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ABSTRACT

We consider a general resource-contrained project scheduling problem where
activity preemption is allowed. The objective is to minimize project duration subject
to network precedence constraints and resource availability constraints. We
develop two-pass procedures, based on existing heuristic project scheduling
techniques, for this particular type of problem. We then evaluate these various
heuristics on the basis of several performance criteria, including the length of
schedule generated and the number of preemptions caused by each heuristic.



A COMPARISON OF HEURISTICS FOR PREEMPTIVE RESOURCE-CONTRAINED
PROJECT SCHEDULING

I. INTRODUCTION

Although a substantial amount of research has been done concerning resource-
contrained project scheduling problems, relatively little has focused on the situation
where activities are preemptible. Allowing jobs to be interrupted and restarted
certainly complicates formulation of the problem, and greatly increases the number
of scheduling possibilities. Thisin turn makes it difficult to determine an “optimal,”
or even a “good” schedule.

However, in many practical situations, it may be possible (or in fact desirable) to
allow preemption of activities in progress. Many manufacturing companies
produce a customized (or configured) product to order. In this situation, production
scheduling may involve both preemptive job-shop scheduling (due to the nature of
the jobs) and project scheduling (due to the one-shot nature of each order). Ina
standard project context (e.g. construction or shipbuilding), allowing job
preemption might result in better utilization of resources when resource levels vary
from period to period.

The enormous increase in combinatorial complexity resulting from job
preemption means that standard integer programming techniques are not
applicable to realistic problems. Many “rule of thumb” heuristics (perhaps
modified) can be used on large-scale projects, but the relative effectiveness of these
heuristics has not yet been determined for the preemptive case. This paper is
concerned with the latter problem--evaluating heuristic methods in preemptive
project scheduling.

In Section Il, we give a general formulation of the preemptive project scheduling
problem. Section Ill contains a brief review of existing optimal and heuristic
solution techniques. We discuss in some detail our experimentation methodology
and results in Section IV. Finally, Section V summarizes our results and points to
further topics of interest.



II. PROBLEM DESCRIPTION AND FORMULATION
In general, resource-constrained project scheduling problems are characterized

by three things: a set of activities, a set of resources, and one or more scheduling
objectives. Below is a more detailed outline of our particular type of problem:
Activities (Jobs)

We allow one mode of operation for each activity. (A mode of operation is a

set of resources needed to complete an activity and an associated duration

time.)

There may be precedence relationships among the various activities.

We allow preemption of all of the activities. (There may be a time penalty
associated with preemption of a particular activity).

Resources
In this paper, we consider only renewable resources--any unused resources in
one period cannot be applied to an activity in a later period. Manpower,
machines, and electric power are examples of renewable resources.
There are fixed limits on the amounts of resources available each period.
Scheduling Objective

Minimize the project duration given resource limits.

The following formulation is a generalization of those used by Davis and Heidorn
[2], Stinson, et al. [12] and Patterson and Roth [10]:



Let
{1 if job jis active at time t
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pj = number of timesjis preempted in schedule (xjt).

bj maximum number of times job j may be preempted (pj=d)),

rik = amount of resource k needed by job j each period j is active,

Rkt = amount of resource k available at time t,

dj = duration of job j (when not preempted),

1y = time penalty (increase in job j duration cuased by each preemption of
job j),

P(j) = set of predecessors of job j,,

N = number of jobsin project (also the number of the unique last job in
project),

K = number of resources,

HP = known (heuristic) completion time for project.
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Constraints (2.1) are the precedence constraints. Equations (2.2) give the actual
durations of the jobs in a given schedule, while the inequalities (2.4) ensure that no
job is preempted more then pj times. Resource limitations at each period t are
satisfied by inequalities (2.3). If we set1j =0, and/or eliminate pj, then this
formulation becomes somewhat simpler. However, the large number of 0-1
variables xj; makes this a difficult problem to solve optimally.

II. LITERATURE REVIEW

Most of the optimal solution procedures available were developed to solve the
problem of minimizing project duration subject to strict resource limits and non-
preemption of jobs. We discuss two optimal algorithms below which either were
designed for or can be adapted to a preemptive scheduling problem.

Davis and Heidorn [2] adapt a procedure developed by Gutjahr and Nemhauser
[5] for the assembly line balancing problem. This solution approach is (theoretically)
readily applicable to problems which allow preemption of jobs. In addition, it is not
necessary to assume constant per period resource usage for all jobs in the project.
This is the only optimal technique developed for the non-preemptive case that can
easily handle relaxation of these assumptions.

The major disadvantage of the Davis and Heidorn optimal procedure is that both
computer core storage and CPU time increase rapidly as the problem size grows.
The method is highly sensitive to the degree of precedence interrelationships in the
original project network, and to a lesser extent to the length of the job durations.

Slowinski [11] considers a class of project scheduling problems which allows
arbitrary preemption of activities with no time or cost penalty. He presents two
solution techniques, a one-stage approach and a two-stage approach. Both of these
procedures involve solving a large scale linear program, and both can be
generalized to handle problems with renewable, non-renewable, and doubly
contrained resources, and several modes of operation for the activities.

Although Slowinski derives theoretical results concerning the number of
operations required for both the one- and two-stage approaches, no actual



computational results are reported. Therefore, it is not known how well these
methods work on real problems. In addition, since his procedures are based on
solving linear programs (i.e., processing times are continuous) with no penalties for
job preemption, an optimal solution may require a large number of preemptions for
one or more jobs.

The size and complexity of resource-contrained project scheduling problems (in
both the preemptive and non-preemptive situations) has precluded to date the use
of optimal procedures on all but the smallest problems (= 50 jobs). Thus we must
use heuristic techniques to handle realistic problems.

SIMPLE HEURISTICS

Many “rule of thumb*” heuristics have been developed for the non-preemptive
project scheduling situation. These simple heuristics are, for the most part, priority
dispatch rules (i.e., when applied to a set of jobs, each heuristic specifies the order in
which the jobs should be scheduled). The one exception is the Greatest Resource
Utilization (GRU) heuristic, which will be discussed in more detail below. These
heuristics can be roughly classified into three types: CPM-Based, Resource-Based,
and Others. Although these heuristics have generally been applied to non-
preemptive scheduling problems, they can be used for projects with preemptible
activities if the cost of preemption is negligible. [Note: In the following discussion,
“ES)”, "LS)", "EFj", "LFj" correspond to Critical-Path Early Start, Late Start, Early
Finish, and Late Finish times, respectively.]

CPM-BASED HEURISTICS
Minimum Job Slack (MINSLK) Heuristic:

To resolve resource conflicts using MINSLK, a slack measure is computed for each
jobinvolved:

SLACKJ. = LSJ. - ESJ. — delay,

where delay represents the number of periods job j is currently delayed from its
Early Start Time.



Resource Scheduling Method (RSM) (Brand, Meyer, Schaffer):

Let T represent the set of jobs that can be scheduled at the current time. For all
i,jinT, calculate

djj = increase in project duration resulitng when activity j follows

activity i

max (0, EF; - LFj).
Then give priority to the job i with minimum dj.
Minimum Late Finish Time (LFT) Heuristic:

In the event of resource conflicts, the LFT heuristic schedules the jobs with
smaller Critical Path Late Finish Time first.

Minimum Least Total Float (LTF) Heuristic:

This heuristic is the same as MINSLK except that no account is taken of possible
delays of jobs past the Critical Path Early Start Times.

RESOURCE-BASED HEURISTICS
Greatest Resource Demanded (GRD) Heuristic:

This heuristic assigns priority to activities in conflict on the basis of some measure
of total resource needed by the activities. The amount of resources needed by
activity j is computed as:

K
PRIORITY = d

1=

r.,
y

—

and jobs with higher priority are scheduled first. Asone can see, this gives a rather
crude measure of resource usage. The units of different resource types may not be



compatible. Furthermore, some resources may be more constrained than others;
this heuristic does not take this situation into consideration.

Greatest Resource Utilization (GRU) Heuristic:

Instead of assigning priorities to the activities in conflict, the GRU heuristic solves
an integer program for each period t to find the best subset of these activities to
schedule (“best” in the sense that this subset maximizes the utilization of resources
in period t). This rule explicitly requires that the units of resource rjx be compatible.
Note that this rule maximizes resource usage locally (i.e., only for the period in
question). It does not take into consideration the durations of the various activities.

OTHER HEURISTICS
Shortest Imminent Operation (SI0) Heuristic:

The SIO heuristic assigns higher priority to activities with shorter durations. Thus
this rule is merely the application of the SPT (Shortest Processing Time) job shop
scheduling rule to the project scheduling situation.

Random (RAN) Heuristic:

This rule schedules conflicting jobs randomly. Although not widely used as a
scheduling technique, RAN does serve several purpoes:
it is used as a basis of comparison for other heuristics
it serves as a tie-breaker for other heuristics

Reschedule (RES) Heuristic:

The RES heuristic is applied in the following manner:
1) Obtain a feasible schedule using another heuristic.
2) Find the resource with the least total amount of idle time.
3) Reschedule, giving priority to activities using greater amounts of this
resource.
RES thus attempts to determine the “bottleneck” resource and schedule around it.



There have been several studies to date which attempt to compare the various
simple heuristics on a particular type of scheduling problem [1][6][7]. These studies
indicate that some heuristic generally performed better than the others on the
problem in question, but the superior heuristic is different for different problems.
Less has been done to compare different heuristics for a range of problems, or for
various performance criteria (see [4],[8]).

Patterson [9] performs a statistical analysis which tests several simple heuristics
using one “real-life” multi-project scheduling problem and various performance
criteria. His results indicate that CPM-based heuristics (in particular LTF) and SIO
outperform resource-based heuristics when the objective is to minimize total
project delay. However, when the goal is to minimize the Total Resource Idle Time,
one should choose resource-based heuristics over other types.

Davis and Patterson [3] compare different heuristics with the optimal schedule
for a set of eighty-three test problems. These problems are small enough in size
(twenty to twenty-seven activities, one to three resource types) to be solved
optimally by the Davis and Heidorn procedure. The optimal project duration serves
as the basis of comparison for the various heuristics. As one would expect, the
authors conclude that CPM-based heuristics yield better schedules (in terms of
percent increase over optimum project duration) than resource-based or other
heuristics.

Unfortunately, we know of no studies to date which compare these heuristics in
a preemptive scheduling environment. One might expect that all of the heuristics
will perform better in this situation (as long as the actual cost and/or time penalties
for preemption are small enough). In the next section, we discuss results of our own
experimentation with several simple heuristics in a preemptive scheduling
environment.

IV. ADAPTATION OF HEURISTICS TO PREEMPTIVE PROJECT SCHEDULING
Implementation of Heuristics:

We have adapted four heuristics to handle problems involving job preemption:
Minimum Slack (MS), Resource Scheduling Method (RSM), Shortest Imminent



Operation (S10), and Greatest Resource Demanded (GRD). Each of these is
implemented in a two-pass procedure. The first (forward) pass schedules jobs
according to the respective heuristic, while the second (backward) pass uses local
and/or global right-shifting (see Wiest [13]) to reschedule the project. Working
backwards from the end of the project, right-shifting moves portions of jobs to later
times while maintaining resource feasibility. The objective is to compress the
schedule by freeing up whole periods’ worth of resources. Time penalties for
preemption can be handled by both passes of the procedure. The goal of our
experimentation is to examine (and hopefully answer) several questions:

Does any one heuristic perform consistently better than the others on a given
set of problems?

What are the effects of the second pass on the schedules generated--is it
worthwhile including itin a scheduling procedure?

How do resource tightness, the degree of precedence interrelationships, and
the existence of preemption penalties affect the performance of the various
heuristics?

In order to test the heuristics as fairly as possible, we designed a simple program
to generate “random” projects. Given the number of jobs in a project, the
maximum allowable job duration, the average number of predecessors per job, the
amount of each resource available per period, and the “tightness” of each resource,
we can randomly generate any number of projects with these characteristics. The
tightness of each resource is reflected in a resource utilization factor, wi. If resource
k utilization factor is given by wy, then the amount of resource k needed by each
job (rjk) is uniformly distributed on [0, wkRkt].

Each experimental project consists of 50 jobs, 2 resources. The maximum
duration of any job is 10 time periods, and there are 15 units of each resource
available each period. All resources are renewable, i.e. unused resources from one
period cannot be stored for later use. In this paper, we only consider the case where
there is no time penalty for job preemption. We will discuss the amount of
preemption which occurs in this situation. The variable parameters and their values
are given below:
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average number of predecessors per job:

2 (low degree of precedence relationship in the network)
6 (high degree of precedence relationship)

resource utilization factor, wg,

0.33 (resources relatively unconstrained)
0.60 (resources fairly constrained)
0.93 (resources tightly constrained)

Fifteen projects were generated for each combination of the variable parameters.
All computer programs were written in Turbo Pascal (version 3.0) for the IBM-PC/XT.

Experimental Results:

Our goal was to minimize the project duration; therefore, we evaluated the four
heuristics on the basis of these criteria:

1. Percentage deviation of each first-pass heuristic schedule length from the
best first-pass heuristic schedule for each project,

2. Percentage deviation of each second-pass heuristic schedule length from the
best second-pass heuristic schedule for each project,

3. Percentage decrease in the length of each heuristic schedule caused by the
second (right-shifting) pass.

Results from One-Pass Procedure:

The Minimum Slack (MS) heuristic consistently outperforms the other three
heuristics in a one-pass procedure (see Table 1). When the degree of resource
tightness becomes very large, the Resource Scheduling Method (RSM) approaches
the effectiveness of MS (see Table 2). The same behavior is detected as the degree
of precedence relationship in the network increases (see Table 3). Note that both
the Shortest Imminent Operation (SI0) and Greatest Resource Demanded (GRD)
heuristics perform significantly worse in all cases than the other two methods.

"



RSM

0.57

2.74

14.18

11.37

Table 1. Mean % Deviation from Best Schedule over All Projects (1-pass).

resource

tightness MS RSM SIO GRD
0.33 0.00 2.19 13.40 9.66
0.60 0.43 424 17.56 13.59
0.93 1.27 1.81 11.58 10.76

Table 2. Mean % Deviation from Best Schedule vs. resource tightness (1-pass).

ave. # of
pred. MS RSM SIO GRD
2 0.32 3.54 16.02 12.82
6 0.81 1.95 12.34 9.72

Table 3. Mean % Deviation from Best Schedule vs. Precedence Relationship (1-pass).

Results from Two-Pass Procedure:

As we see from Tables 4-6, the general behavior of the heuristics in the two-pass
procedure is the same as before. The MS rule continues to yield the best schedules
on average in most situations. We note, however, that the SIO and GRD rules
(although still producing the worst schedules on average) perform considerably
better with the extra right-shifting than they do alone.

MS RSM SIO

0.73 2.31 6.25 6.15

Table 4. Mean % Deviation from Best Schedule over All Projects (2-pass).
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resource

tightness MS RSM SIO GRD
0.33 0.00 2.19 6.51 499
0.60 0.62 3.72 7.12 6.56
0.93 1.57 1.04 51 6.89

Table 5. Mean % Deviation from Best Schedule vs. Resource Tightness (2-pass).

Ave. # of
pred. MS RSM SIO GRD
2 0.48 3.04 7.24 7.40
6 0.98 1.59 5.26 490

Table 6. Mean % Deviation from Best Schedule vs. Precedence Relationship (2-pass).

Thus the right-shifting of schedules, while having little effect on good first-pass
schedules, dramatically improves schedules which were poor to begin with. This is
verified in Table 7, which shows the mean percent decrease in schedules caused by
the right-shifting algorithm.

MS RSM SIO GRD

resource [0.33| 0.00 | 0.00 | 592 | 4.08
tightness

0.60 | 0.21 088 | 9.14 | 6.19
0.93 | 0.65 169 | 656 | 4.31

ave. # of 2 0.22 0.84 7.84 5.03

predecessors

6 035 | 087 | 6.57 | 4.69
over all 0.29 0.86 7.20 4.86
projects

Table 7. Mean % Decrease in Schedules caused by right-shifting.
Unfortunately, thisimprovement in schedule length comes at the expense of a

significant increase in the number of jobs preempted in the schedule. We examined
a subset of 30 of the test projects (5 from each parameter combination). While the
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one-pass Minimum Slack heuristic schedules contained an average of 6 preemptions
per schedule, the right-shifted (two-pass) Minimum Slack schedules averaged 19
preemptions per schedule. Similar results were true for all of the other heuristics
except the Greatest Resource Demanded (GRD) routine (see Tables 8, 9). Since the
GRD heuristic generated schedules with an excessive number of preemptions, it is
not surprising that right-shifting reduces the number of preemptions in a schedule.

MS RSM SIO GRD
6 8 4 86
Table 8. Average Number of Preemptions in One-Pass Heuristic Schedules.
(30 test projects)
MS RSM SIO GRD
19 16 18 29
Table 9. Average Number of Preemptions in Two-Pass Heuristic Schedules.
(30 test projects)

V. CONCLUSIONS

On average, the Minimum Slack project scheduling heuristic performed better
(in terms of schedule duration) than the other heuristics on a variety of problems.
Our results are similar to those of Davis and Patterson for the non-preemptive case
[3]. The Resource Scheduling Method of Brand, Meyer, and Schaffer [1] performs
almost as well on average, and in some instances better, than the Minimum Slack
rule. The other heuristics (Shortest Immiment Operation, Greatest Resource
Demanded) produced worse schedules on average, but occasionally outperformed
the former rules.

The use of a right-shifting second pass as part of a heuristic procedure is
generally effective in shortening the schedule length. In particular, this kind of
procedure is most beneficial when the initial schedule is poor. Thus right-shifting
serves to bring all heuristic solutions closer together. In general no heuristic is
guaranteed to work well on a given problem; therefore the use of a right-shifting
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algorithm can only increase the likelihood of obtaining a reasonably good schedule,
whatever the initial heuristic.

Our next step is to include the possibility of time penalties for preemption of
jobs. This would correspond to a set-up time incurred each time a job is preempted.
We expect that imposing time penalties for preemption will not significantly alter
the relative performance of the various heuristics, but will result in longer schedule
length for all heuristics. Hopefully, penalties will reduce the number of
preemptions which occur in right-shifted schedules.

More serious issues are the inability of project scheduling routines to obtain
optimal solutions for realistic problems and the lack of optimization-based
heuristics. Thus one has no way of determining how good a particular heuristic
solution is. Itis not very satisfying to compare various “rule-of-thumb” solutions
with each other. We are currently working on the development of a procedure to
obtain good lower bounds for the resource-constrained project scheudling
problem. Ideally, such a procedure would be the foundation for a new heuristic
scheduling routine, as well as a basis for evaluating existing heuristics.
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