities can be used to find the components of flux density

b

b
—x = ’ % -1 = _X = 1 % %
m (1+K) ~ - 1V ™ = iv =+ (1+K) 3y
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b

Z _ 9
Ho 0%
96 _ 9 99 96 96 39 3¢
9x = 9x 97 9x a0 9x 09
_ sinh 7 sin 6 cos ¢ 3 . coshncosfcosg
cosh? n cos? 6 + sinh? n sin? 6 on cosh? i cos® 6 + sh® n sin® 6
- sin ¢ o9
coshn sin 8 99
2 _2n 29 , 39 3¢ , 39 39
ay oy on oy 06 oy 0¢
- sinh 1 sin 6 sin ¢ a8 . cosh 1 cos 0 sin ¢ _
ch® n cos® 6 + sh® n sin® 6 0 " cosh? n cos® 6 + sinh? 7 sin? §
cos ¢ 29
coshnp sinf od¢
2 _ dn 28 20 28 , 239 38
z oz 9N 0z 06 0z 0¢
_ v/ 1+K cosh 7 cos § 99 +/1+K sinh 7 sin 6 28
- an 0

ch?  cos® 6 + sh? 5 sin® o ch® 1 cos? 6 + sh? 7 sin® 6

The normal (i. e., radial) component of flux density is given by:

b0
r _ . . s
“_o = —“o (bX sin  cos ¢ + by sin 6 sin ¢ + b, cos )

(A-23)

(A-24)

(A-25)
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hi‘O) _ (_1:D_K_) vsinh 7 sin® 6 cos® ¢ g% + cosh 7 cos 6 sin 0 cos® ¢ ¢
- (1+K) sir;gsﬁoigi;igm % —% sh 7 sin® 6 sin ¢ cos ¢ %%
+ cosh 7 sin 6 cos 6 cos ¢ sin ¢ ag B %:ﬁznﬁ %
+ —{smhsm 6 sin ¢ cos ¢ 2 + chn cos 6 sin 6 cos ¢ sin ¢ ag

)

_ . sin®g 3  1+K 29
v ——= chn 39 + {shnsm 8 sin® ¢ an
(1+K) 39 , A/1+Kchncos® 6 3
+ chn cos 6 sin § sin® ¢ cosh 7 sin ¢ cos ¢ T D o
) shn sinf cos § 09 (A-26)
1+K D Y
_ 1+K .2, 08 [
(h+m)r = 5 [shn sin® 0 an + chncos 6 sind 80]
iv 099  /1+Kchy cos’§ 39 +/1+Kshnsinfcosfd 3¢
chn 09 D an D a6
but at the surface
shnp _ -
oh 1+K (A-27)
and
D = cosh® n_(cos® 8 + (1+K) sin” 9)
(h+m) (1+K) ch 7 sin 9 + 27 052 g 9 w99
on chn o¢
surface
sh n .
(h+ m)r = — o % - —_——chu;”/ %%
surface ch®n
o
1+K) 0¢ iv a6
(h+m) - (+K) 09 W 29 (A-28)
surface sh Mo an ch Mo a9
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From this equation and from the condition of continuity of potential the constants A and B can

be eliminated and the characteristic equation of the magnetostatic modes results:

P™ (i sinh ) . .
n o ,_m (A-29)
cosh o

-% = /1K =
Pn (i sinh 770)

It will be convenient to define 50 = sinh o The Legendre polynomials can be written in the

product form:

I iml % (n-1ml)
Pl(ig) = A1+ )" ik, LS to)
where gor are the zeros of Prrln
iPP'E)  Iml £ ? z (n- Iml) £ 2
n:l'i [0} = o + 2 I ._______(_) (A—30)
P (i¢) 1+¢ * r=1  (-£7-£2)

If this relation is substituted in the characteristic equation, then it can be used to find the

characteristic roots gon o A graphical solution is perhaps the best. To that purpose
2 s
1+K

K

2 . 2
poles at ‘Sor and hence a set of roots gonmr is guaranteed. However, for go > 0 no such

note that 502 = and note that for 502 < 0 the ratio of Legendre polynomials has

guarantee is possible and no more than one root is possible. The characteristic equation is

written in for form:

P™(i £ )
i./1+K -I;‘r;—(% = F(¢)
n (18
(A-31)
— mv 1
P s HE)
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Fig. A-2. Graphical solution of characteristic equation [i. e. , H(go) = FY( go)]

for the set of roots 50 = gonmr.

Certain features of these roots can be noted from the graph. Observe that for
increasing 50 the roots approach the zeros of the Legendre polynomials. Notice also that
they alternate along the £0 axis and in particular do not tend to be degenerate for m and -m.
This fact will be used in the chapter concerning the lower sideband circuit.

It has been shown that Eoz = IEK which must be negative for solutions to the

characteristic equation. The implications of these facts are that each root corresponds to
a resonant frequency which of course depends upon the biasing field. In addition it is true

that the frequency range for which these roots exist is defined by that for which I;{K < 0.

That frequency range is yHO <w < v/ Ho(Ho + m) and is of course the same as that ob-

served by Walker in his more general paper.




APPENDIX B

SUSCEPTIBILITY COMPONENTS INDEPENDENT OF
POSITION IN SAMPLE

The requirement that the susceptibility tensor components be independent of posi-
tion in the sample effectively demands that the internal dc magnetic field be uniform. Clear-
ly this cannot be the case if the sample is placed in the uniform field of a magnet since the
demagnetizing field will be highly nonuniform for such an arrangement. However it is pos-
sible to maintain a uniform internal field in the following physical arrangement (see Fig. B-1)
from a long cylinder of the material desired and of the diameter of interest cut a right sec-
tion of the length desired; place this section in a strip line of spacing equal to the section
length; obtain two more cuts from the original cylinder which are each long compared with
the spacing of the strip line and place them, one on either side of the strip line coaxial with
the section included in it; magnetize to saturation along the common axis. The dc field in the
section between the strip line plates will be uniform since it is in the middle portion of a long
ferromagnetic cylinder. The microwave energy will be contained in the strip line and so the
section so included will be the equivalent of that pictured in Fig. B-1 in which the internal dc

field is uniform.

N
N

V777NN
NS
N

/MAGNET

Fig. B-1. Configuration for which bias magnetic field is uniform.
The field H; is uniform in the section labelled Mg
between the conducting plates.
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APPENDIX C

CHARACTERISTIC EQUATION FOR SECOND-ORDER-CORRECT
BOUNDARY VALUE PROBLEM

The characteristic equation for the example boundary value broblem can be
foﬁnd from substituting the scalar and vector potentials in Eq. 3.45. However, computation of
the components of these potentials requires knowledge of the magnetostatic approximation to
the magneﬁzation. The components of the magnetostatic approximation to the magnetization

are:

=
I

| 29 sing 9] . [ , 20 . cosf 29
ox K[:cosear m 9] v |:smear+ r 89]

v [cos@ﬂb—- sin 6 29—] +K |:Sin6§@_+cos6 %]

Q

(c-1)

Moy or r a0 or r

Let the magnetostatic potential for the mode in question be:

Bmor inOG
¢ = In e cos Bm zZ (C-2)
0

~/1+K o

Then

' B_r .
m in 8
0 _ . o )
35 - In I <——) e cos Bm Z

o \./1+K

These quantities can be used to compute the lowest order approximation to the vector poten-

tial in which the following observation is made:

2n in 6

-3 t
f e 1nf cose'e0d9'=1rifn=noil
o
= 0 otherwise
(C-4)
2n -ind in,f T
and fo e sin 0 e a = n=no¢1

= 0 otherwise .
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Using these relations and the orthogonality relations of the z components, the
components of the vector potential AOX and Aoy are given by the relations on pages20iand 202.
The denominator of Green's function has been written as f(m01r o) in these equations. These
lengthy expressions can be summarized by making the definitions AI'l +1 and Bn -1 (see page

o
203). Then using these definitions the components of the vector potential can be written:

7 cos Bmoz i(n_+1)0 i(n -1)8

on = —f(—m—- l:(K- v) Ano+1(r) e + (K+v) Bno_ l(r) € ] (C-9)
i7 cos Bmoz i(n0+1)9 i(no- 1)6

Aoy = W[(V-K) An0+1(r) e + (K+v) Bno_ i(r) e ] (C-10)

Matching boundary conditions will require knowledge of the normal component of

the vector potential. For this reason it is computed here.

Outside the sample:

- 2 : 3
An =k, (cos 6 AOX + sin 8 Aoy)l
surf r=a
2
ﬂko cos Bmoz inoé) inoe
= T Hmora l:(K— v) An +1(r) e + (K+v) Bn _l(r) e ] (C-11)
o} 0 o}
Inside the sample:
_ 2 _ . .
Anlsurf = ki [( (1+K) on iv Aoy) cos B+ (iv AOX +K Aoy) sin 6 ] (C-12)

k.2
; T cos Bm Z

() i(n0+1)9
flm_na) (1+K) <(K' V) A () e

[¢) 0]

i(no- 1)8 i(no+ 1)0 i(no— 1)6
+ (K+v) Bn _l(r) e +vl v-K) An +1(r) e + (K+v) Bn _l(r) e >cos6
) 0 0
i(n_+1)0 i(n_-1)6
+ IV((K-V) An +1(r)e +(K+v) B _l(r)e ° > +
o
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: i(n +1)8 i(n -1)6
+ i(1+K)<(v-K) An +1(r) e ° + (K+v) Bn _l(r) e ° ) sin 6 (C-13)
() ()

Thus the normal component of the vector potential inside the sample at the sample surface is
given by:

in 6

2
. Z
k1 T CcOoS Bm .

A = 0 [(1+K—V) (K-v) A

) - f(moﬂa) n _+

() + (1+K+v) (R+2) B _ 1(r):l e
[¢} o}

In addition to the normal components of the vector potential the normal deriva-
tive of the scalar potential must be found inside the sample at the surface in order to apply
the boundary condition of the continuity of the normal components of flux density. In terms

of the quantities previously defined An +1 and Bn -1 it is possible to write this normal de-
o)

)
rivative:
. inoe
a¢(2) ki cos (ﬁmoz) e fa ]
99 = J_(agr)rdr | (K-v) <A' (r)
or |,, (1+K) f(m 7d)a Jno(az2 a) - ‘n2 n+1
n+1 , n-1
t -
A Ano+ l(r) + (K+v) Bno— l(r) r Bno— 1(r) (C-14)

This expression can be written in a more useful form by substituting the functional form for

A' and B;l However, it is convenient to reduce these quantities by manipulation of

n0+ 1 ~ 1
the appropriate recursion formulas for the Bessel functions

zJ;l(z) = -zJ_ (z) + an(z)

n+1

ZJ;l(Z) = -z Jn+1(z) + an(z)

and

Z JI'I(Z) =

|

N
oy
L
5

1

=
oy
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Using these relations and the well-known integral

3,03, 02 0o = 2 [;z 3,(ke) T1(02) - k3 (¢2) Jl'}(kz)]

it can be shown that the expression for the normal derivative of the scalar potential can be

written:
inoe
, ki2 cos (B z)e N 4n K2v /B, 2
%%7 = 0 f Jn (azr)r dr o In ( 0 )Kn (Bm a)
r=a KV1+K f(mowa)aJn (aza) o* o J/1+K "o \V1+K o o
o)
(2
+ (K+V)2<I K (B a)-K (8 a)>
n e n0+1 m no-l m
ﬁm a Bm a (C-15)
- K (B_alI1 0 -1 2 I (B _r)
Iy Mg no+1< Ji+K ) ny-1 <~/ITK) T My
r
. 2(K? + v%) o

m
L (—=\[t ¢ DK (6 n-1 (B DK @ r)]
v1+K no( JI+K ) [no m, "o lTmg 0t my " T

It will be convenient to define:

4n K% v Bmoa
By K¥) = ——— T K, (8 2
00 V1+K o\ V/I+K o o

B, a
(K®+v%) In0< ’—lfK ) (Kno+ I(Bmoa) - Kno- I(Bmoa)) (C-16)

K (B a1 Pu® I P
a —— -
By Mo [ n0+1< J1+K> n0-1< J1+K> ]

Then from the integral relation:

+
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but
Bm a‘In (‘Bm a) = 'ﬁm aI;1+1(Bm a) + noIn (Bm 2)
o o o o o (o} o o
and
! = -
252 Jno(a, a) = 2 Jno+ 1(atza.) + 0 Jn (aza)
Thus:
a
\] 1 t | B
f J, (@) T (B r)r'dr' = — — oy 3, () I (8, a)
o o ) (012 -B ) ) o o
m
o
- Bp 1, (B, 3)J, (a42) (C-17)
o o o}
a¢(2) .
is proportional to k® and since this

The coefficient of this integral in the expression for 5T

development is only correct to second order in k this integral need only be computed to zero

order in k. The following observations should be made:

n

.0
J (@) — i°1 (B a)
o) k-0 0
o, —» if
2 K= 0 m

Thus

1 fa a
— J (@I (B r)r'dr' — —— 1 (B_a)
Jn(aza) A N 2 n o mg Ko 0 Bm no+1 m
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A further reduction is possible using the following observations:

-
~
Il

2n-0) 1 B )-8, v T 4B T
(0] o] o] (o] (o] [¢} (0]

B _r)-B rK

m m n +1
o

(6, 1)

[¢]

so that:

8 r[In By DK (B W -1 (8 DK (B r):l - K,
[¢) o) (0] o) (o] 0] [0) [¢) [¢)

- Bmor In0+ l(ﬁmor)] -4 (Bm r) |:2(n0— ) K (Bm r) - Bmor Kno+ I(Bmor)]

[¢) o) [¢] 0]

=T 'Smor l:In0+ I(Bmor) Kno(Bmor) B Ino(ﬁmor) Kn0+ I(Bmor)] (C-18)

and also

By T
[0}
BT Ino< m) [(K-V)2<Ino(ﬁmor) SRR R AN Knowmor))

- K+ (B DK (B, 1)-1 (B VK (B T
o [¢] 0] [¢] 0 [¢] [¢] o
B T
[0) 2 2
T < 7:> ) (‘no“*m:’ (g 0,2~ )]

Kn '(Bm r) [In +1(Bm r) - In -1(Bm r)])
o o ) o} ) 0

Bn T
= (BT (K?+v?) I“o< - )< L (Bmor)l—_Kmo+ 1(Bmor) + K“o' 1(Bmor)jl

1+K )
- K, (8 1) [n R ES r>]
e} 0] 0] o] [¢]
=20 (B, K 4B, 1)-K (B T o1 r)) (C-19)
0] o] 0 [¢) o] ¢} o] (o]

[¢] [0} [¢]

By T
= - 2 Bm r (K2 + v?) 1n0< 0 ) [In (Bmor) Kno+ 1(ﬁmor) - Kn (Bm r) Ino+ 1(Bmor):]
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e

T we obtain:

Substituting these observations in

. inoe
a¢(2) ki e cos Bmoz fa
- I (B_r)rdr |h I (B _r)
or r=a K «/1+Kf(mo1ra)aln (Bm a) o T M l—nomo % M
o o

Bm r
- 28 r(KE+vA)1 <—°><1 (8. r)K (B_ r)
m, LA\ VIFK B, Mo " ngtlTmy

B Kn (Bmor) In0+ I(Bmor)> ] (C-20)

[¢]

in 6

(o)
k.2
i€ cos ,Bm 4

- 9 2
= (a I” (B a)
K V/1+K f(mowa)a_ In (Bm a) { Iy Mo

[¢] ]

) Ino- 1P md) In0+ I(Bmoa)) hnom0
B 'r
Cae) [ 8 1 (—2 V1 s o1 6 DK (B o
o ™Mo 5 JI+K no mo no mo no+1 m,

[o}

- K, (Bmor) Ino . 1(ﬁmor)> r? dr ] (C-21)

Although the integral cannot be evaluated directly, a digital computer is useful for approxi-
mating it once K and v are known. But since this expression need be correct to only second

order in k then K and v need be correct to only zero order. The values K Y
nomoﬂ0 nomoﬂo

are known from the magnetostatic approximation. For convenience let us introduce the nota-

tion H (K, v) so that
n_m
0 0

(C-22)

where Hnomo(K, v) is given by



1 2
H K,v) = al’ (B _a)-T1 (B a)I (B a) h
Mo™Mo K v1+K f(mona)aln (Bm a) {( o, m n, 1 no+1 m, ) My
o o
2 2 fa Bmor
- 2K%4+vR) [ B 1 I B r) I (B r)K (B r)
AR no( JITE nmg ntmg no+1 m
2
B Kn (Bm r) I +1(’8m r)J r*dr (C-23)
o o o) 0
From the solution to Green's function the potential ®® has been shown to be
@(2) ) ¢(2) BKnO(ala) Jno(a2r) . in09
= + T () cos B ze (C-24)
n 2 o]

Using this definition and the values found for the normal component of flux density due to the

vector potential, we can write the characteristic equation.
]
% Jn (a2a)

+1(a) + (K+v) Bno_ 1(a) = B[Kn (ala) —Jn(—aza—) (1+K)

]

aBK!(@a) + k } [m ((K V) A n

+n v Kn(ala) + B(1+K) H (v K) k

+ kf(ﬁ&_) [(1+K- V) (K-v) An0+ 1(a) + (1+K+v) (K+v) Bno_ 1(a,)]) (C-25)

Then neglecting common factors in the equation this expression can be rewritten as:

Kﬁo(ala) J ’o(aza) n v
RENCORE e AN
o o
1 ki2 1r
B\ {m 70) [:(1+K' V) (K-v) A @)+ (1+K+v) (K+v) B, _(a) :]
o o]

k2m
- T(rrcl)o_'twﬁ [(K- v 1(a) +(K+v) B l(a):|> + (1+K) k H mo(v,K) (C-26)
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The parameter B need be known only to zero order if the above equation is to be correct to

second order. Equation 3. 46 is useful for determining B(k-0):

By 2
B — "o\ VITK
k-0 Kn (Bm a (C-27)
o o

Use of this definition yields the characteristic equation of the sample modes.

\ \i
Kno(ala) Jno(“za) nv HE,v,k* k?
0, =—2—— - (1+K) @, —2—— + > = (C-28)
1 Krl (ala) 2 Jn (aza) a < Bm a
0 0 1 [o]
"o\ VI+K

This expression appears in the text as Eq. 3. 64 where H(Kl'y kiz koz) is given by:

K (Bm a)r
H = —f(z_m-oTocT (kiz [(1+K— V) (K- ) An0+1(a) + (1+K+v) (K+v) Bno_ (@
- ko2 |:(K— v) A L@+ K+v) B _l(a-):' ) + (1+K) ko2 H (C-29)
0 (6] 0O 0

Thus the characteristic equation for the example problem has been determined correct to

second order in k.
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APPENDIX D

LOWER SIDEBAND PUMPED SUSCEPTIBILITY TENSOR

The steady-state solution to the equation of motion for the lower sideband case

M =X - H can be found by inverting the following matrix equation:

(H. [w +icw -iw yH_ 0 M
Xq 0 1 1 z; Xy
H i +ia 0 H M
v, iwg w +iaw, by 2, v,
YMotlg *| = yH, * 0 wo-iaw, iw, M_*| (D-])
Xﬁ' 2 % Xﬂ
H * 0 yH * -iw w -iaw M_*
Lyﬁ_ L Z2 { o E-J - Yﬂ_

The pumped susceptibility tensor X is the inverse of the four by four matrix in the above

equation. The determinant of this matrix to first order in Hz is:
2
_ . N2 2 _ s 2 _ 2
D = [(w0+1aw1) wJ Ewo 1awﬁ) w, :I

The tensor elements of X can be found from the system of minors,

w,t iawl 0 szz
YM, :
Xy = 0 w, - iaw, 1w, (D-2)
* s s
')/sz lw, wo 1010.)ﬂ

i yM‘o[(wo +1i awl)((wo - iozwﬂ)2 - wﬂz)]
B D

yMo(wo+ iawl)

X =
11 . s 2 2
(w0+1aw1) - wy

In this paper we will be concerned primarily with low-loss ferrites for which @ << 1. Thus,

to first approximation in a the above tensor element can be written:
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')/Mo(wo+iaw1)

X,, &
11 2 2 : (D-3)
W, -wy +2101w1w0
Similarly, for the remaining tensor elements:
-iw1 yHZZ 0
YMo : .
X9 % " 0 wo-muoIZ iw,
X s s
yHZ iw, w iaw,
2
o iwl[(wo iawﬂ)z—wﬂz]
"o D
vyM w
=i — ” o 1 (D-4)
w "Wy +21au)1coﬂ
-iw vH 0
1 Zo
vM
X3 =P w o riaw, 0 -szz
% . .
'yHZ “lw, wo-iaw,
2
'yMo 2
=5 'szz[wlwﬁ-w -2iaw (wl-wﬂ)]
2 2 .
% MOsz[wlwﬁ—w ’-21a(w1-wﬂ)]
X137 T, . (D-5)
(wo - wy +21aw1w0)(w0 - w, -2i0w wﬂ)
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—iwl 'sz2 0
YM,
X4 = "D wotiawy 0 'yHZ:2
0 wo - iawﬂ iwﬂ

v M0 sz[(wo - iawﬂ) wq- wﬂ(wo + iawl)]

= -i

2 2 . 2 2 .
(wo -wy +21aw1)(w0 -w, )-21aw0w£
tw, 0 szz
vM
= - o * o
X91 D szz w 1010)2 tw,
0 —iwﬁ w -iawﬁ
')/M 2 2
=-i—y wll:(wo 1awﬁ) —wﬂ]
- 'yMoco1
woz—w12+2iaw1w
wo+iaw1 szz 0
- .YM * -3 ;
Xg9 = D 'yHz2 wo-iaw, iw,
0 -i(.u]Z wo—iozw!Z
) ';/Mo(wo+iaw1)
X2 =

(D-6)

(D-7)

(D-8)
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-w0+iaw1
< __YMo ;
23 * D 1wy
0

vH

-iwﬁ

w -iaw
o] 4

2 . .
v sz MO[(wo+ 1aw1) W, = wl(wo— 1awﬂ)]

= -

(woz-w12+2iawowl)(woz-wgz-ziaw

w -icdw iw
o} 2 2

wo+iaw1 'yHZ2
A 0
24 D 1@y
*k
'VHZZ

owﬂ)

2 2 .
Y MOsz[wo +1aw0(w1-w£)-w1w2]

2 2 . 2 2 s
(wo - Wy +21aw0w1)(w0 -w, '2““"0“),2)
iw, wo+iaw1 'szz
v M,
X31 = D 7’Hz2* 0 1oy
%k .
0 'yHZZ w - iaw,

(D-9)

(D-10)

(D-11)
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w +iozu.)1 -iwl 0
vM, «
X329 = "D vHy, 0 twy
0 vH, *w -iaw,
2
2 % . .
Y M, sz [—wﬂ(wo+1aw1)+w1(wo- 1aw£)]
= -i :
(woa-w12+21awow1)(woz-wﬂz-2iawowﬁ)
w +iaw1 —iwl 0
vM
X = 0 iw w +icdw vH
33 D 1 1 )
0 vH * w ~iadw
Zg /i
i ')/Mo(wO iawﬂ)
woz-wzz-Ziaw W)
wo+iaw1 -iwl 0
YM,
X34 = 7D tw, W, itow, szz
* .
vyH 0 iw
Zg i
. ';/MowlZ
X34 = 71T

(D-12)

(D-13)

(D-14)
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lw, W +iaw1 0
YM, .
X4q "D 'yHZ2 0 W, - iaw,
E 3 .
0 'szz “lwy

2 2 . 2 2 .
(wo - W +2iaw wl)(wo--wﬁ -2iqdw wﬂ)
w +icdw -iw vH
1 1 Zg
vM, .
X409 = 7D 'szz 0 cuo—uuu!Z
* .
0 sz ~lw,
2
2 E 2 N
v MOsz Ewo +2iquw (wl-wﬁ)-wﬁwl)J
(woz—w12+2iaw wl)(woz-w£2-2iaw wﬁ)
w0+iaw1 -iwl 'sz2
vM,
X43 = - 7P tw, wo+1aw1 0
* .
0 'yHZ “lwy
2
YMow!Z
X43 = 1 2

2 .
w," - w, -Zlotwow2

(D-15)

(D-16)

(D-17)
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w0+iaw1 -iwl 'yHZ2
YM
0 . .
X440 =D tw w0+1aw1 0
* s
'yHZ2 0 wo 1aw£

¥ Mo(w0 -ia wﬂ)

~ - Y (D-18)
wo - wﬂ - 10w wﬂ
The following symmetries can be noted:
11 7 X9
X2 T %91
13 = *q
X, = =X
14 23 (D-19)
X33 = Xyq
%34 T "¥y3
X31 = *g
X392 = "Xy

In the calculations of the power at the signal and lower sideband the term Im X1

and Im Xgq appear. These functions are:

2 2
awl(wo + Wy )

Imx =-——- —— <0 (D-20)
(wo -wl) +40 W W,
for all w o and w 1 Similarly:
dw,(w 2+ w,?)
{
Imx33 = 2 izo 2 2 2 20 (D-2D)
(wo -wﬂ) +4a w " wy

for all wo and Wy



APPENDIX E

UPPER SIDEBAND PUMPED SUSCEPTIBILITY TENSOR

The pumped susceptibility tensor for the upper sideband converter can be found

by inverting the following matrix:

. s *
'yHO+1aw1 twy 'sz:2 0
. N E3
lwy -yHo+ taw, 0 ;/HZZ
(YMO)_I (E-1)
'yHZ2 0 'yH0+1aw “lw,
0 'yHZZ iw 7H0+iawu
The determinant of this matrix to first order in Hz is:
2
- s 2 _ 2 . 2 _ 2
D = |:('}/H0+1aw1) wl][('yHoleawu) wu]
This determinant can be used to find the tensor elements to first order in HZ
2
; *
'yHO+ iew, 0 'szz
My
X1 =D 0 'yHo+1awu “twy,
'yHZ2 tw, 'yHo+ 1awu'
yM (yH +icow,)
- 0 0 - 12 (E-2)
('yH0+1aw1) - Wy
-1 *
lwy 'sz 0
2
vM,
X19 = =P 0 'yH0+1aw “lwy,
szz iwu 'yH0+iawu
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Yy M wq

N 2 2
('yHo+1aw1) -wy

%
-lwy yHZZ 0
YM, .
D vH +iaw, 0 szz
')/sz w, yH +iaqw

2 * . .
Y Hz2 Mol:wlwu+ ('yHo+ 1awu) (7H0+ 1a@1)]

[(yHo + iawl)z - wlz] [('yHO+ ia cou)2 - wuz]

y? H Ml: +(-yH +2ia7Ho(wu+w1):l

[('yHO+ 1aw1) - wl] |:(yH0+ iozcou)2 - wuz]

*
-lwg 'sz 0
2
Y M, .
"D vH tiew, 0 'szz
0 vH +iaw “lw,

y? M H *l: 1(-yH +iqw )+w (yH +1aw1;J

E('yH +1aw1) -w]l:('yH +1aw) ]

(E-3)

(E-4)



iw1 0
-yHZ «,/H0+iawu
2
0 iw
u
yMowl
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vM

'yHO+1aw1

vH

yMO(yHO +ia wu)

. 2
(7H0+ 1awu) w

vH,
X = - YMO
23 ~ D
2 L3
Y MOHZ

2

vH 0
yH +icw, mlwy
2
tw, yHo+ 1awu
2
u
riaw, szz 0
. %
tw, 0 ')’sz
0 iwu 7/H0+iozwu

-iw

ia
'yHO+1 W,

[wu(yHo +ia wl) + <.ol('yH0 +ia wu)]

i

[(7H0+ iazwl)2 - wlz] [('yHo+ iawu)z - wuz]

(E-6)

(E-T)
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; *

7H0+ iew, 'szz 0
X = YMO iw 0 VHZ *
24 D 1 2
szz -yHo+ iawu oy

2 E 3 . .
v M, sz [('yHO+ 1awu) (7H0+ 1aw1) +w1wu]

=T 2 2 2 2 (E-g)
[('yHO+iaw1) -wl:I[:('yHO+iawu) - w, ]
N . *
lwy 'yHO+1aw1 szz
YM,
X31 = 7P 'yHZz 0 -l
0 vH, yH +iaw
2
2 N .
v Monz[wlwu+(yHo+ 1aw1)('yHo+1awu):|
= (E'].O)

7H0+iaw1

vH

-iwl

vH
Zy

[('yHo+ ia wl)2 - wlf' [('yHo+ 1awu)2 - wu2]

~iw

H +iow
5o u

2 . .
Y M, sz[wu(yHo+ i awl) + wl(yHO+ i awuﬂ

= -1

l:(-yH0+ ia wl)2 - wlz:l [(yHO + iozwu)2 - wuz]

(E-11)
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'yH0+1aw1 “lwy 0
vM
Xoq = 0 iw H +iqw yH *
33 D 1 L) 1 z,
0 VHZ vYH +idw,
2
i 'yMo(yHO+1awu)
. 2 2
('yH0+1awu) - Wy,
yH0+iaw1 “lwy 0
v M
X = - 0 iw YH +icw H *
34 D 1 o 1 7 z,
vH 0 -iw
Z u
- Y'Mowu
. 2 2
(yHo+1awu) w,
iwl 'yHo+iaw1 0
YM,
X351 = "D 'yHZz 0 -yH0+1azwu
0 'yHZ2 tw,

=i

2 . N
v M0 sz[wl(yHo+ i awu) + wu('yHO+ i awl)]

E-yH0 +1i ozwl)‘2 - wlzj] [(yHo+ ia cou)2 - wuz]
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. . *
'yH0+1aw1 -lwy 'yHZ2
YM,
X490 =D yHZZ 0 'yH0+1awu
0 vH iw
Zg u
2 s .
¥ MOHZZ[(7H0+1aw1) (-yHo+1o:wu)+w1wu:]
= - (E-15)
. 2 2 . 2 2
[(7H0+1aw1) —wl][(7H0+1awu) —wu]
. . *
7H0+101w1 “lwy 'yHZ2
v M,
X43 = - TP iwl 'yHO+iaw1 0
0 'yHZ2 tw,
= -i 7Mo% (E-16)
. 2 2 -
(7Ho+1awu) w,
'yH0+iaw1 -iwl szz
YM,
x44 =P : iwl 7H0+iaw1 0
'szz 0 yH0+iaw

i yMo('yH0 +ia wu) 51
. 2 2 -
(yHO+1awu) s,
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The following symmetries can be observed:

11 T X2
X12 7 %21
X137 %24
X14 T *a3
%31 7 *42
¥32 T 41
%33 T %44
%34 T ¥43

Observe also that:

2 2
awy (yHo) + Wy -)/MO

Im x

11 2
«dez—wlﬂ +40%y H 0"

and that:

2 gr 2 2
'yMoatwu(y H0 +wu)

INA

Im x33 "

2 2 2,2 2 2 2
y*H wu)+4zoz'yH0 @y

(o]

for allH and w .
o u

(E-18)

(E-19)

(E-20)



APPENDIX F

SIGNAL FIELD DISTRIBUTION FOR FERROMAGNETIC

RESONANCE CONFIGURATION

The field distribution of the actual flat coil can be approximated very closely by

that of an infinitesimally thin current loop as shown in Fig. F-1.

A2

X

Fig. F-1.  Coordinate system appropriate for calculation of
magnetic field produced by current loop i.
If the space surrounding this loop can be divided conveniently into two regions by a spherical
shell of which the loop forms a great circle, the magnetic field in the two regions exclusive

of the shell can be found from the scalar potential ¢ where
vig =0 (F-1)

The boundary conditions are that the potential vanishes at infinite distance from the shell,
that it be regular at the origin and that the magnetic field derived from ¢ (i. e., V@) must be

given by the field distribution known for the current loop on its axis:

Lim ¢ =0

I

Lim ¢ < o (F-2)
r-0

V¢|a,xis ="H (loop)

In the region outside of the spherical shell the potential is given by:
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n
¢ = E —<+1 Pn (cos 9) r>a (F-3)
n=0 r
and inside by:
! n
9 = E b_r" P_(cos 9) r<a (F-4)
n n
n=0
The magnetic field of a current loop on its axis is given by:
3
H = H ____.}.’__3__ (F-5)
(1+y%)°
where H0 is the field at the center of the coil (i. e., H0 = 121-:; .y = % , a = coil radius and

z = coordinate along the coil axis. This expression can be expanded in a power series:

k, 3
o D 7)

k , 2
H=Hy ) —F (9
0 k=0 k!

ko< (F-6)

The r component of the field outside the shell is given by

o (n+1) a,
H =V9g = - Z TV Pn(COS 6) (F-17)
n=0 r

which on the axis reduces to:

o (n+1) a,
H, = vr¢| IR e (F-8)
r=z7 n=0 =z

6=0

From the boundary conditions Eq. 6-4 must be the same as Eq. 6-6.

k.3 a 2k+ 3
o (n+1) a © (-1) (7)k (E)
nrz - H kgo k! (F-9)
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Then equating coefficients of like powers of z gives:
a =0 n even
k3 2k+ 3
D5 6G) a™"

k
) (n+1) k!

n
=

n = 2k+1 (F-10)

(- 1)k (%) 2K+ 3

Bok+1 = By TmED &I (F-11)
Thus
k.3 a 2(k+1)
© (-1) (7) (;)
- k F-12)
¢ = aH, k§0 KT 20551 Pogsp(cos®) r>a (
and by a similar procedure it may be found that:
2k+1
k,3
D 6 &)
k
$ = H kgo B E Py, (cos8) r<a (F-13)

It is possible to use these potentials to find the field distribution for all space
- surrounding the current loop from which the stored energy can be found. However, it is

slightly easier to find the stored energy by making use of the following identity:

/ Ivpl2du = [ V- ¢Vp dv- [ ¢V dv
space
= f f¢V¢- nds (F-14)
sur

The space which we will consider consists of two regions namely those inside and outside the
sphere. The surface for the region outside is doubly connected and consists of the outside of
the spherical shell and the surface at infinity. Since ¢-0 at infinity it is only the integral on
the outside of the spherical shell which need be evaluated. The volume inside of the spheri-

cal shell is bounded by the inside surface of that shell. This identity can now be used to

evaluate the stored energy:
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W=gu [IHPdy = p [ V8- nds (F-15)
oY .
inside
and outside surf.

f ¢V - nds = f ) o9 r? d cos 9 d¢ (F-16)
outside or r=a

ket é) &)
(2 K 2 I 1 27

_ 2 2
= aH )X T [ a Py, 1(cos6) Py, (cos6)dcos dp
k,£2=0 -1 o0
(F-117)
The orthogonality relations can be used to reduce the double sum to a single sum:
3 2
18 W (_Z—)k 2
=72’ H ;o TR = (F-18)
3
2 io (f)k 3
=H v S W%k+3) (F-19)
where v =%1ra3.
Similarly the surface integral for the inside surface can be evaluated:
0P 4. a9 2 F-20
Jos-ds = [ a® d(cos 6) d¢ (F-20)

r=a

K+l 3. ,3
o VR Gy
= H0 k%::O LTk T) a {1{) a P2k+1(cose) P2Q+1(cos6) d(cos 6) dg
? (F-21)
3 2
(7)k 2 '
= 27a*H?2 (F-22)
© k0 (kN? (2k+1) A3
2
o0 @) 3
- 2 ~ o~ 2 _
= vH, 3ak+3) - ~Hp (F-23)

k=0 (k!)® (k+ %)
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Then substituting the surface integrals in (6-13) yields

1
W=§uof|HI2dV

IR

1 2
2 u0(2v) Ho

(F-24)

v 2
VS (“'o VS HO )

The radius of the 30-turn coil was approximately 1 cm; the radius of the sample is approxi-

mately 0. 175 cm. Using these values then

;’X— ~ 9x 10° (F-25)
S

This is the quantity called A in Eq. 6.67 in the text and which was sought in this calculation,
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