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Chaos and chaotic phase mixing in cuspy triaxial potentials
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ABSTRACT
This paper continues an investigation of chaos and chaotic phase mixing in triaxial generaliza-
tions of the Dehnen potential which have been proposed to describe realistic elliptical galaxies
that have a strong density cusp and manifest significant deviations from axisymmetry. Earlier
work is extended in three important ways, namely by exploring systematically the effects of
(1) variable axis ratios, (2) ‘graininess’ associated, for example, with stars and bound sub-
structures, idealized as friction and white noise, and (3) large-scale organized motions within
a galaxy and a dense cluster environment, each presumed to induce near-random forces ideal-
ized as coloured noise with a finite autocorrelation time. The effects of varying the axis ratio
were studied in detail by considering two sequences of models with cusp exponent γ = 1 and,
respectively, axis ratios a : b : c = 1.00 : 1.00 − � : 0.50 and a : b : c = 1.00 : 1.00 − � : 1.00 −
2� for variable �. Three important conclusions are that (1) not all the chaos can be attributed
to the presence of the cusp, (2) significant chaos can persist even for axisymmetric systems,
and (3) the introduction of a supermassive black hole can induce both moderate increases in the
relative number of chaotic orbits and substantial increases in the size of the largest Lyapunov
exponent. In the absence of any perturbations, the coarse-grained distribution function asso-
ciated with an initially localized ensemble of chaotic orbits evolves exponentially towards a
nearly time-independent form at a rate � that correlates with the typical values of the finite-time
Lyapunov exponents χ associated with the evolving orbits. Allowing for discreteness effects
and/or an external environment accelerates phase-space transport both by increasing the rate at
which orbits spread out within a given phase-space region and by facilitating diffusion along
the Arnold web that connects different phase-space regions, so as to facilitate an approach
towards a true equilibrium. The details of the perturbation appear unimportant. All that really
matters are the amplitude and, for the case of coloured noise, the autocorrelation time, i.e. the
characteristic time over which the perturbation varies. Overall, the effects of the perturbations
scale logarithmically in both amplitude and autocorrelation time. Even comparatively weak
perturbations can increase � by a factor of three or more, a fact that has potentially significant
implications for violent relaxation.
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1 M OT I VAT I O N

The first paper in this series (Siopis & Kandrup 2000), hereafter
denoted Paper I, began an investigation of phase-space transport
and chaotic phase mixing in triaxial generalizations of the Dehnen
(1993) potentials which have been proposed (e.g. Merritt & Fridman
1996) to model realistic elliptical galaxies that have a strong density
cusp and manifest significant deviations from axisymmetry. These

�E-mail: kandrup@astro.ufl.edu (HEK); siopis@umich.edu (CS)

correspond to potentials associated self-consistently with the mass
density

ρ(m) = (3 − γ )

4πabc
m−γ (1 + m)−(4−γ ), (1)

where

m2 = x2

a2
+ y2

b2
+ z2

c2
. (2)

As discussed in Paper I, this potential was chosen primarily to
facilitate comparisons with, and to improve the relevance of, the
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results derived here with those of other workers who have been us-
ing it. It is thought to constitute a quasi-realistic approximation for
the central regions of many elliptical galaxies, at least compared with
Stäckel-type potentials which lack a central density cusp. Although
there is no guarantee that there exist exact self-consistent equilibria
corresponding to triaxial Dehnen mass distributions, insights gained
from a study of motion in this potential can provide clues towards
an understanding of more generic cuspy triaxial potentials and, im-
portantly, of their evolution towards a (quasi-) equilibrium state.

Paper I explored the effects of varying γ , which controls the
steepness of the density cusp, and introduced a central super-
massive black hole of variable mass. That paper also allowed
for low-amplitude perturbations intended to mimic the effects of
discreteness (i.e. gravitational Rutherford scattering) and/or an ex-
ternal environment. However, that paper was incomplete in that it
did not allow for the effects of variable axis ratios, attention focus-
ing exclusively on the values c/a = 1/2 and (a2 − b2)/(a2 − c2) =
1/2 considered originally by Merritt & Fridman (1996).

That work was also incomplete in that the modelling of external
perturbations was very simplistic. Most of that modelling focused
on the effects of periodic driving, in which the potential is subjected
to a time-dependent periodic perturbation characterized by at most
three different frequencies. Although this might seem reasonable
when considering the effects of a single large companion or a few
smaller satellite galaxies, this is certainly not appropriate to model
a rich cluster environment, where galaxies tend to be much closer.
When considering a dense environment one must allow for more
complex perturbations which, presumably, are far from periodic,
perturbations which, as described in Paper I, would seem better
modelled as random kicks of finite duration, i.e. coloured noise.
Paper I did indeed describe a small number of experiments involving
coloured noise, but these were far from exhaustive. In particular, no
effort was made to determine the extent to which the detailed form
of the perturbation actually matters: all the simulations involved
perturbations idealized as an Ornstein–Uhlenbeck process (cf. van
Kampen 1981).

The work on chaotic phase mixing described in Paper I was also
incomplete in the sense that the discussion was largely qualita-
tive. It was observed that, as for other potentials (cf. Kandrup &
Mahon 1994; Kandrup 1998b), ensembles of chaotic orbits typically
exhibit a rapid evolution towards near-equilibrium (a near-invariant
distribution), but it was not confirmed explicitly that this evolution
proceeds exponentially in time. Moreover, there was no system-
atic exploration as to how, for unperturbed systems, the rate � at
which this evolution proceeds correlates with the size of a typical
Lyapunov exponent χ ; or, for perturbed systems, how � correlates
with the amplitude of the perturbation.

The aim of this second paper is to fill these remaining lacunae.
Section 2 summarizes an investigation of how, neglecting discrete-
ness and environmental effects but allowing for a central supermas-
sive black hole, changes in the axis ratios affect (i) the relative num-
ber of regular and chaotic orbits, (ii) the typical sizes of the Lyapunov
exponents, and (iii) the overall efficacy of phase-space transport. It
was found that, in general, larger deviations from axisymmetry or
spherical symmetry tend to increase the fraction of chaotic orbits,
although considerable chaos can arise even in axisymmetric sys-
tems, especially at higher energies. Alternatively, strongly triaxial
systems do not in general tend to have Lyapunov exponents that are
much larger than moderately triaxial systems. The introduction of
a black hole increases significantly the size of the largest Lyapunov
exponent, both in absolute units and units of the dynamical time
tD, but does not in general result in a very much larger measure of

chaotic orbits. The work described here does not address the im-
portant issue of the relative abundances of different types of regular
orbits. However, this issue is currently under investigation in a more
general setting (Kandrup & Siopis, in preparation).

Section 3 focuses on chaotic phase mixing. An analysis of coarse-
grained distribution functions is used to confirm that ensembles of
orbits typically evolve exponentially towards a near-invariant dis-
tribution and that, in the absence of all perturbations, the rate at
which this evolution proceeds correlates with the typical size of
the finite-time Lyapunov exponents associated with the ensemble.
Discreteness effects, modelled (cf. Chandrasekhar 1943) as friction
and white noise, can dramatically accelerate chaotic phase mixing
both by increasing the rate at which orbits spread out within a given
chaotic phase-space region and by facilitating diffusion along the
Arnold web that connects different phase-space regions.

Section 3 also focuses on how chaotic phase mixing is impacted
by large-scale organized motions within a galaxy or a dense cluster
environment, each modelled as coloured noise. One principal con-
clusion of the analysis, consistent with Paper I, is that the details
of the perturbations seem to be largely immaterial: the only things
that really seem to matter are (1) the amplitude and (2) the au-
tocorrelation time (i.e. the characteristic time-scale associated with
individual kicks), both of which can be readily estimated via dimen-
sional analysis. In other words, the effects of the environment seem
to be insensitive to details which are difficult to ascertain observa-
tionally. The other principal conclusion is that choices of amplitude
and autocorrelation time appropriate for real galaxies can in fact
lead to significant effects on time-scales short compared with the
age of the Universe.

Section 4 summarizes the principal conclusions and Section 5
discusses potential implications for real galaxies.

2 C H AO S A S A F U N C T I O N O F A X I S R AT I O
A N D B L AC K - H O L E M A S S

2.1 The numerical experiments

In order to understand the effects of variable axis ratio, two different
sequences of models were considered in detail. The first involved
sweeping through a variety of triaxial configurations which con-
nected prolate and oblate spheroids. Specifically, this entailed as-
suming axis ratios a : b : c = 1.00 : 1.00 − � : 0.50, with � allowed
to vary between 0.00 and 0.50 by increments δ = 0.05, but also
considering several extra models with � closer to 0.00 and 0.50.
The second sequence involved triaxial deviations from a spherical
system, corresponding to axis ratios a : b : c = 1.00 : 1.00 − � :
1.00 − 2�.

Attention was restricted primarily to models with cusp index
γ = 1 but three different black-hole masses were considered, namely
MBH = 0, MBH = 10−3, and MBH = 10−2.

The principal focus was on determining the statistical proper-
ties of orbit ensembles as a function of energy E. This was done
by considering 10 different energies, −1.0 � E � −0.1, and, for
each energy, selecting 1000 ‘representative’ initial conditions. (The
model with axis ratio 1.00 : 0.75 : 0.50, which arises in both se-
quences, was studied for two different sets of 1000 initial conditions
and it was confirmed that the conclusions were in agreement sta-
tistically.) Arguably the most honest sampling of any given energy
entails a uniform sampling of the constant-energy hypersurface, and,
for this reason, orbits were selected to sample the microcanonical
distribution

µ ∝ δD(H − E), (3)
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with H the Hamiltonian. This distribution turns out to be difficult
and expensive to sample directly, especially since the potential V
cannot be expressed analytically. For this reason an indirect ap-
proach was used. By integrating over the dependence on velocity,
it is easily seen that a microcanonical distribution corresponds to a
configuration space distribution

f (r )∝
{

(E − V )1/2 if V (r ) � E

0 if V (r ) > E .
(4)

Alternatively, the velocity distribution in any given configuration
space is isotropic, with each mass having a speed v = √

2(E − V ).
To obtain a random, uniform sampling of the constant-energy sur-
face, it therefore suffices to (1) sample f (r) to generate a collection
of 1000 configuration space points, and (2) to each point assign
a velocity of magnitude v = √

2(E − V ) oriented in a randomly
chosen direction.

Each orbit was integrated for a time �200tD using a variable
time-step integrator with accuracy parameter 10−8 which, in every
case, conserved energy to at least 1 part in 105. Estimates of the
largest (finite-time) Lyapunov exponent were obtained by tracking
the evolution of a nearby orbit which was periodically renormalized
in the usual way. The dynamical time tD for a given choice of energy
and axis ratios was identified as follows. For the orbits in each
ensemble, define t x – and, analogously, the quantities t y and t z – as
the mean time between successive crossings of the x = 0 plane; and,
given t x, t y and t z, define

tD = 2π(tx + ty + tz). (5)

This definition seems well motivated physically; the choice of nor-
malization factor 2π ensured that, for the ‘maximally triaxial’ model
first considered in detail by Merritt & Fridman (1996), this definition
of tD agreed with the Merritt–Fridman definition for all energies to
within 3 per cent.

The degree of chaos manifested by the different ensembles was
quantified using two complementary diagnostics, namely finite-time
Lyapunov exponents (Grassberger, Badii & Politi 1988), which
probe the degree of exponential sensitivity exhibited by different or-
bits, and orbital complexities (Kandrup, Eckstein & Bradley 1997),
which probe the extent to which the power associated with an in-
dividual orbit is concentrated at or near a few special frequencies.
This entailed determining for each orbit the quantities nx, ny and
nz, defined, respectively, as the minimum number of frequencies
required to capture a fixed fraction k of the power in each direction,
and then assigning a total complexity

n = nx + ny + nz . (6)

Given temporal discreteness effects reflecting the fact that the orbital
data were sampled at intervals ≈0.25tD, the cleanest distinctions
between different orbits were obtained for k ≈ 0.9.

The degree to which individual chaotic orbits are ‘sticky’
(Contopoulos 1971), i.e. that they can remain ‘stuck’ in a small
part of the accessible phase space for a comparatively long time,
was probed by computing finite-time Lyapunov exponents for long
time integrations of several different initial conditions on the same
phase-space hypersurface and determining the time-scale (or, in
some cases, a lower bound) on which the exponents for different
orbits converge towards a single asymptotic value.

Because it can take an orbit a very long time to sample the ac-
cessible phase space uniformly, it can be difficult and expensive
computationally to compute estimates of the largest Lyapunov ex-
ponent as a function of axis ratio, black-hole mass, and energy. For

this reason, such estimates were instead obtained typically by com-
puting the mean value of the finite-time Lyapunov exponents for the
chaotic orbits in a given 1000-orbit ensemble, a procedure which
is justified theoretically given the assumption of ergodicity. For the
case of models where only a very few orbits are chaotic, this proce-
dure is suspect statistically, so that the value of the largest Lyapunov
exponent was computed by averaging over the results of extremely
long time integrations of four chaotic initial conditions.

Uncertainties in the relative measure of chaotic orbits were es-
timated assuming N 1/2 statistics. Uncertainties in the estimated
Lyapunov exponent were obtained by analysing separately the two
halves of the 1000-orbit ensembles.

2.2 Results

Consider first the sequence of models extending between oblate and
prolate axisymmetric configurations. Here the most obvious point is
that, overall, triaxial models which manifest larger deviations from
axisymmetry tend to admit larger measures of chaotic orbits. This
is evident from Fig. 1, for example, which exhibits the fraction f of

Figure 1. (a) The fraction of orbits with energy E = −1.0 that are chaotic
for models with axis ratios 1.00 : b : 0.50 and black-hole mass MBH = 0
(solid curve), MBH = 10−3 (dashed curve), and MBH = 10−2 (dot–dashed
curve) (b) The same for E = −0.9. (c) The same for E = −0.8. (d) The
same for E = −0.7. (e) The same for E = −0.6. (f) The same for E = −0.5.
(g) The same for E = −0.4. (h) The same for E = −0.3. (i) The same for
E = −0.2. (j) The same for E = −0.1.
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Figure 2. (a) An ordered plot of the computed Lyapunov exponents for the
γ = 1 model with a : b : c = 1.00 : 0.50 : 0.50 and energy E = −0.1. (b) The
same for γ = 0. (c) and (d) The same for E = −0.2. (e) and (f) The same
for E = −0.3. (g) and (h) The same for E = −0.4. (i) and (j) The same for
E = −0.5.

chaotic orbits as a function of the intermediate axis b for 10 different
energies.

Nevertheless, as is evident from Fig. 1, even axisymmetric con-
figurations can admit significant measures of chaos, at least at higher
energies. This chaos appears to reflect the large-scale structure of
the bulk potential, not the presence of a central cusp. Indeed, for
very high energies, one finds virtually identical numbers for a cus-
pless γ = 0 model although, for lower energies, the γ = 0 model
admits a much smaller measure of chaotic orbits. This is illustrated
in Fig. 2 which, for a model with axis ratio 1.00 : 0.50 : 0.50, exhibits
the ordered values of the 1000 computed Lyapunov exponents for
both γ = 1 and γ = 0 for energies ranging between E = −0.1 and
E = −0.5. However, despite this chaos at higher energies, except for
the case of prolate axisymmetric configurations there tends overall
to be more chaos at lower energies, presumably associated with the
cusp: for example, this chaos is absent for analogous models with
γ = 0. For a broad range of parameter values, the measure of chaotic
orbits ranges between about 10 and 50 per cent.

That chaos was observed in the prolate model with axis ratio
1.00 : 0.50 : 0.50 but not in the oblate model with 1.00 : 1.00 :
0.50 raises the question as to whether chaos is in fact generic in
the axisymmetric Dehnen potentials. This issue was addressed by
considering a variety of prolate and oblate models with, respectively,

Figure 3. (a) The fraction f of chaotic orbits for E = −0.1 and variable
axis ratios a : b : c = 1.00 : c : c. (b) The same for a : b : c = 1.00 : 1.00 : c.
(c) The largest Lyapunov exponent for the parameter values in (a). (d) The
largest Lyapunov exponent for the parameter values in (b).

axis ratios 1.00 : 1.00 − � : 1.00 − � and 1.00 : 1.00 : 1.00 − �.
The net result is that chaos can arise for both prolate and oblate
systems, but that, for the case of oblate systems, a substantially
larger deviation from sphericality is required. For the sequence with
1.00 : 1.00 − � : 1.00 − �, a significant amount of chaos, ∼2 per
cent, is observed already at energy E = −0.1 for � = 0.2; for the
sequence with 1.00 : 1.00 : 1.00 − �, one requires a value as large as
� = 0.6 to find a comparable amount of chaos. This is illustrated in
Fig. 3, the top two panels of which exhibit the fraction f of chaotic
orbits with energy E = −0.1 for different choices of axis ratio. The
lower two panels exhibit estimates of the largest Lyapunov exponent
for the same configurations. In each case, the onset of chaos is
characterized by very small Lyapunov exponents which, however,
increases monotonically or near-monotonically with increasing �.

It is interesting that an analogous result has been obtained for the
so-called thermal equilibrium model, a standard pedagogical exam-
ple (cf. Brown & Reiser 1995) from the physics of charged particle
beams. For this system, which corresponds to a self-interacting non-
neutral plasma in thermal equilibrium confined by an anisotropic
harmonic oscillator potential, one finds (Bohn & Sideris 2003) that
even slightly prolate configurations tend to admit large amounts of
chaos, whereas comparably aspherical oblate configurations exhibit
little, if any, chaos.

The remaining interesting point is that, even when an axisymmet-
ric model admits no chaotic orbits, relatively small perturbations
away from axisymmetry suffice to trigger a significant amount of
chaos, 10 per cent or more. This is in qualitative agreement with
recent computations by El-Zant & Shlosman (2002), who explored
the effects of bars with variable amplitude on orbits in an otherwise
axisymmetric potential.

Overall, when scaled in physical units, the size of the largest
Lyapunov exponent corresponds to χ tD ∼ 0.2, i.e. the growth time is
roughly 5tD. For example, this is evident from Fig. 4 which exhibits
estimates of the largest Lyapunov exponent for the same ensembles
used to generate Fig. 1. For lower energies, this conclusion is again
comparatively insensitive to the choice of axis ratio. However, the
behaviour at much higher energies, where chaos is triggered by the
bulk potential, is different. In this case, the value of χ tD is actually
maximized for the axisymmetric model with 1.00 : 0.50 : 0.50 and
decreases monotonically as one moves along the sequence towards
1.00 : 1.00 : 0.50.

The introduction of a black hole has only a minimal effect on high-
energy orbits which spend little time in the central region where they
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Figure 4. (a) Estimates of the largest Lyapunov exponent for chaotic or-
bits with energy E = −1.0 for models with axis ratio 1.00 : b : 0.50 and
black-hole mass MBH = 0 (solid curve), MBH = 10−3 (dashed curve), and
MBH = 10−2 (dot–dashed curve) (b) The same for E = −0.9. (c) The same
for E = −0.8. (d) The same for E = −0.7. (e) The same for E = −0.6. (f)
The same for E = −0.5. (g) The same for E = −0.4. (h) The same for E =
−0.3. (i) The same for E = −0.2. (j) The same for E = −0.1.

can ‘feel’ the gravitational influence of the hole. At lower energies,
however, the presence of a black hole tends to increase the relative
measure of chaotic orbits, albeit not by all that much. Thus, as is
evident from Fig. 1, for example, the introduction of a hole with
MBH = 10−2 invariably increases the fraction f by 50 per cent or
less. There always remains a significant measure of regular orbits.
Interesting also is the fact that curves of f (�) for models with and
without a black hole manifest similar curvatures: the only obvious
difference is that, for MBH = 0, there are somewhat fewer chaotic
orbits.

Although a black hole changes f by only a relatively small
amount, it typically occasions a substantial increase in the value
of the largest Lyapunov exponent for low energies. Moreover,
one sees that although f appears to vary smoothly with shape,
the value of the largest Lyapunov exponent can exhibit a more
complex dependence on �. To summarize: the introduction of
a black hole typically does not result in a huge increase in the
number of chaotic orbits, but it does increase significantly the de-
gree of exponential sensitivity exhibited by those orbits which are
chaotic.

Figure 5. (a) The fraction of orbits with energy E = −1.0 that are chaotic
for models with axis ratios 1.00 : b : c for b = 1 − � and c = 1 − 2�, and
black-hole mass MBH = 0 (solid curve), MBH = 10−3 (dashed curve), and
MBH = 10−2 (dot–dashed curve) (b) The same for E = −0.9. (c) The same
for E = −0.8. (d) The same for E = −0.7. (e) The same for E = −0.6. (f)
The same for E = −0.5. (g) The same for E = −0.4. (h) The same for E =
−0.3. (i) The same for E = −0.2. (j) The same for E = −0.1. The unusual
appearance of panel (a) reflects the fact that, for nearly spherical models, the
minimum energy is somewhat larger than E = −1.0.

A consideration of the sequence which starts from spherical and
becomes triaxial also yields several interesting conclusions. Most
obvious from Fig. 5 is the fact that, for all energies, the relative
measure of chaotic orbits is a monotonically increasing function of
�, i.e. the deviation from sphericality. Even a deviation as small as
� = 0.01 suffices to trigger a non-zero measure of chaotic orbits.
However, a comparatively large � is required to trigger as much as
(say) 20 per cent chaotic orbits.

Overall, as is evident from Fig. 6, at least for MBH = 0 the value of
the largest Lyapunov exponent also appears to be a monotonically
increasing function of �. However, especially for lower energies
the increase is relatively minimal for � > 0.1 or so. In other words,
larger deviations from sphericality yield a larger measure of chaotic
orbits, but the degree of exponential sensitivity, as probed by the
largest Lyapunov exponent, does not change all that much.

As for the other sequence, the addition of a black hole again tends
to increase the abundance of chaotic orbits, albeit not by all that
much. Adding a black hole also leads to larger Lyapunov exponents
but, unlike the case when MBH = 0, this exponent is not a strictly
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Figure 6. (a) Estimates of the largest Lyapunov exponent for chaotic orbits
with energy E = −1.0 for models with axis ratio 1.00 : b : c for b = 1 − �,
and c = 1 − 2�, and black-hole mass MBH = 0 (solid curve), MBH = 10−3

(dashed curve), and MBH = 10−2 (dot–dashed curve) (b) The same for E =
−0.9. (c) The same for E = −0.8. (d) The same for E = −0.7. (e) The same
for E = −0.6. (f) The same for E = −0.5. (g) The same for E = −0.4. (h)
The same for E = −0.3. (i) The same for E = −0.2. (j) The same for E =
−0.1.

monotonically increasing function of �. For the largest black-hole
mass, MBH = 10−2, the largest exponent increases rapidly with �

up to a value � ≈ 0.1 − 0.2 but then becomes a comparatively flat
function of �.

For virtually all choices of axis ratio, some chaotic orbit segments
were so nearly regular that it was highly non-trivial to distinguish
then from regular segments. (For this reason distinctions between
regular and chaotic were made by using both Lyapunov exponents
and complexities as complementary diagnostics.) Moreover, the
structure of the chaotic phase-space regions is often complex in
the sense that two chaotic segments evolved in the same potential
with the same energy can have finite-time Lyapunov exponents with
significantly different values for surprisingly long times.

This sort of stickiness appears to be especially pronounced for
systems that are comparatively close to axisymmetric. One example
is exhibited in Fig. 7, which was generated from orbit segments
evolved in a model with axis ratio 1.00 : 0.95 : 0.50. Each of the top
two panels shows the time-dependent χ (t), generated in the usual
way by also tracking the evolution of a nearby orbit periodically
renormalized, for two orbits each with energies E = −1.0 and E =

Figure 7. (a) Time-dependent estimates of the true (cumultative) Lyapunov
exponent for two orbits with E = −1.0 evolved in the absence of a black
hole in a model with axis ratio 1.00 : 0.95 : 0.50. (b) The same for E =
−0.1. (c) and (e) Estimates of finite-time Lyapunov exponents for the orbits
exhibited in (a), generated by partitioning the data into a large number of
segments and analysing them individually. (d) and (f) The same for the orbits
in (b).

−0.1 evolved for a total time t = 32768tD. In each case, estimates
of the largest Lyapunov exponent were computed at intervals of
1tD. The fact that the curves are not decaying uniformly towards
zero is prima facie evidence that the orbits are not regular. How
the actual degree of exponential sensitivity varies with time can
be gauged from the lower four panels, which exhibit finite-time
Lyapunov exponents for segments of these orbits. These panels were
constructed by extracting from each orbit a collection of 32 768
finite-time Lyapunov exponents {χ (t i)} for intervals t i < t < t i + 1
(i = 0, 32 767) and then smoothing the resulting data by performing
a boxcar average over 400 adjacent points. It is evident that, in each
case, these finite-time exponents exhibit considerable variability.
However, it is also clear that the orbits for which the cumulative χ (t)
is smaller tend to spend a considerable amount of time in phase-
space regions where the degree of exponential sensitivity is very
small, whereas the orbits with larger χ tend systematically to avoid
these regions.

3 C H AOT I C P H A S E M I X I N G

3.1 The numerical experiments

As in Paper I, the experiments involving chaotic phase mixing
entailed

(i) selecting localized ensembles of 1600 initial conditions all
with the same energy E;

(ii) evolving each orbit in the ensemble for a time t = 200tD;
(iii) determining the extent to which the evolving ensem-

ble exhibited a coarse-grained evolution towards a nearly time-
independent state, i.e. a near-invariant distribution; and

(iv) determining how this evolution was affected by discreteness
effects and/or an external environment, modelled as friction and
white or coloured noise.
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Attention focused primarily on weak perturbations, characterized
typically by a relaxation time tR much longer than the time-scales of
interest, so that, in a first approximation, the energies of individual
orbits are nearly conserved and one can view the perturbations as
simply accelerating extrinsic diffusion on constant-energy hyper-
surfaces (compare Weinberg 2001a, b).

A real galaxy is of course characterized by a complex, many-body
potential, and, for that reason, it is not completely obvious that con-
structs like cantori (Mather 1982) or the Arnold web (Arnold 1964),
which can be proven rigorously for smooth potentials, are applicable
to galaxies (see, e.g. Contopoulos 2002, for a pedagogical discus-
sion of cantori and the Arnold web). However, recent work (Sideris
& Kandrup 2002) suggests strongly that, at least for the case of sys-
tems in time-independent equilibrium, such constructs do remain
applicable. Specifically, a comparison of the same initial conditions
evolved both in the smooth potential and in fixed (in space and
time) N-body realizations of the corresponding density distribu-
tion reveals that, both for orbit ensembles and for individual orbits,
N-body trajectories are extremely well modelled by smooth po-
tential orbits perturbed by Gaussian white noise with amplitude
consistent with that predicted by a Fokker–Planck description
(Chandrasekhar 1943). Indeed, it is possible to extract estimates
of finite-time Lyapunov exponents for the smooth potential from
such N-body trajectories (Kandrup & Sideris 2003).

This suggests that, in a first approximation, one can interpret or-
bits in N-body systems as exhibiting (Lichtenberg & Lieberman
1992) ‘intrinsic diffusion’, just as in the smooth potential, so that,
for example, one can visualize orbits passing through cantori in
the fashion described by the turnstile model of MacKay, Meiss &
Percival (1984). In a next approximation, it would then seem reason-
able to model discreteness effects using Fokker–Planck or Langevin
simulations (Chandrasekhar 1943), the friction and noise associated
with such simulations being interpreted (Lichtenberg & Lieberman
1992) as a source of ‘extrinsic diffusion’ which tends, generically,
to accelerate phase-space transport.

3.1.1 White noise

The initial conditions were generated by sampling a tiny phase-space
hypercube of characteristic size r ∼ 0.01 or less. In the absence of
perturbations, orbits were generated from these initial conditions
by solving the Hamiltonian equations appropriate for motion in
the potential (1), using a variable time-step integrator which typ-
ically conserved energy to better than one part in 105. Following
Chandrasekhar (1943), discreteness effects, i.e. the effects of grav-
itational Rutherford scattering, were modelled as resulting in fric-
tion and additive white noise connected by a fluctuation–dissipation
theorem. The evolution of individual orbits thus entailed solving a
Langevin equation (Chandrasekhar 1943; van Kampen 1981) of the
form

d2xa

dt2
= −∂V (r )

∂xa
− ηva + Fa, (a = x, y, z), (7)

withη a constant coefficient of dynamical friction and F a ‘stochastic
force.’ Assuming in the usual fashion that F corresponds to homo-
geneous Gaussian noise, its statistical properties are characterized
completely by its first two moments, which take the form

〈Fa(t)〉 = 0

and

〈Fa(t1)Fb(t2)〉 = δab K (t1 − t2), (a, b = x, y, z). (8)

The assumption that the noise be white implies further that the
autocorrelation function K is proportional to a Dirac delta, so that

K (τ ) = 2η�δD(τ ). (9)

Physical considerations dictate that the ‘temperature’ is � ∼ |E |,
so the simulations were all performed assuming � = −E . In this
case, η defines the relaxation time tR on which the energy of an orbit
evolved in an otherwise fixed potential would change significantly:
tR ≡ η−1. The Langevin equation was solved using an algorithm
developed by Griner, Strittmatter & Honerkamp (1988) (see also
Honerkamp 1994).

Orbital data, recorded at intervals δt = 0.1tD, were binned into
rectangular grids comprising 20 × 20 cells so as to construct coarse-
grained distribution functions f (Za, Zb, t) for pairs of phase-space
variables, i.e. a �=b = x , y, z,vx,vy,vz. An examination of successive
‘snapshots’ revealed a systematic tendency for the ensemble to dis-
perse and, eventually, to approach a nearly time-independent state.
For this reason, the last 500 snapshots, appropriate for 150.1tD �
t � 200.0tD were combined to generate a numerical representation
of a coarse-grained near-invariant distribution, i.e.

fniv = 1

500

2000∑
i=1501

f (ti ). (10)

The approach of f (t) towards the near-invariant f niv was quantified
by computing an L2 ‘distance’ between f (t) and f niv via the natural
prescription (cf. Kandrup & Mahon 1994; Merritt & Valluri 1996;
Kandrup 1998b)

D f (Za, Zb, t) =
(∑

a

∑
b | f (Za, Zb, t) − fniv(Za, Zb)|2∑

a

∑
b | fniv(Za, Zb)|2

)1/2

.

(11)

3.1.2 Coloured noise

Discreteness effects such as stellar encounters correspond to instan-
taneous random kicks, and can be adequately modelled as white
noise. However, other discreteness effects (for example, large-scale
organized motions inside a galaxy or perturbations caused by an
external environment) are better modelled as random kicks of finite
duration. Assuming that these kicks constitute a random Gaussian
process, one is led once again to solve the Langevin equation (7),
the only difference being that the autocorrelation function K (t1 −
t2) is no longer idealized as a Dirac delta (coloured noise).

Two specific choices for the autocorrelation function were consid-
ered. One corresponds to a so-called Ornstein–Uhlenbeck process
(cf. van Kampen 1981), for which K decreases exponentially in
time, i.e.

K (τ ) = αη� exp(−α|τ |). (12)

This process is characterized by three parameters: η and � have the
same meaning as for the case of white noise, whereas the autocor-
relation time

tc≡
∫ ∞

0
τ K (τ ) dτ∫ ∞

0
K (τ ) dτ

= α−1 (13)

sets the time-scale on which the random forces change apprecia-
bly. The normalization in equation (12) ensures that the diffusion
constant D that would enter into a Fokker–Planck description,

D =
∫ ∞

−∞
dτ K (τ ) = 2�η, (14)

is independent of α.
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The other choice (cf. Pogorelov & Kandrup 1999) corresponds
to an autocorrelation function of the form

K (τ ) = 3αη�

8
exp(−α|τ |)

(
1 + α|τ | + α2

3
τ 2

)
. (15)

For fixed α this autocorrelation function decays somewhat more
slowly, the autocorrelation time now equalling t c = 2/α. In both
cases, the integrations were performed using a variant of an algo-
rithm summarized by Pogorelov & Kandrup (1999). White noise
can be viewed as a singular α → ∞ limit of either of these two
processes.

3.2 Unperturbed Hamiltonian evolution

As for simpler potentials (Kandrup 1998a), an initially localized
ensemble of chaotic orbits tends to disperse exponentially at a rate
λ comparable to the typical size of the finite-time Lyapunov expo-
nents, χ , for the ensemble. This implies, for example that quantities
like σ x and σ vx , the dispersions in position and velocity associated
with the ensemble, initially grow exponentially. More significant,
however, for the problem of chaotic phase mixing, is the fact that this
evolution also entails a comparatively efficient approach towards a
near-invariant distribution f niv. In most cases, this evolution towards
f niv is approximately exponential, so that D f (t) ∝ exp(−�t); and,
in agreement with Kandrup & Mahon (1994) and Merritt & Valluri
(1996), one finds typically that � is again comparable in magnitude
to, albeit somewhat smaller than, a typical finite-time Lyapunov
exponent χ .

A typical example of this behaviour is illustrated in the top three
left-hand panels of Fig. 8, which exhibit Df (x, y), Df (y, z) and Df (z,
x) for one initially localized ensemble of chaotic orbits in the lowest
energy shell evolved in the triaxial Dehnen potential with axis ratios
c/a = 1/2 and (a2 − b2)/(a2 − c2) = 1/2. The bottom left-hand
panel exhibits a distribution of finite-time Lyapunov exponents for
the same ensemble computed for a total interval t = 200tD. It should
be noted that the saturation of ln Df at a value ∼ −3.5 observed
in these panels is a numerical artefact, rather than a real physical
effect: even if the data points used to generate f (t) and f niv had
been obtained by randomly sampling exactly the same continuous
distribution, the computed distance Df between them would be non-
zero because of finite number statistics.

Occasionally, however, one finds that the approach towards f niv

is significantly less efficient. For example, this is illustrated by the
right-hand panels of Fig. 8, which exhibit Df and the distribution of
finite-time Lyapunov exponents for a different ensemble of chaotic
orbits evolved in the same potential and with the same energy. At
very early times, the distances Df computed for this ensemble are
not appreciably different from those observed for the first ensemble,
but after t ∼ 15tD or so, it is clear that the approach towards a near-
invariant f niv has become appreciably less efficient.

As is evident from Fig. 9, the qualitative differences exhibited
between these two ensembles are also reflected by the evolution of
quantities like the dispersions σ x , σ y and σ z . At very early times
the dispersions for the two different ensembles evolve in a compar-
atively similar fashion, but three obvious differences are evident at
later times.

(i) The later time evolution for the right-hand ensemble is sig-
nificantly less smooth, the dispersions exhibiting high-frequency
variability which only damps over times t > 100tD.

(ii) Moreover, it is apparent that, even after a time as long as
t = 200tD, σ z exhibits a systematic secular evolution. Both these

Figure 8. (a) The L2 distance Df (x, y, t) between f (x, y, t) and a near-
invariant f niv(x , y) computed for an initially localized ensemble of 1600
chaotic orbits in the lowest shell evolved in the triaxial Dehnen potential
with axis ratios c/a = 1/2 and (a2 − b2)/(a2 − c2) = 1/2. (b) Df (x, y, t)
for another ensemble evolved in the same potential with the same energy.
(c) Df (y, z, t) for the ensemble in (a). (d) Df (y, z, t) for the ensemble in
(b). (e) Df (z, x, t) for the ensemble in (a). (f) Df (z, x, t) for the ensemble
in (b). (g) N[χ ], the distribution of finite-time Lyapunov exponents for the
initial conditions in (a) evolved for a time t = 200tD. (h) N[χ ] for the initial
conditions in (b) evolved identically.

Figure 9. (a) The dispersion σ x for the ensemble exhibited in the left
panels of Fig. 1. (b) σ x for the ensemble in the right panels. (c) and (d) The
corresponding σ y . (e) and (f) The corresponding σ z .

features would suggest that the ensemble is comparatively inefficient
in achieving a near-invariant distribution, consistent with what one
infers from Fig. 8.

(iii) The third point is that the asymptotic values towards which
the σ i converge are different for the two ensembles. This reflects
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the fact that the near-invariant f niv for the two ensembles differ. It
would appear that, at early times, the two ensembles are restricted
to different phase-space regions although, at late times, they will
presumably converge towards the same invariant f inv.

3.3 Evolution including discreteness effects modelled
as white noise

Discreteness effects, modelled as friction and white noise, can accel-
erate the approach towards an invariant or near-invariant distribution
in two relatively distinct fashions. On the one hand, such irregular-
ities can accelerate phase-space transport between different chaotic
phase-space regions which, presumably, are connected by cantori
or the Arnold web. On the other, they can significantly increase
the efficiency with which orbits disperse within a single chaotic
phase-space region so that, for example, the rate � associated with
the initial approach towards a near-invariant distribution becomes
larger.

That discreteness effects can accelerate phase-space transport
through topological obstructions is a fact that has been recog-
nized previously, both in the context of the triaxial Dehnen po-
tentials (Siopis & Kandrup 2000) and for simpler systems with
two and three degree of freedom (cf. Kandrup, Pogorelov &
Sideris 2000). As first discussed in Pogorelov & Kandrup (1999),
this can be understood as reflecting the fact that weak irregulari-
ties wiggle the orbits, thus assisting them in finding phase-space
holes.

That discreteness effects can also accelerate phase-space trans-
port within a given phase-space region does not seem to have been
recognized previously. The fact that introducing weak irregulari-
ties can increase � is significant both for its physical implications
– which will be discussed more carefully below – and for what it
may suggest about the physical mechanism responsible for chaotic
phase mixing. It is hardly surprising that an initially localized en-
semble of chaotic orbits evolved into the future will disperse at a
rate λ comparable to a typical finite-time Lyapunov exponent χ

for the orbits in the ensemble. However, it is not completely ob-
vious how, if at all, the rate � associated with the exponential ap-
proach towards a near-invariant distribution should correlate with
χ . It is thus interesting and significant that for a variety of dif-
ferent potentials (cf. Kandrup & Mahon 1994; Merritt & Valluri
1996) in the absence of perturbations there seems to be a strong
correlation between χ and �, although the correlation is not com-
pletely linear. Overall, � seems to be a factor of 2 or 3 smaller
than χ .

Except for the very largest perturbations, η > 10−2.5 or so, fric-
tion and noise do not affect the exponential rate at which orbits
in an ensemble disperse, although they do have a subexponen-
tial effect. If, for example, one selects an ensemble that samples
a very tiny region (or, as an extreme case, simply tracks multiple
noisy realizations of the same initial condition), the dispersions will
grow as

σx ∝ (�η)1/2 exp(χ t) (16)

(cf. Habib, Kandrup & Mahon 1997). The irregularities facili-
tate the spreading of the ensemble, but they do not change the
overall rate! By contrast, friction and noise do increase the rate
� at which the orbit ensemble evolves towards a near-invariant
distribution.

This increase is evident visually from Figs 10 and 11, which
exhibit Df (x, y, t) for the same two sets of initial conditions used to
generate Figs 8 and 9, now evolved allowing for friction and white

Figure 10. The L2 distance Df (x, y, t) between f (x, y, t) and a near-invariant
f inv(x , y) computed for the first ensemble in Fig. 1, now perturbed by friction
and white noise with � = −E and variable η = t−1

R . (a) tR = 106.5tD. (b)
tR = 106tD. (c) tR = 105.5tD. (d) tR = 105tD. (e) tR = 104.5tD. (f) tR =
104tD.

Figure 11. The L2 distance Df (x, y, t) between f (x, y, t) and a near-invariant
f inv(x , y) computed for the second ensemble in Fig. 1, now perturbed by
friction and white noise with � = −E and variable η. (a) tR = 106.5tD. (b)
tR = 106tD. (c) tR = 105.5tD. (d) tR = 105tD. (e) tR = 104.5tD. (f) tR =
104tD.

noise with variable tR between 104tD and 106.5tD. Best-fitting values
of � for the initial interval 0 � t � 6tD, both for these and other
values of tR, are exhibited in the top two panels of Fig. 12. In each
case, the computed value averages over the 15 possible choices of
f (Za, Zb), and the formal error bars correspond to the standard
deviations associated with the mean. The dashed lines correspond
to the best-fitting value of � for simulations without any friction or
noise.

Although a useful probe of the early stages of the evolution to-
wards a near-invariant distribution, � misses the clear differences
between the two ensembles that are obvious visually in Fig. 8. An
alternative probe, more sensitive to somewhat later time evolution,
is the time τ required before Df (t) becomes smaller than some
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Figure 12. (a) �, the rate of approach towards a near-invariant distribution
for the first ensemble of initial conditions in Fig. 1, allowing for friction and
white noise with variable tR = η−1. (b) The same for the second ensemble.
(c) τ 0.05, the time required for the coarse-grained f associated with the first
ensemble to evolve towards the near-invariant f niv at the 5 per cent level. (d)
The same for the second ensemble. In each panel, the dashed line represents
the value of � or τ 0.05 observed in the absence of friction and noise.

fiducial value. The bottom two panels of Fig. 12 exhibit τ 0.05, the
time required for Df (t), which starts from an initial value D f =
1, to decrease to a value D f (t) = 0.05. Perhaps the most striking
thing about Fig. 12 is the fact that even very weak friction and noise,
corresponding to tR > 106tD, is enough to accelerate the approach
of the second ensemble dramatically towards a near-invariant dis-
tribution. The best-fitting values of � in the absence of noise and
for tR = 106.5tD are virtually identical, but the noisy simulation is
characterized by a value of τ 0.05 that is less than half as large as the
value assumed in the absence of noise!

Another interesting feature, again evident from Fig. 12, is that
� and τ 0.05 both exhibit a roughly logarithmic dependence on η

and tR. This logarithmic dependence, observed also when probing
the effects of friction and noise on phase-space transport through
cantori in systems with two degrees of freedom (Pogorelov &
Kandrup 1999), implies that the effects of the perturbations only
turn on gradually. There is no critical threshold amplitude above
which the perturbations immediately become important. Equation
(12) facilitates at least a heuristic explanation of why the time τ

required to converge towards f niv scales logarithmically in η or
tR. If one assumes, simplistically, that τ should scale as the time
required for the ensemble to expand to a size comparable to the
accessible phase-space region, τ corresponds to a time when the
configuration-space dispersions have assumed some fiducial value.
Assuming, however, that this be true, equation (16) implies that
τ ∝ const. + ln tR.

The effects of noise on orbits inside a given phase-space region
also resemble the effects of noise on diffusion between different
phase-space regions in one other important respect: the details seem
largely unimportant. Turning off the friction but retaining the noise,
or making the white noise multiplicative (i.e. state-dependent), so
that η is a non-trivial function of x and/or v, seems largely irrelevant.

In any event, what is apparent from Fig. 12, for example, is
that even comparatively low-amplitude perturbations can dramat-
ically accelerate chaotic phase mixing within a given phase-space
region. Friction and noise corresponding to a relaxation time as
long as tR ∼ 105tD can increase the rate of chaotic phase mixing by
∼50 per cent; friction corresponding to tR ∼ 104tD can increase �

by a factor of 2. What this suggests is that, even in settings where
diffusion through cantori is comparatively unimportant, friction and
noise can play an important role in enhancing the overall efficacy

with which orbits disperse and, presumably, the rate at which a con-
figuration displaced from equilibrium can readjust towards a new
equilibrium.

3.4 Evolution including perturbations modelled
as coloured noise

Just as for white noise, it was found that coloured noise can signifi-
cantly accelerate phase-space transport both by facilitating transport
along the Arnold web and by enhancing diffusion within a single
chaotic phase-space region. In particular, one discovers once again
that the initial evolution towards a near-invariant distribution f niv is
typically well fitted by an exponential, at least at early times, and,
for fixed α or t c, that the rate � associated with this exponential
approach again scales logarithmically with η or tR.

As was observed also for other potentials (cf. Pogorelov &
Kandrup 1999; Kandrup, Pogorelov & Sideris 2000), the response
of an orbit ensemble seems insensitive to most details. For fixed
t c the two types of noise that were considered had very similar ef-
fects; and the presence or absence of dynamical friction also proved
largely irrelevant. All that really seems to matter are the values of
t c, which sets the time-scale on which the noise changes apprecia-
bly, and tR, which probes the overall amplitude of the noise. In this
sense, the results of these experiments were all consistent with the
interpretation presented by Pogorelov & Kandrup (1999), namely
that noise acts through a resonant coupling with an orbit.

The spectral density, S(ω), given as the Fourier transform of the
autocorrelation function K(τ ), characterizes the degree to which the
noise has significant power at different frequencies ω. The crucial
point then is that the noise will have a significant effect on an orbit if
and only if S has significant power at frequencies ω corresponding
to the frequencies � ∼ t−1

D for which the orbit itself has significant
power. It follows that, for autocorrelation times t c � tD, coloured
noise becomes comparatively ineffectual as a source of accelerated
phase-space transport.

Examples of the effects of varying t c for fixed tR and fixed form
of the coloured noise are illustrated in Fig. 13, which was generated
once again from the ensembles of initial conditions used to generate
Fig. 8. The top two panels exhibit the effects of Ornstein–Uhlenbeck
noise with tR = 4000tD on the convergence rate � the middle two
exhibit the effects of noise with autocorrelation function given by
equation (16). The bottom two panels exhibit τ 0.05 for the ensembles
used to generate panels (a) and (b). In each case, it is clear that, for
t c � tD, the value of t c is essentially irrelevant and � assumes the
value appropriate for white noise. Alternatively, for t c � tD the noise
has a comparatively minimal effect. For values of t c comparable to
or somewhat larger than tD, � is a smoothly decreasing function
which exhibits a roughly logarithmic dependence on t c.

That � only begins decreasing significantly for somewhat larger
values of t c for fourth-order noise with autocorrelation function
given by equation (16) reflects the fact that, for fixed tR, the auto-
correlation function decreases somewhat more slowly with t c than
for the case of Ornstein–Uhlenbeck noise. This is, for example il-
lustrated in Fig. 14 which exhibits graphically the autocorrelation
functions (12) and (15), in each case allowing for an autocorrelation
time t c = 1.0 and a diffusion constant D = 1000. �(t c) should not
begin to decrease until t c becomes sufficiently large that there is
an appreciable decrease in power for frequencies ∼t−1

D relative to
t c = 0.

Interestingly, however, even very low-frequency noise, with
t c � tD, can have an appreciable effect on quantities like τ 0.05.
Even though such low-frequency noise does not dramatically
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Figure 13. (a) �, the rate of approach towards a near-invariant distribution
for the first ensemble of initial conditions in Fig. 1, allowing for friction and
Ornstein–Uhlenbeck coloured noise with tR = 4000 tD and variable tc. The
dashed line corresponds to the rate � for unperturbed evolution. (b) The same
for the second ensemble. (c) and (d) The same as (a) and (b), now allowing
for coloured noise with autocorrelation function given by equation (16).
(e) τ 0.05, the time required for the coarse-grained f associated with the first
ensemble to evolve in the presence of Ornstein–Uhlenbeck noise towards
the near-invariant f niv at the 5 per cent level. (f) The same for the second
ensemble.

Figure 14. (a) The autocorrrelation function K(t) for an Ornstein–Uhlenbeck
process, plotted for tc = 1.0 and D = 1000. (b) The same for the autocorre-
lation function given by equation (16).

accelerate the initial exponential approach towards a near-invariant
distribution, it does decrease significantly the time required for the
second ensemble to approach a near-invariant distribution. This fact,
illustrated in panels (e) and (f), reflects the fact that, even though
the noise does not significantly have an impact on the average be-
haviour of quantities like the dispersion σ x , it does suppress the
large-amplitude fluctations which are evident in the right-hand pan-
els of Fig. 9.

4 S U M M A RY

The aim of this paper, along with Paper I, has been to investigate
the role of chaotic processes in the triaxial Dehnen potential, which
has been considered a realistic approximation for at least the cen-
tral regions of many elliptical galaxies and, possibly, also for some
spiral galaxy bulges. Particular emphasis was placed on the way in
which these processes are affected by the presence of internal and/or
external perturbations, modelled as periodic driving (Paper I) and/or

dynamical friction plus white or coloured noise. Such perturbations
should in fact be operative in most real galaxies.

The major findings can be summarized as follows.

(i) In the presence of a central density cusp (γ > 0) and/or a cen-
tral point singularity (black hole), the fraction f of ‘strongly chaotic’
orbits generally increases with increasing γ , with decreasing dis-
tance from the centre, with increasing deviation from sphericality
towards axisymmetry, and with increasing deviation from axisym-
metry towards triaxiality. Typical values for f in triaxial configura-
tions range between 30 and 70 per cent. For a given deviation from
sphericality towards axisymmetry, f is higher when the deviation is
prolate than when it is oblate.

(ii) The fact that there are unquestionably regular orbits passing
very close to the centre suggests that chaos is probably triggered by
appropriate resonance overlaps, which are stronger in steeper cusps,
rather than ‘close encounters’ with the central cusp.

(iii) In the absence of a central density cusp (γ = 0) and of a
central black hole, the fraction of strongly chaotic orbits increases
with distance from the centre. This is interpreted as evidence that
the central cusp plays a dominant role in generating chaos for
γ > 0.

(iv) The exponential instability of the strongly chaotic orbits,
as measured by the value of their maximal Lyapunov exponent,
is characterized by a time-scale of order a few dynamical times.
However, unlike many other two- and three-dimensional potentials,
chaotic orbits in the triaxial Dehnen potential tend to be extremely
‘sticky,’ even for integration times of 20 000 tD or longer.

(v) The presence of a central black hole as large as 1 per
cent of the total mass causes a relatively small increase in the
fraction of strongly chaotic orbits, mainly near the centre. How-
ever, the values of maximal Lyapunov exponents can increase
substantially.

(vi) Analogous results were also obtained for a toy model con-
sisting of an anisotropic oscillator with a softened Plummer sphere
(supermassive black hole) superimposed in the centre (Kandrup
& Sideris 2002). This suggests that they may be generic to non-
axisymmetric systems with central density cusps and/or central
black holes.

(vii) The evolution of an initially localized ensemble of chaotic
orbits is typically characterized by three time-scales, two compar-
atively short and the third much longer. The initial, shortest time-
scale evolution corresponds to an exponential divergence at a rate
λ comparable to a typical value of the largest finite-time Lyapunov
exponent χ for the orbits in the ensemble. This is followed by an
exponential approach towards a near-invariant distribution f niv at
a somewhat slower, but still comparable, rate � � λ ≈ χ . This
comparatively rapid evolution is then followed by a much slower
evolution as the orbits diffuse along Arnold webs so as to, eventu-
ally, sample the true equilibrium. Since �−1 is typically comparable
to a typical dynamical time, the first two stages correspond to time-
scales τ ∼ tD; the time-scale for the third stage is typically much
longer, τ � tD.

(viii) All three of these time-scales can be shortened consider-
ably by allowing for discreteness effects associated with two-body
relaxation and modelled as a superposition of friction and additive
or multiplicative homogeneous Gaussian white noise in the context
of a Langevin, or Fokker–Planck, description.

(ix) Coloured noise, corresponding to finite-duration random
kicks characterized by an autocorrelation time t c, can have the same
effects as white noise, provided that t c � tD.
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5 I M P L I C AT I O N S F O R R E A L G A L A X I E S

In assessing the implications of these results for real galaxies, it
is useful to differentiate between three relatively distinct scenarios,
which are discussed in more detail in the following sections.

(i) No external perturbations: relatively isolated ‘field’ galaxies,
for which the time-independent Hamiltonian description is largely
adequate. However, internal discreteness effects are still at work,
and can affect the efficiency with which such a galaxy can reach a
(quasi-)equilibrium.

(ii) Weak external perturbations: galaxies with a small number
of satellite/companion objects and/or belonging to a moderately
dense cluster of galaxies, where the (internal) galactic bulk potential
still remains approximately time independent. Internal perturbations
can still be important, as in isolated galaxies.

(iii) Strong perturbations: the later stages of violent interactions
where the time-independent approximation completely fails. Ex-
amples of such interactions include galaxy mergers and frequent
high-speed galaxy encounters (‘galaxy harassment’). In such cases,
a ‘violent relaxation’ approximation is more appropriate.

This discussion does not include the effects of a dissipative com-
ponent (cold gas), so it is perhaps most appropriate for elliptical
galaxies and for certain spiral bulges.

5.1 Isolated galaxies (no external perturbations)

Important discreteness effects inside a galaxy include the following.

(i) Stellar (two-body) encounters, where the distance between
objects is very small compared with the size of the galaxy. These
can be modelled adequately as instantaneous (t c � tD; cf. equa-
tion (17) in Section 5.2) random kicks, i.e. as friction and white
noise characterized by a relaxation time tR = η−1 and a temperature
� = −E . Figs 10 and 11 exhibit the effects of white noise for a few
values of E and several values of tR.

(ii) Large-scale organized motions and encounters with massive,
extended objects such as giant molecular clouds and star clusters.
For these somewhat larger objects, t c is no longer completely negli-
gible compared with tD. However, to the extent that t c/tD � 0.2 or
so, the results of Section 3.4 indicate that white noise should still be
adequate. Whether or not this is the case can depend on details such
as the velocity field in the galaxy. For instance, t c/tD can be much
smaller than 1 in thermally supported objects, such as many elliptical
galaxies, where the duration of encounters can be short. However,
in locales where the velocity dispersions are small and motion is
highly organized, such as in discs of spiral galaxies, it may be that
t c ∼ tD or even t c � tD (consider, for example, the long encounter
of a star with a molecular cloud, both moving along near-circular
orbits of similar radii in the disc of a spiral galaxy). Such encounters
can be seen as random kicks of finite duration which could be mod-
elled as friction and coloured noise with appropriate autocorrelation
times t c.

Although the presence and properties of this coloured noise
depend on the details of the internal kinematics of the galaxy,
its dynamical consequences should be insensitive to these de-
tails. As shown in Section 3.4, the effects of coloured noise are
much the same as for white noise when t c � tD; and since, for
fixed amplitude, coloured noise has a much weaker effect for
t c � tD, it should prove largely irrelevant for isolated galaxies
which do not experience the effects of very massive extended
objects.

What are the dynamical implications of these internal irregu-
larities? Conventional wisdom (cf. e.g. Binney & Tremaine 1987)
assumes that the dynamics of isolated galaxies is governed solely
by the bulk potential of the constituent stars because discreteness
effects such as two-body interactions do not alter appreciably the
values of the integrals of motion (such as the energy E) over the
course of a Hubble time (cf. Chandrasekhar 1941). This treatment
should, indeed, be valid for integrable potentials where the motion
is completely regular, as well as for hyperbolic non-integrable po-
tentials where motion is completely ergodic.

However, it may not be appropriate to neglect discreteness effects
in potentials admitting a large measure of both regular and chaotic
orbits, such as the triaxial Dehnen potential and the majority of
non-spherical potentials used in galactic dynamics, even though the
values of the integrals of the motion still do remain approximately
constant. Chaotic orbits in such potentials are often ‘sticky,’ i.e.
when integrated over some finite time, they can spend a large fraction
of that time trapped inside cantori or within distinct phase-space
regions separated by the Arnold web. However, as explained in the
preceding sections, discreteness effects can dramatically accelerate
the rate at which sticky orbits become ‘untrapped’ and approach
their respective (near-) invariant distributions.

These considerations can be important in at least two ways. First,
discreteness effects, by acting as a continuous ‘microharassment’
that violates Liouville’s theorem, tend to smooth away substructures
of phase space which correspond to regions of extreme instability,
such as homoclinic points or high-order cantori. This can be of rel-
evance when using fixed potentials as realistic galactic models. A
study of the motion near unstable regions in such potentials should
probably use realistic levels of noise during orbit integrations, corre-
sponding to the graininess expected in the actual galactic potential,
in order to improve the robustness against structural perturbations
in the form and in the Hamiltonian character of the potential.

A second consideration involves the construction of self-
consistent equilibrium models of galaxies using orbital superposi-
tion methods such as Schwarzschild’s method (Schwarzschild 1979)
and more recent variants thereof. The objective of such methods
is to find a weighted superposition of orbits that reproduces the
mass distribution generating the potential in which the orbits were
evolved. In order for the model to be a true equilibrium, each super-
imposed (‘library’) orbit should correspond to a time-independent
building block, i.e. to a time-averaged (and hence space-averaged)
approximation of the invariant distribution formed by galaxy orbits
which share a particular combination of values for the applicable
integral(s) of the motion. However, a library orbit which remains
sticky throughout much of its numerical integration time may not
be a good time-independent building block since it does not uni-
formly sample its invariant measure. This remains true even if there
are ‘real’ sticky orbits, in the ‘real’ galaxy, which never become
‘unstuck’ over a Hubble time! It is, therefore, desirable to integrate
library orbits using noise with an amplitude chosen so that it accel-
erates phase-space transport as much as possible, without adversely
affecting the properties of the potential. In practice, this usually
means that one can safely use a noise amplitude corresponding to
the expected relaxation time of the galaxy or the accuracy of the
numerical integrator, whichever is greater. If this level of noise is
not enough to disentangle the sticky orbits, then one could exper-
iment with further increasing the amplitude, as long as the salient
properties of the potential remain unaffected, and/or increasing the
integration time.

It should be noted at this point that it is not always realistic to ex-
pect that the invariant measure can be sampled well for all potentials
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using integration times which are not excessively long. The extreme
stickiness exhibited, for example, by the cuspy triaxial potentials
studied in this paper and in Paper I makes it very hard to achieve a
good numerical approximation of the invariant measure. In a strict
sense, this would mean that it is not possible to construct equilibria
of such potentials using Schwarzschild-like methods. However, it
may also be the case that ‘partially mixed’ near-equilibria can be
realistic approximations over a Hubble time, especially when the
partial mixing refers mostly to the outer parts of the galaxy, where
tD is very long. One cannot properly answer this question without
actually constructing Schwarzschild models for these potentials.

Finally, a legitimate question from a numerical standpoint con-
cerns the properties of the noise that should be used (other than its
amplitude), and whether one should use white or coloured noise or
some combination of the two. The good news here, as explained
in the preceding sections, is that the details of the noise are largely
irrelevant, as long as the autocorrelation time is t c � tD. Since white
noise can be seen as coloured noise with t c → 0, and consider-
ing that coloured noise is harder to code and requires considerably
more CPU cycles to compute, it follows that simply using white
noise of the appropriate amplitude is completely adequate in most
cases. It is interesting to note that the ‘numerical noise’ associated
with the integration of orbits could, perhaps, play the role of a white
noise generator, under appropriate circumstances; however, this is
a question that would require a separate investigation.

5.2 Weak external perturbations

The discussion in the preceding subsection, concerning the conse-
quences of discreteness effects in isolated galaxies, obviously ap-
plies fully also in the case of a galaxy surrounded by other objects.
However, these objects act as additional sources of time-dependent
perturbations, and their effects are inversigated here.

In a first approximation, the effects of a companion
and other nearby objects can be modelled in the spirit of
Chandrasekhar’s (1941) nearest-neighbour approximation, as jus-
tified by Chandrasekhar & von Neumann (1942) (see also Kandrup
1981), which associates the random gravitational force acting on
any given object with one or two particularly proximate neighbour-
ing objects. Let v denote the typical speed of stars in the original
galaxy and u the typical speed with which other nearby galaxies are
moving with respect to that galaxy. Similarly, let r be a measure of
the physical size of the original galaxy and d the typical separation
between galaxies. And finally, let M denote the mass of the original
galaxy and m the mass of a typical nearby galaxy.

The natural time-scale on which the external forces acting on
the original galaxy change significantly should be smaller than, or
comparable to, the time required for a nearby galaxy to travel a
distance ∼d, so that t c should be no larger than

tc ∼ d

u
=

(
d

r

)(
v

u

)
tD, (17)

where tD ∼ r/v denotes a characteristic dynamical time for the
original galaxy. The force per unit mass associated with such a
nearby galaxy will have a typical size

F ∼ Gm

d2
= G M

r 2

(
m

M

)(
r

d

)2

. (18)

On dimensional grounds, tR satisfies (cf. equation (11))

F2tc ∼ v2t−1
R , (19)

so that

tR ∼ v3r 3

G2 M2

(
M

m

)2 (
d

r

)3 (
u

v

)
. (20)

However, an application of the the virial theorem, GM/r ∼ v2, then
implies that

tR ∼
(

M

m

)2 (
d

r

)3 (
u

v

)
tD. (21)

The presence of satellite/companion objects or of a
nearby/surrounding cluster of galaxies will typically incur
comparatively low-amplitude irregularities in the bulk potential
associated, for example, with a close encounter that has displaced
the galaxy from near-equilibrium. If such a systematic time
dependence is present, t c could become appreciable. In this
case, the lowest-frequency contributions might be expected to
correspond to one or two quasi-normal modes characterized by
frequencies ω ∼ t−1

D , but one might also expect a larger collection
of higher-frequency modes which, in a first approximation, could
be modelled as inducing random irregularities with characteristic
time-scale t c comparable to, but somewhat smaller than, tD.

Simple, but not unrealistic, models allowing for the effects of
multiple satellite galaxies and other companion objects might en-
tail the choices d ∼ 4r and u ∼ v, for which t c ∼ 4tD and tR ∼
64(M/m)2tD. Similarly, allowing for interactions between galax-
ies of comparable size in a dense environment such as provided
by the Coma Cluster might entail d ∼ 12r and u ∼ v, for which
t c ∼ 12tD and tR ∼ 1728(M/m)2tD. Internal irregularities associ-
ated with changes in the bulk potential might entail t c ∼ 0.4tD and
a large range of values for tR.

Fig. 15 exhibits the effects of Ornstein–Uhlenbeck noise with
t c = 4tD and variable tR ranging from 103tD to 106tD. Fig. 16 exhibits
the effects of Ornstein–Uhlenbeck noise with t c = 12tD and tR =
103tD and 104tD. It is clear that, for t c = 4tD, tR = 105tD has an
appreciable effect and 104tD has a large effect. Similarly, for t c =
12tD, a relaxation time tR = 104tD is short enough to be important
and 103tD again has a large effect. It thus follows that other giant
galaxies with m ∼ M may be expected to have significant effects in
a dense cluster environment where d is as small as ∼10r, and that
companion/satellite galaxies with m ∼ 0.1M or even smaller could
also play an important role.

Fig. 17 exhibits the effects of Ornstein–Uhlenbeck noise with t c =
0.4tD and variable tR. Here it is clear that for tR as small as 106tD the
noise can have an appreciable effect. This would suggest that com-
paratively low-level time-dependent irregularities associated with
a galaxy out of equilibrium could indeed play a significant role in
accelerating the approach towards near-equilibrium.

What are the dynamical consequences of these external pertur-
bations? Even though they are characterized by time-scales which
are long compared with tD they can have a substantial effect. For
fixed amplitude, coloured noise with autocorrelation time t c � tD

will have a much stronger effect than noise with t c � tD. How-
ever, external perturbations associated with nearby massive objects
will in general have much larger amplitude and, at least in the outer
portions of the galaxy, t c may not be that much longer than tD. Per-
turbations with t c long compared with tD can still be important as an
evolutionary mechanism if the amplitude is sufficiently large. This
would suggest that, even if viable for isolated galaxies, ‘partially
mixed’ equilibria are not an option in high-density environments!
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Figure 15. (a) The L2 distance Df (x, y, t) between f (x, y, t) and a near-
invariant f niv(x , y) for the first ensemble in Fig. 1, now perturbed by friction
and Ornstein–Uhlenbeck colored noise with � = −E , tR = 106tD, and tc =
4tD. (b) The same for the second ensemble in Fig. 1. (c) The same as (a) but
with tR = 105tD. (d) The same as (b) but with tR = 105tD. (e) The same as
(a) but with tR = 104tD. (f) The same as (b) but with tR = 104tD. (g) The
same as (a) but with tR = 103tD. (h) The same as (b) but with tR = 103tD.

Figure 16. (a) The L2 distance Df (x, y, t) between f (x, y, t) and a near-
invariant f niv(x , y) for the first ensemble in Fig. 1, now perturbed by friction
and Ornstein–Uhlenbeck colored noise with � = −E , tR = 104tD, and
tc = 12tD. (b) The same for the second ensemble in Fig. 1. (c) The same as
(a) but with tR = 103tD (c) The same as (d) but with tR = 103tD.

5.3 Strong perturbations (violent relaxation)

The discussion hitherto has focused on orbit ensembles evolved in a
fixed potential, possibly perturbed by low-amplitude perturbations.
However, chaotic phase mixing also has important potential im-
plications for the evolution of systems that evidence a strong time
dependence, such as galaxies in the process of merging. Indeed,
one might argue (e.g. Kandrup, Vass & Sideris 2003) that chaotic
phase mixing is an important component which must be incorpo-
rated into any successful theory of violent relaxation. Arguably, the
crucial ingredient of Lynden-Bell’s (1967) original proposal is that
phase mixing induces a coarse-grained approach towards equilib-

Figure 17. (a) The L2 distance Df (x, y, t) between f (x, y, t) and a near-
invariant f niv(x , y) for the first ensemble in Fig. 1, now perturbed by friction
and Ornstein–Uhlenbeck colored noise with � = −E , tR = 106tD, and
tc = 0.4tD. (b) The same for the second ensemble in Fig. 1. (c) The same as
(a) but with tR = 105tD. (d) The same as (b) but with tR = 105tD.

rium, his prototypical example being the motion of particles in a
one-dimensional ‘pig-trough,’ in which all the orbits are regular.
The problem, however, with this and other similar examples is that
the approach towards equilibrium is much less efficient than what
simulations suggest for real stellar systems (cf. Kandrup 1999), typ-
ically proceeding at best as a power law in time. If, however, one
considers a flow that is chaotic rather than regular, the approach
towards equilibrium should proceed exponentially in time, which
implies that a near-equilibrium can be achieved much more quickly.

One might perhaps object to this argument on the grounds that
realistic systems will in general contain significant numbers of both
regular and chaotic orbits, and that chaotic phase mixing should
dominate the evolution of a time-dependent system only if chaotic
orbits are much more common than regular orbits. Otherwise chaotic
phase mixing would not be sufficiently ubiquitous as to have a dra-
matic effect on the system as a whole. It is certainly likely that, if
only a small fraction of the orbits are chaotic, chaotic phase mixing
will only have a comparatively minor effect. However, there is solid
reason to believe that time-dependent potentials tend to admit much
larger numbers of chaotic orbits, especially if the potential exhibits
pulsations.

Theoretically it is easy to understand why this might be so. If an
orbit is regular, it must be restricted by constants of the motion, ei-
ther global integrals like angular momentum associated with global
symmetries, or ‘local’ integrals (cf. Lichtenberg & Lieberman 1992)
which restrict the motion of regular orbits in non-integrable systems.
Making the potential time dependent removes the symmetry asso-
ciated with time translation invariance so that neither the energy
nor the Jacobi integral is conserved. In a generic time-independent
potential, regularity requires two local integrals; in a generic time-
dependent system three local integrals are required. One might thus
anticipate that, at any given time, a larger fraction of the orbits will
be chaotic, provided at least that the time-dependence is sufficiently
strong that the energy cannot be treated as (nearly) an adiabatic
invariant.

For the case in which the time-dependence involves large-
amplitude systematic oscillations, one can in fact demonstrate that,
in many cases – probably generically – the relative measure of
chaotic orbits and the size of the largest finite-time Lyapunov
exponent will both increase dramatically (Kandrup et al. 2003).
Indeed, it has been recognized in both the accelerator dynamics
(cf. Gluckstern 1994) and the non-neutral plasma communities (cf.
Strasburg & Davidson 2000) that chaos associated with such a
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resonance can be important at a practical level. In particular, it can
result in particles in the core of an accelerator beam being ejected
into an outerlying halo, thus resulting in a highly undesirable in-
crease in the size of the beam.

The basic idea is that the introduction of an oscillatory time de-
pendence can trigger a parametric resonance, involving a coupling
between the frequencies associated with the pulsations and the fre-
quencies of the orbits, making many/most of the orbits chaotic. The
important point then is that, even for moderate amplitude oscilla-
tions, this resonance can be very broad, requiring only that the two
sets of frequencies be comparable to within an order of magnitude or
so. Given, however, that there is only one natural time-scale for the
problem, namely the dynamical tD, which sets both the characteristic
orbital time-scale and the pulsation time, one would anticipate that,
throughout most of the galaxy, the frequencies will be sufficiently
close to trigger the resonance. Simple toy models involving an inte-
grable Plummer sphere subjected to damped oscillations can, within
a time ∼10tD, exhibit both near-complete chaotic phase mixing and
an approach towards a nearly time-independent state (Kandrup et al.
2003a).

The same physical processes can also act on shorter scales. A su-
permassive black-hole binary introduced into the center of a galaxy
– with or without a cusp – serves as a time-dependent perturbation
which can trigger large amounts of chaos even at distances from the
center much larger than the binary orbit; and the resulting chaos can
lead to efficient phase mixing which occasions significant changes
in the density distribution and, hence, the observable surface bright-
ness profile (Kandrup et al. 2003b).

The work described here and in Paper I reinforces the expec-
tation that chaos may be ubiquitous in cuspy galaxies, especially
those that manifest significant deviations from axisymmetry, and
that that chaos may have significant implications for both structure
and evolution. In particular, ‘realistic’ galaxies, characterized by
a bulk potential that admits a complex coexistence of regular and
chaotic behaviour, may be substantially more susceptible to vari-
ous irregularities than had been recognized originally. The crucial
remaining issue, which has yet to be addressed, would seem to be
precisely how the effects described here will be manifested in the
context of a time-dependent, fully self-consistent evolution.

Finally, one can conclude by comparing the results derived in
this paper with models which might naively seem to contradict one
of its principal conclusions (as well as of Gerhart & Binney 1985;
Merritt & Fridman 1996; Merritt & Valluri 1996; Merritt 1997),
namely that chaos should be ubiquituous in cuspy triaxial galax-
ies. Specifically, Holley-Bockelmann et al. (2001) (hereafter HB)
constructed N-body realizations of triaxial (quasi-) equilibria with
a central density cusp by adiabatically ‘squeezing’ spherical γ = 1
Hernquist models and, for one particular choice of moderately triax-
ial axis ratios (a : b : c = 1 : 0.85 : 0.7), found no chaotic, or at least
no strongly chaotic, orbits. And similarly, Poon & Merritt (2002)
(hereafter PM) were able to construct Schwarzschild models with
γ = 1 and 2 profiles containing only regular orbits (although
they also constructed models with both regular and chaotic orbits).
N-body realizations of all their Schwarzschild models revealed only
small fluctuations over a few crossing times.

In point of fact it is not completely clear that there are no chaotic
orbits in the HB model. As those authors themselves stated, their
algorithm to identify chaotic orbits, based on their Fourier trans-
forms, could easily have missed a large number of nearly regular,
but still chaotic, orbits. Moreover, since their search for chaos in-
volved integrating initial conditions in the fixed N-body background
associated with a single t = constant snapshot, they excluded ex-

plicitly the possibility that weak-amplitude oscillations which, as
is evident from fig. 3 of HB, exist in the real model, could trigger
chaos via parametric resonance. This model is, however, clearly in-
teresting in that it may represent an example of a near-equilibrium
supported using only ‘local’ (i.e. ‘third’) integrals. All three of these
points can also be made for the PM models.

In any event, it could well be that neither the triaxial Dehnen
models nor the HB or PM models constitute true time-independent
self-consistent equilibria. However, as emphasized in Paper I (and
discussed more extensively in Kandrup 2002), it is quite possible that
a galaxy will settle initially into one triaxial near-equilibrium state
and then evolve slowly through a sequence of near-equilibria with-
out necessarily becoming more axisymmetric. There is at the present
time no compelling evidence that a slow secular evolution necessar-
ily involves an evolution towards axisymmetry. What might, how-
ever, be true is that a galaxy that resembles a triaxial Dehnen model
with large measures of wildly chaotic orbits would evolve towards
less chaotic configurations better represented by an HB- or PM-type
model. The work described in the present paper could provide po-
tentially significant insights as to precisely how such an evolution
might proceed.
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