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CHAPTER 1

INTRODUCTION

A number of studies dealing with rotational motion have
been conducted in the field of fluid mechanics. In many of these
studies, the flow outside of the boundary layer had circulation,

(13)

Taylor considered the problem of a liquid tangentially entering
a chamber a distance Rl from the center of rotation and emerging
through an orifice of radius Ro (Rl > > R2) after passing down a

(

converging cone with vertex angle 20 . Rosenblat 9) investigated
the viscous flow between two parallel infinite discs which were
torsionally oscillating. Stewartson(ll) studied the effect on a
viscous fluid between infinite parallel discs rotating steadily with

“2>amosm@md

the same speeds in opposite directions, Stewartson
the flow between two parallel coaxial discs rotating almost as if
solid as well as the flow inside a circular cylinder whichﬂis almost
rotating like a solid body. Long(7) worked on the problem of a vortex
in an infinite viscous fluid and obtained both numerical and experi-
mental results, Earlier, Long(8> had obtained the solution for the
flow of a rotating, frictionless, incompressible fluid due to a strong
source or sink at the axis of rotation. The experimental and analy=-
tical results which he obtained were for a tall cylinder, Boewadt(u)
handled the problem for the flow of a viscous fluid in solid body

rotation over a stationary flat disc. Barua(l) studied the case of

a source in a fluid which is rotating with solid body rotation.



The second type of problem dealing with rotational motion,
for which there is no circulation outside of the boundary layer, is
illustrated by the problem of a rotating disc in an infinite fluid
which was solved by von Ké}méh(lh) and Cochran.(5) In von Kéfméh‘s
work, which appears to be the most closely related to the present
work, it was assumed that the radial and tangential velocities near
the disc were linearly proportional to the radial distance from the
axis of symmetry and that the axial velocity and the pressure were
functions of the vertical distance above the disc. Making this
similarity transformation, von Kermén was able to reduce the set of
partial differential equations governing the flow to a set of four
coupled ordinary differential equations with the dimensionless verti-
cal coordinate as the independent variable.

The Navier-Stokes equations for axially symmetric flow,
which arise for the present case of the rotating disc with a cenfer
sink, rarely can be solved analytically in closed form, For this
reason, the partial differential equations governing this flow in
the present work have been solved using finite-difference methods,

A very impressive demonstration of the power of finite-difference
techniques has been given by Fromm in various publications (Physics
of Fluids, LASL Reports) and at various meetings., At the July, 196k,
International Union of Theoretical and Applied Mechanics Symposium
on Concentrated Vortex Motions in Fluids held in Ann Arbor, Fromm
showed motion pictures of the development of the Kérmén vortex street

as predicted by his numerical results and as photographed experimentally,
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The agreement was generally excellent, except far downstream where
the computer results began to break down after long periods of time,
This was due to the fact that he made the computation assuming a
series of cylinders which were spaced far apart upstream and down-
stream from the cylinder under consideration and waves from the
cylinder downstream finally arrived at the downstream boundary of the
region under consideration, At first, one was able to observe the
symmetrical pair of eddies form behind the cylinder. Then after the
application of a small disturbance (to accelerate the formation of
the vortex street and thus save machine time) to the vortex field,
the wake lost its symmetry, and the vortex street was formed. Grid
space size naturally precluded any fine structure details, but large
scale agreement for the time duration was remarkably good.

The present work, in which the flow is due to a disc
rotating in an infinite fluid with a sink at the center of the disc,
differs from previous efforts in that in previous work if a sink was
present, the fluid far away was in solid body rotation, or if the
fluid was not rotating far away from the solid surface considered,
there was not a sink. For the present work, the computation wa.s
carried out on the IBM 7090 at The University of Michigan. In addition
to the steady state solutions, the transient solutions were also obtain-
ed for various values of a parameter B (= g% VG;EBS relating sink,
rotational, and viscous fources, An experimental program was carfied
out in conjunction with the computer study in the hope of obtaining

experimental evidence to support the numerical results. Unfortunately,
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the experimental flow regime did not coincide with the flow regime
studied numerically. This was due to the fact that the experimental
value of B had to be sufficiently large so that the.effects of

the sink could be observed, while the value of B for the numerical
study had to be sufficiently small so as to not require excess com-
puter time, However, the extrapolated experimental results appear

to support the computational results, as is discussed in Section 5.3.



CHAPTER 2

THE DIFFERENTIAL EQUATIONS GOVERNING THE FLOW DUE
TO A ROTATING DISC WITH A CENTER SINK

2.1 Statement of the Problem

The formulation of the problem is as follows - Aninfinite
disc is assumed to be rotating at a constant speed in an infinite
fluid, The conditions are taeken to be the solution as given by
von Kérmén for the rotating disc without the sink. The sink ié
suddenly "turned on", and the resulting flow studied. It is natural
to assume axial symmetry about the axis of rotation of the disc, so
one chooses a cylindrical coordinate system (r, ©, z) in the usual
manner with the origin at the centér of the disc and the z-axis
coincident with the axis of rotation.

The Navier-Stokes equations in cylindrical coordinates

for unsteady axi-symmetric flow are

2 2 2
§E+u§£+W§E_L=-l§R+v[§——+§——+£§—-% (2.1a)
r

o w [@E_.@?___l_@_ -] -
+ = ) - S
ot E or v oz Y dr® ¥z 1 dr r°
2 2
§E+uéﬂ+wéﬂ='}‘§2+v[§%+‘a_¥+;§ﬂ] (2.1c)
ot or oz o0 Oz or oz r Or
while the continuity equation is
o) 0
e ta =0 (2.2)
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where u, v, and w are the radial, tangential, and axial com-

ponents of the velocity, respectively, p 1s the fluid density,

v the kinematic viscosity, and p the pressure of the fluid.

Differentiating the first of Equations (2.1) with respect to =z

and the third with respect to r , subtracting the results and using

_Su  ow
M=% T o

one obtains the tangential vorticity equation

2 2
ﬁ+uh+wﬁ_ﬂ_ﬂégvi}ﬁ%+
ot or oz r r Oz or oz

(2.3)

2

lon_n (2,4)
T Or

r

The continuity Equation (2.2) permits an axisymmetric stream

function, ¥ , to be defined such that

and W

S

[
1l
o

Substituting (2.5) into (2.3) yields

L% 1Y 1w
L T r3z° r o rfor

(2.5)

(2,6)

The system of equations which were used in obtaining the

solution is then given by (2.1b), (2,4), (2.5), and (2.6) and repeated

here for convenience is.



2 2
§x+u§E+W§I+£=V§_%+§_X+LQ[_L2 (2,1p)
ot or Jdz T or oz T Or T

d 7 97 19
@.n._!_uéﬂ._i_w.aﬂ._l_lﬂ._zv Vzv_T]2_+__;1.+__Il_Il2 (2'4)
ot or dz T r Or or oz ror T

L% 1% LW
M= 322 T ror? ™ 22 dr (2.6)
and
1o¥ _ _ 1o
v=i% ; Ll (2.5)

The boundary conditions for the problem are the following -
On the disc, the no-slip condition must be satisfied, i.e.,, the fluid
must move with the disc. Hence, on the disc

v = T and u=o0 (2.7)

Also, fluid must not penetrate the solid boundary; thus the disc must

be a streamline, 1i.e.,

¥ = constant for z =0 (2,8)

This ensures that

at z =20 : w=20 (2,9)



Along the axis of symmetry, one requires that the axis be a stream-

line since the radial velocity must vanish there, Hence

1
o
o®
-

n
o

at T (2,10)
Also,

at T (2.12)

[t
(@]
<
H]
(@]

Along the axis of symmetry, a minor difficulty is encount-
ered with the velocity definitions in terms of the stream functions,

For instance, the second of Equations (2.5) must be taken as

i 1Y
w(0,z) = r1:m . [_ ;5?] (2,12)
Using 1'Hospital's rule, (2.12) becomes
32
at r=0 W= - 5;5 (2,13)

This expression must be used then in computing w on the line r =0,
The vorticity, mn , on the axis of symmetry due to (2,7)

is given by

at r=0 n= iim '{-éﬁl] (2,14)
r- 0 or

Now if §¥= were not zero at r = O , then the velocity profile would

have a cusp at the axis of symmetry. If one were then to transfer
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the system to rectangular Cartesian coordinates, %ﬁ would not be
X
Z
i
W
> T

Figure 2,1. Plot of w vs. r Across the
Axis of Symmetry.
continuous at x = O , and hence the shear stress, which is propor-
tional to the first derivative of the velocity, would also be dis-
continuous, This cannot happen in a physical system, so an addi-

tional requirement is that

é-'Vi=o at r =0 (2.15)

or

with the direct result that
at =0 : 1 =0 (2,16)

The boundary conditions far from the disc are not as obvious.

It would seem that the effects of the sink should decay at least
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algebraically with increasing =z ; thus it would appear natural to

require that the radial and tangential velocities be zero as in the

/s 7 .
von Karman problem, i,e.,

(2.17)

From these and also the continuity equation, (2,2),1it follows that

ow

=0 at z = »

oz

Therefore

2
;a_%_}.iéﬂ_%:o
or ror r
or
B ow
A S
Thus

1 2
W= = E'Ar =B Inr +C

(2,18)

(2,19)

(2,20)

(2.21)

(2.22)

If it is required that w be bounded for large as well as small r ,

A=B=0

(2.23)
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Then from (2.21)
n=20 at z =o (2.214-)

Finally, for large values of r , it again seems natural
to require that the flow approach that given for the von K&rmén
problem of the rotating disc without a sink because the sink is very
far away and its influence is negligible. Hence, the requirement
is that the downward velocity component, w , is independent of its
radial position and that the tangential velocity component, v , is

a linear function of its radial position, i.e.,

for large r : oy =0 (2.25)
or
and
()
-~ = (2.26)

These are the radiation conditions used by von Kérmdn. Their use
is suggested here since the influence of the sink should not be
felt near the disc for large r .

The difference between the value ot the stream function on
the axis of symmetry and its value on the disc is proportional to
the discharge, Qg , of the sink, For cylindrical coordinates, in

this case,

=20 [waisc - ﬂfaxis of symmetry] (2.27)
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Using (2.10)

() = — (2.28)

disc 271

2.2 Dimensionless Form

Solving the equations can be simplified significantly by a
suitable dimensionless form of the system of partial differential
equations and associated boundary conditions. A natural length in
the present problem is related to the thickness of the boundary

layer as used by von Kérmén, This yields

- . = L (2,29)

where o 1s the rotational speed of the disc, U, V , W, and [ are
functions of R, Z , and 7, and ¥ is a function of R and Z .,
Substitution of (2.29) into the system of Equations (2.1b),

(2.4), (2.5), and (2.6) produces the dimensionless system
2 1
= [v -Rz] r (2,30)

§1+U5_V+w§‘l+9’-=[v2- -1-] v (2.31)



p_ou_aw_13fv 1 odw 1y
T3 3R RORE R AR R ozl
and
=R O 5 = "R OoR
where
2L L2 F
"2 YRR T az2

(2,32)

(2.33)

(2.34)

In a similar manner the boundary conditions are transformed

into the following dimensionless forms:

on the disc at 72 =0

Taisc B

and

(2.35)

(2,36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

is used as means of calculating W here so that these values of W

will be on hand,
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Far above the disc at Z = o

U=V =0 (2.42)

(2,L43)

3
il
(@)

For large radii at R = »

xR 0 (2,4k)
(%)
~— =0 (2.45)

The dimensionless system of partial differential equations
with its associated boundary conditions is the form used in obtaining
a numerical solution, Note that no Reynolds.. number or other dimen-
sionless parameter is present in the system of differential equations.
The only dimensionless parameter is B which enters through the
boundary conditions. One also notes that the values of B need not
be restricted to positive values, but may be given negative values
as in the case of a point source at the origin, A physical interpre-
tation of Bb is that it is the ratio of sink and rotation forces
to viscous forces,

There are three simultaneous partial differential equations,
(2.30) - (2,32), in the three unknowns, [ , V, and ¥ , Inspection
of the boundary conditions indicates that on the boundaries Z = w
and R = o there does not appear to be sufficlent information. This
will be discussed in Section 3.4, The foregoing dimensionaless form
is suitable if the only length scale present is the boundary layer

thickness, If, however, there is a characteristic length, L , present,
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such as in vortex chamber problems, then a more suitable transfor-

mation is
- = =2
R - L S Z L (21;)"’6)
and
u v W
U=an 3 V=or 5 W=41 (2.47)

along with the remaining relations of (2,29) to transform the system

of partial differential equations into the form

. 2. 2
é-l_‘__‘_Uaa-E-_l_wéE_E-_?—Y"“a‘Y‘:Re é""g"-i'?_’r“"i'l_"'a‘g-% (2011—8)
>t 3R 3 R R oZ 3R 3° ROIR R
N >V >V WV 2y 3 1w v
T L T R g A 2.l
dr 3R 3 R S| 3 ROR R (2.49)

and
3/2 (1 3%y 13°% 1 dv
= Re 2 tR R TR R (2.50)

where R, 1s the inverse of the Reynolds number and is given by

v
Re = ZE_J-E' (2551)
Likewise (2,33) becomes
. Re5/2 oV oy ReB/2 oY (2.52)
- R oz "7 R R ’

and (2.41) becomes
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at R=0 :

(2.53)

The boundary conditions either remain unchanged or must be modified

in order to consider other problems with walls, etc,



CHAPTER 3

THE FINITE DIFFERENCE FORM OF THE EQUATIONS GOVERNING
THE PROBLEM OF THE ROTATING DISC WITH A CENTER SINK

3,1 Introduction

The partial differential equations that govern the problem
of the rotating disc with a center sink were given in the previous

chapter as

ST or dr ur v ov . [ 1

— e J o A W i, e - D = Ve - = r .1
ot R o R R & | RE] o)
;v oV VLW oo L“
&'+U§§+WS’Z+§"‘[V "z v (3.2)

and

1Y 1o 1%

r=
R OR° R° 3R R Oz°

(3.3)
along with the boundary conditions and the two equations yielding the
radial and axial velocities from the stream functions.

The problem considered by Wilkes(lS) (two dimensional con-
vective flow in a cavity), while physically different, bears a high
degree of mathematical similarity to the present problem., His vor-
ticity equation and energy equation compare with (3.1) and (3.2),

V  being analogous to temperature in his case and the Coriollis
and centripetal forces to internal energy and bouyancy force. This
suggests a similar mathematical approach. The form of the equations
in cylindrical coordinates presents difficulties for values

of R approaching the axis of

-17-
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symmetry (R = 0) which are not present in the cavity well problem,
while the infinite domain presents difficulties for large values of
R, as well as Z , which are also not present in Wilkes' problem,
Nevertheless, the methods developed by Wilkes(l5) and Fromm(6> prove
quite useful in the numerical solution of the present problem,

Fquations (3.1) and (3.2) give the relationship of the
first order time derivatives of the circumferential vorticity and
circumferential velocity to the space derivatives of the same quan~
tities, These two equations are of the parabolic type., On the
other hand, Equation (3.3) gives the vorticity as a function of the
stream function and does not contain a time derivative., This equa~
tion is of the elliptic  type., Different methods of solution are
indicated by this fundamental mathematical difference,

The equations are next put into finite difference form.
The finite difference forms for (%.1) and (3.2) are used to predict
the new values of vorticity and tangential velocity after an incre-
ment of time, AT, Using this new value of the vorticity, the
finite difference form of (3.3) is used to compute the new stream
function. This process, along with the application of the boundary
conditions, is repeated until steady state conditions are reached.
This method was chosen in preference to other methods - say a relaxa-
tion method or a non~transient alternating direction method - because
it was felt to be more economical with regard to computer time than

these other methods,
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The methods used for obtaining the finite difference
approximation to the solutions of the partial differential equa-
6)

tions are essentially the same as given by Wilkes(l5) and Fromm,(

but are included since there are some minor differences,

3.2 System of Grid Points

For the von Kirmin problem, the solution given by Cochran(u>
indicates that the boundary conditions at Z = » are very closely
approached by the values of the solution at Z = L L4, With this in
mind, it was felt that for use on the computer a value of Z = 7.2
wags sufficiently large to use as the locaetion of the infinite boun-
dary in the vertical direction. For small values of B , i.e., sink
strength, this was felt to be sufficient. However, one can see from
the results shown in Figure A-12 that the distance should be increased
for the larger values of B ., The location of the radial infinite
boundary had to be at least as far awasy, if not farther. For a
square region with grid spacings of O°6, the total number of grid
points is thus 169, With the present form of the program the time
required to reach steady-state conditions for a grid of this size
is 14 minutes on the IBM 7090. An increase of R at infinity to a
value of 10.8 yields a square grid of 247 points and an increase in
computer time to at least 20.5 minutes in order to reach steady-state
conditions.

In using finite difference methods, one usually truncates

the infinite series at the point for which the truncation error is
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of the order of the square of the change in the independent variable,
which in this case is the grid spacing. Hence the finer the grid
spacing, the better the accuracy. However, there is a limit as to
how fine the spacing can be made in practical computation, since
eventually round-off error becomes larger than the improvement due
to a finer grid, and the computer time required is at least linearly
pioportional to the number of grid points., It is shown in Section
. that the radial position of the dividing streamline is of the
order of 51/5 for small B . Thus a crude estimate of computer
time would be of the order of 15(0.5 5)1/5 minutes for a grid spac-
ing of AR = A7 = 0.6 wusing the present program, a minimum number
of grid points, and small £ . As P Dbecomes large, it is reasonable
to suppose that the time will depend on an even higher power of f .
Thus economics and computer capabilities limit the range of B
values. For this study, it was felt that P = 12 was economically
the'maximum feasible value, since these values exhibit all of the

basic physical aspects of the problem,

3.3 Finite Difference Approximations to the Equations of Motion

The finite difference forms of the equations of motion,

(3.1) - (3.3) and of the equations giving U and W , i.e., (2.33),
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are obtained in the usual manner using a Taylor's series expansion.
For the vorticity and tangential velocity equations, i.e,, (5,1)

and (5,2), the equations are put into a form suitable for the implicit
alternating direction (I,A.D.) method (for instance, see Birkhoff(B))°
In the method, one considers two successive half-time steps, each of
length Ar/2 . Over the first half-step, all derivatives in the R~
direction are approximated implicitly (i.e., at the half-step) while
all derivatives in the Z-direction are approximated explicitly (i,e,,
at the present value), During the second half-step the procedure is
reversed. In the following finite difference equations an asterisk(¥)
superscript denotes the value of the function computed at the end of
the half-step in time while a prime(') superscript denotes the value
at the end of the full time step. Variables with no superscript are
evaluated at the beginning of the time step. The subscripts i and

J denote the grid coordinates of the point in the R- and Z-
directions, respectively. Thus for given values of 1 and Jj , say

I and J , the space coordinates are
R = IAR
7 = JA (3.4)

where AR and AZ are the sizes of the grid spacing in the R- and
Z-directions, respectively,
In practice, (3.2) was first evaluated, and then, using

these results, (3.1) was evaluated, Thus, for the first half-step
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in time, (3.2) is written

* * *
Vi3 V4,3 LU Ving - Vi-1,5 ; Vi - Vi1 Ui,gVhyg
Av/2 1, 2R 1, 2N (44R)
* * *
. s - N A . . - . .+ V. .
= Vl)a+l 2V1)J Vl)J"l + vl"'l)J EVI:J i-1,3
= 2 2
(az.) (AR)
* *
1 Vie,g - Vi, Vig
+ - T3 (3.5)
iAR 2AR (iAR)

and for the second half-step in time, (3.2) becomes

Vi - Tp vy ' v, v, U, LV
o 3 b 0] . t+ ’tn hnd w— ,‘l l’ '+ - .’ --l .’(l !, .
1,] 19 U i+l, ] i-1,] W i,J+1 S Sl R
A‘r/2 1,Jd SAR 1,d N, iAR
i 1 ' * * *
Vigrn =% Vg1 Van,g T gt Vi
= 2 2
(az) (4R)
¥ *
NN ES 0 Bl W S
. - o (3.6)
1AR 2AR (iAR)

In (%3.6) some V's appear without superscripts due to the fact that
they do not appear as derivatives in (3.2), and hence are evaluated
at the beginning of the time step, as are U and W .

For the first half-step in time, (3.1) is written

* ¥* *
i Tig1, 5 - i1, Piger = Tiog-1 Ui 405,
a2 T Ui AR W 2Nz, - iR
1 ' 1 ¥* * *
-V . A , = 2%, + I .
AV R WIS N OF P N £ O Motk ¥F N
1AR N (aR)?
* X
. 1,5 - Ti-1,j . Py g+ -2 3+ 11 3.1 Ty
AR AR (az)2 (iAR)2

(3.7)
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For the second half-step in time, (3.1) becomes

! * * * 1 t
r, .-"r, . r, R A . r, . - I, . u, .I', .
1,0 4,y At i-1,5 A0 ti,5-1  i,5 44
AT/2 1,J 2AR i,J DA, 1AR
t ! t * * *
-V r - 2T + I
1,3 Vi T Tger Tanng T F gt N
AR A7, (aR)2
* * t ! 1
- - 2r + T
oo Pyt N mBa st Tiga
AR 2AR (az)?

r. .
- -Ti*lg (3.8)

(iAR)
Since no time derivative is explicitly stated in (5.5), the

finite difference approximation is given bv

b o heg gt hiag 1 Yy -Yag
iR (AR)? (iAR)Z 2AR
L1 Bog-2h gt (3.9)
AR (az)2

(3.9) could be solved for Yi j and a relaxation procedure used to

)
solve it, but the successive over-relaxation method (S.O.R,) converges
more rapidly, thus saving computer time, Using the S,0,R, method,

one modifies and rearranges (3.9) to the form

(s41) _ o), _a

, (s)
e ek 1(AR)5F S+ %0 - g;)

i+l, ]

(s) (s)

(s
Yl (1 + §~) * D(Yl vt 4 ,J-l)

)
-1,

-a1+mﬁﬁ_ (3.10)
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where the relaxation parameter, A , lies between 1,0 and 2,0 and
is best evaluated using a trial and error method on the computer,

and where

2

D : @R—g-) (3.11)

The superscript (s) is the number of the iteration. Thus in (3.10)
one sees that the new value of Yi 3 is computed using the present

2
values of the V¥'s and of Fi i It was found by trial and error

J
for B =5 that the optimum value of A was 1.720 and that 50
itérations were sufficient to reduce the magnitude of the change in
the stream function to the order of lO"7 of the value of the stream
function at that point.

All of the finite difference forms given above are used
only at the interior points of the grid, i.e., 1 and J always
lie between their minimum and meximum values - never at these values,
The values at the boundary are cbmputed using formulas given later,

The forms for (2.%3) are slightly more involved, due to
the differing information available on the various boundaries, Thus

if the maximum values of 1 and j are M and N , respectively,

one has

2

nv

for i#0,N-2%j=2,

V. «p =8 .o +8Y . o -¥
U. . = 1 i,3=2 i,j-1 i,j+1 i,j+2 (3.12)

1,d  iAR 12 A7




for i #0, j

for M -2

for i =‘l

for i=M--~-1

M1, =
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j =1 (adjacent to the disc),

1 2 o - 3¥ g +OY 5 - Y g

AR 6 A7

“N -1,

L1 2y tOY oy Y gt Yy
AR 6 AZ

22,

" iAR 12 AR
- 2Y. . -3Y. .+ 6Y. . -V .
:_]:_ 0,J > 1,J 2::1 3,5
AR 6 AR

L R S I VO

(M-1)AR 6 AR

(3.13)

(3,14)

(3.15)

(3.16)

(3.17)

No expressions are given for U and W on the boundary

J=N or for

W on the boundary i =0 , The values of U and W

are needed in their explicit forms only at interior grid points since

they are used in Equations (3.5) -~ (3.10) which involve values of U

and W at interior grid points only, as mentioned above,

The forms
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for U and W on these boundaries were constructed and used in the
program for completeness, but will not be given here, since they did

not interact with any other part of the solution.

3.4 Finite Difference Approximations to the Boundary Conditions

Having given the finite difference forms of the equations
of motion, it is now necessary to prescribe the boundary conditions
in a similar manner,

Thus on the disc, at Z = 0 , one has

for j=0
Vi o = AR (3.18)
Yo =P (3.19)
Uj,o=0 (3.20)
Here, an explicit condition for Pi o 1s missing, It is supplied by
3

computing the value using the condition which arises from.(2,9), i.e.,

at Z =0 ¢
oW
— =0 (3,21)
oR
s0
2
oU 1 0°Y
T e = - . 22
7 =0 azl 7o R oz |Z= (5.22)
or in finite difference form
r " 8\1/:1,1 B 7Y:L,O B Yiﬁ (3.23)
1,0 AR 2(Az.)?
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Next, on the axis of symmetry, R = 0 , one has

for 1 =0 :

Yy . =0 24
0,3 (3.24)
Us,5 = Yo,5 = © (3.25)
r .= .26
0,5 =0 (3.26)
and for completeness

v, . = 2¥, . - 11¥. .

W = o —2ad 2, 1,] (3.27)

©,d 5(AR)2

Far above the disc at large Z , one has

at j=N:
Uy =0 (3,28)
Vi w =0 (3.29)
Ty y=0 (3.30)

Here one notes that no condition is given for the stream function,
Again, one makes use of (2,33) and constructs the finite difference

form

Wy w1 - Y wep

¥ow = (3.31)
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Also, it was desired to see if the vorticity would go to
zero on this boundary if its value were not fixed at zero., Here,

the vorticity was computed using (3.32),

- +
. BanmfHathar fawn Yo

1,N 7 1(AR)D 212(AR)

8\Y- - 7\]{9 - \Yﬂ
i,N-1 i, N i,N=2
+ : . 2 (5@32)

and the result used to check that the vorticity does indeed tend
toward zero far above the disc, The check proved satisfactory.
However, Equation (3.30) was used in the final computations,
Finally, the boundary at large R must be considered,
Equation (2.4L) is replaced using (2,33) in finite difference form.

Thus (2.44) becomes

¥ - + ¥ . - , + ¥ .
¥ - S\FM-':L}J. l‘-WMmg,j M-3,3 + B\I/M)J MYM”]-)J M-2,3 (3 53)
M,J °
s 2 LM
where (3.33) was obtained from the form
Py 13
2R (3.3h)
Equation (2,45) is first written as
oV
=== (3.35)

3R R
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and then put into the finite difference form

3

Mgt gt MeSVp g Vs
V. | = (3.36)
M, 3 55

The value for the vorticity at this boundary was simply that computed

from

- 1 YM:J-HL - E\FMQJ N YM’J"]—
r . = (3.37)
MJ  iAR (az)=

where use has been made of (2,L4),

3,5 Stability of the Method

All of the finite difference approximations neglect terms
at least of order (AR)2 5 (AZ>2 , or AT and higher, It was found
that only when the ratio of the time increment to the square of the
grid spacing was less than or equal to one-half was the process

numerically stable, i.e.,

AT
(grid spacing

VAN

(3.38)

Nj

)2

for stability. Otherwise large meaningless numbers were generated
with the result that the computer "dumped" the program, The values

used in this study were
AT = 0,15 , AR =AZ = 0,6 (3.39)

giving a ratio of 5/12.
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No criterion for the stability of the implicit alternating
direction method has yet been developed. An attempt was made by
Wilkes,(l5) but his analysis which 1s based on Fourier analysis, is
valid only in the small,* according to Birkhoff,(g) and does not
involve the boundary conditions, The conclusion one may draw from
Wilkes' analysis is that instability was not proved, but neither
was stability. Also, the original system of differential equations
is non-linear, and his stability analysis 1s performed on a system

that, in a sense, has been linearized.

*i.,e., near some fixed value of time; although this value can be
any arbitrary value of time, 1t is not allowed to change by more
than an amount AT ,



CHAPTER L4

NUMERICAL RESUITS

4,1 The Dividing Streamline

One notes that in all the plots of the streamlines (see
Figures A-1 to A-8 in the appendix) there is a streamline which
intersects the disc and upon which the stream function has the same
value as on the disc, The streamlines between it and the axis of
symmetry all enter the point sink at the origin while the remaining
streamlines all tend to infinity in the direction of large R,
This streamline which intersects the disc divides the flow into two
parts and hereafter will be referred to as the dividing streamline,

The vorticity on the disc is given by

oU
[ = = (k1)
oZ
since W = 0 everywhere on the plate, Just above the disc, between
the origin (sink) and the dividing streamline, the radial velocity
component is negative while on the disc it 1s zero., Hence in this

region the vorticity is negative, i.e.,
O<R<Ry -~ ¢! I <0 (4.2)

where RO is the location of the dividing streamline on the disc
and € is some positive number, On the other side of the dividing

streamline, just above the disc, the radial velocity component is

-31-
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positive, Thus the vorticity here is positive, i.e.,
Ry + e <R <o r>o (4.3)

Therefore, the vorticity becomes zero somewhere along the disc, If
the vorticity is not zero at the point of intersection, then it must
be zero elsewhere. Now if [ = 0 elsewhere, then from (4,1),

%%,z O at this other point. But if §§x= O at this other point,
then another streamline must intersect the disc at this other point
since the velocity on the disc is zero and the velocity profile starts
out normal to the disc. But since two streamlines which intersect
have the same value, this second intersecting streamline can only be
the dividing streamline itself, i.e., they are one and the same,
Hence, the conclusion is that the dividing streamline must be normal
to the plate at the point of intersection. A consequence of this is

that the shear stress component, T is also zero at this point

zr ’
since it is proportional to the vorticity along the disc.

Inspection of the plots of the streamlines shows that the
dividing streamline for large values of Z slopes toward the origin,
and becomes more vertical as it approaches the disc. The latter
is due to the centrifugal force being greater than the sink force
in this region, and the former is due to the reverse of this. This

influence of the sink on the flow far away is discussed in more detail

in Section 4.3,
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4,2 Preservation of Circulation

In viewing the plots of the tangential velocity component,
V , (see Figure A-9 in the appendix) one notes that there is a bulge
in the curves near the sink, i.e., the velocity increases with de-
creasing 7Z %o a méximum value and then decreages to the value of
the disc, If one looks at the streamline plots, one sees that near
the axis of symmetry, a particle descends fairly vertically untilAit
nears the disc (and the sink) at which time it begins to curve
inward towards the sink and in so doing decreases its radial distance
from the axis of symmetry, While descending, it had picked up a
tangential velocity component due to the viscous effect of the rotat-
ing disc, and hence had a circulation about the axis of symmetry,
Looking at the second Navier-Stokes equation, (Q,lb), one sees that

it can be rewritten as

ofrv) ., a 3(rv) N W.B(rv) _ [@Eﬁg_l _lo(xw) Bg(rv)] (4 4)
3t dr dz af  r dr 32°

Far above the disc u and v are both small, so for small values

of r one may approximate (4.,L) ¥y

(v ~ [ég(zv) _Llo(ev) BQ(ZVE] (%,5)
ot or r Or oz

In (4,5) one sees that as a particle between the axis of symmetry
and the dividing streamline descends, its circulation, rv , is slowly

increasing due to the viscous effects, mentioned above, and that this
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rate of increase is of the order of the viscous terms which are very
small far awasy from the disc. Now as this particle nears the sink,
it moves very rapidly inward, thus rapidly decreasing its radial
distance, r , from the axis of rotation. This very rapid change in
radial position is accompanied by a rapid increase in the particle's
tangential velocity component. The viscous forces initially give
the circulation. Then, as the particle nears the sink, the inertia
forces dominate the motion. This then is the explanation for the
bulge in the curves near the axis of symmetry. This effect was also
observed experimentally when soap bubbles were used to trace the

particle paths,

4.3 Influence of the Sink at large Z

As mentioned previously and as can be seen from the plots
of the streamlines, the streamlines far away from the disc, i,e.,
for large values of Z , curve slightly away from the vertical
direction toward the sink. This can also be seen from pictures
taken in the experimental phase of the program, although the effect
is exaggerated by the three-dimensionality of the streamlines which
were photographed, At first it seems as if the flow at large dis-~
tances above the disc and at large radial distances should be entire-
ly downward as in the problem solved by von Karmsn, However, a
little reflection on potential theory recalls that, for a three-
dimensional sink flow, all the flow is directly toward the sink =

even very far away. Hence in cylindrical coordinates, there is a
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radial component, For a three-dimensional sink in cylindrical coor-
dinates, if the disc is not present, the radial velocity at any point

is given by

U = = 2Qr 2 /2 <)'I'n6>
ha(r® + 2°)2/ :
where Q 1is the sink discharge. In the rotating disc with a center
sink, since only flow above the disc is considered
QT :
U = = 2 2)3/2 o (437)

21[(1‘ + z

Non-dimensionalizing (4.7) using (2.29) yields

- -BR
Usink B2+ 2212 (+.8)
While these arguments are useful for a qualitative picture
of the flow, they are limited by the fact that the centrifugal forces
near the disc tend to confine the source, the amount of confinement
being inversely dependent on B . However, general trends are
indicated, For example, for a value of B = 5.0 , R = 6,0 , and

Z = 6,0 one has from (4.8)

-0,0L9k (4,9)

sink =
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And from the von K&rmdn problem &s run on the computer

Uyopk = 0:0215 (4.10)
Then
Ugimk * Upopg = = 0+0279 (4.11)

As given by the present computer program, the corresponding value

was found to be
U = - 0,0243% (4,12)
Recall that in von Karmdn's problem, he used the transformation
u = raF(z) (k.13)
while in the present work, the transformation is
u = Vv U(R,Z) (4.14)
Thus for conversion from one set of values to the other, one uses
U = RF (%.15)

Comparisons are shown for other values of B in Table 4,1. The
signs of the second and third columns agree, and the magnitudes of

the velocities in the two columns are of the same order. Thus
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TABLE 4,1

COMPARISON OF THE COMPUTED VALUES OF U WITH THE
QUASI-POTENTIAL VALUES OF U AT THE POINT
R = 6,0, Z = 6,0

B Usink + Yonk Ucomputed % difference
1 + 0,01164 + 0,00915 27
2 + 0,00185 + 0,00008 96
3 - 0,0081 - 0,00827 2
L - 0,0178 - 0,0166 7
5 - 0,0279 ~ 0,0243 13
6 - 0.0375 - 0,02912 22
7 - 0,0475 - 0,0391 18
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this model can be used to approximate the location and shape of the
dividing streamline for B of such values that the confinement is

not too severe (i.e., for sufficiently large p ).

4.4 Influence of the Parameter B

Looking at the results for W , the axial component of the
dimensionless velocity, one sees that the values of W near the axis
of symmetry increase with increasing p , while the values of W
away from this axis change very little.

For a given value of B , the dimensionless dividing stream-
line.intersects the disc at some fixed R , However R and B are

both dimensionless. As before

%
ﬁ;fig (4.16)
and
R:

r\{? (b,17)

Experimentally, Q, and can be varied independently. Thus it is
possible to obtain the same value of B with numerous sets of values
for Q, and o . Suppose one decreased Q, and increased ® in

such a manner as to give a constant value of B . Then, since R
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here is constant, from (4.17) one can see that the physical radial
position, Ty of the dividing streamline moves inward toward the

axis of symmetry, while from
w= Nvw W (L,18)

one can see that the downward physical velocity component, w ,
increases in magnitude, If, instead, « were to be decreased and
Qo increased, the equations would predict that the reverse occurs,
Now near the axis of symmetry, the sink dominates the
flow, Since the dimensionless dividing streamline moves radially
outward for increasing values of B , holding the rotational speed
w constant while increasing Qb means that more fluid flows into
the sink. Thus near the sink the physical velocity components u

and w should both increase, But if w is constant, then from

(4,18) and
u= Vv U (4,19)

U and W must increase in order to give an increase to the physical
velocities, u and w ., The computer solutions show that this is
indeed what happens, However, next suppose B is increased by
increasing w With QO fixed, As before for increasing B s the
computer shows that both U and W increase in this case., Then
from (4,18) and (4,19) both u and w must increase due to the

larger U and W in addition to the increase in w .
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Now from the computer data, the dividing streamline posi-

tion, R, , is some function of B , i.e,,
R, = £(B) (4.20)

and from (4,17) the physical position, r, » of the dividing stream-

line is given by

7o = YT 2(p) (4.21)

or

r = \{%—' £ gi- \(55‘ (4,22)

1%

From (4.22), one can see that if the function f(B) is of any degree

in B 1less than unity, then r will decrease with increasing w .

0
If this is true then the physical components, u and w , must in-
crease with o (Q, fixed) as predicted above,

Now from the Navier-Stokes equation, (2.la), when viscosity

is neglected, one has for steady state

IR N R S b2
o> p[“ar”’az - (4.23)

On the disc this reduces to

2
- %B =0 [ QE._ K_] (4.24)
T
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If one now considers the potential flow of a fluid which is in solid
body rotation with a sink on the axis of symmetry at the center of

the disc, one finds that (4.24) may be written as

- g-E-= o [ -204 - rwe} (4.25)
2n°r

If one plots the separate contributions of the sink and solid body

rotations to the pressure gradien@,as well as the total pressure

gradient, versus the radial position on the disc, as is done in

Figure h.l, one sees that indeed the pressure gradient has a minimum

which is non-zero. The minimum pressure gradient is found by

differentiating (4.24), Now for the minimum pressure gradient,

differentiating (4.24) with respect to r and setting the result

equal to zero yields

2
g_[ug_uv—] -0 (14.26)
Using (2.29) this becomes
2 2 2
(é}l +U§_Q_ﬁ.al+y—=o (k.27)
3R 3R° R 3R R

Putting (4.8) and (2.35) into (4.27) yields

1 _.l_oé._=o (4.28)
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solving for R,

R = Uw Y’ (4.29)
or
R, = 1.1;6851/5 (4.30)

which approximates the location of the minimum pressure gradient on
the disc., Looking at the data for the position of the dividing
streamline and the corresponding values for B in Table 4,2, suppose

one makes the simple assumption that

R = cg? (h.31)
then
In Ry = olnB + In C (k.32)
TABIE 4,2

THE LOCATION OF THE RADIAL DISTANCE R, FROM
THE ORIGIN OF THE POINT OF INTERSECTION
OF THE DIVIDING STREAMLINE WITH THE DISC

w
Obd

1.49992
1.8%384
2,10654
2,%0103
2,45902
2.62331

[O XN ) BN =l O U \D I S
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Then o is found from

In (Ro)2 - 1n (R )

o'l

YT ), -m ()

The range of o for the data obtained from the computer is given

by Table 4.3 and is

A

S

0.28998 = a = 0,354737
So one may try
a=1/3
Thus it appears that
R ~ B 1/3

is a reasonable approximation for small B , and hence the above

(4.33)

(h.3k)

(4.35)

(4,36)

conclusions based on the assumption that « < 1 are substantiated.

TABIE 4,3

COMPUTED VALUES FOR o AND C FOR

USE IN EQUATION (4.31)

B o C

1 0,289980 1,49992
2 0,341917 1,44689
3 0.306958 1,50354
L 0.297597 1.52318
5 0.354737 1,38935
6 0.3%24893 1,46566
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The values of R, , o , and C were found using the com-
puter program EXPON,00l, The location of R, was based on the data
at Z = 0,6, ise,, it was assumed that the streamline intersected the
disc in a vertical line which was straight for a distance of at least

0.6 sbove the disc, Similarly, C was found to be
C n L.h7 (4.37)
so that one has
R, » Lh7pY” (.36)

In view of the above results, it is interesting to note that
for an infinite, inviscid, incompressible fluid rotating with solid
body rotation about an axis on which a sink was located, Iong(8) found
that all the flow going into the sink came from within a region bounded
by a cylinder of radius
o 5 (4.39)

T
° b, 6w

In the same paper, Long quotes a personal communication from Sir Gecffrey

Taylor in which Taylor gives

% 1/3

r = ()'l'vh'o)
o 0,627

for a Jjet due to a source at the axis of a rotating fluid.
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If now, instead, one tries to express B as a power series

in Ro s leea,

B = E a, R, (4oh1)

one finds that the coefficients a, are as shown in Table k4, Thus

the first seven terms in (L4,41) are given by

B = 1362, 74 R, ~ 3962.5 Ri + 4753,88 Rz
- 3012,45 Rg + 106%,96 Rg

- 198,628 Rg + 15,3175 RZ (4. k42)

TABIE L, 4
COMPUTED VALUES FOR THE COEFFICIENTS IN THE POWER
SERTES GIVEN IN EQUATION (L,A41)

n a,
n

1362, 74
- 3962.5
L753.88
- 3012.45
1063,96
- 198,628
15.3175

—~J O\\Jt WY

4,5 Technique of Solution

As mentioned previously, the solution was carried out on
the IBM 7090 computer at The University of Michigan. The program

was broken down into the main program and five subroutines, A

simplified program flow diagram is shown in Figure 4,2,
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Read and Print Data

|

Initialise Stream Functions
and Velocities (Begin.)

|

Set Time Equal to Zero

Turn on Sink

Increment Time

Compute ¥ Using Successive
Over-Relaxation (AOPT,)

|

Compute U & W (SUBUWG, )

|

Compute V (SUBV.)

_1

Compute ' (SUBG, )

l

Check Time 1T < Tmax

True

Y False

Print Final Values U, V, W, ¥, I', 7, B

End of Program

Figure 4.2. Simplified Flow Diagram for the

Computer Program,
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In more detail, the main program first, in the subroutine
BEGIN,, initializes the values of the stream function, i,e., the
von Kirmén stream functions are calculated, The main program then
transfers to the subroutine SUBUWG, where all values of U and W
are calculated as well as the vorticity on the disc, The program
next "turns on" the sink and then moves to the subroutine AOPT,
where the new stream functions are computed from Equation (3.,10)
using the successive over-relaxation technique mentioned earlier,
Using these new values of the stream function, the program returns
to SUBUWG, After computing the new values for U and W and for
I' on the disc, in SUBUWG., the program computes the new tangential
velocities, V , using (3.5) and (3.6) in the subroutine SUBV,
Finally, using (3.7) and (3.8) the new values of the vorticity, T,
are computed in the subroutine SUBG. The program then computes the
values for the variables on the boundaries which are allowed to change
and returns to AOPT, to compute the new stream functions, and the
cycle starts again. The process is repeated until a pre-set time is
reached,

In applying the boundary conditions where the value was
allowed to change with time, i.e., the stream function at Z =
or at R = o , it was found that if the values were recomputed at
the end of each iteration in the successive over-relaxation process
(AOPTa) the process became unstable and large meaningless numbers
were generaﬁed, If, however, the values were recomputed after each
time step, then the process appeared to be stable with meaningful

results,
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Also, in applying the conditions at Z = o , three methods
were tried, First, U was set equal to zero, and the corresponding
stream function was calculated using (3.31)., The values of I on
this boundary were then computed on the basis of the stream functions.,
The second method was to set [' equal to zero on this boundary and
calculate the stream function here on this basis, The value of U
here corresponding to the stream function derivatives was then com-
puted, It was found that the first method was slightly superior to
the second in that the values of both U and I were smaller adja-
cent to this boundary. However, a third method was the one used.

This was simply to set U =0 on this boundary and calculate the
stream function using (5051)° In addition, I' was set equal to zero
here, This is the more rigorous approach, but the other two approaches
were tried in order to see if less rigid boundary conditions would
possibly result in a good approximation in a shorter time, The third
approach gave the smallest values of U and I near this boundary
for a given amount of computation time., Due to the fact that the grid
spacing was large and the number of grid points was relatively small,
the results obtained on the computer are only indicative of the flow
behavior for the problem of the rotating disc with a center sink.

Better quantitative results would be obtained with a much
finer grid spacing, many more grid points and longer runs on the

computer,
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L.,6 The Rotating Disc with a Center Source

The case of a source in a fluid rotating with solid body
rotation has been considered by Baruan(l) In his problem, the fluid
is rotating about the x-axis and the source is replaced by a dis-

charge through a sphere
X2 + y2 + 2° = a2 (4.43)

located at the origin, However, the flow from the source is assumed
to remain irrotational, thus giving rise to a discontinuity at the
interface of the irrotational and rotational fluids.

In the present case of the rotating disc with a center
source, no assumption of irrotationality is made.

As mentioned previously, the computer program was set up
such that it could be used with a source instead of a sink. This is
done simply by using a negative value for B . The result of using

B =-2,0 is shown in Figure A-15 in the appendix,



CHAPTER 5

EXPERIMENTAL PROGRAM

5.1 Apparatus

The experimental program was carried out in the Fluids
Laboratory Building at the North Campus., A room 12 feet long, 10
feet wide and 11-1/2 feet high was constructed using 2-inch x
k-inch beams covered with masonite on the sides and a thin poly-
ethylene sheet 0,008 inch thick on the ceiling, All joints, cracks,
and holes were then sealed using masking tape. The experimental
work was done inside this room in order to eliminate any drafts.

Inside this room, a 1/4 inch thick piece of tempered
masonite approximately 4 feet in diameter with a 5/8 inch hole at
its center was mounted in a horizontal plane on a vertical hollow
shaft which could be driven by a motor. The hollow shaft was connect-
ed to a vacuum pump located outside of the room. The connecting line
between the disc hole and the vacuum pump contained two Cox flowmeters
connected in parallel used to measure the discharge. The flow was
controlled with metering values mounted in series with the flow meters,
The drive unit was a Servo-Tek thyratron regulated drive unit. Thus
the disc speed could be varied as well as the sink discharge,

The streamlines were visuallzed using a smoke generator
which fed smoke into the region above the disc through fifteen
1/8 inch diameter glass tubes spaced two inches apart. The smoke
was generated by blowing air through a 1 inch diameter pyrex tube

containing a burning oil-of-wintergreen-impregnated cigar.
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A gsecond method of visualizing the flow consisted of dipping
eight 19 gage hypodermic needles, mounted in parallel at the end of
the air line, into a glycerin-scap solution, raising the needles far
above the disc, and blowing small bubbles into this region. The path
lines of the bubbles were then observed. Tufts of wool were also
tried, but even very fine threads were too heavy and too stiff to be
of any value,

A cutaway drawing of the experimental set-up is shown in

Figure 5.1,

5.2 Procedure

It was found that the experiments could be carried out only
in the evening with the lights turned off above the room, If there
was a strong breeze blowing outside,‘there was a noticeable effect
inside the room, This was attribuﬁed to a cooling effect of the sub-
sequent drafts inside the laboratory passing over the ceiling, which
was only a thin plastic sheet, and to possible entry of these drafts
into the room. The lights above the room caused a very noticeable
convection current in the room when 1lit,

In order to obtain photographs, a spotlight was aimed from
outside the room through a glass window, The spotlight beam was at
right angles to the direction from which photographs were taken. To
minimize the heating of the air inside the room from the spotlight,
it was switched on only during the period when the camera was in use,

The procedure for making a run was to turn off the lights

and blowers in the portion of the building near the room. Ten to
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fifteen minutes were then allowed for the air inside the room to
become quiescent. The vacuum pump was then turned on along with

the smoke generator. The smoke was introduced at a velocity com-
parable to that of the surrounding air so as not to disturb the flow,
A short time later, the disc was set in motion and pictures were
taken, After about a minute of running,the apparatus was turned
completely off, and a period of ten to fifteen minutes allowed to
pass before making another run. This was done to minimize turbulent
effects due to the nearness of the walls of the room to the disc,
This wall effect alsc limited the speeds at which the disc could be

run for even short periods of time,

5.3 Results

Pictures taken of a vertical plane of the flow show some
change in the streamlines with changes in the variables QO and
® ., These changes are indicative of what 1s happening but do not
yield good quantitative results. This is due to the fact that the
actual streamlines are three-dimensional while the photographs are
plane. Photographs taken looking down on the disc gave little detail
because the streamlines were fairly vertical until they neared the
disc where they were quickly dissipated due to the increased velocity
of the air in this region.

Actual observation, just as in the attempts made using
soap bubbles, appears to be the best method at the present time. With
the disc speed, o , fixed at its minimum value one can see the di-

viding streamline move outward as the sink discharge, Q

o s 18
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increased, It is more difficult to see the dividing streamline move
inward when Q is fixed at its maximum value (5 scfm) and
increased, It is almost impossible to see the dividing streamline
mové when Q,o is fixed at a value of 2,0 scfm or less and w is

"see" the dividing streamline at all;

varied, Actually, one does not
one only observes the streamlines in the vicinity change their slope
near the disc as Q,o or w is varied, The effect is noticeable
in the region O S r s 6 inches, The streamlines farther away move
so little that it is difficult to tell whether they are being affected
by the changes in Q,o and o or by the little disturbances that are
undoubtedly present in the room,

The fact that the disc was not perfectly plane could be
seen at high rotational speeds (15-20 rad/sec) as pulses in the smoke
streams that caused a wavey form.

When a large amount of smoke was present in the room, it
was possible to see the air above the disc being pulled downward as
the disc was started up from rest.

The readings taken directly from the flowmeters were felt
to be sufficiently accurate for this work since the maximum pressure
drop before entering the flowmeters was 0.55-inch of mercury. This
coupled with a correction for changes in atmospheric pressure amount-
ed to less than a 4 percent error in the sink discharge values.

The superposition of the streemlines for o = 2,5 rad/sec,
Q, = 5.0 scfm on the streamlines for ® = 4,0 rad/sec, Q, = 2.5 scfm

is shown in Figure 5.2. Here one sees that due to the three-
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dimensionality of the system, the dividing streamlines are difficult
to detect, but the qualitative effect is immediately apparent.

Now in the experiment

1.5 £ q, £5.0 scfm (5.1)

2,5 € € 5,5 rad/sec (5.2)
and

v~ 1.8 x 1074 ft2/sec (5.3)

Using (4.30) along with (2.29) one finds

Q, \1/3

21

% | 1/3,
—_— 1

270

r, = 1.468 ‘ ft = 1706( n (5.4)
(One notes here that r_ is independent of the fluid used, i.e.,

the results should be the same for any fluid,) Thus from (5,1),

(5.2), and (5.4)

<

1.99 < 3,08 in (5.5)

T
o}

is the predicted range for the experiment, However, the experiment

shows that (see Figure 5.2)

A

6Sr S10in, (5.6)

indicating that indeed (5.4) is valid only for small B .
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Similarly, from the von Karmén results computed by Cochran
one sees that the boundary layer thickness (based on the fact that
the radial and tangential velocities are very small) is approximately

of the dimensionless height
Z 2630 (507)

or

]

0.413 = z < 0,61 in (5.8)

is the predicted range of the boundary layer thickness. However,
as can be seen from Figure 5,3, the effect of the rotational motion
of the disc affects the flow at considerably larger distances of the

order of two or more inches,
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CHAPTER 6

CONCLUSIONS

Summarizing the results, it is found that (1) the numeri-
cal study indicates that for small values of B the non-dimensional
radial distance of the dividing streamline from the axis of rotation
is proportional to the cube root of the parameter f , which is a
measﬁre of the ratio of rotational and sink attractive forces to the
viscous force; (2) the flow fairly far away from the sink at rather
large heights abové the disc is still influenced somewhat by the
8ink as evidenced by the streamlineé curving slightly toward the sink
in this region; (3) the dividing streamline intersects the disc at
right'angles; and (4) the location of the minimum pressure gradient
along the disc appears to be at the intersection of the dividing
streamline and the disc,

A phenomenon best described as a tendency to ﬁreserve
circulation is demonstrated both experimentally and numerically,
although the efféct is diminished near the disc by viscésitya The
circumferential velocity of a fluild particle located between the axis
of symmetry and the dividing streamline first increases due to the
viscous effects as it approaches the disc, This gives rise to a
circulation. As the particle is drawn towards the sink, its radial
distance from the axis of rotation decreases, Then, due to the pre-
déminance of the convection effects over the viscous effects, the

circumferential velocity increases.
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CHAPTER 7

SUGGESTIONS FOR FUTURE WORK

The results presented in the present work are indicative of
the general behavior of the flow but the fine structure has not been
obtained. A finer grid spacing would improve the accuracy of the
solution and would serve as an indication as to whether the method
converges to the correct solution (i.e,, if decreasing the grid spac-
ing by an order of magnitude gives the same significant figures, one
would be optimistic about the correctness).

| Also, the problem of the rotating disc with a center source
can‘be very easily investigated with no additional experimental equip-
ment required and using the present computer program,

As mentioned previously, the computer program is also set
up to include vortex chamber problems. Specifically, it is possible
to consider a cylindrical chamber in which the wall is stationary or
rotating, the top is stationary or rotating, and the bottom is sta-
tionary or rotating and has a source or sink at its center. FEach of
these conditions may or may not be present independently of the others.

It appears from the results of the experimental program
that the use of a much larger room to better ensure a quiescent
atmosphere would be very desirable. A stronger pump would enable
increasing the range of B , Also, a better method of measuring the
position of the dividing streamline should be devised. One might
try finer streams of smoke more closely spaced and use a telephoto

lens on the camera. The main difficulty seems to stem from the
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fact that the air velocities are very small and hence any distur-
bances, even though small, affect the flow considerably,

A suggestion prompted by Equation (5.4) is to use a dif-
ferent fluid, say water, because the location of the dividing stream-
line is independent of the fluid used. A small diameter disc, say
about 12 inches, could be immersed in a very large diameter tank,
say 10-12 feet, such as is available in the Fluids Laboratory on the
North Campus., This would allow use of better flow visualization tech-
niques, but would still require long waits between runs, and would

still be dependent on room temperature variations.,



APPENDIX A

GRAPHS OF STREAMLINES AND VELOCITY PROFILES

Only the graphs of the velocity components for B = 3,0
are shown here. For other values of B , the graphs have the same
general shape,

The graphs of the streamlines for all values of B are

alsoc shown,
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Figure A-13, Axial Velocity (W) Profiles for Various
Values of B at Z = 3.0,
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APPENDIX B

COMPUTER PROGRAMS

The computer‘programs are in the MAD language and are given

The data which must be submitted along with the main program

(MAIN,001) and its subroutines is as follows:

Boolean Symbols

BB

BB1
BB2
BB3

BBL

BB5

BB6
BB7

BBS

BB9
BBFINE

BBFIX

BBMAIN

BBPSI

BBSLCT

Sets the value for BBl and BB3 after the first time step.
Prints the current values of GAMMAS and GAMMAP,

Transfers to START and transfers to NINTH.

Prints the current values of VSTAR and VPRIME,

Prints the current values of A, PSI, and DELTA. for each
iteration.

Transfers to FIRST,

Increases the value of ITMAX and calculates PSI for a more
accurate estimate,

Prints current values of U and W,

Transfers to NINTH, Reads and prints previously computed
values of BETA, PSI, U, V, W, and GAMMA from a punched
deck obtained from a previous run,

Prints U, V, W, GAMMA, PST every DIT time step,

Changes to a finer grid.

Prints I, J, PSI, U, V, W, and GAMMA for fixed increments
of I and J at intermediate time steps.

Prints and punches I, J, PSI, U, V, W, and GAMMA for steady
state,

Prints PSI and DELTA for each time step.

Prints I, J, PSI, U, V, W, and GAMVA for selected values of
I and J,
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BBSKIP

BPUNCH

BVTOP

BZEROU

BZEROV

BZEROW

GAMTOP

VSTILL

VXI

Data

BETA
BETMAX
DBETA
DIM(0)
DIT
DITMAX
DTAU

DXI

DZETA

EPSI
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Transfers to NINTH and then to SECOND,
Punches steady state values.
Sets the values for V(I,JMAX),

Sets U(IMAX,J) =

]
(@]
L3

Sets V(IMAX,J)

]
o
N

Sets W(IMAX,J) = O,
Computes GAMMA(T,JMAX),
Sets V(I,0) = 0.

Sets the values for V(IMAX,J),

Optimization parameter for the successive over-relaxation
technique,

Value of the stream function on the dividing streamline,
Maximum value of BETA,

Increment of BETA,

=2, JVAX + 3, JMAX + 1,

Increment for ITER.

Increases ITMAX and gives the maximum value for ITER,
Increment for time.

Radial grid spacing.

Vertical grid spacing,

= 0,002

Values of G from the von Kdrmén problem,

Values of H from the von Kdrmén problem,



IEND

IFOUR

IMAX

IONE

ISPACE

ISTART

ITHREE

ITMAX

ITONE

ITWO

JEND

JFOUR

JMAX

JONE

JSPACE

JSTART

JTWO

RE

TAUMAX

-81-

Last value of I for which intermediate values are printed,

Selected value of I for which intermediate values are
printed,

Number of grid spacings in the radial direction.

Selected value of I for which intermediate values are
printed,

Increment of I for which intermediate values are printed.
First value of I for which intermediate values are printed,

Selected value of I for which intermediate values are
printed,

Maximum number of iterations for the successive over-
relaxation technique,

First value for ITER used in selecting the time step for
which the intermediate values are to be printed.

Selected value of I for which the intermediate values are
printed.

Same as IEND, only for J.

Same as IFOUR, only for J.

Same as IMAX, only for J,

Same as IONE, only for J.

Same as ISPACE, only for J,

Same as ISTART, only for J,

Same as ITWO, only for J.

Inverse of the Reynolds number for the problem,

Time for which steady state is reached,
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$ COMPILE MADs PRINT OBJECTs PUNCH OBJECT MAIN«0O1

FIRST

OLDA

oLD

RFLOW DUE TO A ROTATING DISC WITH A SINK

PROGRAM COMMON UsVsVSTARSVPRIME sWsGAMMASVSTILLs REs. PSIsAAA
1+CEESDEESCAPBCAPCsDXI2191DXISQe IDXDZ s IDXICUSCVER2ISMINUST »PL
2US2I190IDXIs0IDXISy HsGsAs IDX1sBBsDTAUD2sDXISQsDXISQ29DZE
3TSQsDZETA2+DZETS29DZSQI sDZETS49PL2ARESAOARE 9DZETA6 sDZET12sDXI
4129sDXISQL1sDXI2sDXISQHIARESEPSTI sBETASDXIsDZETASI s Js ITMAX ITER
5+BB1+sBB29+BB3sBBFINEsISTARTsJSTART s IEND s JEND
6+BB4,BB5,BB6+8B7+BB8,BB9

“TsDIMsANSW1 yANSW2 s ANSW3 s BETMAX 9 DBETAsDTAUSOLDATAsTAUs TAUMAX sDI

BTMAX sKsBEE 9 IMAX s IMAX s LIMAX s LUMAX sENDBET
9sBBPSISsENDTAUSSPACE

DIMENSION U(1900sDIM)sV(1900sDIM) s VSTAR(1900sDIM) s VPRIME(LY0O
1sDIM)sW(1900sDIM) s GAMMA(19005sDIM) » GAMMAS(1900sDIM) s GAMMAP (190
205DIM) sPSI(1900sDIM)sDELTA(19005sDIM)sAAA(250)»CEE(250)sDEE(25
30) s CAPB(250) sCAPC(250)sDX121(250)+»IDXISQ(250)s1DXDZ(250)sIDXI
4CU(250)9OVER2I(250) sMINUSI(250)sPLUS2I(250)90IDXI(250)s0IDXIS
5(250) sH(50) sG(50) sA(11)sIDXI(250)
6sDIM(3) )

EQUIVALENCE (VSTAR(O) sGAMMAS(Q)) s (VPRIME(Q) »GAMMAP(Q) )

1 (GAMMAP (0) +DELTA(0))

INTEGER IMAXsJIMAXsDITMAX sLIMAX s LJIMAX

‘BOOLEAN BPUNCH

BOOLEAN BZEROWsVXIsBZEROVsBZEROUsGAMTOP sBVTOP

BOOLEAN BBFINE

BOOLEAN BBSKIP

INTEGER IENDsJEND

INTEGER IONEsITWOsITHREESIFOUR

INTEGER JONE sJTWOs JTHREE s JFOUR

INTEGER DITsITONE ' ' »

INTEGER ISTARTsJSTARTsISPACEsJSPACE

INTEGER TsJsKsITMAXSITER

VECTOR VALUES SPACE=35HDXI= E13+6s7HDZETA= E13+6%$%

VECTOR VALUES ENDTAU=$5HTAU= E13¢696HDTAU= E136%5

VECTOR VALUES OLDATA=$(21345E13.6)%%

VECTOR VALUES ENDBET=$6HBETA= E13.6%%

VECTOR VALUES ANSW1=%(S2s13951s1395E16e6)%%

VECTOR VALUES ANSW2=%(213+5E1346)%%

VECTOR VALUES ANSW3=3$1H69S5391HI 953 91HJsS10e3HPSTI9S513s1HUsS14 s
11IHVsS51591HW9S1495HGAMMA/ /%3

BOOLEAN BBsBBlsBB2+BB3,BB4sBB5,BB6,BB7,BB8+BBY

BOOLEAN VSTILL

BOOLEAN BBMAINsBBFIXsBBSLCT

BOOLEAN BBPSI

READ AND PRINT DATA

WHENEVER BBS8

READ FORMAT ENDBETs BETA

READ FORMAT ENDTAUsTAUsDTAU

READ FORMAT SPACESDXIsDZETA

PRINT RESULTS BETA

PRINT RESULTS TAUsDTAUsDXIsDZETA

THROUGH OLDASFOR I=0s1lsleGeIMAX -

THROUGH ‘OLDAs FOR J=031sJeGeJMAX . )

READ FORMAT OLDATAsIsJosPSI(IsJ)sUlIsd)sVIIsd)sW(IsJ)sGAMMA(T
1)

PRINT FORMAT ANSW3

THROUGH OLDs FOR I=031s]eGeIMAX

THROUGH OLDs FOR J=0919JeGeIMAX

PRINT FORMAT ANSW1 eI JePSI(LsJd)sU(Ted)sV{IoJ)sW(IsJ)sGAMMA(



FINE

REPEAT
SKIP
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1J)
END OF CONDITIONAL
RCOMPUTE CONSTANTS

WHENEVER BBFINE

DTAU=DTAU/ 440

DXI=DX1/2.,0

DZETA=DZETA/240

END OF CONDITIONAL
DTAUD2=2.0/DTAU

DXISQ=DXI*DXI
DZETSQ=DZETA*DZETA
RCOMPUTE. VALUES FOR A FINER GRID
WHENEVER BBFINE

EXECUTE BEGIN

PRINT FORMAT ANSW3

THROUGH FINEsFOR I1=0s1sIeGeIMAX
THROUGH FINEsFOR J=0slsJeGeJMAX
PRINT FORMAT ANSW1sIsJsPSI(IsJ)sUlLlsd)sVI(Isd)sW(Isd)s
1GAMMA (I sJ)

TRANSFER TO SKIP

END OF CONDITIONAL

IDXI(0)=040

DXI21(0)=040

IDXISQ(0)=040

IDXDZ(C)=040

IDXICU(0)=040

OVER2I(0)=040

MINUSI(0)=0.0

PLUS21(0)=040

OIDXI(0)=040

OIDXIS(0)=040

THROUGH REPEATs FOR I=1s1sleGalMAX
IDXI(I)y=1%DX1
DXI2I(1)=1e0/(2e0*¥IDXI(I)*DXI)
IDXISQIIN=IDXI(I)*IDXI(I"
IDXDZ(1)=IDXI(T)*DZETA
IDXICU(TI)=IDXI(I)*DXISQ
OVER2I(I)=140/(240%1)
MINUSI(1)=1+0-OVER2I(I)
PLUS2I(1)=140+0VER2I(I)
OIDXI(I)=140/IDXI(I)
OIDXIS(I)=0IDXI(I)*OIDXI(I)
DXISG2=2.0/DX15Q

DZETA2=2 J0%DZETA
DZETS2=2«0%DZETSG
DZSQI=1.0/DZETSQ
DZETS4L=440/DZETS?2
ARE=DXISQ/DZETSQ
PL2ARE=240%(1+0+ARE)
DZETA6=6+0%DZETA
DZET12=12,0%DZETA
DXI112=12.0%DXI
DXISQ1=DXISQ2/240

DXI2=2+0%DXT

DXISQH=DXISQ1/240

DXII=140/DXI

LIMAX=TMAX=1

LIMAX=JMAX~1

WHENEVER BBFINE
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TAU=040
TRANSFER TO NINTH
END OF CONDITIONAL
WHENEVER BBSKIPsTRANSFER TC NINTH
R COMPUTE PSIs Vs OR VALUES FOR A FINER GRID
EXECUTE BEGIN.
WHENEVER BVTOP
} THROUGH TOPVsFORI=1s1s1eEeIMAX
TOPV VIIsJMAX)=1IDXI(I)
» END OF CONDITIONAL
WHENEVER BZEROW
THROUGH WWALLSFOR J=191sJeGeJMAX
WWALL W(IMAXsJ)=040
END OF CONDITIONAL
WHENEVER VXI
THROUGH BVXIsFOR J=1slsJeGeJMAX
BVXI VIIMAXsJ)=IDXI(IMAX)
OR WHENEVER BZEROV
THROUGH VEZEROSFOR J=1s19JeGeJMAX
'VEZERO VIIMAXsJ)=040
OTHERWISE
CONTINUE
END OF CONDITIONAL
WHENEVER BZEROU
THROUGH UEZEROsFOR J=1s1sJeGeJMAX
UEZERO U(IMAXsJ)=040
END OF CONDITIONAL
FOURTH TAU=040
WHENEVER -BB2s TRANSFER TO START
NINTH BB2=0B ,
WHENEVER BBSKIPsTRANSFER TO SECOND
THROUGH EIGHTHsFOR I=0s1sIeGeIMAX
EIGHTH PSI(150)=BETA
WHENEVER BZEROWeANDeBZEROU
THROUGH ZEROWsFOR J=131sJeGeJIMAX
ZEROW PSI(IMAXsJ)=BETA
OTHERWISE
JIMAXSQ=1 40/ (IMAX%IMAX)
THROUGH ENDPSIsFOR J=1s1lsJeGeJMAX
DELTA(IMAX sJ)=PST(IMAXsJ)+(1e0~-J¥*¥I*¥IMAXSQ)*BETA
WHENEVER PSI(IMAXsJ+1)eGeDELTA(IMAXsJ)
PSI(IMAXsJ)=DELTA(IMAXsJ)
OTHERWISE
TRANSFER TO- SECOND
END OF CONDITIONAL
ENDPSI CONTINUE
END OF CONDITIONAL
‘BBSKIP=18
SECOND TAU=TAU+DTAU
PRINT RESULTS TAU
RCOMPUTE OPTIMUM VALUE OF A
EXECUTE .AOPT.
WHENEVER BB5sTRANSFER TO FIRST
WHENEVER BBFINEs TRANSFER TO START
WHENEVER BZEROUs TRANSFER TO ENDU
THROUGH UENDsFOR J=1slsJeEeJMAX . _
UEND UCIMAXsJ)=0IDXI( IMAX)*(PST(IMAXsJ+1)-PSI(IMAXsJ-1))/DZETA2
1*¥REePele5
ENDU CONTINUE



PSITOP

PSIEND

SOLID

GWTOP

CORNER
START

WEND
WENDO

NGAM
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THROUGH PSITOPsFOR I=131sleGeIMAX

PSI(IsJMAX) ={4e0%PST(IsLIMAX)=PSI(IsIMAX=2))/340

WHENEVER BZEROWeAND«BZEROUs TRANSFER TO SOLID

THROUGH PSIENDsFOR VALUES OF I=IMAX

THROUGH PSIENDsFOR J=1s1sJeEeJMAX

PSI(19J)=0e5%(540%PSI(I=15J)=44¢0%PSI(I=24J)
1+PSI(I=39J)+(3e0%PSI(1sJ)=4e0%¥PSI(I=19J)+PSI(I=25J))%0e5/1)

CONTINUE

THROUGH GWTOPsFOR VALUES OF J=JMAX

THROUGH GWTOPsFOR I=1s1sleEeIMAX

WHENEVER TeEa1l

W(lsJd)==O0IDXI(I)%¥(=2e0%¥PSI(0sJ)~3e0¥%PSI(1sJ)+6e0%PSI(2sJ)=PSI
1(3sJ))/(640%DX1)
2%REePeleb :

OR WHENEVER IeGeleANDelaeLeLIMAX

WIIsJ)==OIDXI(I)*(PSI(I=2sJ)=8e0%PSI(I=19J)+8e0%¥PSI(I+19J)=PS
11(I425J))/DXI12
2%¥REePeleb

OTHERWISE . _

WELoaJd)==OIDXI{I)#({2e0%¥PSI(I+19J)+3e0%¥PSI(I9J)~6e0%¥PSI(I~1sJ)+
1PSI(1-2sJ))/(640%DX1]) : '
2%REePels5 o

END OF CONDITIONAL

WHENEVER GAMTOP ,

GAMMA{ I sJ)=((PSI(I+1sJ)=2e0¥PSI(IsJ)+PSI(I=1sJ))/IDXICU(I)~
1(PSI(I+19J)=PSI(I=1sJ))*¥DXI2I(I}/IDXI{I)+0Qe5%DZSQI*(
28e0%¥PSI(19J=1)=7e0¥PSI(I9J)=PSTI(IsJ=2))
3#0IDXI(1) '
4)%¥REePele5 .

END OF CONDITIONAL

CONTINUE

THROUGH CORNER sFOR VALUES OF I=IMAX

THROUGH CORNER +FOR VALUES OF J=JMAX

WHENEVER GAMTOP

GAMMA(T9J)=((2e*¥PSI(I9J)=5e0%¥PSI(1sJ=1)+4e0%PSI(IsJ-2)=-PSI(I>
1J-3))*#0IDXI(I)*#DZSQI+
2 0eS5%(PSI(IsJ)—PSI(I=-1sJ)=PSI(I=2sJ}+PSI([-39J))/

3IDXICU(I)=DXI2I (1) *(240%PST(I5sJ)=PSI(I=15J)=240%PSI(I=25J)+PS
41(1-35J))%0IDXI (1) '
5)%REePele5

END OF CONDITIONAL

CONTINUE

CONTINUE -

R COMPUTE NEW U AND W VALUES AND NEW GAMMA(Is0) (I+Ee DISC) VA
RLUES

EXECUTE SUBUWG. _

WHENEVER BBFINEsTRANSFER TO EXVEE

WHENEVER BZEROWs TRANSFER TO WENDO

THROUGH WEND»FORJ=1515J0Ge MAX

WOIMAX s J)=W(LIMAXsJ)

CONT INUE

THROUGH NGAMsFOR VALUES OF I=IMAX

THROUGH . NGAMsFOR J=1s1sJeEeJIMAX

GAMMA (15 J)=0IDXI (1) % (REePele5)# (PST(IsJ+1)=240%PST(IsJ)+
1PSI(1sJ=-1))*DZSQI .

WHENEVER BB2s TRANSFER TO NINTH
R COMPUTE NEW V VALUES 4

WHENEVER BB3s PRINT COMMENTS1 VSTAR(0s0)eseVSTAR(IMAXsJMAX)
1 FOLLOWED BY VPRIME(050)seeVPRIME(IMAXsJMAX)S :



EXVEE

VEND

EXGAM

TENTH

THIRD

SIXTH

SEVEN

PUNCH

FINAL

FIFTH
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EXECUTE SUBVe

WHENEVER BBFINEsTRANSFER TO EXGAM

WHENEVER VXIsTRANSFER TO EXGAM

WHENEVER BZEROVsTRANSFER TO EXGAM

THROUGH VENDs FOR VALUES OF I=IMAX

THROUGH VENDs FOR J=1s1lsJeEeJIMAX
V(IsJ)=(3e0%¥DXI*¥OIDXI(I)¥V(I9J)+9e0*VI{I=19U)=4e5%¥V(I=24J)+
IV(I=33J))/545

R COMPUTE NEW GAMMA VALUES

WHENEVER BBls PRINT COMMENT$1 GAMMAS(0»s0) e eGAMMAS ( IMAX 9 JMAX)
1 FOLLOWED BY GAMMAP(0s0)eseGAMMAP(IMAXsJIMAX)S

EXECUTE SUBGe.

WHENEVER BB9

THROUGH SIXTHs FOR ITER=ITONEsDITsITER«GeDITMAX

WHENEVER TAU «Ge ITER*DTAU-EPSI «ANDe TAU elLe ITER*¥DTAU+EPSI
PRINT RESULTS TAUsDTAUsDXIsDZETA

PRINT FORMAT ANSW3

WHENEVER BBSLCT

THROUGH TENTHsFOR VALUES OF I=IONEsITWOsITHREE» IFOUR

THROUGH TENTHsFOR VALUES OF J=JONEsJTWOsJTHREE » JFOUR

PRINT FORMAT ANSW1sIsJsPSI(IsJ)sUlTIsd)sVI(Isd)sW(IsJ)sGAMMA(T
1)

END OF CONDITIONAL

WHENEVER BBFIX

THROUGH THIRDs FOR I=ISTARTsISPACEsIleGelEND

THROUGH THIRDs FOR J=JSTARTsJSPACE sJeGeJEND

PRINT FORMAT ANSW1sIsds PSI(IsJ)s UlIsd)s VI(Isd)s W(IsJd)s GAM
IMA(T,J)

END OF CONDITIONAL

TRANSFER TO SEVEN

END OF CONDITIONAL

CONTINUE

END OF CONDITIONAL

WHENEVER TAUeLeTAUMAXs TRANSFER TO SECOND

WHENEVER BBMAIN

PRINT COMMENT$1 STEADY STATE VALUES §

PRINT RESULTS TAUsDTAUsDXIyDZETA

PRINT RESULTS BETA

WHENEVER BPUNCH

PUNCH FORMAT ENDBETs BETA

PUNCH FORMAT ENDTAUsTAUsDTAU

PUNCH FORMAT SPACEsDXIsDZETA

THROUGH PUNCHsFOR I=0s1sleGeIMAX

THROUGH PUNCHsFOR J=0s13JeGeJMAX

PUNCH FORMAT ANSW2sIsJsPSI(IsJ)s U(Isd)s VIIsd)s W(IsJ)s GAMM
1A(IsJ)

END OF CONDITIONAL

PRINT FORMAT ANSW3

THROUGH FINALSFORI=0s1sIeGeIMAX

THROUGH FINALs FOR J=0s1sJeGeJMAX

PRINT FORMAT ANSW1lsIsds PSI(IsJ)s UlIsd)s V(Isd)y W(IsJd)s GAM
IMA(T4J)

END OF CONDITIONAL

WHENEVER +ABSeBETA «Ge BETMAXs TRANSFER TO FIFTH
BETA=BETA+DBETA

BBSKIP=08B

TRANSFER TO FOURTH

TRANSFER TO FIRST

END OF PROGRAM
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SCOMPILE MADs PRINT OBJECTs PUNCH OBJECT - , ' COEFFO001

START

NEWR

ONE

END

DIMENSION RZERQ(100)sA(2000sDIM)sBETA(100) sBETAL(100)sBETA2(
1100) s SMALLA(100) sDUMMY (100) sDIM(3)

INTEGER IsJsMoN ‘

VECTOR VALUES TITLE=38391HI +5596HSMALLA%S

VECTOR VALUES ANSWER=3%S52s123FE1346%%

READ AND PRINT DATA

N=DIM(2)

M=DIM(2)

THROUGH NEWRSsFOR I1=151s14GaN
RZERO(I1)=RZERO(I)+DELR*(BETA(I)=-BETAL(I))/(BETA2(1)-BETAL(I))
THROUGH ONESFOR I=1s1sIeGeN

THROUGH ONEsFOR J=1sl9JeGeN

ACT9J)=RZERO(I)ePoJ
R=SLE-(N9M9A(191)9SMALLA(1)9BETA(15SDUMMY(l)’O)

PRINT RESULTS R

PRINT RESULTS Mst(ZERO(l)«.oRZERO(N)9BETA(1)-..BETA(N)
PRINT FORMAT TITLE

THROUGH ENDs FOR J=1s1sJeGeN

PRINT FORMAT ANSWERsJsSMALLA(J)

TRANSFER TO START

END OF PROGRAM

$COMPILE MADs PRINT OBJECTs PUNCH OBJECT EXPONOO1

NEWR
" ALPHAC

ANSWER

INTEGER Iy IMAX

DIMENSION RZERO(IOO)9BETA(100),BETA1(IOO)’BETAZ(IOO)9ALPHA(10
10),C(100)

VECTOR VALUES VALUE= $(52s13954,4E16 6) %%

VECTOR VALUES LABEL=%1H635S39s1HI'sS139s4HBETASS11s5HRZERCS1095H
1ALPHASsS1341HC// %8

VECTOR VALUES TITLE= $546 5 40HCOMPUTED VALUES FOR THE EXPONENT
10F BETA//%*$%

READ AND PRINT DATA

THROUGH NEWRsFOR I=1s1sTeGeIMAX .
RZERO(1)=RZERO(I)+DELR*(BETA(I)=-BETAL(I))/(BETA2(I1)=BETAL1(I))
THROUGH ALPHACsFCR I=1s1sIeEeIMAX
ALPHA(I)—(ELOG.(RZERO(I+1))—ELOG.(RZERO(I)))/(ELOG-(BETA(I+1)
1)~ELOG.(BETA(I)))

C(I)=RZERO(I)*(BETA(I)ePe—=ALPHA(I))

PRINT FORMAT TITLE

PRINT FORMAT LABEL »

THROUGH ANSWERFOR I=1s19sleEeIMAX

PRINT FORMAT VALUEsIsBETA(I)sRZERO(I)sALPHA(I)»C(I)

END OF PROGRAM

$ COMPILE MAD, PRINT OBJECTs PUNCH OBJECT
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RCOMPUTE INITIAL VALUES OF PSIy Vs AND GAMMA

EXTERNAL FUNCTION

PROGRAM COMMON UsVsVSTARSVPRIME sWsGAMMASVSTILLY RE> PSIsAAA
19sCEESDEEsCAPByCAPCsDXI2I»IDXISQs IDXDZ s IDXICUSOVERZ2ISMINUSI 9PL
2US2150IDXIsOIDXIS) HsGsAyIDXI+sBBsDTAUDZ2+sDXISQsDXISQ2sDZE
3TSQsDZETA29DZETS29DZSQI sDZETS4 »PL2ARE»AOARE sDZETA6sDZET129DXI
412sDXISQ1sDXI29sDXISQHsARESEPST 9yBETAsDXIsDZETA» I sJs ITMAXyITER
5+BB1sBB2yBB3+sBBFINEsISTART»JSTARTSIENDJEND
6+BB4+BB5,BB6,BB7yBB8sBBS
TsDIMsANSW1 s ANSW2 s ANSW3 s BETMAX s DBETASDTAUSOLDATAsTAUs TAUMAX»DI
8TMAX sK9yBEE s IMAX s IMAX s LIMAX s LIUMAX sENDBET
9+BBPSIsENDTAUsSPACE

DIMENSION U(1900sDIM)3sV(1900sDIM) s VSTAR(1900sDIM) s VPRIME(1900
15DIM)sW(1900sDIM) s GAMMA(1900sDIM) sGAMMAS(1900sDIM) s GAMMAP (190
20sDIM)sPSI(1900sDIM) sDELTA{1900sDIM) sAAA(250)sCEE(250)sDEE(25
30)9sCAPB(250) sCAPC(250)sDXI21(250)5IDXISQ(250)+IDXDZ(250)IDXI
4CU250) sOVER2I(250) sMINUSI(250)sPLUS2I(250)+s0IDXI(250)+0IDXIS
5(250)sH(50)sG(50)sA(11)5IDXI(250)
6sDIM(3)

EQUIVALENCE (VSTAR(0)sGAMMAS(0)) s (VPRIME(O) sGAMMAP(0) )

1 (GAMMAP(0) sDELTA(C))

INTEGER IMAX s JMAXsDITMAX s LIMAX s LIUMAX

INTEGER ISTARTs JSTART»s IENDs JEND

INTEGER -19JsKs ITMAXSITER _

VECTOR VALUES SPACE=35HDXI= E13.69s7THDZETA= E13e6%%

VECTOR VALUES ENDTAU=35HTAU= E13+696HDTAU= E1346%3

VECTOR VALUES OLDATA=3(213+5E1346)%5%

VECTOR VALUES ENDBET=$6HBETA= E13.6%$%

VECTOR VALUES ANSW1=3(5S2513951s1395E1646)%9%

VECTOR VALUES ANSW2=3(213s5E13.6)%%

VECTOR -VALUES ANSW3=31H6+5391HI+5391HJsS10s3HPSI9S1391HUsS14,
11HVsS155 1HW»S14 s SHGAMMA/ /%8

BOOLEAN BBsBB1sBB2sBB3,BB4sBB5+sBB6sBB79BB8sBBY

BOOLEAN BBPSI

BOOLEAN VSTILL

BOOLEAN BBFINE

ENTRY TO BEGIN.

THROUGH ONEsFOR J=0s1sJeGe IMAX

V(0sJ)=040

Ul0sJ)=040

WIIMAXsJ)==H(J)

W(0sJ)=0.0

UCIMAXsJ)=040

GAMMA(O9J) =00

PSI(0sJ)=040

THROUGH TWOsFOR I=091s1.GeIMAX

VIIsIMAX)=040

GAMMA (15 JMAX) =040

PSI(IsJMAX)=IDXISQ(I)#*H(JIMAX)/2.0

VII»0)=IDXI(I)

WHENEVER VSTILLsV(I»0)=0.0

PSI(I+0)=040

U(Is0)=04e0 -

UCTsJMAX)=060

W(IsJMAX)=-0.886

W(I+s0)=0.0

THROUGH THREEs FOR J=1slsJeEeJMAX

THROUGH THREESFOR I=19191eGeIMAX

PSI(I+sJ)=IDXISQ(I}*H(J)/240
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THREE VIIsJ)=IDXI(I)%G(J)
THROUGH FOURs FOR J=131sJeEeJIMAX
THROUGH FOURs FOR I=1slsleEeIMAX
FOUR GAMMA (T 9J)=(PSI(I+15J)=2e0%¥PSI(IyJ)+PSI(I=-1,J))/IDXICU(I)
1-(PSI(I
2+419J)=PSI(I=19J))%¥DXI21(1)/IDXI(I)+(PSI(IsJ+1)=2e40%PSI(IsJ)+P
351(14J-1))%DZSQI/IDXI(])
THROUGH UIMAXsFOR VALUES OF I=IMAX
THROUGH UIMAXsFOR J=1slsJeEaJMAX
WHENEVER JeEel
UCI91)=0IDXI(I)%(=2e¢0%PSI(I150)=3e0%¥PSI(I51)+6e0%PSI(I42)=PSI{
11+3))/DZETAG
OR WHENEVER JeGeleANDeJelsLIMAX
UCIsJ)=0IDXI(I)*¥(PSI(I9J=2)-8e0*PSI(I1sJ~1)+8s0%PSI{IsJ+1)~PSI
1(1sJ+42))/DZET12
OTHERWISE
UCIsJd)=OIDXI(I)*(2e0%PSI(IsJ+1)+3e0%PSI(I19J)=6e0%¥PSI(IsJ—1)+P
1SI1(15J-2))/DZETAG
UIMAX END OF CONDITIONAL
WHENEVER BB2s PRINT RESULTS PSI(030)eesPSI(IMAXsJIMAX)
19V(0s0)eaeVIIMAX s JMAX)
FUNCTION RETURN
END OF FUNCTION

$COMPILE MADs PRINT OBJECTs PUNCH OBJECT AOPT.001

R COMPUTE A OPTIMUM

EXTERNAL FUNCTION

PROGRAM COMMON UsVsVSTARsVPRIME sWsGAMMAs VSTILL sRE PSIsAAA
19CEEsDEEsCAPBsCAPC,DXI1215IDXISQsIDXDZs IDXICUSOVER2IsMINUSIsPL
2US21,0IDXIs0OIDXISS HsGsAsIDXIsBBsDTAUD2sDXISQsDXISQ2sDZE
3TSQsDZETA2sDZETS29DZSQI sDZETS49PL2ARE s AOARE sDZETA6 sDZET12sDX1
412sDXISQ1sDXI2sDXISQHSIARESEPSI sBETASDXIsDZETAsI s Js ITMAX s ITER
55BB1sBB2sRB3sBBFINEs ISTARTsJSTART s IEND s JEND
6+sBB4sBB5sBB6sBB7sBB8sBBY
7sDIMsANSW1 s ANSW2 s ANSW3 s BETMAX s DBETAsDTAUSOLDATAs TAUs TAUMAX DI
8TMAX s KsBEE s IMAX s JMAX sLIMAX s LUMAX s ENDBET
9+sBBPSISENDTAUSSPACE

DIMENSION U(1900sDIM)sV(1900sDIM)sVSTAR(1900sDIM)sVPRIME(1900
1sDIM)sW(1900sDIM) »GAMMA (1900sDIM) sGAMMAS(19005DIM) s GAMMAP (190
205DIM) sPSI(1900sDIM) sDELTA(1900sDIM) sAAA(250) sCEE(250) »DEE(25
301 s CAPB(250) sCAPC(250) sDXI21(250) s IDXISQ(250)sIDXDZ(250) s IDXI
4CU(250) sOVER2I(250) sMINUSI(250)sPLUS21(250)50IDXI(250)s0IDXIS
5(250) sH(50) sG(50)9A(L1)sIDXI(250)
6sDIM(3)

EQUIVALENCE (VSTAR(O) sGAMMAS(0)) s (VPRIME(Q) sGAMMAP(0) )s

1 (GAMMAP (0) sDELTA(0))

INTEGER IMAXsJMAXsDITMAX sLIMAX sLJIMAX

INTEGER IsJsksfTMAXsITER

INTEGER ISTARTs JSTARTs IENDs JEND

BOOLEAN VSTILL

BOOLEAN BBFINE

VECTOR VALUES ENDTAU=$5HTAU= E1346»6HDTAU= E13+6%$

VECTOR VALUES SPACE=$5HDXI® E13.6s7HDZETA= E13.6%$

VECTOR VALUES OLDATA=$(21345E1346)%$

VECTOR VALUES ENDBET=$6HBETA= E13.6%%
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VECTOR VALUES ANSW1=3(52+133S51,1395E1646)%%

VECTOR VALUES ANSW2=%(21395E13.6)#%%

VECTOR VALUES ANSW3=31H6sS5391HI95391HJsS109s3HPSI 9S51391HUS14
11HV»S155s 1HWsS14 5 5HGAMMA/ /%%

BOOLEAN BBsBB1sBB2sBB3+sBB4sBB5+sBB6sBB7sBB8sBBS

BOOLEAN BBPSI

ENTRY TO AOPT.

K=0

AQARE=A(K)/PL2ARE

THROUGH KZERO s FOR ITER=191sITER«GsITMAX

THROUGH KZEROsFORJ=1s1sJeEeIMAX

THROUGH KZERQOs FOR I=1s1sleGel IMAX

DELTA(I 9 J)=AOCARE*(~IDXICU(T)*GAMMA{IsJ)*REePe~1e5+PSI(I1+1sJ)
1#MINUSI (1) +
2PST(I=1sJ)*PLUS2I(I)+ARE*(PSI(I9J+1)}+PSI(IsJ~1))~PL2ARE*PSI (1]
3eJd))

KZERO PSI(IeJ)=PSI(IsJ)+DELTA(LIsJ)
FUNCTION RETURN
END OF FUNCTION

$COMPILE MADs PRINT OBJECTs PUNCH OBJECT AOPT.101

R COMPUTE A OPTIMUM

EXTERNAL FUNCTION

PROGRAM COMMON UsVsVSTARsVPRIMEsW»GAMMASVSTILLs REs PSIsAAA
15CEESDEEsCAPBsCAPCsDXI215IDXISQs IDXDZ s IDXICUSOVER2T sMINUST»PL
2US2150IDXIsOIDXIS, HsGsAs IDXI sBBsDTAUD2sDXISQsDXISQ29DZE
3TSQsDZETA2sDZETS2sDZSQI sDZETS4 sPL2AREsAOARE sDZETA6 9DZET129DXI
412 sDXISQ1+sDXI2sDXISQHSARESEPSI sBETASDXI sDZETAsI sJs ITMAX ITER
54B8B1+BB29sBB3sBBFINEsISTARTyJSTART S IENDsJEND
6+BB4 +BB5sBB6sBB7sBEB8sBBY
79DIMsANSWY 9 ANSW2 sANSW3 s BETMAX s DBETASDTAUSOLDATASTAUs TAUMAX DI
8TMAX sK s BEE » IMAX s JMAX s LIMAX s LUMAX s ENDBET
9sBBPSISsENDTAUSSPACE

DIMENSION U(1900sDIM)sV(1900sDIM)sVSTAR(1900sDIM)sVPRIME(1900
1sDIM)sW(1900sDIM) s GAMMA(19009DIM) sGAMMAS(1900sDIM) s GAMMAP (190
205DIM) sPSI(1900sDIM)sDELTA(1900sDIM) sAAA(250)sCEE(250) sDEE(25
30) sCAPB(250) sCAPC(250) sDXI21(250)+IDXISQ(250)sIDXDZ(250)s1DXI
4CU(250)sOVER2I(250) sMINUSI(250)sPLUS2I(250)s0IDX1(250)0IDXIS
5(250) sH(50) sG(50)sA(11),IDXI(250) '
6sDIM(3) ' _ ,

EQUIVALENCE (VSTAR(0)sGAMMAS(0)) s (VPRIME(O) sGAMMAP (0) ),

1 (GAMMAP (0) sDELTA (D))

INTEGER  IMAX s JMAXsDITMAX s L IMAX s LUMAX

INTEGER IsJsKsITMAXsITER

INTEGER ISTARTs JSTART, IENDs JEND

BOOLEAN BBFINE

VECTOR VALUES ENDTAU=$SHTAU= E13+66HDTAU= E13.6%$

VECTOR VALUES SPACE=35HDXI= E13¢6sTHDZETA= E1346%$

VECTOR VALUES OLDATA=$(213s5E1346) %%

VECTOR VALUES ENDBET=%6HBETA= E13.6%$%

VECTOR VALUES ANSW1=5(S52513951+13s5E1646)%%

VECTOR VALUES ANSW2=%(2133s5E13.6)%$%

VECTOR VALUES ANSW3=31H6953+s1HI+5331HJsS1093HPSIsS1351HUsS 14
11HVsS15s1HWsS14 9 5HGAMMA/ /%%



STORE

CHANGE

NEXTX
NEXTIT

AFTER

MANYIT

NEXTXA
AFTERA

-91-

BOOLEAN BBsBB1sBB2+yBB3,BB4»BB5,BB6yBB7sBB8sBBY
BOOLEAN VSTILL

BOOLEAN BBPSI

ENTRY TO AOPT.

THROUGH STOREs FOR I=0s1sIeGeIMAX

THROUGH' STOREs FOR J=0s1sJeGeJMAX

VSTAR{L19J)=PSI (-1 +J)

THROUGH AFTERs FOR K=03s13KeGel0

AOARE=A(K) /PL2ARE

THROUGH CHANGEs FOR I1=0s191+GeIMAX

THROUGH CHANGEs FOR J=03s1sJeGe JMAX

PSI(IsJ)=VSTAR(IsJ)

THROUGH NEXTITs FOR ITER=1s1sITER«GeITMAX

THROUGH NEXTXs FOR I=1s1sl+Gel IMAX

THROUGH NEXTXs FOR J=1s1sJeFeJMAX
DELTA(I3J)=AOARE*(=IDXICU(I)*GAMMA (I sJ)*REePe~1e5+PSI(I+1sJ)
I*#MINUSI(I) +
2PSI(I-1sJ)¥PLUS2I(I)+ARE*(PSI(1sJ+1)+PSI(IsJ=1))~PL2ARE*PSI(]
39J))

PSI(IsJ)=PSI(1sJ)+DELTA(IsJ)

WHENEVER BB4s PRINT RESULTS ITERsA(K)sPSI(03s0)eeePSI{IMAXS
1IMAX) sDELTA(O90) a0 o DELTA{IMAX s JMAX)

PRINT RESULTS A(K)sPSI(090)eeePSI(IMAXsIMAX)SDELTA(OS0) e 0s
IDELTA(IMAX s JMAX)

WHENEVER BBPSIs PRINT RESULTS A(K)sPSI(05s0)eeePSI(IMAXsJMAX) s
IDELTA(O30) e eaDELTA(IMAX s JMAX)

WHENEVER BB6

THROUGH MANYITy FOR I=0s1s]eGeIMAX

THROUGH MANYITs FOR J=0slsJeGeJMAX

PSI(I1sJ)=VSTAR(IsJ)

THROUGH. AFTERAs FOR VALUES OF K=5

AOARE=A(K)/PL2ARE

ITMAX=ITMAX+DITMAX

THROUGH. NEXTXAs FOR ITER=131sITERGeITMAX

THROUGH NEXTXAs FOR I=1s1sIeEeIMAX

THROUGH NEXTXAs FOR J=1slsJeEeJMAX

DELTA(IsJ)=AOARE* (~IDXICU(I)*GAMMA (I sJ)¥REePe=1e5+PSI(I+15J)
1#MINUSI( 1)+
2PST(I=1sJ)*PLUS2I(I)+ARE*(PSI(19J+1)+PSI(IsJ=1))=PL2ARE*PSI(]
34J))

PSI(IsJ)=PSI{IsJ)+DELTA(IsJ)

PRINT RESULTS A(K)sPSI(090)eeePSI{IMAXsJIMAX) sDELTA(O30) oo
IDELTA(IMAX s JMAX)

END OF CONDITIONAL

FUNCTION RETURN

END OF FUNCTION

$COMPILE MADs PRINT OBJECTs PUNCH OBJECT SUBUWOO]

RCOMPUTE NEW U AND W VALUES, COMPUTE NEW GAMMA(I,s0) VALUES
EXTERNAL FUNCTION

PROGRAM COMMON UsVsVSTARSVPRIME sWsGAMMASVSTILLs RE> PSI»AAA
1sCEESDEESCAPByCARCsDXI2IIDXISQs IDXDZsIDXICUSOVER2I sMINUSI sPL
2US21,0IDXIsQIDXIS, HsGsAs IDXI+sBBsDTAUD2+DX1SQsDXISQ2sDZE
3TSQsDZETA2sDZETS2sDZSQI sDZETS4sPL2ARE s AOARE sDZETA6sDZET129DX1
412sDXISQ1sDXI2sDXISQHSARESEPST sBETASDXIsDZETASI »Js ITMAXSITER
55BB15BB2sBB3+sBBFINEsISTARTsJSTART s IENDsJEND
6+BB4,BB5,BB6sBB7sBB8sBBY
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79DIM9ANSW19ANSWZ}ANSW3,BETMAX,DBETA;DTAU;OLDATA,TAUaTAUMAX9DI

8TMAX sKsBEE s IMAX s JMAX s LIMAX s LUMAXsENDBET

9+BBPSIsENDTAUSSPACE

DIMENSION U(19005DIM)»V(1900sDIM) sVSTAR(1900sDIM)sVPRIME(1900
15DIM)sW(19005sDIM) s GAMMA(1900sDIM) s GAMMAS(1900sDIM) sGAMMAP (190
20sDIM)sPSI(1900sDIM) sDELTA(1900sDIM) sAAA(250)sCEE(250) sDEE(25
30) sCAPB(250) sCAPC(250)sDXI21(250)IDXISQ(250)sIDXDZ(250)s1DXI
4CUC250) sOVER21(250) sMINUSL(250)sPLUS21(250) s0IDXI(250)s0IDXIS
5(250)9H(50)5G(50)9A(11)sIDXI(250)
6sDIM(3)

EQUIVALENCE (VSTAR(Q)sGAMMAS(0)) s (VPRIME(0) sGAMMAP(0) )

1 (GAMMAP (0) sDELTA(O))

INTEGER IMAXsJMAXsDITMAXsLIMAX sLJMAX

INTEGER ISTARTs JSTARTs IENDs JEND

INTEGER T9JsKsITMAXsITER

VECTOR VALUES SPACE=$5HDXI= E1346,7HDZETA= E13+6%$

VECTOR VALUES ENDTAU=$5HTAU= E13+696HDTAU= E13e6%$

VECTOR VALUES OLDATA=$(2I345E1346)%$%

VECTOR VALUES ENDBET=$6HBETA= E13.6%%

VECTOR VALUES ANSW1=%5(S52913+5191395E1646)%$

VECTOR VALUES ANSW2=$(213+5E13.6)%$%

VECTOR VALUES ANSW3=$51H6553s1HI 353 1HJ9S1093HPSIsS13s1HU»S14y
11HV»S1591HWsS1495HGAMMA/ /%S

BOOLEAN VSTILL

BOOLEAN BBsBB1sBB2sBB3sBB4sBB5,BB6+BB7+BB8sBBY

BOOLEAN BBFINE

BOOLEAN BBPSI

ENTRY TQ SUBUWGS

WHENEVER BBFINEs TRANSFER TO SKIP

THROUGH ORIGINs FOR I=1s1sIeGeIMAX
GAMMA(I50)=0IDXI(I)*(840*PSI(I1s1)=7e0¥PSI(Is0)=PSI(1s2))/DZET
152

2%¥REePeleb ,

THROUGH NEXT1s FOR I=1s1sleEeIMAX

THROUGH NEXT1ls FOR J=1s1sJeEeJIMAX

WHENEVER JeEol
U(Is1)=0IDXI(I)*(~2e0¥PSI(Is0)~3e0%¥PSI(Is1)+6e0%¥PSI(1+2)-PSI(

‘11-3))/DZETAG

2%REePel45
OR WHENEVER JeGeleANDeJaleLJMAX
UCI»J)=0IDXI(I)*(PSI(15J=2)=840%PST(I5J=1)+840%PSI(IsJ+1)-PSI
1(15J+2))/DZET12

2¥REaPel o5

OTHERWISE
UCI»J)=0IDXI(I)¥*(240%PST(15sJ+1)+340%PSI(19J)=6e0%¥PSI(15J=1)+P
1SI(14J-2))/DZETAG

2%¥REePel45

END OF CONDITIONAL

WHENEVER 1.E.1
W(1sJ)==0IDXI(I)*(=2¢0%PSI(0sJ)=340%PSI(15J)+6s0%PSI(25J)=PSI
1(35J))/(6.0%DX1)

2%REePoels5

OR WHENEVER I+GeleANDeleLeLIMAX
W(IsJ)==0IDXI(I)*(PSI(I=25J)-840%PSI(I=15J)+8+0%PSI(I+19J)=PS
11(1+25J))/DXI12

2%REsPele5

OTHERWISE
W(IsJ)==OIDXI(I)%(2+0%PSI(I+15J)+3e0%PSI(15J)=640¥PSI(I=15J)+
1PSI(1-25J))/(640%DXI)
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» 2%¥REePwle5
NEXT1 END OF CONDITIONAL
THROUGH WZEROSFOR J=1s1sJeGeIMAX
WZERO W(OsJ)=(PSI(35sJ)~20%PSI(25J)=11e0%PSI(15J))*¥DXISQL1/540
' 1%¥REePoeleb

WHENEVER BB2»
IW(IMAX s JMAX) s GAMMA (0 50) o e « GAMMA ( IMAX s JMAX)
WHENEVER TAU
WHENEVER BB7
PRINT RESULTS U{0s0)eoceU(IMAXsJIMAX) sW(050)eeeW( IMAX»JIMAX)
END OF CONDITIONAL

END OF CONDITIONAL

FUNCTION RETURN

END OF FUNCTION

PRINT RESULTS U(090)eeelU(IMAXsUMAX)sW(O090)oes

eGe 040

$ COMPILE MADs PRINT OBJECT, PUNCH OBJECT SUBV.001

RCOMPUTE VSTAR AND VPRIME

EXTERNAL FUNCTION

PROGRAM COMMON UsVsVSTARsVPRIME sWsGAMMASVSTILLY RE» PSTsAAA
1+sCEESDEEsCAPBsCAPCsDXI2T+sIDXISQs IDXDZ s IDXICUSOVER2IsMINUSIsPL
2US21+0IDXIsOIDXISS HeGsAsIDX1sBBsDTAUD2,DXISQsDXISQ2+DZE
3TSQsDZETA2sDZETS2sDZSQI sDZETS4sPL2AREsAOARE sDZETA69DZET12sDXI
412sDXISQ1sDXI2sDXISQHIARESEPST sBETASDXI sDZETAST s Js ITMAXSITER
5.BB81,B8B829BB3syBBFINEsISTART s JJSTARTSIENDsJEND
6+8B44+BB5+,B8B6+BB7+8B8+BB9 A

TsDIMs ANSW1 s ANSW2 s ANSW3 sBETMAX s DBETASDTAUSOLDATASTAUsTAUMAXSDI
8TMAX sKsBEE s IMAX s IMAX s LIMAX s LUMAX s ENDBET

9sBBPSISsENDTAUSSPACE

DIMENSION U(1900+sDIM)sV(19C0sDIM)»VSTAR(1900sDIM)»VPRIME(1900
1sDIM)sW(19005sDIM) s GAMMA({1900sDIM) s GAMMAS(1900sDIM) sGAMMAP (190
20sDIM)sPSI(1900sDIM) sDELTA(1900sDIM)»AAA(250)»CEE(250)sDEE(25
30) sCAPB(250) »CAPC(250)sDXI21(250)+sIDXISQ(250)-IDXDZ(250)sIDXI
4CU(250) sOVER21(250) sMINUSI(250)sPLUS2I(250)s0IDX1(250)50IDXIS
5(250)sH(50)sG(50)+A(11)5IDXI(250)

6sDIM(3)

EQUIVALENCE (VSTAR(Q)sGAMMAS(O) ) s (VPRIME(O) sGAMMAP(Q) ) »
1 (GAMMAP (Q) »DELTA(O)) ' .

INTEGER IMAX s JMAXsDITMAXsLIMAX s LJIJMAX

INTEGER I3JsKsITMAXSITER

VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

SPACE=35HDXI= E13¢6s7THDZETA= E13e6%*%

ENDTAU=$5HTAU= E13.696HDTAU= E1346%$
OLDATA=$(213+5E1346)%%

ENDBET=%6HBETA= E13.6%%
ANSW1=3(S2513+5191395E1646)%9%
ANSW2=35(213+5E13.6) %%
ANSW3=31H635S5391HIsS5351HJ»S1093HPSI951351HUsS14

11HVsS15s1HWsS14 s 5SHGAMMA/ /%%

BOOLEAN VSTILL

BOOLEAN BBsBB1,BB2+BB3,BB4»BB5,BB6sBB79BB8»BBY
INTEGER ISTARTs JSTARTs IENDs JEND

BOOLEAN BBFINE

'BOOLEAN BBPSI

ENTRY TO SUBV.

THROUGH REPEATs FOR I=0s1sIeGsIMAX
THROUGH REPEATsy FOR J=0s1sJeGeJMAX
VSTAR(IMAX s J)=V(IMAXsJ)
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VSTAR(150)=V(1,50)

VSTAR (I JMAX) =V (15 JMAX)

VSTAR(05J)=V(0sJ)

THROUGH VEEls FOR J=1315J+GeLJIMAX

THROUGH VEE3s FOR I=1s1s1+GsLIMAX

WHENEVERIWE.1

CAPB(1)=DTAUD2+DXISQ2*RE
CAPC(1)=(V(1sJ=1)%(W(1sJ)/DZETA2+DZSQI*RE)+V(1sJ)* (DTAUD2Z-
1U(15J)/DXI=(DZETS4+DXISQL)*¥RE)+V (1sJ+1)%(=W(1sJ)/DZETA2+DZSQ]
2%RE)) /CAPBI(1)

CEE(1)=U(15J)/DXI2-(DXISQL+DXISQH) ¥RE

OR WHENEVER TeLeLIMAX sANDeI+Gal
AAA(1)==U(15J)/DXI2-(DX1SQ1~DXI21(1))*RE
CEE(1)=U(IsJ)/DXI2=~(DXISQL+DXI21(1))*RE
DEE(I)=V(IsJ=1)%(W(IsJ)/DZETA2+DZSQI*RE)+V (14J)*(DTAUD2-
1U(15J)/IDXI(1)=(DZETS4+140/IDXISQ(I))*RE)+V (I sJ+1)#(=W(IsJ)/
2DZETA2+DZSQI*RE)

OTHERWISE

AAA(T)==U(15J)/DX12-(DXISQ1=DXI21(1))*RE
DEE(I)==V(I+1sJ)*(U(1sJ)/DXI2=(DXISQL+DXI2T (1)) *#RE)+V(IsJ=1)%*
1(W(I5J)/DZETA2+DZSQI*RE)+V(1sJ)*(DTAUD2-U(IsJ)/IDXI(1)=(DZETS
24+140/IDXISQCI) ) *¥RE)+V (19 J+1)* (=W (1sJ) /DZETA2+DZSQI*RE)

END OF CONDITIONAL

BEE=DTAUD2+DXI1SQ2%RE

WHENEVER TeNEs1

CAPB(1)=BEE-AAA(T)¥CEE(I-1)/CAPB(I-1)
CAPC(I)=(DEE(I)=~AAA(T)*CAPC(I=1))/CAPBI(I)

END OF CONDITIONAL

THROUGH VEELs FOR I=LIMAXs=1slelal

WHENEVER TeE«LIMAXsVSTAR(IsJ)=CAPC(I)

WHENEVER ToLoLIMAXsVSTAR(I3J)=CAPC(1)=(CEE(I1)*VSTAR(I+19J))/
1CAPB (1) }

WHENEVER BB3s PRINT RESULTS VSTAR(0s0)seeVSTAR(IMAX s JMAX)
THROUGH REPEETs FOR I=0s1s14GeIMAX

THROUGH REPEETs FOR J=0s1sJeGaeJMAX

VPRIME (150)=V(I1,C)

VPRIME (1 sJMAX)=V (1sJIMAX)

VPRIME(05J)=V(0sJ)

VPRIME (IMAX s J)=VSTAR (IMAX2J)

THROUGH VEE2s FOR I=1s151¢GeLIMAX

THROUGH VEE4s FOR J=1s135JeGel JMAX

WHENEVER JeEs1l

CAPB(J)=DTAUD2+DZETS4*RE
CAPC(1)=(=V(Is0)#*(=W(Is1)/DZETA2-DZSQI*¥RE)+VSTAR(I=151)%(U(I}s
11)/DXI2+(DXISQ1-DXI121(1))*RE)+VSTAR(I»1)*(DTAUD2-DXISQ2¥RE)
2+VSTAR(I+191)#(=U(Ls1)/DXI2+(DXISQ1+DXI21(1))*RE))/CAPB(1)
CEE(1)=W(151)/DZETA2-DZSQI*RE

OR WHENEVER JeLeLJMAX oANDe JeGal
AAA(J)==W(1sJ)/DZETA2-DZSQI*RE

CEE(J)=W(1sJ)/DZETA2-DZSQl ¥RE
DEE(J)=VSTAR(I-15sJ)%(U(15J)/DXI2+(DXISQL=-DXI21(1))*RE)
1+VSTAR( I s.J) * (DTAUD2—-RE#D
2XISQ2)+VSTAR(I+1sJ) % (=U(15J)/DXI2+(DXISQI+DXI21 (1)) ¥RE)+V(IsJ
3)#(=U(1sJ)/I1DXT(1)=RE/IDXISQ(I))

OTHERWISE

AAA(J)==W(15sJ)/DZETA2-DZSQI*RE
DEE(J)==V(IsJ+1)*(W(1sJ)/DZETA2=-DZSQI¥RE)+VSTAR(I~1sJ)*(U(IsJ
1)/DXI2+(DXISQ1=DXI21 (1)) *¥RE)+VSTAR(I»J) % (DTAUD2-DXI1SQ2%RE )+
2VSTAR(I+1sJ)*(=U(15J)/DXI2+(DXISQLI+DXI2I (1) )*¥RE)+V(IsJ)*(~U(I



...95..

39J)/IDXI(I)=0IDXIS(I)*RE)

END OF CONDITIONAL

BEE=DTAUD2+DZETS4*%RE

WHENEVER JeNEs1
CAPB(J)=BEE-AAA(JI*CEE(J-1)/CAPB(J-1)
CAPC(J)=(DEE(J)=-AAA(J)*CAPC(J=1))/CAPB(J)

VEE4 END OF CONDITIONAL

THROUGH VEEZ2s FOR J=LJMAXs=1sJel el
WHENEVER JeEeLJMAXs VPRIME(IsJ)=CAPC(J)

VEE2 WHENEVER JelL oeLJMAXs VPRIME(IsJ)=CAPC(J)=-CEE(J)*VPRIME(IsJ+1)/
1CAPB (D)
WHENEVER BB3s PRINT RESULTS VPRIME(Os0)eesVPRIME(IMAX s JMAX)
BB3=8B

THROUGH VEEFs FOR I=0sls1eGelIMAX

THROUGH VEEFs FOR J=031sJeGaJMAX
VEEF VILsJ)=VPRIME(TsJ)

FUNCTION RETURN

END OF FUNCTION

$SCOMPILE MADSPRINT.OBJECTs PUNCH OBJECT SUBG.001
RCOMPUTE GAMMAS AND GAMMAP

EXTERNAL FUNCTION
PROGRAM COMMON UsVsVSTARSVPRIME sW s GAMMASVSTILLY RES PSLyAAA

1sCEESDEEsCAPEsCAPCsDXI21 s IDXISQe IDXDZs IDXICUSOVER2IsMINUSI$sPL
2US2T1 sOIDXI sQIDXIS HsGsAs IDXIsBBsDTAUDZ2 sDX1SQsDX15Q2sDZE
3TSQesDZETA2sDZETS2sDZSQI s DZETSL4 3 PL2ARESAOARE sDZETA6sDZET125DX1
412sDXISQLsDXI2sDXISQHSARESEPSTI 9BETAIDXI sDZETAsI s Js ITMAXSITER
5+B8B1yBB2sRBR3sBRFINESISTART 9 ISTART s IEND s JEND
6+BB4sBB5+sBB6sBBT7+BRBE BB
ToDIMsANSWI s ANSW2 s ANSW3 s BETMAX s DBETASDTAUSOLDATASTAUsTAUMAX DI
BTMAX sKsBEE s IMAX s IMAX s LIMAX s LUMAX sENDBET
9+sBBPSIsENDTAUSSPACE

DIMENSION U(19C0sDIM)sV(1900sDIM)sVSTAR(19009DIM)sVPRIME(1900
1sDIM) oW (1900sDIM) s GAMMA(1900sDIM) s GAMMAS(1900sDIM) sGAMMAP (190
209DIM) sPSI(1900sDIM) sDELTA(1900sDIM) sAAA(250)sCEE(250)sDEE(25
30) s CAPB(25C) sCAPC{250)sDXI21(250)+IDXISQ(250)sIDXDZ(250)s1IDXI
4CUC250)sOVER2I(250) sMINUSI(250)sPLUS2I(250)s0IDXI(250),0IDXIS
5(250)sH{50)+sG(50)sA(11)sIDXI(250)
6sDIM(3)

EQUIVALENCE (VSTAR(GC) sGAMMAS(Q) ) s (VPRIME(OQ) sGAMMAP (0 ),

1 (GAMMAP(0) sDELTA(Q)) :

INTEGER IMAX s JMAXsDITMAX s LIMAX s LIMAX

INTEGER IsJsKeITMAXSITER

INTEGER ISTARTs JSTART, IENDs JEND

BOOLEAN BBFINE

VECTOR VALUES SPACE=%$5HDXI= E13.6s7THDZETA= E13.6%%

VECTOR VALUES ENDTAU=$5HTAU= E13+696HDTAU= E13.6%%

VECTOR VALUES OLDATA=3(21395E1346)%%

VECTOR VALUES ENDBET=%6HBETA= E13.6%*%

VECTOR VALUES ANSW1=3(S5S2+s13sS51s13+5E1646)%%

VECTOR VALUES ANSW2=%(213s5FE13.6)%%

VECTOR VALUES ANSW3=31H695S391HIs5391HJ9S51093HPSI +S513s1HUsS14 s
11HVsS159 1HW+S14 9 5HGAMMA/ /%3

BOOLEAN VSTILL

BOOLEAN BR+BB1sBB2,83B3+s8B4sBB5+,8B6+BB7s8B8+BB9
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BOOLEAN BBPSI

ENTRY TO SUBG.

THROUGH REPEATs FOR I=091s1+GeIMAX

THROUGH REPEATs FOR J=09s1lsJeGeJIMAX

GAMMAS(0sJ)=GAMMA(0sJ)

GAMMAS( IMAX s J)=GAMMA ( IMAX s J)

GAMMAS( 1 s JMAX)=GAMMA (15 JUMAX)

GAMMAS(I +0)=GAMMA(I50)

THROUGH GEEls FOR J=1s13JeGeLJIMAX

THROUGH GEE3s FOR I=1s1sleGeLIMAX

WHENEVER TeE.1l

CAPB(1)=DTAUD2+DXISQ2*RE

CAPC(1)=(GAMMA(1 sJ~=1)%(W(1sJ)/DZETA2+DZSQI*RE)+GAMMA (1 sJ) *(
1DTAUD2+U(19J)/DXI~(DZETS4+DXISQL)*¥RE)+GAMMA (1 sJ+1)*(=W(1sJ)/
2DZETA2+DZSQI*RE)+(VPRIME(19J)/IDXDZ (1) )*(VPRIME(1sJ+1)-VPRIME
3{1sJ=1)1)/CAPBI(1)

CEE(1)=U(1+J)/DXI2=(DXISQL+DXISQH)*#RE

OR WHENEVER IeLsLIMAX «ANDe I4Gel
AAACT)==U(1sJ)/DXI2-(DXISQ1-DXI2I(1))*RE
CEE(I)=U(IsJ)/DXI2-(DXISQL+DXI21 (1) )*RE
DEE(I1)=GAMMA(T9J=1)%*(W(I1sJ)/DZETA2+DZSQI*RE)+GAMMA (TsJ)*(DTAU
102+U(I1sJ}/IDXI(I)=(DZETS4+0IDXIS(I))*RE)+GAMMA(T s J+1)* (=W (1,sJ
2)/DZETA2+DZSQI#RE)+(VPRIME(IsJ)/IDXDZ(I))* (VPRIME(IsJ+1)~VPRI
AME(I 9J=1))

OTHERWISE

AAA(T)==U(1+sJ)/DXI2=(DXISQL=-DXI21(I))*RE
DEE(I)==GAMMA(I+1sJ)#(U(IsJ)/DXI2-(DXISQ1+DXI12I(1))*RE)+
1GAMMA {IsJ=1)%(W(IsJ)/DZETA2+DZSQI*RE)+GAMMA(I9J)* (DTAUD2+U(
219 J)*¥OIDXI(1)=(DZETS4+0IDXIS(I)) *¥RE)+GAMMA (T sJ+1) % (=W(IsJ)/
3DZETA24DZSQI*RE)+(VPRIME(IsJ)/IDXDZ (1) )*(VPRIME(IsJ+1)
4=VPRIME(I4J-1))

END OF CONDITIONAL

BEE=DTAUD2+DXISQ2%RE

WHENEVER ToNEs1

CAPB(I1)=BEE-AAA(I)*CEE(I~1)/CAPB(I-1)
CAPC(I)=(DEE(I)~AAA(I)*CAPC(I~1))/CAPB(I)

END OF CONDITIONAL

THROUGH GEEls FOR I=LIMAXs=1slelel

WHENEVER TeEeLIMAX

GAMMAS(TsJ)=CAPC(])

OR WHENEVER IasLeLIMAX ,
GAMMAS(1sJ)=CAPC(T1)-CEE(I)*GAMMAS(I+15J)/CAPB(I)

END OF CONDITIONAL

WHENEVER BB1s PRINT RESULTS GAMMAS(03s0)eeeGAMMAS(IMAXJIMAX)
THROUGH REPEETs FOR I=0s1sleGeIMAX

THROUGH REPEETs FOR J=0s1sJeGeJMAX

GAMMAP (0sJ) =GAMMAS (0 sJ)

GAMMAP (1 50)=GAMMAS(150)

GAMMAP ( IMAX o J)=GAMMAS ( IMAX s J)

GAMMAP (1 9 JMAX)=GAMMAS (I s JMAX)

THROUGH GEE2s FOR I=1slsIeGeLIMAX

THROUGH GEE4s FOR J=1slsJeGelLJIMAX

WHENEVER JeEel

CAPB(1)=DTAUD2+DZETS4*RE

CEE(1)=W(Is1)/DZETA2-DZSQI*KRE
CAPC(1)=(GAMMAS(I-1s1)%(U(Is1)/DXI2+(DXISQ1-DXI2I(1))*RE)+
1GAMMAS(151)*(DTAUD2-DXISQ2¥RE)+GAMMAS (I+1s1)%(~U(I51)/DXI2+(
2DXISQL+DXI2I (1)) *#RE)+GAMMA(Is1)*(UCIs1)/IDXI(I)~0IDXIS(1)*RE)
3+(V(Is1)/IDXDZ(IYI*(V(Is2)=V(I+0))+GAMMAP (I s0)*(DZSQI*RE+W(Iy
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41)/DZETA2))/CAPBI(1Y)

OR WHENEVER JeLeLJMAXeANDsJeGel
AAA(J)==W(1sJ)/DZETA2-DZSQI*RE

CEE(J)=W(IsJ)/DZETA2~-DZSQI*RE

DEE(J)=GAMMAS (I=13J) % (U(IsJ)/DXI2+(DXISQ1=DXI2I(1)})*RE)+
1GAMMAS(T 9 J) * (DTAUD2-DXISQ2%RE ) +GAMMAS (I+1sJ)# (=U(1sJ)/DXI2+!
2DXISQ1+DXI21(1))*RE)+GAMMA(T s J)*#(U(IsJ)/IDXI(I)=0IDXIS(I)*RE)
3+(V(IsJ)/IDXDZ (I ) ¥ (VI sJ+1)=V(IsJ=1))

_OTHERWISE

CEE(J)=W(I+J)/DZETA2-DZSWI*RE

AAA(J)==W(T+J)/DZETA2-DZSQI*RE
DEE(J)=GAMMAS(I=19J)%¥(U(19J)/DXI2+(DXISQ1=DXI21(1))*RE)+
1GAMMAS( 1 J)*(DTAUD2-DXISQ2%RE) +GAMMAS (I+1sJ)# (=U(19J)/DXI2+(
2DXISQ1+DXI2I(1))*RE)+GAMMA( T sJ)*(U(I19J)/IDXI(I)-0IDXIS(I)*RE)
3+(VII9J)/IDXDZIIN)# (VT ad+1)=V(IsJ=1))

4=GAMMA (T sJ+1)*(WTI9J)/DZETA2~RE*DZSQI)

END OF CONDITIONAL

BEE=DTAUD2+DZETS4*RE

WHENEVER JeNEo1l

CAPB(J)=BEE=AAA(J)*CEE(J=1)/CAPB(J=1)
CAPC(J)=(DEE(J)=AAA(J)*CAPC(J=1))/CAPBI(J)

END OF CONDITIONAL ,

THROUGH GEE2s FOR J=LJMAXs=~1sJelel

WHENEVER JeEeLJIMAX

GAMMAP (I sJ)=CAPC(J)

OR WHENEVER JelLeLJMAX

GAMMAP (1 sJ)=CAPC(J)=CEE(J)*GAMMAP (IsJ+1)/CAPB(J)

END OF CONDITIONAL

WHENEVER BBls PRINT RESULTS GAMMAP (050)eeeGAMMAP (IMAX s JMAX)
BB1=BB

THROUGH GEEFs FOR I=0s19s1eGeIMAX

THROUGH GEEFs FOR J=03s1sJeGeJMAX

GAMMA (14J)=GAMMAP(1sJ) '

FUNCTION RETURN

END OF FUNCTION
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