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ABSTRACT

The goal of this work, unlike that of other work in the

field of pattern recognition, is the construction of a general recog-
nition model which can apply to any group of patterns and to any amount
of initial knowledge about them. In the preliminary model which has
been developed, the initial knowledge is presented to the recognizer as
a list of conditionsl probabilities; then, given certain characteristics
of the sequence of items which has been seen, the most probable correct
answer can be selected. Where these conditional probabilities are not
known exactly, they are estimated by a primitive "learning" process.
Decisions are based on a posteriori probabilities and on other criteria
studied in decision theory. The model is described in precise detail,

and some possible goals of further work are mentioned.
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1. INTRODUCTION

Meny attempts have been made to recognize patterns by machine,
especially such patterns as: geometric figures, machine-printed alpha-
numeric characters, hand-written letters, speech, and enemy fire-power
in reconnaisance photos. Seldom has a study of one of these sets of
items provided results which were applicable to any of the others, and
progress in each case has depended largely on the researcher's familiar-
ity with the particular set chosen. Yet clearly these problems are
worthy of study and clearly there are many similarities among them. In
this workAwe shall identify and concentrate upon the elements of simila-
rity, attempting to construct a formal (almost axiomatic) system which
applies to all the above patterns. This process of abstraction, though
common in mathematics, has never, as far as we know, been applied to
pattern recognition. In applying it, we gain simplicity, generality,
and exactness. We lose, initially, the insight that familiarity with
one particular set of patterns may bring; but when our model is com-
pleted, it should apply directly to each such set and should provide a
precise framework with which such insights can be fruitfully combined.

What elements, then, are common to the various pattern
recognition situations? We shall identify them as follows: there is
e set of items which the recognizer observes, one at a time; there is a
set of possible responses the recognizer can make; and there is later
information as to which response was correct in connection with each
item observed. Usually the recognizer's goal is to identify correctly
as many items as possible, but generality is increased if the more
complicated goals of decision theory (most of which depend on correct
identification as a preliminary stage) are also allowed. In any case,
when the goal has been defined, the recognizer's performance can (and
must) be evaluated in terms of that goal.

Note that, in order to perform in a better-than-random way,

a recognition system must intially be provided with some overall
information ebout the universe of patterns. True, a human being can
correctly identify an item which he has never seen before, but this
abstraction process is possible only because of long experience with

the "real" world and because of evolutionary adaptive mechanisms. To



duplicate this ability in our model we must provide conceptual analogues -
both of: 1) information about (or "experience with") individual items,
and 2) initial information which is relevant to the enviromment of
patterns. The information in (1) will be gained in the course of a
recognition experiment, through the presentation of items and of the
correct response associated with these items. Without information of
this type a system possesses no flexibility or ability to learn. The
informaetion in (2) will be made explicit at the beginning of each
experiment. Without information of this type a system possesses no
ability to abstract or to respond to new situations. Together, these
two types of information largely determine the performance of any
system and the nature of any abstract model of recognition systems.

With this in mind, we now present our model formally.

2. THE FORMAL MODEL

2.1 Notation and Organization
Let there be a finite set P of elements called patterns and
denoted by Xl’ X2, Xj’ ey Xm or by Yl’ Y2, Y3’ cesy Ym. In addition

let there be a (russibly infinite) set I of inputs, denoted {Ih}. Let
time be indexed by the variable t, so that t =1, 2, 3, ... . An
experiment will consist of a sequence of inputs Il, Ig, 15, «es , the
superscript denoting the time of presentation. At each time t = 1, 2,
3% ..., a pattern Xt from P may or may not also be presented. Let
there be a system S which for each time, t (= 1, 2, 3, ...), takes It
as input, takes Xt as input when it is available, and produces as

2 t
R

output & pattern Yt'frOm P. Yt may be a function of Il, I
and of Xl, X2, XB, cee, Xt-l(where present), as well as of any prior
knowledge available to the system. It may not be a function of Xt or
of 1" or X where u > t.

(Intuitively, we identify the sequence, Il, 12, «esy with
items seen and each X® with the "correct" pattern which corresponds to
It. Similarly Yt represents the system's guess upon seeing It. We
may regard Xt as being presented "after" Yt is produced, but within
the same time-step. If Yt were permitted to be a function of Xt,

recognition would be trivial.)



Let the prior knowledge available to S be precisely specified
as follows:

1) S has available a decision function, D, which specifies S's
goal and can be used to measure its performance (e.g., the deci~
sion function may require that Yt correspond to Xt as often as
possible).
2) S is supplied with a finite list of characteristics, Cl’ CE’
ceny Cn' A characteristic is formally defined as an effectlvely

calculable function from the set of all double sequences (I R 12,

veey It; Xl, Xg, ceey Xt-l) into a finite subset of the integers.
Less formally, we ask that after any input It is presented it is
possible to determine from observed I's and X's what the value
C§ of the characteristic Cj is. We denote the kth value of Cj
by cjk'

(In the "pure pattern recognition" case, the characteristics
will apply to It only, and will be "characteristics of It" in the
ordinary sense. For another more complex example, consider the
characteristic which has the value i =1, 2, ..., m 1if and only
if Xt-l was Xi' A machine using this characteristic alone would
ignore the I's and would be a type of sequence predicter.)

3) For any or all values of any or all of the above character-
istics, S may have available a list of probabilities. Suppose

that a characteristic C, has ¢, as one of its possible values.

J Jk
Then S will have available either no probabilicies associated with
C, = jk’ or it will have available a complete list of the proba-

J
bilities, P.t (x =X. ), Pot_ (x =X ), cev s Pob_o (x =X )

C.=c 1
J Jk J Jk J Jk

These may be written as "Pc. (Xl)’ ooy P (Xn)"; the whole
Jk Jk

list (or, alternatively, the s item) being denoted "P, (Xi)."
Note that they are conditional probabilities. Jk

(The characteristics are simply the factors which are rele-
vant in deciding which patterns the various inputs represent.
There are no theoretical limits on their number or complexity;
however, the system will ignore any connections between inputs and

patterns which are not available in the form of characteristics,



no matter how obvious they may be. When the list of probabilities,

Pc k(Xi), is supplied, S will use these exact values in meking its
degision and producing Yt; otherwise, it will estimate these same
probabilities from the observed sequences.)

4) S also has available & set of functions, fi’ which express the
legitimate a posteriori probability of each Xi in terms of proba-
bilities like those above. Frequently the fi will be triviel and
obvious functions. An explanation of their importance in other
cases is best postponed.
A more detailed discussion of the model and of the operation
of S follows.
2.2 Patterns and Inputs
The word "pattern” has deliberately been left undefined, a

"pattern" being merely an element of the set P. x* and Y® can be

considered as names: Xt as the name associated with It; Yt as the

name chosen at time t to optimize the decision function. (Alterna-
tively, each X
input Ih

concept is inelegant with respect to the X's and inapplicable to the

4 might be regarded as a set of inputs, so that each

belongs to at least one pattern. However, this alternative

Y's. The current formuletion, which does not require any specific
connection between It and Xt, is simpler and at the same time more
general.)

The inputs, It, are usually the objects under study: in
speech recognition, the speech sounds; in character recognition, the
letters, etc. The following formal definition seems to apply to all
such situations and will be adopted as a means of clarifying and
limiting the model's scope:

DEFINITION: An n-diﬁensional input is a mapping from the

Cartesian product, f&l Di’ of n ordered sets to an ordered
set, R.
Thus a O-dimensional input is a mepping with no domain, i.e.,
is nonexistent. A one-dimensional input is a mapping from Dl to R
and corresponds to a voltage waveform oOr acoustic signal (or speech
sound) if we let I& be the real line representing time and R be the

set of values representing voltage. A two-dimensional input is a



mepping from Dl X D2 to R and corresponds to a printed letter or hand-
written character (or photographic image) if we let Dl end Db represent
the horizontel and vertical directions, respectively, and we let R
represent a set of gradations from white to black. A position in a
tic-tac-toe game is a two-dimensional input where D1=Db={;,2,3} and

R ={:X, blank, O}-. These examples should indicate how the definition
is to be interpreted; examples of higher dimensions can, of course, be
constructed.

For any one experiment a single dimensionality and a single
domain IID1 will presumebly be selected and a subset of the possible
inputs with this domain will be used as {Ih} .

The set I of inputs mey be infinite; but at any one time, t,
S will have observed only a finite number of them, namely, Il, oo ,It.
Iikewise any single input may have an infinite domain (such as an
interval or the real line), but S need not observe or store this
infinite item directly. The only information S must handle is that
wvhich is used in computing the values of the characteristics. We
demand that the characteristics be effectively calculeble functions,
i.e., that for sny double sequence, I%, ... , I'; X5, ..., X%, s
can compute the value of any characteristic in a finite number of steps.
For each input, It, S then handles whatever informetion ebout It is
needed to compute characteristic values at time t or at any later time.
The amount of this information will be finite.

2.3 Initial Knowledge
We have specified that initially S will have availsable a

decision function, a list of characteristics, and, perhaps, lists,

P (Xi), for some characteristic values, c Discussion of decision

“5k &’
functions and of the process of decision can be postponed, but lists
of characteristics and probabilities merit discussion here. We shall
call the probabllities, P_ (Xi)’ "post-probabilities." Their use
as a decision statistic isjﬁustified in decision theory, where they
are usually called a posteriori probebilities. In order to produce
an output Yt which optimizes its decision function, S must have avail-

able (except in trivial cases) estimates of the likelihood that Xt is

Xl, that Xt is X2, etc. The more relevant information that is used to



construct these estimates, the more accurate they will be, and the
better the decision will be (on the average). The ideal likelihood
5 is thus the post-probability, PRt(Xil where Rt denotes

"all relevant information which is avilable for decision at time t;"

estimate for X

but, as we have seen, all relevent available information is to be
represented by the characteristics. Where we denote the value of C
at time t by c

J

, we then have PRt(Xi) =P

. . (X)),
c cmt i

Jt 1t° ottt
and we call the expression on the right, "the post-probability of Xi."

Suppose first that the post-probebility for each Xi is
always available at any time t. Then it can be used directly as a
likelihood estimate for Xi' However, we have specified that S has

aveilable 1lists of the form P, (Xi) rather than of the form
Jk
P . (X,). To fit this special case into our general frame-
clk. oo cnk i

work, it 1s only necessary to treat the combined characteristics Cl’
cee Cn as a single one, Cw. Thus for each distinet combination of

values which C

1’ CE’ etc., can have, we let Cw have a single distinct

value. The likelihood estimate for X, at time t is then P_ (Xi)’ the
. . wt
value ot being determined collectively by Cigr Cppr ttes Cpyc

. Accordingly, the list of characteristics available to S reduces to one
element, Cw, and the lists of post-probabilities will be of the form

P, (X;) for all i and t.
wt Suppose next that the post-probabilities above are not

directly available for all Xi 12 02, etc.

They can then be estimated from the sequence of I's and X's presented

and all possible values of C

to the system by a process which will be described in the next section.
However, the estimation process may well require a very large number
of time intervals to produce good estimates. Thus, whenever possible,
it is desirable to compute the post-probability as a function of
several, more readily estimatable, parts. A natural way of doing this
is to separate the characteristics which are involved into groups and
to express the post-probability as a (calculable) function of the post-
probabilities of the groups. Thus, where the characteristics, C
s Dp, we will have:

l, O.Q,
Cn’ are grouped to produce Dl’ e
P,oe - o (X)) =1 P (X)), P, (X)), ..., P (X,)
clt c2t e cnt i i [ dlt i d2t i dpt i ]



(for 0<p < n, for all Xi.)

In the special case where p = n and Dj~= Cj’ the probabilities P (Xi)
are clearly sufficient to compute the overall post-probability fo;kxi.
In the other extreme case where p = 1, the post-probability is irredu-
cible, fi is the identity function, and there is effectively only one
characteristic, as we have already seen. To make the intermediate cases
17 Dg, cee Dp be the
characteristics. There are p of these, each representing & combination

fit into the framework also, we simply let D

of one or more C's in exactly the same way that Cw represented n C's
in the irreducible case.

More needs to be said about the purpose and form of the
functions fi. If the post-probability of Xi
equivalent to some function of the separate P, (XiL or 2) readily
. ijnfortunately things

were:1) mathématically

available, there would be no need for the fi

do not always work out this way, and we must have a way of computing post-
probabilities from other statistics which are readily available. A
conceptually simple and convenient set for these purposes is the set

P, (Xi) for each Cj. In some practical cases, the functions, f,, can
Jjk
be chosen according to the experimenter's estimate of the dependence

of the post-probability on the various Pc (Xi)' In others no parti-
ok -

cular basis for the choice of the fi will exist. Then certain assump-

tions of homogeneity can be made and the functions which result from
these assumptions can be chosen.
Let us illustrate the choice of the fi by a detailed example.

Suppose there are two patterns, P, and PQ(Xl and XE); three character-

1
istics, Cl’ 02, and C5; and that C. and C, have the possible values

1 2
O and 1 while 05 has the possible values O, 1, and 2. Suppose first
that no estimates of fl and f2 are known, so that assumptions of
homogeneity must be made. Let us consider as a specific case the

estimation of f,, and, in particular, the estimation of P (x.)
1 : ¢l=c2=c5=0 1

X.). We . note that when C.=0, six

from P =0(X1)’ P, 5=O( 1 1

1 2
separate situations can occur, i.e., C2 may have either of two values

and C5

then make the crucial assumption of homogeneity; we assume that each

=O(Xl) and PC

may have any of three. Lacking other information about fl’ we



of these six situations is equally possible. It follows that

1/6 Pcl=o(X1) is an estimate of P°1‘°2 5.0(X1)‘ Similarly, when c,
six separate situations can occur, and, when c5=0, four separate situa-

=0,

tions cen occur. Making a similar assumption of homogeneity in each

case, we find two more estimates of P (X,), respectively:
cl—cz-c5-0 1l

/6, _,(X,) and /4P, (X

cp=0"1 3
As our final estimate, we then teke the average of these three:

1/3 [1/6 Pcl=0(xl) +1/6 chzo(xl) +1/b Pc3=0(xl)]

o{%)-

or
1/36 [aPcl=0(xl) * 2Pc2=0(xl) * 5P03=0(xl)]'

Every step used in deriving this estimate can be carried through in
the same way for each of the eight combinations of values of the char-

acteristics and for X2 as well as Xl. Thus, we estimate
P _ (x,) vy 1/36[ep, _ (X,) +2p _ (X)) + 320 _ (X))
l--kl o= k2 03-k lzkl i c2--k2 i 03-k5 i

in this example, and we have

fl(a,b,c) = fz(a,b,c) = 1/36(2a + 2b + 3c).
This example may help to explain the homogeneity assumptions and the
estimates which result. A similar explanation could be given for the
general case, but to avoid excessive notation, we shall merely state
is V33 and where the homogeneity
(Xi) is estimated by:

the result. Where there are characteristics, C
the number of values tsken by C

assumptions for X, are made, P

J
i ‘C C

“1£°¢t" *** "Cnt
n
M.,L VP (X)
AR
1
and fi(al,a y eee an) levjaJ vhere M is the constant —=— VT
Note that this estimation is performed by the experimenter,
and 1s not part of the system's operation; S begins each experiment
with £., £,, .., fm directly availeble to it, whether computed in

1
this way or not.



2.4 Learning

In the previous section, we have shown how the post-probability

for X; can be obtained from the list, P_ (X ). We have specified that

i
the list, P (X ) may be available to S at the beginning of its opera-
tion. Howevér, if some of these lists are not available, they too must
be estimated.

The estimation of P (Xi) for a particuler characteristic

Jk
value, c,k, and pattern X,, is a simple one. We merely note that
J + P(c, * X.)

k i
P (%)= —1—j"7———-
cjk i P cjk

by definition of conditional probability. Then, interpreting these
probabilities as relative frequencies, we consider all previously
identified inputs in the experiment for which Cj had the value cjk'
The number of these which were identified as pattern Pi’ when divided

by the total number, serves as an estimate for Pc (Xi)' Naturally
Jk
this proportion may change in the course of an experiment. But, by

the law of large numbers, it will tend to become a more and more exact
estimate of the correct probability. Thus, in a rudimentary sense, S
will gradually "learn" to perform correct identifications as time goes
on.

To compute these estimates, S must have in storage some
numbers which indicate how often each characteristic value, cjk’ heas
occurred in conjunction with each pattern, Xi' At time t in an experi-
ment, consider the number of previous time-steps at which characteristic
CJ had value cjk and Xi was presented as the correct pattern. We denote
this number by #(cjk- Xi). Let S store the 1list #(c - X ), #(ch' X ),

e #(cjk' Xm) for each cjk' Then at time t, chk(X ) can be estimated

by:
Moy %)

rzl#(cjk. X

If no Xt is presented, the same number will remein in storage

for computations at time t + 1. However, if Xt is presented, the stored

values must be changed to keep the estimates correct for time t + 1.



Suppose that Xt = Xl and the characteristics at time t have the respec-
1’ Sap? nt
the stored values #(clt' Xl)’ #(c2t° Xl)’ cee #(cnt Xl)’ to keep

tive values, c . Then S merely adds one to each of

cee 4 C
the estimation correct. The same is true, of course, for X2, X3, etc.
2.5 Decision

The decision processes involve, and need to involve, no more
than the decision function, D, and the post-probabilities fo: each Xi'
The former is available to S directly; the latter can be estimated for

each time t, as we have seen.

The most common decision function (and the one used almost
exclusively in earlier pattern recognition experiments) is that of
"percent correct." To operate under this decision function, S need

only choose the X, which is most likely to be correct at each stage,

i.e., that which ;as the highest post-probability.

A more general case is that in which the goal is to maximize
expected value with respect to a table of values and costs. Formally
such a table is a mapping from {Xi} X-{Yi} = PXP into the integers (or
real numbers). Informally, it specifies how much value (positive or
negative) S receives at time t when Xt = X, and Yt = Ys, for every

i

possible i and s. If the value, D(Xi’Ys)’ for X, and Y_ is 1, where

i
i=s; and -1 otherwise, this reduces to the "percent correct” case.

The expected value of choosing YS is defined as

. m . ,
E(Y,) = 2, Pet(X,) D(X.,Y),
where PRt(Xi) is the post-probability of X, as before. To maximize
expected value at time t, S5 merely chooses the Y_ for which E(Ys) is
highest.
Still other decision functions have been treated in the

literature of decision theory and need not be discussed here.

3. DIAGRAM OF THE SYSTEM

The following is a list of the notation used in the diagrem

of the system in Fig. 1:

10



A. Prior Knowledge:
1. D: decision function
2. Cj: list of characteristics and their possible values.
3. Known P, (Xi): for some characteristic values ¢ the list

Jk P, (X)), ..o, P, (X ). (May be omitted)
. C m
Jk Jk

L, f;: for each X, a function which estimates P o

lk LY nk i

from Pclk(xi), eee , P

(x,).
ok i
B. Knowledge Presented at Time t:
1. It: input at time %.
2. X% “correct" pattern for time t. (May be omitted)
C. Output at Time t:

1. Yt: system's "guess" at time t.

t
c X f D
3 —_— - — e
If X¥ 1s present, add Estimate P, (X,) for all
l one to all #(cjt' xt) * Jt
in storage. cjt and all Xi as
| ey %)
o (egy X;)
Compute PRt(xi) = Select Y¥ to
maximize D _.Yt
fi[Pc (Xi), cee s By (Xi)] . according to
1t nt Pre(Xy)s o
for all X
i PRt(Xm).
L . _
Compute current value c 3t For each C st select the
t
I -'-Pgor each characteristic 1ist Pc (Xl)’ e, Pc (Xm)'
3 » jt it
l Store information about y
It for later time periods
where necessary.

Known P (X_ )loptionall
c i i

#The Pc (Xi) in the box on the right are estimated before these values are transmitted.
Jt

Fig. 1. Diagram of System
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L. CONCLUDING DISCUSSION

We have attempted to present a formalism of some of the
elements and processes inherent in any pattern recognition situation.
To do this, it has been necessary to abstract, and to omit discussion
of the details of any specific application. At the same time, certain
somevwhat arbitrary‘choices have had to be made; for example, the
"characteristics” discussed here provide only one of meny ways of
formalizing information and of interrelating initiasl knowledge to
experience with individual items. We have made these choices in an
attempt to: 1) limit generality as little as possible, 2) achieve
simplicity of structure, and 3) permit ready application to paiticular
situations. These three goals run through the work. Simplicity has
obvious advantages and generality is sought, not for itself, but as &
means to eventual widespread application.

The indispensable first step has been taken: a basic model
has been made precise. At this point it is possible to ask meny
further questions in a meaningful way, and use the formal model in the
search for answers. In conclusion, let us summarize some of the areas
which may be investigated in the future.

1. Adaptation: Suppose the system S is considered as a part
of a larger system, whose goal is to improve the performance of
S over a series of experiments. How can this be done most
effectively? Can successful adaptation be achieved by modifying
the characteristics or by generating new ones? By systematic

modification of the f, functions? What further modes of learning

can increase the powei of 57

2. Memory: A study of the memory capacity required by S for its
various operations could be made. In particular, how much (on
the average) will memory limitations impair successful recognition?
3. Computer Simulation: In what ways can the model be stream-
lined so as to permit more efficient computer simulation? Simula-
tion is now possible, of course, but might well be postponed until
it is of greater theoretical or practical value.

4) Theoretical Additions: A method of weighting the importance
end the degree of independence of the characteristics might be

12



added. Vhere the P_ (Xi) are known as estimates (rather than
Jk
being completely known or unknown), one might allow the "learning"

mechanism to accept these estimates initially and to treat them
as though they were based on an earlier sequence of inputs. Esti-
mates might alternatively be supplied as a range of possible

values, rather than as a single exact value.

13
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