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Abstract-Because material junctions are commonplace on structures whose radar cross section is
of interest, it is essential that their scattering properties be adequately characterized. The stan-
dard impedance boundary condition (SIBC) has been employed in the past along with function
theoretic techniques to develop simple scattering models of material junctions with thin and/or
high loss slabs. To extend these models to more general slabs, generalized impedance boundary
conditions (GIBCs) and generalized sheet transition conditions (GSTCs) have been proposed.
Unfortunately, the solutions obtained with these are usually non-unique in the form of unknown
constants, and although the constants have been resolved for a few special cases, previous efforts
were unable to determine them in the general case.

This report examines the problem of the plane wave diffraction by an arbitrary symmetric
two-dimensional junction, where Generalized Impedance Boundary Conditions (GIBCs) and Gen-
eralized Sheet Transition Conditions (GSTCs) are employed to simulate the slabs. In chapter 2,
GIBCs and GSTCs are constructed for multilayer planar slabs of arbitrary thickness and the
resulting GIBC/GSTC reflection coefficients are compared with exact counterparts to evaluate
the GIBCs/GSTCs. In chapter 3 the plane wave diffraction by a multilayer material slab recessed
in a perfectly conducting ground plane is formulated and solved via the Generalized Scattering
Matrix Formulation (GSMF) in conjunction with the dual integral equation approach. Various
scattering patterns are computed and validated with exact results where possible.

In chapter 4, the diffraction by a material discontinuity in a thick dielectric/ferrite slab is
considered by modelling the constituent slabs with GSTCs. A non-unique solution in terms of
unknown constants is obtained, and these constants are evaluated for the recessed slab geometry
of chapter 3 by comparison with the solution obtained therein. Several other simplified cases
are also presented and discussed. In chapter 5 an eigenfunction expansion method is introduced
to determine the unknown solution constants in the general case. This procedure is applied to
the solution of chapter 4, and scattering patterns are presented for various slab junctions and
compared with alternative results where possible. Chapter six presents a short summary of this
report and some recommendations for future work.
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CHAPTER I

INTRODUCTION

The use of non-metallic materials is now commonplace on airborne vehicles. and
frequently two material slabs of different composition will abut each other to form
a junction. For example. thin radar-absorber material (RAM) strips of diferent
composition 2 often joined end-to-end on a metal surface for radar cross section
reduction. Also. in microstrip ‘antenna configurations a discontinuity in substrate
composition is used to suppress unwanted surface waves and in many cases a planar
array is.terminated at a metal-dielectric junction. The electromagnetic effectiveness
of structures and devices such as RAM coatings or microstrip antennas is influenced
by the scattering behavior of any material junctions present. It is therefore important
to obtain a characterization of their behavior.

The scattering behavior of a material slab junction is revealed by an examination
of its plane wave diffraction, and this is the overall topic of the dissertation. For
discussion purposes, it is useful to divide these into non-penetrable and penetrable
slab junctions. The scattering problem associated with non-penetrable junctions
was aided greatly by the introduction of standard impedance boundary conditions
(SIBC's) (35], introduced to model thin metal backed coatings and layers of high

loss (see Figure 1.1). Conceptually, SIBCs are first order boundary conditio: -



Lossy half-space Material Coatin
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SIBC sheet, impedance 1 %

Figure 1.1: Structures modelled by SIBCs.

which replace the original material slab with an equivalent “sheet,” on which the
tangential electric and magnetic fields are related through a simple proportionality
factor known as the “impedance” of the sheet. Alternatively, the SIBC relates the
normal field components and their normal derivatives by the same proportionality
factor. The SIBC model thus eliminates the need to consider the field interior to the
slab. reducing a two-medium problem to a one-medium one.

Following this modeling scheme, grounded slab junctions and coated half-planes
are represented as discontinuous SIBC sheets, which readily permit the application of
function theoretic techniques such as the Weiner-Hopf method to obtain diffraction
solutions. These techniques yield a unique solution upon application of the standard

edge condition [49], which dictates that the stored energy in the vicinity of the

‘the order of a boundary or transition condition refers to the order of the highest derivative
present when the condition is cast in its normal derivative format



discontinuity must remain finite. This two step approach in computing the diffraction

junetions has been successfully exploited by many researchers 34 137 47

from <.ab jn
RS However. the approach is predicated on the validity of the SIBC. which is
restricted to modeling very thin and/or lossy coatings. More general slab junctions
must therefore be characterized by other methods.

With regard to junctions formed by penetrable slabs. a close analog to the SIBC
-

sheet model is the -resistive” and “conductive” sheet simulation [12] {3 hese

shieets are characterized by simple first order transition conditions which relate the
rangential flelds across the sheets. In particular. a resistive sheet (see Figure 1.2).
supports an equivalent electric current which produces a discontinuity in the tangen-
rial magnetic field across the sheet. The proportionality factor relating the tangential
magnetic fleld discontinuity to the equivalent electric current is denoted as the “re-
sistivity”  Similarly, the conductive sheet model is the dual of the resistive sheet and
supports an equivalent magnetic current, with the resulting proportionality factor
denoted as the “conductivity” of the sheet. Like the SIBC models above, resis-
tive and conductive sheets models of slab half-planes and junctions are amenable
to Weiner-Hopf methods for the computation of diffraction solutions [1] [44], with
the same comments given above applying here also. We remark, however, that the
resistive and conductive sheet models are very restrictive (much more so than SIBC
models) and cannot be used unless the modeled slabs are very thin and of high per-
mittivity and/or permeability. Hence, as in the case of impenetrable slab junctions,
alternative methods are needed to model more general junctions.

One such exact approach was employed by Aoki and Uchida (3] to tackle the

problem of plane wave diffraction from a penetrable single-layer slab junction. Their

method involved rewriting the junction field components in terms of a Fourier <e-
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Figure 1.2: Resistive/conductive sheet simulation of thin slab.
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sies represercation. This approach subsequently led to the generation of Weiner-
Hopf eguations expressed in terms of unknown spectral functions. However. expiici:
exprossions fur these functions could not be obtained. and the resulting solution
juvolved a cumbersome iterative procedure requiring knowledge of rather complex
pregrats and functions.

Another possible approach to modeling thicker and more penetrable layered dis-
continuities is to replace the SIBC and resistive sheet transition cogditions ST
-t

23! and generalized

Yt

by generalized impedance haundary conditions (GIBC) (15] [1
sheet transition conditions (GSTC) [39] [39], respectively. The GIBC and GSTC are
equivalent one- and two-sided sheet representations which, unlike their SIBC and
STC counterparts. display second and possibly higher order derivatives of the field
components on the equivalent sheet. These higher ~rder derivatives are responsi-
ble for the increased accuracy of the GIBC/GSTC relative to the SIBC/STC. and
tlie effectiveness of the GIBC/GSTC is roughly proportional to their order. This.
of course. implies that an adequate GIBC/GSTC modeling of any lavered material
is possible, provided that GIBC or GSTC of sufficient order are employed. Many
GIBCs and GSTCs have been derived to model all types of single and multiple layers
139] [39] {4] [31] [43]. However, most of these GIBC/GSTC are either limited in order
(usually second) or else are only valid for specific geometries. This, of course, points
to the need for developing more general GIBC and GSTC capable of simulating a
wide variety of layered slabs and coatings.

Once a slab junction is represented as a discontinuous GIBC/GSTC sheet, then
function-theoretic techniques may again be applied to compute the plane wave diffrac-
tion. as in the SIBC/STC case. However, function theoretic solutions based on

the application of GIBC/GSTC simulations yield solutions which are non-unique



even after the application of the standard edge condition (32] [41) [43] 36]. Alsq,
reciprocity s not necessarily satisfied (14] 4] {7]. unless this condition is expi.
111w entorced. ['niqueness is required of any physical solution, whereas reciprocity
wirh respect to the transmitter and receiver is necessary when the scattering body
is electrically passive. As noted in {41]. one may take advantage of this inherep,
non-uniqueness to force a solution which is at least reciprocal. if not unique. The
non-uniqueness of the solution .+ usually manifested in terms of unknown constan:s
'41] for finite-order GIBC/G3TC and unknown entire functions [32] for infinite-ordey
GIBC/GSTC. Most GIBC;GSTC diffraction solutions to date have been obtained
using second order GIBC/GSTC, and some of these have put forth arguments deai-
ing with the cancellation of non-physical poles to propose a unique solution {33} 54
'43] [53]. However. these previous efforts offer no method of determiﬁing the unknown
constants for more general GIBC/GSTC simulations.

If left unresolved. this issue would seriously impede the practical utilization of
GIBC/GSTC for a characterization of m 2rial junctions. In an attempt to resolve it.
the unknown constant appearing in a second order GIBC solution was recently related
to the field at the sheet discontinuity [42]. Unfortunately, the edge field is seldom
known apriori and this relation is not therefore of practical use. Nevertheless. it
demonstrated that a unique solution may be possible with a GIBC/GSTC simulation.
An example where it was possible to obtain a unique solution is given by Leppington
121]. who considered the surface wave reflection by an abrupt change in slab thickness.
The slab was modelled using second order transition conditions equivalent to those
given in [39] and [39]. Leppington was able to determine the reflection coefficient

uniquely in the limiting case of vanishing thickness by matching the interior field far

from the junction with a static representation of the interior field in the vicinity of



the junctiom. This suggests the possibiltiy of working with internal fields to resolve
he unlquensss issue. an approach which to date has received little attention and i

] o m
aerein.

pxoiTerd

Tie woai of this dissertation is to develop a plane wave diffraction model for
general symumetric thick multilayer slab junctions. Four main chapters follow dealing
with the derivation of the GIBC/GSTC, the formulation and formal solution of tle
piane wave diffraction by certain GIBC/GSTC approximated slab junctions. and rhe
subsequent resolution and explanation of the non-uniqueness phenomenon describe
above.

In chapter two. arbitrary order GIBC and GSTC are constructed for multilay-
ered planar slabs of arbitrary thickness. Initially, recurrence relations are derived
.for the fields in adjacent layers and are then employed to develop infinite order
boundary/transition conditions that are conveniently expressed as a matrix product.
Approximations to the matrix element operators for low and high contrast materi-
als are subsequently employed to obtain finite order boundary/transition conditions.
Finally. numerical results are presented in which the exact reflection coefficients are
compared with those implied by the GIBC/GSTC to provide a measure of the con-
ditions accuracy and utility.

[n chapter three, the plane wave diffraction by a multilayer material slab recessed
in a perfectly conducting ground plane is formulated and solved via the Generalized
Scattering Matrix Formulation (GSMF) in conjunction with the dual integral equa-
tion approach. This problem is significant in that a unique GIBC solution is obtained
which can be used as a benchmark to test other GIBC/GSTC solutions. In the first

part of the chapter we summarize the GSMF procedure. The dual integral equation

method is then employed to formulate each of the'subproblems and the necessa:-



solutions are obtained for both E. and H. polarizations. These are given in terms o
symboiic spiit tunctions which are then evaluated for the specific case of a multilag,
grounded slab by casting the reflection coefficient in a form compatible with a GIBe
simulation of chapter two. A number of scattering patterns are presented and th,
accuracy of the GIBC simulation is examined by comparison with known results
homogeneous slabs.

In chapter four, the diffraction by a material discontinuity in a thick dielec.
tric/ferrite slab is considered by modelling the slab as a distributed current shee
obeying generalized sheet transition conditions (GSTC). In the first section of the
chapter, the GSTC representation of the distributed sheet discontinuity is used tq
develop dual integral equations in terms of the unknown spectral functions propor.
tional to the sheet currents. These equations are then solved in the standard manner
to vield expressions for the spectral functions in terms of unknown constants. The
constants are dependent on the geometry and properties of the discontinuity. and
are identified in this chapter for a few specific discontinuous layers whose diffraction
solution is available.

Chapter five deals specifically with the determination of the unknown constants
for the solution presented in chapter four. This is accomplished by introducing a gen-
eral eigenfunction expansion which is valid everywhere and subsequently recasting
the solution obtained in chapter four into this format. This field is then analytically
continued to the slab interior and conti.nuity is applied at the material junction to
provide the remaining constraints for determining the unknown constants. Specif-
ically a point matching scheme is proposed in which an overdetermined system of
equations is generated and solved for the constants using a least-squares technique

Various diffraction patterns are given validating the obtained solution for cerri:n ..
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CHAPTER II

DERIVATION OF GENERALIZED
TRANSITION/BOUNDARY CONDITIONS
FOR PLANAR MULTIPLE LAYER
STRUCTURES

A GIBC/GSTC diffraction coefficient can only be as good or as versatile as s
constituent GIBC/GSTC. Therefore. before diffraction coefficients of any generality
can be developed it is necessary to construct GIBC/GSTC which are valid across all
ranges of slab composition and thickness. and this is the task of this chapter. The two
configurations considered herein are the multilayered slab having symmetric or non-
symmetric material composition (about its center) and the multilayered céating ona
ground plane, as illustrated in Figures 2.1 and 2.2(a), respectively. The derivation
of the GIBC/GSTC is accomplished via the Taylor series expansion method, whose
versatility enables the treatment of non-planar as well as planar layers. In effect,
the resulting conditions allow the simulation of the multilayered configuration as an
opaque or transparent sheet (see Figures 2.2(b) and 2.3(b), respectively).

In proceeding with the development of the GIBC/GSTC, we initially derive re-
currence relations for the fields in adjacent layers. These are subsequently emploved
to develop infinite order boundary/transition conditions that are conveniently ex-

pressed as a matrix product. Approximations to the matrix element opera:c:-

10
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Figure 2.1: Infinite multilayer slab.
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(e 2 3 ia) Zero thickness resistive and conductive sheet similation of multilayer
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slab. (b) Distributed resistive and conductive sheet simulation of multi-

laver slab.
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low and high contrast materials then lead to finite order boundary conditions. B
nallv. numerical vesults are presented in which the exact reflection coefficients ..

compared with rhose implied by the GIBC/GSTC to provide a measure of the ¢,

ditions accuracy and utility.
2.1 Derivation of Infinite Order Conditions

Consider the multiple layer slab with Ny upper layers (y > 0) and N lower laver,
(y < 0) as illustrated in Figure 2.1. The physical parameters corresponding to tl
m*® upper laver are denoted by €%, ut . k%, 7% which refer to the relative permittivit
and permeability. the index of refraction and the layer thickness. respectively. Ip
a similar manner. the physical parameters corresponding to the m** lower layer are.
given by €& . uf kL. 7L In the following we derive transition conditions to effectivel;
replace their presence with a distributed current sheet. We begin this derivation by
first introducing a relation between the fields on the two sides of a single layer. This
is generalized to relate the fields of distant layers and those at the upper and lower
boundaries of the fictitious current sheet. For convenience, we may consider both
polarizations simultaneously by introducing the definitions
E,, E, polarization (H, =0)
F, =
H,, H, polarization (E, = 0)
¢, E, polarization
u = (2.1)
u, H, polarization

Using a Taylor series expansion, the normal field components at the top and

bottom of the m** upper layer may be related as

2 (gk
T —uz”’" Flymetart_ o= (22
mayly=o +7 +ok(roo)t T m y=r0 et T ()T T
o .
0
N ]kr I+1 5.
bJFUJysz‘f----f(rU | Z 6 Fy.iy=’1v+"§'+"'*’;1—1+(71L1;1_' 2



where€
=707 2.4
o S is an operator defined as
J
§, = L= (2.5
. 2.3)
Yk oy ‘
Clearlv. 12,21 - (2.3) provide relations of the fields within a single layer and if we are

b.

ro derive a condition relating the fields at the top and/or lower surface of the sla
it is necessary to establish similar relations among the fields in different lavers. As a
Aret step towards this goal we may proceed to express the right hand sides of (2.2)
and (2.3) in terms of the fields above the boundary y = Y + ... + 7%, To do so.
it is instructive to resolve the right hand sides of (2.2) and (2.3) into a summation
of vdd and even derivatives of F,. Subsequently, the wave equation may be invoked

to rewrite the normal derivatives in tangential form, thus allowing the application of

the fleld continuity conditions. We have

82 = equs — 67, (2.6)
with
62 = 6% + 62 (2.7)
where
5. = %5‘1—
5, = %5‘9;, (2.8)

Invoking now the continuity of un, F, and 5’ F, (including their tangential derivatives)

across the laver boundaries, (2.2) and (2.3) may be rewritten as

A U U U ” 9 Ay
F’ y= L+' + +( Q ( 62) FJy:rlc"+r§j+.”+(rf;;)+‘ (2")’



16

In this
) ukF,
F = 3 'H
5,F
- . q“(u.n‘.r.éf) fhg(U.l\'.T. 6;2)
Qrlu.k.m.87) = N / . (213
Q21(U,K.T.6;) q'g_'_)(u./\:.._.c;)

qulu. K. T. 63) = cos (kor\/rcz - 0;’)
sin <kgr\/f{2 - C')

\/rﬁ - ¢
dafucne T 82 = %y/nz—-é'fsin (k‘orx/nz—éa
qaa(u. k.7, 8}) = cos (ko‘r\/m2 - éf) .

Expressions relating the normal fields in adjacent lower lavers may be obtained

qualu. ko7 8 = Ju

1

poms

1o

in a similar manner. We have.

F! Lorbo (s )+ = éL(uL kL rL 5?)FJ L_L_ _(zk)+ (2,13

dy=—rf -y -

where now

- ‘hl(U""aT’ 51:2) _q12(u"€’7—‘ 53)
Qrlu,x,7.6%) = (2.14)
—Q21(u’ K, T, 6?) QZ2(U’ K, T, 6?)

Equations (2.9) - (2.14) constitute fundamental recurrence relations for devel-
oping multilayer GIBC/GSTC. Each of the ¢;1,¢12, etc. is an infinite-order linear
differential operator in even powers of §2. This is evident when the sin and cos terms
are cast in their Taylor series representation (note that the square root functions ap-
pearing in (2.12) do not have branch cuts). The finite-order boundary conditions are
then derived by truncating the Taylor series representation of q;1, q12, g21, and qa.

Applyving (2.9) and (2.13) recursively, we may establish a relation between the
fields at the top and bottom of the layer. We have

N
m=1

Ll h T 68) | Fl e

y=-7;

L



i o= - . - . - =,
H Q\_r_-l 7[:'1/\&1_516?)} F_] 'J'=‘:"-"’:L"""‘(':T:,-3’ = Fd y=0+ P26,

o since [ s continuous across y = 0. (2.13) .16) imply the GSTC condition
J >

[

! S L L L ¢2 b -

‘ H QL(um /‘”'n‘Tmtét) F;y:—v"-—-.‘-— —-(~% )+ (2170

Lm=l1 L

, : . U U U LU . Che renlaced
The part of the slab occupying y* <y <7 + 77 +... + 7%, may now be replaced
by the upper backgrornd medium (with its geometrical and material parameters
Jenoted by the subscript b and the superscript {7) while the part of the slab occupying

— ... —r% is replaced by the lower background material {with

© ~

yE>u > —f -
geometrical and material parameters denoted by the subscript b and the superscript .
L. Using a Taylor series expansion the boundary fields mav be related to the

equivalent fields at y = y* and y = y%. In so doing, we obtain

N _ _ _
H QL(U&;,K = 52) Qu (ubv’“b""b ’52) Fegly=yt
m=1
Neo . - _
= Qv(uﬁ,fcﬁ,fﬁ } QL(Ub"“b,'zfjaétz)'Fquy=yU' (2.13)
m=1
where
N
T = Z = (=y")
=1
Ny
T
o= S -EY (2.19)
I=1

Although compact, the transition conditions (2.18) provide little insight into the
physics they represent. It is therefore instructive to reorganize them in a form that

leads to its physical interpretation. To this end we introduce the definitions

T(87)  L£5(87)

~
t~

n ::] '
(©|I

) Q (fbﬂ%,"bv‘s) = 9 e e
51068)  L£5:(97)



;r'_\-: 3 L L _L = [ o2 def LHL(E&)
I Quiwnngiriisl) Qulmy. ry .7y 68 =
=t Lh(E
AT UE(8F)
H Qriel wb 7h 82 Qrlef k.7l eh e B
J=l J Z’{:l{oz)
oo _ - Ulhl(c")
.H Quitim no.7h. 6 )} Qrlus k5.7, 67) o o
L= Ui (57)
Substituting these into (2.13) vields
[ (L5 +URIEE) (L5 + URJ(8F) AFj
(L5, + U3 1(88) (L5, - dgg]’o )} VAFY
[ L5 = UL (L5, - UR](F) } [‘Ue ]
[‘C;l Ufl](&z) [Eéz _UEZJ(CS?) Je
[Ltia +FUNI(EY) (L +UBIEH ) [ AFY
(L +URZED  [L3 +UR(6H) ) UAF}
[ (L8 —URI(ED)  [L — UBNED) ] ( J" ]
[/-:31 ‘u?l](ég) [Egz “Z’{:?:](‘S?) M*

In (2.21) -(2.22) AF$" and AF}" are given as
AF; = e Ef —€¢fE; = J—l-y -6, X [H;‘ ~ H;]
AFy = & [Bf - Ej] = -8 [Ef - E7]
r - —l N = = Y-
AFly = piHy — pbHy = —j b, x [Ef - E7]
Jw
AF} = §,[Hf - Hy| = -8 [A} - H;],

whereas M®"* and J* are defined as

Me = S+ B = i b [8f + ;]
J =4, [Ef + E;| = =6, [Ef + E]
Jh o= WVHF +ubH: = ﬁg-StX[E?'FE;]
Mh o= 6, [H 4 HY| =<6, [BF + AT

-t
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def
+ P eq ..
Er  Epl
- d_ef eq
E; - Ey Jy:y[‘
def ,
+ 1€ rreq !
H - [[:; S¥=y
H- def H* [y 9s
v = bl \=-=2)

\\e also note that the superscript notation e and h refer to £, and H, polarized
excitations. respectively.

[ view of {2.24). the transition conditions given by (2.21) and (2.22) are now
readily interpreted as a representation of “distributed” resistive and conductive sheets
occupying the volume ¥ < y < y* and supporting equivalent electric and magnetic
currents (see Figure 2.3a). These, of course, give rise to discontinuities in the flelds
fand their tangential derivatives) at the upper and lower boundary of the sheets. The
equivalent electric and magnetic currents are denoted by J** and M®*, respectively,
and are defined in (2.24) above. Additionally, the subscripts J and M appearing
in (2.23) denote field discontinuities traditionally associated with the presence of
electric or magnetic currents, respectively. For convenience, the currents and result-
ing discontinuities AF are presented in terms of both normal and tangential fields.
When y¢ = 0% and y£ = 0~ (see Figure 2.3b), the distributed resistive and con-
ductive sheets are “compressed” onto an infinitely thin sheet occupying the plane

y = 0. Such thin sheet representations are attractive for the application of transform

rechniques in diffraction problems and are generalizations of the resistive-conductive
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sheet simulations given in [39]. [39] and (31]. In contrast to the referenced Sipe
. i - 4 LR

lations. the ones given here exhibit coupled electric and magnetic currents. whe
g o

presence complicates the application of analytical techniques. This coupling is @

rributable to the distributed nature of the polarization currents across the origip,
siab configuration. If. however, the multilayered slab is symmetric about y =0 an;

y© = —yL. then it can be shown that M and J decouple. In particular. for th,

special case

L o= Uy
L, = Uy
Ly = Uy
Lo = U, (2.26
leading to
UR(8){AFS} = —UR(§H{T°}
26D{AFy) = —Un(8H{M°}
UL(EH{AFy} = —UR(8H){M"}
URBD{AFSY = —UA(EH{I*) (227
when substituted into (2.21) and (2.22). Evidently, the coupling of the current

components depends on the degree of asymmetry in the slab and an assessment on
the level of coupling can be obtained by comparing the magnitude of the operator
coefficients in Lyy — Uiy, L1z + Usz, Lo + Uy and Ly — Usy relative to those in
Lo+ U, Lrg = Ungy L2y — Usy and Log + U,

If a ground plane is inserted in the symmetric slab at y = 0, the resulting structure

becomes opaque and its sheet simulation is further simplified. For the case wi. o
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ground plane s a perfect electric conductor (PEC). the electric currents are shorted
out and the second and third equations of (2.27) become the boundary conditions
orresponcing 7o a coated PEC. Conversely. a perfect magnetic conductor (PN
shorrs ont the magnetic currents. leaving the first and fourth equations of (2.27) as
+he corresponding sheet simulation. An alternative approach to deriving the GIB(
corresponding to coatings is to employ image theory in conjunction with i2.27). The

feld components in the equivalent image configuration of a PEC grounded slab «ie

related as

E(y>0) = E,(y<0)

&E(y>0) = =6,E,(y<0)
Ho(y>0) = —-H,(y<0)
5yHy(]j >0) = 5yHy(y<0) (R

and when these are subsequently introduced in (2.27) we obtain the boundary con-

ditions

s Us (S ETY + Usy(6D){8,EF} = 0

pe UM (ED{HTY + UL(H{6,H} = 0. (2.29)

corresponding to a slab on a PEC. Similarly, the image fields for a slab on a PMC

satisfy the relations

E (y>0) = —-E,(y<0)

Il

6yEy(y > 0) oyEy(y <0)
Hy(y >0) = Hy(y <0)

6yHy(y > 0)

—8,Hy(y <0) 2o



e UL (EN{ESY = UREN{E,ET}Y = 0

py U (SD{HT Y + UL(61){8,H]} = 0.

[
[

when substituted in (2.27). Expressions (2.29) and (2.31) represent opaque condy
tive and resistive sheets. respectively, and are the dual of each other. We note th;
if V- =1.(2.29) reduce to those given in [31].

To summarize the above development, sheet simulations were derived that mode
(or replace the presence of ) the multilayer slab and coating. Equations (2.21) throug:
(2.27) are referred to as generalized sheet transition conditions (GSTC) for the
transparent resistive/conductive sheet representation of the multilayered slab. Oy
the other hand. equations (2.29) and (2.31) are described as generalized impedance
boundary conditions (GIBC) for the opaque sheet representation of the coated ground
plane. They are given in a compact matrix form and are valid for any arbitrary finite
number of layers. Their versatility, however, is offset by the presence of infinite order
derivatives as implied by the definition of the operators, thus, limiting their applica-
bility to analytical and numerical treatments. It is therefore appropriate to consider
finite order approximations of the operators leading to conditions of practical use.
In the following we consider such approximations of the operators on the assumption
of low contrast (small ) and high contrast (large «) layers or coatings.

2.2 Low and High Contrast Approximations for Matrix El-
ement Operators

Low contrast approximations to the matrix element operators may be derived

bv replacing the trigonometric functions in (2.12) by their Taylor series expansions
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which are then truncated. To O(71) these become
il = |:ntl“;;"-j
B 5\ ¢
, PSR = a2 UK. T Cr) =X v ' Z Cll(/‘\ T 1 m)‘ (é;)
(=0 m=i
int(25L) [ing(2=L) 1
|
J LR TN X Ju Z Z ax(k,7.l,m) (5;)
(=0 m=!
- int( ML) [ing(a2d) [
. ) J o2
gaiu.k. T80 == Z az(k.7.l,m) (0;) m#0 i2.32)
u =0 =1
= m=.
where

(—=1)'* ™ (m)! (k)2 k2 m=0)
(m=0Y0(2m)!
(=D (m) (k7 )2m+1g2m=0)
(m =0 D'2m + 1!
(—l)“’m(_m)!(/cor)2m—1n‘2(m““

ool = - (2.3.
as(«. 7.l m) (m = L) (2m = 1)! S

[t 15 a simple matter to demonstrate that the substitutions

applied to (2.32) lead to a normal derivative representation of q;; — qo3.
To obtain high contrast (large «) approximations for g;;, it is necessary to utilize

the binomial expansion
— 176\ 1 [(&\* 1-3 (6\° 5.4}
/w2 — §2 = _ ) —— (22} - b B R pea e )
Vi =8 n{l 2(&) 2-4(5) ‘2-4-6(&) a K <1

Substituting this into (2.12) and again employing a Taylor series representation for

the trigonometric functions, we obtain to O(k~¥) the approximations

quluw.7.87) = cos(k,Tx)
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_g M Tl(l.fc.r\'f(l.().p\l (62)p
- L 2p—i 4
F=L l=maz(1.2p=-\} P
U ,
oaoon = 8 & J—bln[\ko"'h)
K

=l [l=maz{l.2p-M+1}

= Mol To(l. k. 7)Y (1.0. p)
—Ju Z Z : Klp-v-l—f J (Etz)p

M=2[ M-2 _ _
S = (- 1.k 7T l.l.p\} (3

2p+2—| t
p=1 [l=maz{l.2p-M+2} K

Ko,
e J—sm(korhz)
u

SRVES M+1 .
J = To(l.k. )Y (,0.p) | ,_
i |y

~ 10
~—

Cqnluck.T.8

+2 5 ;
u

s=1
A M To(l = 1.5.7)Y(1.0.p;
e { 5" , £. 7)1 (1L.0.p) <522>” (236

2p—-1-1
{=mazr{l.2p=-M-1} K

u K2p—l

l=maz{l.2p-M}

I ‘ (-l)i”‘(l/2)(/cof)l cos (k,7k) ;lis even]
1 ./'C.T) =
(0)! ( sin (k,7x) ;[lis odd
(_1)int(l/2)(k ) sin (k,76)  :lis even]
Thilkor) = -
(0)! | — cos (korx) s odd
T(holap) = 3 ba(in)ba(iz) -+ ba(i )ba(ity41) - - - ba(ity 41,)
(2p = 3)!!
bip) = 5o
2p—-1)!
by(p) = (—277:!_)
XY X(X-2)(X-4)...3)(1); (~1)1% (2.37)

The sum defining the function Y (I1,13,p) includes all product terms satisfying the
relation 3, ¢m = p. It should also be noted that !; and I, denote the number of by
and by. respectively, comprising the product terms. For example, if [}, =2, [, =1
and p = 3 then T(2,1,3) = by(1)by(1)bo(1); if & = 2, l; = 1 and p = 4 then
T(2.1.4) = b1(2)by(1)ba(1) + b1(1)b1(2)by(1) + by(1)by(1)by(2) and if {; = 2.1, = 0

and p = 4 then Y (2.0.4) = b,(1)6,(3) + b1(2)b1(2) + 51(3)by(1). Correspondinz
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| Order | Low contrast q,, coefficients l

.’”/,_—_-—-—f.f__f

- = in =l =qu =0 \
L—

—:'* D Loy = j'ulk,‘l. g1 = 7;.;;‘-1 (’N.‘ _ 02)

——

i - ==l ':"— (8% = 87). 2 = juikmi. g = ,*ikn (k%= &)
= an = L= R ), g = ke [L - B (e - ),

|

|

! . 5 ~ r - )2 IR

! o1 = jkTi (87 =0 Juy [I_L%L(Kz_oz)]

F_—" — 2 g2y (emt 2 22
Ty quu =42 =1 — 75K —&;)+ 4 K - 0;)
i

) PR ) ) , r (k)2 ) 9\
! qn.—_:Jx,‘l(/v—c‘;)/ulgl—'——b:—-(h"—-ég)]
L {

Table 2.1: Low constrast approximations to ¢,; operators.

expressions in terms of normal derivatives can also be obtained by employving (2.34)
in (2.36).

Expressions (2.32) - (2.37) represent finite order approximations to the operators
qu-qi12-92. and go, and can be used to generate finite order GIBC or GSTC. To
do so for a specific multilayered slab or coating, one first examines each constituent
laver and approximates the corresponding matrix elements by their low contrast
expressions (2.32) - (2.33) or high contrast expressions (2.36) - (2.37), as appropriate.
As an example, basic low contrast and high constrast approximations to the g;;
operators are give in Tables 2.1 and 2.2. These finite order expressions are then
substituted into the matrices Qp and @L given by (2.11) - (2.14). The resulting
expressions for the & and £ matrix operators are finite polynomials in even powers
of §2. In passing, we note that the simulations presented here-in may also be extended
to model a longitudinally inhomogeneous slab once this is approximated as a layered

slab such as that shown in Figure 2.1.



Order ! High constrast ¢;; coefficients
K qi1 = @22 = cos (kkTy). 12 = 0.1 = fsin(nkrl) sz“ cos (kkTy)
k1 qn=q22=cos(nk‘1\+sm(nkr1) ,q]_;_) J—-Lsm(/ck/l)
g1 = i—fsin(ﬂkrl) {1 - 3% - (krs‘::'c:} - km‘ cos (kkTy)
K3 «:;/uzqn:cos(nlwl){l—ﬂﬁ:}—y—bm(nk,l)‘cl~2
qiz = =*sin(kh7) — 21;;—Lcos(fckrl),
¢ = Tsin(whTy) {l -3 —“(kgg&‘}
—{i—fcos (kkT) {h;: - k;:‘t - (k:;’);sf}
xS ¢11 = Q22 = COS (/s:krl){ - U”‘) o‘}

+ sin (KIle) {‘ﬂ;:? + k;:ig - (k;;,)‘s L} ’

qi2 = J-lf- sin (kkTy) {l + -2% - ch,‘):&:} - julzl:;l&i cos (kkTy),
g1 = J—sm (fckﬁ {1 - 26: ngl—,g&z - sn‘ ?8185‘ }

~ & cos (km) {32 - 5 - (55},

Table 2

2: High constrast approximations to g¢;; operators.




Figure 2.4: Coordinate system for reflection and transmission coefficient derivation.

2.3 Evaluation of the Boundary/Transition Conditions

To evaluate the accuracy of the derived boundary/transition conditions one ap-
proach is to compare the plane wave reflection and transmission coefficients implied
by the finite order sheet simulation with the corresponding exact coefficients.

Consider the plane wave

E; EyO Yy . .
{ ’ } - { }egknb (¢ cos a sin 3+y sin o+ cos a cos 3) (2.38)
H, Hy
incident upon the sheet satisfying a given GIBC or GSTC (see Figure 2.4). The
generated reflected field can then be written as

ET RgFE
{ y } _ { ELyo0 } ejknbU(zcoscxsinB—ysina+zcosacosﬁ) (_)3.))
H RuHys

Y



and in the case of a GSTC. the transmitted field takes the form

E

| o

TeE . .
e’”

Tty

r . -
<y (rcosa’sin i’

+ysina’+rcosa’ cos.3') (M

[ nind the reflection coefficients Rg g and corresponding transmission coefficien,

I’ s we substitute (2.38) - (2.40) into one of the boundary or transition condition

given by (2.21). (2.22),

—_

2.27), (2.29) or

in a straightforward manner we find

Rg-.-c R“Smc "R:ec R‘Smc

Re —-R=

(2.31). By carrying out the differentiationg

multilayer slab

pmc pec
R TRiec + $Rime  multilayer symmetric slab .
E LotL
RZ.. multilayer coating on PEC
RS multilayer coating on PMC
R:ec Rgm S
= multilayer slab
Te Fpec = Fome (2.42)
3RS, — tR:,. multilayer symmetric slab
Bme Fpee = Fime Riee multilayer slab
Rpec_Rgmc i
R tRMc + 3RE..  multilayer symmetric slab (2.43)
H 2.43)
R}, multilayer coating on PEC
R} multilayer coating on PMC
zme —Foec Ltilayer slab
multilayer sla
Ty Rpme = Rec Y (2.44)
1Rh .. — 3RE.. multilayer symmetric slab.
In (2.41) - (2.44),
Ug; U\2 cne? U)2 ~os-
R Ky sina U3, [(nb) cos ] - efus [ (kg )* cos a] j2ke¥ 4V sina
Pec 7 kUsina US, [(kY)2 cos? a] + eb L(n (k¥)? cos? a]
U ( SAVING ] [ Uy2 ]
o Ky sina U (nb-) cos’ a (k)2 cos’a j2heV ¥ sina
P ky sina Uiy (k5 ) cos® o + C%Uu [(x5)? cos? ]
L ! Uy2 2 _ b .
e rysina’ L [(fcb) cos a] €L [ (k§)?cos a] JkeEat sinal s
Pec Tk sina U, [(kY )2 cos?al + € Z/(21 [(kY)2 cos? a]



29

Lo e oL L U 2]
Kosina L7, (Kj 1% cos® 01 — ¢ LY, lf( )% cos ol Lt sina’ =l ol sin 2]
eC: re 7 z L B =€l . s ¥ A
pm NDosina U, (wp )R cos? Q""'Ebo{n'(,‘{éPCOS"CI]
;, N} 3 1 f', (AR y 1
voostnoa (8 Nt \-COS'Q’ - ,cgl({ll' wEi2costal L
[,?» — i s - : _ . _ ’ . 6]2\'&_} y© osinx
a Noostou s ial gt eosta) - g L{H Ky jTCOST Q)
, NTosina llyy iw; 1t cos” ar — pb Uy i(/‘\E [ COSZQE e
[)7’1 — - g~ - SJ2RRg Y7 sinx
pre Noosina lf) (R 14 cos? a -x-;tbl/(n L(nL) cos* m
L AL N AR I 1. Ly |
nEsina' £ K )“cos”aj — cos? al o
ﬁ&ec = L : ] Ln: ﬂ( 2)1 : ‘u:-Lllr( ) kr L LSIna,;“b‘ yt sina;
P Ky osina U [(ag ) cos? af + uf UYL (kY )2 cos? a
b 12 LAy ] bt | )
f - n !' -
_ wEsina’ L4, 1(kE)? cos? a} — pELh (k82 cos 24 JElaE g sin a5 <Xy sin o
R» = —— — P LI al+=y :
pme kb sina Uy (kL) costa) = ub U (kS )¢ cos? aj
(2.43)
and from Sneii’s law
Lo ot Jo L2 U2 e : ;
Ky sina = \/(Ky)? — (x5 )*cos” a. (2.46)

To obtain a composite sheet simulation of a multilaver slab or coating. it is
necessary to first model each layer individually through its C—?U matrix. The matrices
are subsequently combined to yvield the £ and U operators of the composite boundary
condition. Thus, the accuracy of the overall simulation can be assessed by examining
that of the individual layers comprising the slab or coating. In the case of a single
laver simulation (with non-shifted surface) the £ and U operators reduce to £;; =
Ly =1, L2 = Loy = 0 and U;; = ¢i;. This simplifies the analysis and in the
following we examine the accuracy of the proposed GSTC simulation as a function
of the condition’s order. Only the E,-polarization incidence is discussed but similar
results apply to the H,-polarization case as well.

Figures 2.3, 2.6, 2.7 and 2.8 present the maximum error in |R.; — R,y.| over

real a

uq
=

as the layver thickness is varied. The data in Figure 2.5 corresponds to
a low contrast simulation with ¢, = 2 and g, = 1.2 as the order of the transition

condition increases from 2 to 9. In the region where |R.; — R,q.| is less than .13
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(to be considered as an acceptable error) each curve displays a quadratic sh,,

s

possibiv with small “kinks™ or perturbations superimposed®. In general. the range,

Ssimation improves as the order increases. although in certain instances it Ty
actually deteriorate slightly.

[n Figure 2.6 the material parameters are increased to €. = 3.5 and p, =,
We now observe that the maximum allowable thickness to maintain the same ery,
as in Figure 2.3 is smaller when employing the same order transition condition. [.
particular. the degradation is such that a 17** order condition is required to eqy
the performance of the 10** order condition in Figure 2.5. As before the maximun,
allowable thickness or performance of the condition increases with the order.

To compare the pertormance of the low and high contrast approximations. the.
curves in Figures 2.5 and 2.6 were recoméuted using high contrast transition con.
ditions. The results are given in Figures 2.7 and 2.8 where the curves now follow
an oscillatory behavior unique to the high contrast conditions. In general, the high
contrast conditions provide an improved simulation for this choice of constitutive
parameters. For example, when the order of the condition is increased from 4 to 12,
the allowable thickness that can be accurately simulated increases 7-fold, significantly
better than the performance of the low contrast conditions. Most importantly, the
high contrast conditions allow the simulation of much thicker layers with the same
error criteria. A typical example are the 11** and 10** order simulations in Fig-
ure 2.6 and 2.7, respectively; whereas the low contrast simulation allows a maximum
thickness of only 0.28, this increases to beyond 1\ when employing a high contrast

condition of comparable order. Inherent with their derivation, the high contrast

conditions are expected to provide improved simulations as the refractive index in-

'As a reference, when |R.; — Rystc| = .1743, the corresponding phase error is 10° when [R,. =
|Rezi = L.
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creases. This is indeed observed in Figure 2.3 where the layer's relative constitutive
sarameters are e = 5 and p, = 3. As shown. a laver of up to 2\ thick can be
Dats - v

Sth

Ot
S

eorately simulated with a 1277 order condition. Figures 2.3, 2.6, 2.7 and 2.3 are

corend for Hopolarization in Figures 2.9, 2,10, 2.11 and 2.12. respectively. The

- 1D
reCUies

-

jesults are very similar to the Ey polarization case. and the same remarks "ade
above are applicable here.
Using the single layer data, such as those presented in Figure 2.5-2.12. it is pos-

sible to svnthesize a multilayer simulation. As an example, consider an £, polarized

plane wave incident on a three layer slab having ¢/’ = 5 — ;0, u’{’ =3 - 70, rf’ = 4
for the first layver, €5 = 3.5 — j0, uf = 2 —j0, 7¥ = .4 for the second layer and
ef =2 -0, p§ = 1.2 -0, 7§ = .2 for the last top layer (see Figure 2.13). To

.select the individual layver models for E, polarization we conjecture that the maxi-
mum error of |R.; — Rgy.| for the composite sheet will be bounded by the sum of
the maximum errors of |R.; — Ryse| of the constituent layers in isolation. Examining
Figures 2.3-2.3, we observe that the sum of the errors of the 6" order high con-
trast representations of the bottom and middle layers and the 5" order low contrast
representation of the top layer amounts to .062 as required by the design criteria.
This suggests that the composite sheet employing these representations will have an
acceptable performance when the total thickness is 1A. The actual maximum error
of the designed simulation is compared with the sum of the isolated layer errors in
Figures 2.13. The corresponding errors with a PEC and a PMC inserted at y = 0
are also plotted in Figures 2.14 and 2.15. We note that the sum of the isolated layer

errors serves as a reasonable upper bound for the new simulation design.
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2.4 Concluding Remarks

elter Las dealr with the development of generalized impedance boundary

v
,
/

n conditions for multilayer coatings and layers. A major effort was also

o]

and ransitiv
Jevored to present them in a form which is compact and convenient for further usage.
Because of the generality of the derived conditions they are ideally suited for use in

rhe following ¢! “pters where general diffraction coeficients are developed.



CHAPTER III

DIFFRACTION BY A MULTILAYER SLAB
RECESSED IN A GROUND PLANE VIA
GENERALIZED IMPEDANCE BOUNDARY
CONDITIONS

The canonical geometry formed by two semi-infinite planar slabs joined end-to."
end is a difficult one to model properly, particularly if the slabs are thick. For this
reason very few computed results exist to verify GIBC/GSTC diffraction solutions
obtained for thick slab junctions. This need is acidressed herein by computing a
unique alternative GIBC/GSTC solution for a specialized thick slab geometry. This
solution provides a benchmark which can be used to partially verify more general
GIBC/GSTC diffraction solutions. The special problem considered in this chapter
is the plane wave diffraction by a multilayer slab recessed in a ground plane in
Figure 3.1, and the alternative method used is the generalized scattering matrix
formulation (GSMF) [25].

Related but simpler geometries have been studied in the past [2] [6] [20] [11] [26]

(81 43] [9] [52] [38] [28], and most of these solutions involved the interior and exterior

fields. This is alleviated herein by modeling * 2 slab as a surface characterized by a

plane wave reflection coefficient R(cos ¢,) (see Figure 3.1), where ¢, can be extended

through analytic continuation in the complex plane. This enables us to carvy

44
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material layers

(b)

Figure 3.1: (a) Multilayer slab recessed in a PEC ground plane. (b) Representation
of slab as surface with reflection coefficient R.

the analysis in a symbolic manner regardless of the inhomogeneity profile of the
‘aver. Hence. although our focus in this chapter is the multilayer recessed slab, the
derivations will be applicﬁble to any vertically inhomogeneous slab.

The problem herein is formulated via the dual integral equation approach [10] in
conjunction with the GSMF. The GSMF is applied to the recessed stub structure
of Figure 3.2(a), depicting a perfectly conducting half plane elevated a distance ¢
above a reflecting surface with a perfectly conducting stub recessed a distance d
away from the half plane edge. This formulation requires the solution to a number of
individual subproblems. As illustrated in Figure 3.2(b)-(f), they correspond to the

problems of direct diffraction, mode coupling, mode reflection, and mode radiation.
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Figure 3.2: Illustration of recessed stub geometry (a) and associated subproblems:
(b) direct diffraction, (c) mode coupling, (d) stub reflection, (e) mode
reflection at the waveguide mouth, (f) mode launching.
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Once soiutions 0 each of these subproblems have been obtained via the dual integral

equation meriol “hev can be combined in accordance with the GSMF prescriprion
ro vieid the lifraction tor the original structure in Figure 3.1(a).
Uniortunarely. the conversion of the symbolic solution into one of practical use

proves to be a formidable task when the reflection coefficient of the grounded slab is

obtained in its exact form. The fundamental difficulties are related to:

o the factorization or splitting of the associated Weiner-Hopf functions into com-

ponents regular in the upper and lower half complex plane, and

e the extraction of the complex zeros (i.e., the waveguide modes) associated with

the split functions.

T.he pertinent Weiner-Hopf functions cannot be factored analytically and one must
therefore resort to a numerical scheme (e.g., see [28]). Also, in solving for the complex
roots of the pertinent split functions, it is necessary to employ a search algorithm in
the complex plane, a process which is numerically intensive. We circumvent these
difficulties by replacing the grounded slab by an opaque sheet satisfying a GIBC of the
form given in chapter two. Under a GIBC approximation, the approximate reflection
coefficient is cast as a ratio of polynomials in cos ¢ or sin ¢, making the determination
of the complex poles and zeros of the reflection coefficient a simple task. As a
result. the required Weiner-Hopf factorizations can be obtained analytically leading
to computationally efficient solutions.
In the first part of the chapter the GSMF procedure is summarized. The dual
‘integral equation method is subsequently employed to formulate each of the sub-
problems and the necessary solutions are obtained for both E, and H, polarizations.

These are given in terms of symbolic split functions which are then evaluated for i
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specific case of a multilayer grounded slab by casting the reflection coefficient
by
formy companibie with a GIBC simulation of the siab given in chapter two. Reg,.

ave given and the accuracy of the GIBC simulation is examined by comparison ;.

known results for homogeneous slabs.

3.1 Description of GSMF Procedure

In this section. the generalized scattering matrix formulation (GSME) is appije:
to the geometry given in Figure 3.2(a). This consists of a perfectly conducting haj:.
plane located a distance & above the grounded slab, with a perfectly conducting sty
recessed a distance d away from the half-plane edge. To concurrently treat both the
E. and H, polarizations of incidence, the quantities F, and F: are introduced. They

are defined as

E., E, polarization,

F. = (3.1
Z,H,, H, polarization.
Z,H., EFE, polarization,

F_L- = (32«
E., H, polarization.

N

and from Maxwell’s equations

_ _indF |
F: = k oy (3.3)

where
-1, F, polarization,
v = (34)
1, H, polarization.

The individual problems to be considered in the GSMF prescription [23] are as

follows:

1. Evaluation of the direct diffracted field by the substructure in Figure 3.2(bi

due to a plane wave incidence. This field can be expreéssed as

F(¢,8,) = /c Pig(cos a,cos ¢o; §) e~ Ikercos(2=2) jq
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pectrum associated with the currents induced on the hait
wlane aiel o050 are the usual cylindrical coordinates of the observation point.
Additionany, Cis the complex contour composed of the directed line segments

- x.0—=,0.0=,0.7 - j0l.[x = jO.7 + j] in the complex a plane.

2. Evaluation of the field coupled into the waveguide due to a plane wave incidence
(Figure 3.2(c)) as illustrated. We denote the field corresponding to the n‘*
coupled mode as

F: (0,) =C, (cosoo;é)e"ﬂ“"I (3.6}

where (', (cos 0,:4) i1s usually referred to as the coupling coefficient and k, is

the propagation constant associated with the nt* mode.

3. Evaluation of the modal field reflected at the stub (Figure 3.2{d)). This can
be expressed as [ n.e7*% where ', is the stub reflection coefficient of the n**

h

mode to the m* mode. -

. Evaluation of the reflected field at the waveguide mouth due to the n'* mode
(Figure 3.2(e). This can be expressed by R, (8)e 7% where R, (§) is the

reflection coefficient of the n** mode to the m?* mode.

5. Evaluation of the radiated field attributed to the m®* mode incident at the

waveguide mouth (Figure 3.2(f). This field can be expressed as
F! (6) = /c P, (cos a; §) e Tkopcos(a=8) gy (3.7)

where P, (cosa,§) is proportional to the spectrum of the currents induced on

the half plane due to the incident m** mode.
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Accordingly. the scattered field by the recessed stub geometry in Figure 3.2a,

given v for y > 8

Flioio,é.d = /C [Py (cos a.cos 0,; 8)+Pnoq (cos a.cos 0,: 8. d)] e"’k°"°°s(c“°)da

(3.3,
where P4 (cos a.cos o,: 6,d) is associated with the presence of the stub and includeg

the contribution of the waveguide modal fields. It can be written in a matrix forp,

as 23

Proilcosa.coso,ibod) =
(P (cosa: )T {I] = [Winn (d)][Tmn)[Wonn (d)][Rmn (6)]}

Wonn ()T mn] [Wonn (d)][Cr (05 05 6)] (3.9,

in which the brackets signify column or square matrices depending on whether one
or two subscripts appear, respectively. In addition, [/] denotes the identity matrix

and (1., (d)] is the modal propagation matrix whose elements are given by

e~imd m=n
Wan(d) = { (3.10)
0, m # n.

To obtain the field scattered by the recessed material slab it is only required to set d
and é to 0 in (3.8) and (3.9). In this case, [Wmna (d = 0)] becomes the identity matrix
and {I'»,] reduces to [I] or —[I] for H, and E, polarizations, respectively. Thus,

P...4 becomes

Prod (cos a, cos ¢,) S Prod (cos a,cos ¢o;6 = 0,d = 0)

= [P (cosa)] {[I] = vi[Rmn]} " [v1Cn (cos ¢,)] (3.11)

where

P, (cos @) def P, (cosa;8 =0)
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4 4; ; -
C.(coso,) = Cr(coso,: 6 = 0)
de .
Rmn =f Rmn(OZO) (3,12

Hence. the feld scatrered by the vertically inhomogeneous recessed slab can be ex-

nressed as
Fl(o.0,) = / P.,(cosa,coso,) e /krcos(a=2) 4, . y>0 (3.13)
-

where

P.y{cosa.cos0,) = Pyy(cosa.cos0,) + P, (cosa.coso,). (3.14)

The steepest descent method can then be emploved to evaluate (3.13) and obtain

rhe diffracted fleld.
3.2 Plane Wave Diffraction and Mode Coupling
Consider the plane wave
F' =  glkolrcos 0oty sinao) ' (3.15)

Fi = vlsin¢oejko(rcosa>o+ysin¢o) (316)
r

incident at an angle o, upon the structure depicted in Figure 3.2(b). In the absence

of the perfectly conducting half-plane, the total ﬁelds may be written as (for y > 0)

FP = F!4FT (3.17)
with
F; = R(Coséo)6jk°(“°s¢°'y5i"d’°) (3.19)

F. = —uv1R(coso,)sin o,e’ (032 -ysindo) (3.20
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where F1(coso,) denotes the plane wave reflection coefficient of the grounded Sla:
referred 70 v = (J. For the general case of a plane wave incident at an angle o oy

verticaly inhomogeneous ground plane coating, R(\ = cos &) may be represente &

AN = VIZAB () 3
AN+ VI—RB(O))

where A(\) and B (A) are even functions of A. with any branch cuts in A{\) a,

R(\) = -

appearing in B (\) and vice versa.
The introdnction of the perfectly conducting half plane at y = § generates 4

addizional scattered field component F so that the total fields become

= FM™+F? (3.22,

F,
F, = FI"+F; (3.23,

This scattered field is due to induced currents on the perfectly conducting half-plane,
and can thus be represented by an angular spectrum of plane waves. A suitable
representation is {10]
Jo P (cos a) elkedsinag=ikopcos(6=a)dq y >4,
F*={ [ Q(cosa)eikosina [e-jkopcos(cb+a) (3.24)
+R (cos(m — a)) e~tkorcos(é=a)l 4o 0 <y < 6,
implying
— [ovisina P (cos a) efkodsinag=ikopcos(é-a)q y > 6,
F:={ [cvisina @ (cos ) e~Ikelsina [e'j"°"°°’(¢+°‘) (3.25)
—R(cos (r — a)) e~ikorcos(¢=a)l dog 0 <y < §,
in which P {cos @) and @ (cos @) are the unknown spectral functions to be determined

from the boundary conditions at y = 0. These are



Bl Conminaite of the rangential electric flelds at y = 6. —x <1 < x
B2 Continuity of the tangential magnetic flelds at y =& £ <0
B3 Vauisiing tangential electric field on the perfectly conducting half-

planeat y =& >0

and we note that the boundary condition at the slab surface is implicitly taken into
account by the representacion (3.24) and (3.23).
The appiicakion of {B1)-(B3) in conjunction witn (3.24) and (3.23) is straight-
forward. [t results in the set of equations
P(A) = —iQ(N) [1 = R(N) e 20VIF] (3.26)
_; Q (M ra())e™5P g\ =0 ; z <0, (3.27)
[ Qe () L= R (N) BRI ke <

13 () /1= A2 IRtV [1 — 0 R(\,) e~ Wkf 1-'\%] elkomhe 2 > ((3.23)

where we have set A\ = cosa, A\, = cos @, and

1, E, polarization,

vy (A\) = { (3.29)
1/v/1=A2% H, polarization.
1/V/1=A?% E, polarization,

v3(A) = { (3.30)
1, H, polarization.

These are sufficient to obtain a solution for @ (A\) and P ()). However, before pro-
ceeding, it is necessary to rewrite certain terms in the integrands of (3.27) and (3.28)
as products of “upper” and “lower” functions, that is, functions free of poles, zeros,
and branch cuts in the upper and lower half ) planes, respectively. In the process of

doing so. we introduce the definitions

v (A vF(vy () (3311



v () E e (V) es () 33
fo Ly (NI, (M)
LN, (0

.
@®

, - SV/Ioa2
L — 0 R{\) e=2keoV1=A

..
.
e

in which

Loy(XN8) Uy (Xi6) = A (M) (14 vy em2besVi=0)
+V1=A2B/( \)( - e‘zjk"'s“l"":) 3.3y,
Ly, (\)=A(\) +VI=A2B (A

In these. L, (\). Ly (A:8), vy (A), v3 (A) are lower functions while U, (\) U7y (\: )
v7 (\). v (A) denote upper functions. We also note that LI, is a function charac.
teristic to the loaded parallel plate waveguide énd its zeros correspond to modes in
the waveguide. On the other hand, L,U, is a function characteristic to the grounded
slab with its zeros corresponding to the sur“ice wave modes supported by the slab.

Substituting (3.31)-(3.33) into (3.27) and (3.28), we have

/ Q (A ey (A e ket A =0 ; z <0, (3.36)
N - (A'5)U (Ai0) _ikozr gy _
/_wcz(/\)u;(,\)va O AT

3 Ly (M5 8) Uy (X5 68) 2 -

—vF (Ao) vg (Ao) /1= 22 eiked ‘/I‘_"o L(J(Ao; 7, (()‘o) )e”‘° sz > 0(3.37)

These coupled dual integral equations can be solved for the unknown spectra by
examining the analytic properties of the integrands, and the reader is referred to [10]

and {38] for a more explicit description of this process. From (3.36) and (3.37) the

unknown spectra are determined to be

Q(,\) _ L.w-()\o;é)U (/\ /\o )V Jkoéy/l—/\g (338)
2710 (1:9) Ly () v;u) ()( Iy
P(\) = —tily (A‘SL (’\"’5 Ao) v (Vo) 1~ 3 eIkeSV17Ns (3 39
277 L, ( A)v3 (A) (A + A
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Recognizing that P;; (A1 = P(A). we may then set § = 0 and substitute for the
polarization lenendent fanctions to obtain
. L,.(ML,(A) VI—=AVI = A,
Pi;t\) = ; (3.40)

& LML (N (v A

by = Lu(NLu) VIFAVITE )
= TR T N L, () (A ) ‘

where the superscripts e and h refer to the spectra associated with £, and H. po-
larizations, respectively.
To solve for the fleld coupled into thegeg:. .0 <y < é, z >0, (3.21), (3.33) and

(3.33) are substituted into (3.24) to obtain the integral expression

N

o vy () e () /1=A2 Lo (A6 )e:kool\/x- -/
N TR R > LW LT )

sin (kyv1 — A2

[-2).4(,\) in (ky )
VI-\2

+2B () cos (k oy\/l - \2)} —kEAIN(3.42)

for 0 < y < é. This can be evaluated by closing the path of integration via a semi-
infinite contour in the lower half A plane. The sum of the residues of the captured

poles then vields

n=1

(3.43)

where {\,} are the zeros of U, (A;$),

Cn(/\o) = —2 Cjk"‘s\/i-—’\g-m Lw(/\o’ 5) U2+ (Ao) v3— (/\0) 1—/\3
\ Ly (M) Ls (X)) Uy, (Ani 8) vz (An) 03 (An) (An + 20)’
(3.44)
and
du,,

= Wl 3.43
L (\TH(S) d)\ A= ‘\n (3 O)

Substituting (3.29) and (3.30) into (3.44) with § = 0, we obtain the more explicit



forms for C,i\,) as

PN = 2L, () VI= VT =\, |
C L, L) O ) o+ . 2y
C"‘l()\ ) = - 2L..(X,) V9I+= A1+, '
n Ao Ls(/\n)Ls(’\o)(«"',i,(f\n) A, + A, [\3‘4:

tor £. and H. polarizations, respectively.
3.3 Reflection and Launching of a Waveguide Mode

Consider now then n** waveguide mode field (for 0 < y < 6)

sin ko 1=A2 ) |
!/1\//\2 _2 + B (A,) cos Uzoy\/l-.—— \i):i eIkoTAn

Frn“"Lll oYyl — \2> +jv1B(Aph/1 — AZsin (koy«/l—/\,{)]eﬂ‘“'\n

(3.4, .

incident at the waveguide opening (Figure 3.2(e)). The radiated fields due to thj

excitation may be again represented by (3.24) - (3.23). Subsequent application of
the boundary conditions (B1)-(B3) then yields the dual integral equations (with the

usual transformation to the A plane)

[:Q(f\)b‘i(/\)v; (A) L,(A\:8U, (X 8)

TN =0 :
ESTAY e x>0 (3.49)
ST Qe ()47 (N emitemiay = S 0. (350)
v v, eIk = ; <0, 3.5
- ? ? 2 cos (koé\/l - A,{)
where _
A(),) , E, polarization
B(),) , H, polarization.

The solution of those proceeds in a manner parallel to the previous case. The result-

ing spectra are determined to be

=04 Ly (An; 6)Us (A v3 (An)

(A) = £3.52
? 47j cos (koby/1 = A2) Lo(An)Us (X ) vy (M) vy (An)vF (A) (A + A, ’
1U4Lw(/\n;5) )U ( n) q o=

P(\) = - (3.33)
W 475 cos (koby/1 = AZ) Ly(An) Ly (A ) T (M) vy (Aa) v (A) (A + \,) k
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with L. L,. v=. etc. as defined in (3.34), (3.35) and (3.31), (3.32).
Sobstitutiog 30032900 03.30), 73.51) and (3.33) into (3.33) and setting & = 1)

we nave

T {—u,\ N Lo L) VIZAVIZX,

e . , 540
Jrn| WLV L . A=A, o

F Lw ’\ Lw ’\n 1 - A -+ '\n
PRy = B ML) VIZAWVIZ T, (3.55)

1L, (N Ls (M) A+ s
corresponding to the spectra for the £, and H, polarizations, respectively. The
modal field reflected back into the guide may be computed by substituting (3.52).
i3.21) and 13.33) into (3.24) and employing the usual transformatién to the A plane

to obtain (for 0 < y < ¢}

F: = /‘ —vgv7 (An)

T e [amcos (et = M )ur (e () () (A An)
Lw(,\..bjé) e_.,"'3r.7~5\/—1_——,‘\7
Ly(N) Ly (M) U (N2 8)
95 4 () sin (koy\/l_/\z)

AN TR

As in the case of coupling, this integral can again be evaluated by closing the path

+ 2B (\)cos (lcoy\/l - /\2)] e~ IkTAIN3.36)

of integration in (3.36) via a semi-infinite contour in the lower half A plane to obtain

N in (koyy/T— 2,) |
F: =Y R, {]’A(/\m) sin (koy + B(\,) cos (koy\/l Z A;) } g~ kozm

m=1 \/i - AZn
(3.57)
where R, are the mode reflection coefficients given by
0 _ vavs (An) e ikoby/1-32,
cos (koby/1 = A2)v7 (Am) v7 (An) v3 (Am) (Am + An)
w /\71.;6 -
Lo ) (3.38)

Ls(Am) Ls (An) U, (Ams 6)

When ¢ is set to zero, this reduces to

. A(\) L, () VI= . /T= X,
Rmn = L

—_— 3.5,
o L O L O U ) A+ A o
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R = B(A, wifn) m n _
( )_f_s(;\m)m,\n)c;(,\m) A+ Ay 134,

for the £ and [, polarizations. respectively.

3.4 Computation of Spectra for Material Insert in a Per.
fectly Conducting Ground Plane

We now have all the necessary components required for constructing the specty,

Pl associated with the multilayer slab recessed in a ground plane as defined i,

(3.14). Substituting (3.40). (3.46), (3.54), (3.39) and (3.11) into (3.14) we obtain the

E. polarization result

P (A = g2 Ee () V1= s ZZ =)
'5"’“')—27JL3(,)L5(,\9) e e v

m=1ln=1"~

where

- —‘4 (/\"l) Lw (A ) r E
e = Ziin) L= Am/l= A V2. (36
e LomLogr oY =Y
Vin = {1 + [Rmal} o - (3.63)
For H, polarization, the spectra may be obtained by substituting (3.41), (3.47),
(3.33), (3.60) and (3.11) into (3.14) to find

- o) V \/"_ NooVh A+,

Ph(AA) = el AT LSy - )

275 Ly (A ) ,( o) A+ Ao o+ A A F A
(3.64)

where
Vi = B(Am) Lu \/1+Am\/1+A (3.65)
mn ™ Ly (A )L (/\

Ve = {[] = [Rmal}2L. (3.66)

Expressions (3.61) and (3.64) can now be substituted into (3.13) and the resulrins

integral can be evaluated by the method of steepest descents to vield the fo: -



non-uniform diffracted field

() - e‘,;kop

o B . \ - o/ ; \ 5 -
! COSD.COsS O, ) ~ \/"—‘—c‘ / P,s 1 COS ©.COS Q) —7_-— 13.67:
o P

where ' .o denote the usual cylindrical coordinates. In (3.67). F*® and P., refer
to £2 and P in the case of E. incidence and to Z,H?, P! for H, polarization.
Although not apparent, (3.67) is reciprocal with respect to cosé and coso,. as it
should. We also note that P, (A, \,) is a combination of an inhomogeneous solution
(direct diffracted term) and a sum of homogeneous solutions (modal contribution}.
[t may also be easily shown from the asymptotic behavior of (3.61) and (3.64) thas

the homogeneous terms do not affect the edge condition.

3.5 Specialization to the GIBC Representation

To obtain numerical results, we must first provide expressions for the multilayvered
grounded slab reflection coefficient (i.e. A(A) and B())), as well as the associated
split functions and corresponding complex roots (waveguide modes). To accomplish
these tasks in a simple manner, we consider the general GIBC approximation to
R (\). This amounts to setting

AN = %An (1-2%)"

n=0

B(\) = Z\‘EBﬂ(l-ﬁ)", (3.68)

n=0
where A, and B, are constants specific to the multilayered slab and are given in

chapter two. Introducing (3.68) into (3.21) yields

R(\) = —

TrzoAn (1= N)" - VI-W 508 B, ( 1—V)J (3.69)

Tndodn (L= A"+ VI=A2 T8 B, (1 - A2)"
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and note that for a given order of approximation, .V4 and .V are finite and ip zen
<%hean.. ~
=

Ny = VNgor Vy = \Ng+ 1. with the order of the condition equal to

Ns=maz (2NV4,2Ng+1). (3~

iy

To evaluate the split functions L, (X;8) and Uy, (A; 6). (3.68) is substituted iny,

(3.34) and by setting & = 0 we obtain

) WI-XTN8, B, (1= AY)" E, polarization
L.(A)U.(A) = v (3.3
2T A AL (L =AY H, polarization.

The split functions are then trivially obtained as
f 2Byy V1 — ‘VB [\/ —&n — )\] E. polarization
1 V2ANn, H‘\" [ 1-¢, - ] H, polarization.

(3.7

Cu(N) = Ly (=) =

vhere Imy/T =&, < 0 and {£,} are the N4 zeros of "2, B, x" for E, polarizatiop
or T4 A" for H, polarization. It is apparent from (3.44) and (3.72) that the
pertinent waveguide mode propagation constants are given by kov/1 — C,..
In a similar fashion, we may substitute (3.68) into (3.33) to obtain

Na PR/ 2n+1
L, (MU, (N = Z.An\/l—/\2 +ZB,,\/1-—)\2

n=0 n=0

Ngs
= Y SVITR” (3.13

n=0
Ns —\2
= S I (1 + 17 4 ) (3.74)
n=1 n

where

Anpa n is even

B(n_l)/2 n is Odd,

Ns
{7-} {zeros of the polynomial Z ? 1)' 4. (3.75)
0



The tactorization of 13.74) is again trivial upon making use of the well known splitting

germaine to "ne impecance half plane problem 34'. Noting that

——— e} V1i=A?
1+ 1-A2 = — - 3.76)
T KNe(Ain)KN_(Ain) ( '

we have. M
Us(\) =L, (=\) = (\\/1——X) V%o (3.77)
[TR2i Ke (A1)
where
K. (N7 Re(n) >

NoA\n)=h_(=\ip) = 1 ¢ T
{n

A 0
— - (3.
(,\—\/1—1/;7-‘)1\',(/\;7;)} 1 Re(n) < 0.

and

ﬁsina/?\/%[\l'”(:k/’_’—a—&)\p"(;‘-/g_a_i_m]'z
Wi (r/2) [L+ V2cos (225222)] 11 4+ /3 cos (2522

2 2

' f\i(cosa:n) =

(3.79)

[n the above Re(n > 0). Im (/1 —1/9?) <0, 6 = sin™'(1),0 < Re(6), and ¥, is

the Maliuzhinets function [22], whose evaluation in algebraic form has been given
in [30]. Whereas the zeros of U, (\) represent the waveguide modes, the zeros of
Ly (\) (which are the poles of K_) correspond to the surface waves supported by
the material layer. Although not required in this analysis, these are easily extracted
from (3.78) and (3.79).

The expressions (3.68) through (3.79) provide a complete description of a GIBC
implementation and permit the simulation of any multilayered coating. We remark
that a unique GIBC modeling of a given coating does not exist; in fact one may
emplov GIBCs of substantially different character to simulate the same configura-
tion. This point is discussed in the following section and some numerical results are

provided for illustration purposes.



3.6 Numerical Results

[n ~his section GIBC simulations of various material inserts are presenteq -
compared with exact results available for the case of a single layer. Due ;;
greater interest. data is presented only for the H, polarization case. The (;[Bé
emploved here-in are given in chapter two. These are valid for arbitrary multilay,
coatings and are therefore suited for this application. In particular. these multilay,,
GIBC are synthesized by combining the component-layer GIBC in an apprOpr-ia,_e
manner. pointing to the necessity of understanding single layer simulations in org,
to construct multilayer ones.

Figure 3.3 shows the far zone pattern of a single layer insert (¢ = 2 — ;.0001., <
1.2, = .2)) modeled by various “low contrast” GIBC (i.e. those GIBC whig’
improve as the layer thickness or index of refraction decreases). To illustrate thej
relative contributions to the far zone pattern, the direct diffraction and modal contzi.
butions have been isolated in Figures 3.3(a) and 3.3(b), respectively, with the overal
result presented in Figure 3.3(c). We note that for this low contrast GIBC, an 8"
order simulation provides a reasonable approximation to the diffraction pattern.

In Figure 3.4, both the thickness and the index of refraction have been increased
in a low contrast simulation of a (single layer) material insert with e = 3.5 — 7.0001,
g = 2.0, and 7 = .4)\. In contrast to the previous figure we now observe that a
20" order simulation is required to obtain a converged result. This degradation
with increasing index of refraction proves typical of low contrast simulations and
illustrates the need for other types of GIBC whose performance improves in this

range of material parameters.

In Figure 3.5 the same material insert corresponding to the data of Figure 3.4
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Figure 3.3: H, polarization backscatter echo width for a material insert with 7 = .2,
€ =2—7.0001, x = 1.2 modeled by low contrast GIBCs (see Table 3.1 for
an explanation of the legend entries). (a) direct diffraction component
(b) modal component (c) composite.
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(b) modal component (c) composite.
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;s simulated with high contrast GIBC (i.e.. a GIBC which improves as the index of
refraction increases or as the laver thickness decreases). In contrast to the data in
Figure 340 we now observe that only a second order high contrast GIBC simulation is
required to accurately evaluate the far zone scattering. This difference in performance
between the low and high contrast GI‘BC stems from the type of approximation
emploved in their derivation and the reader is referred to chapter two for a more in
depth discussion. Some insight on the type of simulation provided by the low and
high contrast GIBC mav Le gained through an examination of the wayeguide modes
predicted by the different simulations. These are presented in Tables 3.1 and 3.2 for
the single layer simulations corresponding to the data in Figure 3.4 and 3.3.

The exact modes given in the table are generated by the equation

/ -\ 2
’\n= \/Erﬂr— (%‘) ] n=0a1a25"" (380)
V oT

We observe that as the order of the low contrast simulation is increased, the data in
Table 3.1 reveél that the waveguide modes are “picked up” in a sequential manner
corresponding to increasing n in (3.80). On the other hand (see Table 3.2), the
high contrast GIBCs pick up the n = 2 exact mode immediately and then “branch
off” to pick up the other modes. The discrepency in pattern convergence between
Figures 3.4 and 3.5 clearly suggests that the n = 2 mode is the most significant in
terms of diffraction (for this particular configuration). We explain this physically by
noting that the n = 2 mode may be resolved into its constituent rays which strike
the interface at a characteristic angle (say #7'°?) which is greater than the critical
angle 8¢ of the material insert. On the other hand, the n = 0 and n = 1 modes are
associated with characteristic angles less than the critical angle. This implies that
upon coupling into the slab, the n = 2 waveguide mode is partially transmitted into

free space while the lower order waveguides modes remain bound.
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The above hypothesis may be tested by computing exact solutions in which the
sejection of the inciuded waveguide modes parallels the order in wiich theyv are
nicxed up depending on whether a low or high contrast GIBC simulation is emploved.
Figure 3.0 depicts a high contrast simulation of a single layer having ¢ = 11 —
5.000L.p =17, and 7 = .4\. The 10-mode result is a pattern obtained by adding in
modes sequentially as determined from (3.30), thus paralleling a low contrast mode
selection scheme. On the other hand. the single mode result contains the contribution
of only the n = 7 mode (the mode with 8™ > 6°), thus, paralleling the high contrast
mode selection criteria. This clearly verifies that the most significant waveguide
modes are those that are “visible”, i.e. those with §™ > 6¢.

Finally, Figure 3.7 provides a simulation of a three layer insert composed of two
L-ngh contrast layers (e = 11—,.000l.u = 7, and 7 = .4\ a.ﬁ.d e =3.5—,.0001,u = 2.0,
and 7 = .4A) placed beneath a low contrast layer with ¢ = 2 — ;.0001,x = 1.2 and
r = .2\, These are precisely the layers considered earlier in isolation. One might.
therefore, expect that the order of a GIBC which provided a converged result for
the single layver simulation will also provide an equally acceptable simulation when
the slab is part of a multilayer stack. For the case at hand this is indeed true, as
evidenced by the converged 9** order result. We also remark that the presence of
the two high contrast layers enhances the modal contribution to the total diffraction

when compared with the single layer data given in Figures 3.3(b) and 3.3(c¢).
3.7 Summary

[n summary, the scattering from a vertically inhomogeneous slab recessed in a
ground plane was obtained through application of the generalized scattering matrix

technique in conjunction with the dual integral equation approach. The solution was
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specialized to the case of a multilavered slab simulated with a generalized impeda 7
boundary condirion (GIBC). Results were given for various single layver insertg .

it was seen that in the case of materials having sufficiently high index of refracy,
hich contrast GIBC simulations converged more rapidly (with respect to the org,
of the GIBC and performed better than low contrast simulations. Finally, resy,
were presented for a 1\ thick lossless three-layer insert containing both high ang ko,
contrast lavers. It was shown that the simulation converged at the point pred; te

by the individual layer simulations, suggesting a method for constructing multila,.

simulations.



CHAPTER IV

GENERAL SOLUTION OF THE
DIFFRACTION BY A MATERIAL
DISCONTINUITY IN A THICK
DIELECTRIC/FERRITE SLAB

~In this chapter and the following one it is demonstrated that a GIBC/GSTC
sheet characterization can yield a unique solution when supplemented with certain
conditions at the sheet discontinuity which do not require an apriori knowledge of
the edge fields. As a vehicle for presenting this solution procedure we employ the
dual integral equation method to consider the plane wave diffraction by a discon-
tinuous distributed sheet (see Figure 4.1(b)). This very general model is capable of
representing material half-planes, material junctions, and material discontinuities on
grounded structures, such as those shown in Figure 4.2. In addition, a distributed
sheet model typically renders the same degree of accuracy as the usual infinitely-thin
sheet. but with a lower order condition. It is, therefore, of much practical interest.

In the first section of the chapter, the GSTC representation of the distributed
sheet.discontinuity is used to develop dual integral equations in terms of the un-
known spectral functions proportional to the sheet currents. These equations are
then solved in the standard manner to yield expressions for the spectral functions in

terms of unknown constants. The constants are dependent on the material and geo-

73



A

-aLZ + j _QX__
Odd GSTC: 4, kZ){F'F}"'JE 12{ 2)35’[1: +F} 0

2 .
Even GSTC: u,, '%(XT {F++F}+1Euu[ ax—)ay[F -Fl=o
(a)
y

u ,u ,u u u ,utz,um,ua

Figure 4.1: (a) Distributed sheet. (b) Distributed sheet discontinuity.
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metrical properties of the discontinuity and their specific value is identified here ;.

&
several discontinuities by comparison with a few known diffraction solutiong 1.
demonsirates the validity of the presented solution. but in general. the determma%;
ot thie constants requires the enforcement of additional constraints demanding fiel

continuity accross the laver discontinuity. The development of these conditions ang

their use in solving for the constants are presented in chapter five.

4.1 Dual Integral Equation Formulation

Consider a distributed sheet of thickness 7 illuminated by the plane wave
E.inc E, polarization.
F . = e]k(:cosoo-é-ysinoo) — (4
ine = - (4]
Z,H, in., H. polarization.
as shown in Figure 4.1(a). The excitation (4.1) induces reflected and transmitteg
fields which are explicitly given by the properties of the distributed sheet. If thi

sheet models a symmetric slab, then an appropriate GSTC representation is formally

given by (see chapter 2)

Uy ('%2‘2) {F+_F_}+%u112 (—-i—f) {(9y [F++F"]}=O, -0 <<

Ul <—%f;> {Fr+F}+ %ugz (-%) {y[F*-F7]} =0, ~o<z<00
(4.3)
in which F is the total field, F* = F (z,y = £7/2), 0zF* = £F (z,y = +7/2), and
OyF* = %F(z,y) ly=2r/2. Also, U}, (—%i) are differential operators which operate
on the field quantity in the curly brackets, and are finite polynomials in -%’;—2 whose
coefficients depend on the slab modeled by the distributed sheet. To maintain the
generality of the solution. the U}, operators are left in symbolic form and the reader

is referred to chapter two for their explicit representation in terms of the materia.



constants and thickness of the layers comprising the modeled slab. In general. the
order of {{;) ri.e. the highest derivative present) is usually the same or one more than
that of Uy and similarly the order of If,, is the same or one more than the order of

2{:;. Thrisowe mav define the orders of the GSTCs in (4.3) to be

N = maximum{ order of I}, (,\2) .1 + order of i}, (,\2)
NP o= maximum{ order of 4;, (,\2) .1+ order of U}, (,\2>

(1.4)

The reflected and transmitted fields may now be easily determined by emploving

(4.3) to find

Frefl — RleJk(ICOS'Do-l/Sm'Do) (45)

Ftran — Tlejk(rcosoc-f-ysmoo) (461

in which Ry and T are the reflection and transmis- >n coefficients, respectively, and

are given as

ejkrsinéo _
Rl = 5 [R;uen+Ridd] (4‘)
ejkfsindao ven dd .
T, = —— [R™ - R3™]. (4.8)

with

sin @1, (cos? @,) — U3, (cos? &,)
sin @,U3, (cos? @,) + U3 (cos? @,)
sin ¢ UL, (cos? @,) — U}y (cos? ¢,)

odd = . 1.10
Ry sin @,U1, (cos? @,) + U}, (cos? d,) (410

Reven (4.9)

We remark that in (4.) and (4.10), U} (cos® ¢,) now represent simple polynomial
functions in cos? o,. since —dz%/k? = cos?d, in view of the field expressions (4.3

and (4.6).
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Consider now the case where the right half of the distributed sheet in Figure 4y,
'khh
1s repiaced by another sheet of the same thickness. but of different Propertieg

lilustrated in Figure 4.1(b). The GSTC representation of this modified sheet is

it (")A‘> (Fr=Fr}+ (‘QEﬁ) rlFr )

Y LG T G F s S

il
o

for —x< <z < 0 and

Ui (ﬁx—zj {(Fr—F )+ i—ufz (-%i) {oy[Fr+F)} =0

i2
Us, (_%.I;j) {F* + F_} + %L{;"z (—%;) {0y {F*‘ - F‘]} = 0, (4.1-3\;

for 0 < z < >c. where the superscripts 1 and 2 distinguish the left- and right-hanq-
sheets. respectively. Referring to our previous discussion, the orders of the right hang

side GSTCs are given as

N = max{ order of U}, (/\2) in \,1 + order of U}, (/\2) in /\}

N o= max{ order of U2, ()\2) in A\,1 4+ order of U2, (A2) in ,\}. (4.13)

The modified right hand side sheet induces a scattered field F, in the presence of

the excitation (4.1), and the total field can now be represented as

Finc+Frefl+Fa y>T/2
F= (4.14)
Ftra.n+Fa y<T‘/2

where Fj is the unknown scattered field in the region |y| > 7/2 and can be expressed
as either [10] [52]

Fs(rfy)=/

[M odd (COS @) + Peyen (cOs a)] eIksinallyl=r/2)g=skzcosagy ;-
cly
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Re(a) +

Im(A)
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Figure 4.3: (a) Illustration of C contour in the complex a plane and (b) complex A
plane.
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=/ ——Pw (A) F Prsen (A)| e HVITImT e msint ——
V1I—A\? )

npon invoking the transformation A = cosa. The contour C in (4.135) is the inte,
gration path in the complex a plane shown in Figure 4.3(a), and its counterpart g,
the \ plane is illustrated in Figure 4.3(b). Also, the spectral functions P,z () apy
P...n | \) are directly related to the Fourier transforms of the unknown equivaley,

currents

Jodd = F,P - F,— (‘L.IT‘
Jeven = F3++F3‘7 (413‘
via the relations
Ckey dA o
Joda(z) = / Padd 7* \m (+.1%

- —ka\ 20,
Jeven (l‘) = / Peven \/l—-_,\z- (‘L'-O!

Assuming that

Jodd(z) ~ %% asz —0

Jeven(z) ~ z'" asz—0 (4.21)

with 0 < Sogg < 1 and 0 < Sepen < 1, from (4.19) - (4.20) and the Abelian theorem

we have
Poga(A) ~ A7%d as [A] — o0

Pcuen(A) ~  \T%even ag IA‘ — OO (-LZ.-.))

From the asymptotic behavior of P,g4(A\) and Peyen (), it may be easily seen that

the integral representation (4.16) is well-behaved and convergent for all z and
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Substituting {($.1), (4.3). (4.6), (4.14) and (4.16) into the transition conditions (4.11)

and 4.127 we obrain

< dA
~odd , —jkz\ —
/ﬂogq () Poda(A)e™ Vel 0 (4.23)
L even —ikr d\
/_xgl (/\2) Payen (A) e755 == = 0 (+.24)

for r < 0 and

2sin o,/ kF o)k /2sin00 7\ (\2)

XX 9oodd (|2 , —jkzN_d\ DR
JZL 2G5 (A°) Poga (M) e T = REIE, (423
_- —ikz\ ) 2sin ¢,elkTro elkT/23in Gcz‘ww( \2) A

fj 7g”“"”( Pevm((\)e Ikz -\;T_—\T = 2 G, (426)

for £ > 0. where A\, = cos 0, and

N = ul (A + VIR, (V) (4.27)
grem (W) = uh (W) + VI—auh (V) (4.28)
2\ = uf (V) + vVI=aug (V) (4.29)
(0 = ud (0 + VImNug (3 (4.30)
Zoaa (M) = [uh (M) ud (02) —ul, (02 uf, (32)] (4.31)
Zowen (A2) = [ty (\2) Uy (02) =ty (A2 14, (A2)] (4.32)

Note that strictly speaking, the integrals in (2.26)-(2.31) are not convergent because
of the polynomial order of the integrands. This difficulty is common in analytical
GIBC solutions and may be remedied by working with integrated field quantities
as discussed in [39] and [44]. It has been shown, though, that the final solution is
the same regardless of this remedy and for the sake of simplicity we will proceed
with the solution of the dual integral equations as if all Fourier inverse and forward
transforms existed in the classical sense.

Equations (4.23) with (4.23) and (4.24) with (4.26) form two uncoupled sets of

integral equations which are sufficient to yield a solution for the unknown spectra
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P,aa(A) and P..., (). Clearly, because of the similarity between the two sets o

equations. once a solution for P,z () is found. the corresponding one for Pl

follows by inspection.
4.2 Solution of the Dual Integral Equations

In proceeding with the solution of P,qq4 (A) we first rewrite (4.23) in a more suitabl,

manner, viz.

/oo {ggdd(,\% P,ig()\)  sino,ek/2singo 7 (\2)

- —IkzN I\ = 0 133
V1=\2 * 277G (X.) (A + A,) }e g

for r > 0. Closing now the integration paths in (4.23) and (4.33) by semi-infinite
contours in the upper- and lower-half A planes, respectively, leads to the deductiog

that

G (A2) Py ()

=U,(A (1.34)
Ji-x 2 |
AN Poaa (V) | sindoe™ 2% 7,04 (V) Eows (M) _ () (433

Vi 277G (M) (A +X0) Eoaa(=Xo) ~ 7 |

where U, (A) and L, () are unknown functions regular in the upper- or lower-half
of the A plane. Also, E,44()) is an unknown entire function to be determined along
with P,yq(A), U,(A) and L, (A). To solve for these, it is necessary to exploit the
analyticity properties of (4.34) and (4.35) in the different regions of the complex \
plane. An important part of this process is the factorization of the G functions in
(4.34) and (4.33) into a product of upper and lower functions (that is, functions free
of poles, zeros, and branch cuts in the upper- or lower-half \ plane, respectively).

This task is described in the appendix. We have

PN = g (NG (N

leven (/\2) — gf‘iﬁn (A) ]C.lien (A)
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g;dd (\2) — gid(\)godd(/ )

Gl (\) G () (1.36)

<y
L 3% 2
bt

N
o
[S]
N——

Il

where the superscipts = denote upper or lower functions. respectively. Combining

i+.347 with (4.33) in conjunction with (4.36) and rearranging terms we obtain

g'.:i(’\)c'a(’\) S(/\) Odd(\) L (\) od:i(\) .
gz (A (A FA) G (N~ G(N) (4.37)

where
sin 0,e/k7/25i000 7 1 (A2) Eogq (M)

S(\) = - .
(A) 277G (A2) Eoqa (—As)

(4.33)

The second term of (4.37) may be easily split into a sum of upper and lower functions.

and when this is done. (4.37) can be rewritten as

g;id(,\)c'.,r,\,), S(AG(N,) Lo\ Gy )
g3t (\) (A= As)G33(N,) 34 (A)

SN [N Gita,)
) LG G5 (h)

(4.39)

The left hand side of (4.39) is now regular in the uppef half of the A plane while its
richt hand side is regular in the lower half of the A plane. By Liouville’s theorem, both
sides must then be equal to a polynomial, and to determine the order of this poly-
nomial it is necessary to examine the asymptotic behavior of the individual terms in
(4.39). From (4.4) and (4.13) G234 (X) ~ AN§*/2 Godd (}) ~ ANP/2 implying that the
left hand side of (4.39) behaves as || (M7*+N3%)/2-1=%04a when |\| — oo, provided that
E.4(\) behaves no worse than |A|(Veaa+Noaa)/2=%0dd a5 |\| — co. The right hand side
of (4.39) will then behave as the greater of |\|Mf*=1=%aa and |\|(NP*+N7*)/2-1-50ad
when |A] — oc. In accordance with Liouville’s theorem, both sides of (4.39) will
Npdd 4. Ngdd

then be equal to a polynomial of order int {—*—-—;—L -1- sodd}. In terms of this

unknown polynomial. we may solve first for U, (1) and subsequently for P,qq(\) to
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e

find that

J sino,/1—=2\2 glkT/2sino,

ST T AN GEOGEOLGE NG ()

Voda=1 Nogg=1-m

EO m \n
.(zodd (,\g)E da + Z S ma (A 00T (AN,) (44,
- n=0

In this, N,ue = int {1/2(NV1, + N2, + 1)}, and an, are arbitrary constants ag -
undetermined. and correspond to the coefficients of the polynomial resulting from
the application of Liouville's theorem. The chosen symmetric form of this polynom;,
is not unique but will be found most useful later in constructing a reciprocal forp,

for Podd (,\)

Following a similar procedure we also obtain P.,., (A) as

sin o,V 1—A2 : eik™/2sina,

J
Peve‘n. /\ = — "
(A) 2x A+ A, cven (1)) Geven (), euen( )geten(/ )
2 E‘Len (/ ) Neven=1 Neven=1=m _ )
Zeven (/\0) = _\\ + z bm‘n ()\ + Ao) (’\’\o) (_L_H
Eeuen (—'/\a) = —

with Eepen (A), N..on and b, being the counterparts of E,4q (M), N4 and a;nn,
respectivelv. We note that (4.40) and (4.41) imply that the powers s,4q and s,
governing the behavior of the equivalent currents J,q4(z) and Jeyen(z), respectively,

are given as

1 NY,+ N2, is even

Sodd = (442)
1/2 Noldd+Ndd 18 Odd
1 NL..+NZ. iseven

Seven = { (4.43)
1'/2 Nelven + Nezvﬂn is Odd

To determine the unknown entire functions E,4q (A) and Eeuen (1), we observe

that the spectra P,gq (A) and Peyen (A) must exhibit a reciprocal form, which may be
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achieved by setting E,qq () and Eeven (A) equal to any of the following functions:

Zogi(—AN,) or

Eaa(\) = { Z5,(\) or (4.44)
AN
( Zeyen (—AX,) oF
Eeven(A) = $ Z5..(N) or (4.43)
Z&en (A)

where Z7;; .pen (A) and Z34; .pen (A) are upper and lower functions satisfying the re-

lation
Zodd,evcn (AZ) = Zodd even (/\) odd even (A) (446)

Taking into account the choices (4.44) and (4.45), we may substitute (4.40) and
~ (4.41) into (4.13) and subsequently perform a steepest descent path evaluation to

obtain for p — ¢ (all surface wave contributions are neglected in this evaluation)
’ ’ e=Tke

F (p.0) ~ [Dodd (8, #0) + Deven (¢, ¢0)] \/_;;—E

where (p, ¢) are the usual cylindrical coordinates and D 44 (@, ¢o) + Deven (@, ¢o) is

(4.47)

the far zone diffraction coefficient symmetric with respect to ¢ and ¢,. We have

e~i"/* sin ¢, sin ¢
27 cos ¢ + cos ¢,
ejkr/Q(sin do+|sin ¢|)

goad (cos (,‘D) godd (cos ¢o) godd (Cos ¢) godd (cos ¢°)

Dodd (¢s ¢o) = -

Nodd"'l Nodd‘l-m
[Zadd (cos ¢, cos ¢,) + Z Z Amn (cOs @ +cos @,)™ (cos @ cos ¢°)"] (4.48)
m=1 n=0

e~I"/4 sin ¢,|sin ¢|
27T cos ¢ + cos ¢,
ejk‘r/2(sind>o+]sind>|)

. «pLen (COS @) euen (COS ¢o) gcven (COS ¢) geven (COS ¢o)

Deven (¢a ¢o)

1Veven—1 Neven"l m
[Zeven (cos ¢,cos @) + D )" bmn (cos ¢ +cos @,)™ (cos ¢ cos qSo)"}

m=1 n=0

(4.49)
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in which the functions Z,4q...n (cos ¢.cos 0,) are given by (see (4.44) and (4,45})

Zsqd (— cos ©cos &,) or

Z544(C050,.080,) = ( Zr.(cose)Zr,(coso,) or (43

( Z},,(cos o) ZF,, (cos o,)
(Zeyen (— COS ©COS ©,) or

~

Zeyen (COS 0,C080,) = zZ7

even even

(cos0) Z;,., (cos ©,) or (43

\ ZF,, (coso) Z}, (cosd,)

even

Because the above three choices for Zodd and Zevm differ only by terms of the fory
(cos 0 + cos 0,)™ (cos @ cos ,)", it is immaterial which of them we choose, althoug‘:
one of the choices may likely lead to a more compact representation. Nevertheless
regardless of the choice of Z,qg and Z.,en, one is still faced with the determination
the unknown constants am,, and bmn in (4.48) and (4.49), respectively. These are ;.
manifestation of the non-uniqueness of the finite-order GSTC sheet model employeg
he: .n, and their explicit determination requires the introduction of additional cop.
straints pertaining to the physics of the problem as discussed in chapter five. In some
cases, however, these constants can be determined by comparison with alternative

diffraction solutions, and this is considered next.

4.3 Discussion of the Solution and Some Applications

4.3.1 Diffraction by thin single layer discontinuous slabs

The diffraction coefficient given by (4.48) and (4.49) is very general and can
model a wide variety of geometries. To check its validity, display its versatility, and
assess the relative importance of the unknown constants, we consider several simple
configurations which can be modelled with the proposed GSTCs. Their geometries
are shown in Figures 4.4(a)-4.4(c) and include the single layer join, the material-metal

join. and the material half plane. all of thickness 2w. Herewith, these are mode.~
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by a distributed sheet discontinuity of thickness 2(w — w,) (see Figure +.4(d)) g
although. in general. it is not necessary to employ a sheet thickness different from '
that of the slab. this is useful here for comparison with previous results.

If the left hand side of the slab is assumed to be thin and having a low indey o
refraction. it may be modeled by a low contrast GSTC sheet. Thus, an O(wl‘wﬁ)

approximation with terms of O(w,w) neglected is sufficient for the representation o

the operators or polynomials ¢}, In particular, we have

Uy (=022 /k?) = 1

Ul (~022 k) = jk(ww - w,)

Ul (027K = jk (}%& _ w,) + ]E (S)I _ w,> 922

Ul (-0:7/k?) = 1 | (439

where €, and p, are the relative permittivity and permeability of the left hand slab,
respectively, and

p1, E, polarization
uy = (453)

€1 H, polarization

Also, when w, = w, these are simply the transition conditions derived first by We-
instein [39] and later by Senior and Volakis [39]. The corresponding polynomials to

be employed in (4.27) - (4.32) are given by

U, (—cospcosg,) = 1

U, (—cosdpcosd,) = jk(ww— w,)
We Uy
Uy

Us, (—cospcosd,) = 1 (4.54)

Uy (—cospcos ¢,) = jk( —w,) + jk (5)——-111,) cos ¢ cos ¢,
1

Incorporating these into (4.48) and (4.49) and setting

~

Z 44 (COS 3,08 @p) = Zoqq (— cos ¢ cos ¢,) i4.55"
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Zeven (COS 0,C080,) = Z,yen (— cos ¢ cos 6,) (1.36)
}-ieinis

R -jr/4 : :
Doilo.0,) = —= sin 9, sin 0 g K7 /2(sin 00+ sin 3])

‘ 2T cos o + cos o,

U2 (= cosocos 0,) — jk (ww — w,) UF (= cos bcos ,)

"M _ (cos 0:7°941) M_ (cos 0,; 7°%41) G244 (cos 0) G337 (cos o,)

e~I7/* sino,|sind| . , ‘
Deenl0.0,) = — 1 gIk7/2sin oo+ sinal)

27 cos @ + cos o,

. [ay + a, cos ¢ cos b,] UZ, (— cos & cos @,) — UF, (— cos o cos o,)
{' . / v .
ag [Tz M- (cos 05 ym °"’1) M_ (cos Bo; ‘/f,{’m'l)] G5vem (cos ¢) G5u™ (cos 0,)

bio (cos & + cos ,)

+ = en . even -
as| z _ M. (cos o Ym ‘1);1[_ (cos Oo; Im '1)]953'_"" (cos 9)g55™ (cos 9,) }
(+.33)
where the split function M_ (cos ¢; v) is given in the appendix.
ay = jk (_____weml - ws>
Uy
Qo = ]IC <£ - w,)
U
 kw
as = = (am—1) (4.39)
Uy
and
odd,1 __ —j

k(uyw — w,)

even.1 u; = \/u% + 4k%w (11 — 1) (w — uyw,) (4.60)
e = 27k (w — w,uy) ‘

with y°44°r even representing possible surface wave poles. To complete the definition
of (4.37) and (4.58), the functions associated with the right hand side properties of
the slab (i.e. those functions with the superscript 2) must be specified. Referring
to the configurations in Figure 4.4(a)-4.4(c), Table 4.1 and Table 4.2 provide ex-

plicit expressions for the functions UZ (— cos ¢ cos ¢,), G312 (cos ¢) G232 (cos 0.+ w1.i)
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g3 (cos0) G5 (cos 0,) terms. By edge condition considerations. all of the
.
%
stants a., and b, have been set to zero except b;p appearing in the deﬁnitigp
D,..n. which is non-zero unless the right hand side slab is a PEC/PMC Unde,
&

E./H, excitation (see Table 4.2).

4.3.2 Diffraction by a resistive-resistive junction

When w = w,, and the material parameters of the slab geometries in [,

ures 4.4(a) and 4.4(c) take the limits

€12 — &

H12 — OO

r — 0
) 1
Jkw(e12—1) — —
M2
. 1
Jkw(pr2=1) — — (4.61)
M,2

the resulting configuration corresponds to coincident resistive and conductive sheet
junctions [37], where 7n{, and n{% denote the resistivities and conductivities of the
respective sheets. In this case, the constant b, is forced to zero by the edge condition,

and (4.57) and (4.38) simplify to

Dogd (cos ¢,cos ) =

sin ¢ d (cos @, cos ¢,) (1/n3* — 1/n7*)
M_ (cos ¢; 1/n7*) M_ (cos ¢,; 1/nT*) M, (cos ¢; 1/n5*) My (cos @,; 1/77;)

Deuen (COS ¢a cos <bo) =

62)

| sin @| d(cos @, cos &,) (15 — 1%)
M _ (cos ¢; 1/nf) M- (cos ¢o; 1/n5) My (cos ¢;1/n3) M. (cos ¢o; 1/75)

(4.63)

for E, polarization and

Dodé'(COS b,cos ¢,) =
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sino d(cos d.cos d,) (1/n5 — 1/n%)

, , (4.64
M_icoso:l/ng) M_(cos o, 1/nt) My (cosoil/ni) My (coso,:1/ns5) )
D.oonicos o, co30,) =
'sinol| d(coso.cos0,) (N —n) 4 63)
- 65
M_(cosoi1/n*) M_(cos @, 1/nT") M4 (coso;1/n7) My (cos o,; /0T

for H. polarization, where

e~Im/4 sin @,

d (cos @, cos ¢,) = — (4.66)

2% coso + cos 9,

Note that if both 7f{, nf — oo (i.e., the resistive sheets disappear), then
D, 44 (cos 0.cos 0,) and D,yen (cos 0, cos @,) tend to zero for H, and £, polarizations,
respectively. On the other hand, if both n*, n* — oo (i.e., the conductive sheets
disappear),then D,qq (cos ¢.cos 0,) and D ,yen (cos @, cos ¢,) tend to zero for E, and
H. polarizations. respectively. This is, of course, because resistive and conductive
sheets scatter independently of each other. Consequently, the field diffracted by a
resistive to conductive sheet junction is the superposition of the individual sheet

contributions [39].

4.3.3 Diffraction by grounded metal-dielectric junctions

Of the geometries shown in Figure 4.4, the diffracted field associated with the
metal-dielectric junction (Figure 4.4(b)) is given in chapter three and can therefore
be used to partially validate the derived solution. However, in order to study only
the effect of the constant b9, we need to exclude the odd-symmetry portion of the
metal-dielectric join diffraction coefficient. To this end, we focus on the recessed slab
geometry of Figure 4.5(a), whose H, polarization diffraction coefficient is related

(through image theory) to that of the metal-dielectric join by

D, (cos ¢,c0s ¢o) = 2D.yen (cOs ¢, cos ¢,) (4.67
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Figure 4.5: (a) Recessed slab (PEC stub) (b) Grounded slab with truncated upper
plate (c) Recessed slab (PMC stub) (d) GIBC sheet
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with Deven given by (4.38) along with the PEC(H,-pol.) entries of Table 4.2. As
noted above. tor a right hand side PEC slab with E_ polarization. the edge condition
demands 5,5 = 0 in this case.

For the recessed slab geometry illuminated with an H. polarized plane wave. the

GSTC (4.11) and (4.12) become the GIBC

dr? J dz? .
1 + 1 +\ _ <
Un <'_/:2_> {F }+ 76-1/(22 <—F) {3yF } =0, (4.63)
for —> <z < 0 and
i (=) (e Y+ La (225 (ay ) < 0 1.69)
=T AT g\ - o) = o

for 0 < z < o0, with the U, operators given in (4.52). Clearly, these GIBC can
represent any of the configurations displayed in Figure 4.3(a)-(c) without regard to
whether a stub (PEC or PMC) or not is placed at the junction. This information
can only be carried by the constant by as the term distinguishing the diffraction
coefﬁcient's among the geometries of Figure 4.5(a)-(c). Thus, the determination of
bio must somehow involve the properties of the junction across its thickness and
this is discussed in chapter five. However, since the solution of the configuration in
Figure 4.53(a)-(c) are already available in chapter three, b,y can be identified for each
geometry by comparing (4.58) with the appropriate solutions given in chapter three.

Upon setting w, = 0, we find

pR0 stub _ jkw Z—:
ppec stub _ jkw\/%:
1 =~
s ( fem - 1) (M- (v M- (e, 15)] +1/2
ppme stub _ jkw\/%_
10 =

Lo (e — 1) (M- (eam, ) M- (e, 7;“"")]2 —1/2

(4.70)
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corresponding to the constants associated with the diffraction coefficients for th
8
geometries in Figure 4.3(b), Figure 4.5(a), and Figure 4.5(c), respectively. We nor
s

that these constants are based on the choice of Z.en (cos @,cos @,) as given in (4.36

Had this function been chosen as

~

Zeyen (COS @, c080,) = Z_.,, (cOs @) Z_. ... (cos d,) (4.7

the resulting constants would have been
no stub
bio =0

b?oec stub = —jkw _/:_1
1

| jkw\/%_lf
+-
%lﬂ (\/m - 1) (1\/[_ ( /ewl,ﬁ”e”'l) M. (,/61#1,‘/?3"'1))2 +1/2

=—jkw 2}
€1

, jkw\/— a
+
4/2__7:/ ("EI/“I - 1) (;\’I- (, /51“1’7;1&1‘1,1) M_ (1 /61#1’750671.,1))2 - 1/2

(4.7)

ppec stub
10

and the more compact representation of the no-stub diffraction coefficient is at once
evident.

To assess the importance of the constant b,p with respect to Zeven (cos ¢, cos ¢,)
as given in (4.56), we plotted in Figure 4.6 the backscatter echo width patterns
associated with the three configurations in Figure 4.5(a)-(c) and have compared these
patterns with that computed by setting bjo = 0. The chosen relative constitutive
parameters for the left hand side slab are ¢ = 2 and y = 1.2, and the entire slab is
of thickness w = .04\ (where here A denotes the free space wavelength). We observe
that the backscatter patterns are, in general, substantially different, underscoring

the importance of the constant. Although 525 **® is nearly zero in this case. it wil
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not be so when w becomes larger. For example, if w is increased to 0.1\, a 3" order
low contrast GIBC with terms up to O(w?) is required for an accurate simulation of
the dielectric. In this case the constants byg, b;; and b,y are non-zero and as shown
in Figure 4.7 they play a major role in providing the correct diffracted field by the

recessed slab of Figure 1.5(a).

4.3.4 Diffraction by a thin dielectic/ferrite half plane

Another configuration whose diffraction has been examined in the past is :he thin
dielectric half plane shown in Figure 4.4(c). If a 2™ order GSTC with terms up to
O(w) is emploved for the simulation of the layer, the resulting diffracted field is given
by (4.37) and (4.38) in conjunction with the “free space limit” entries in Table 4.1
" and Table 4.2 for the right hand slab. The constant bm»must again be specified for a
complete determination of the diffraction coefficient. We remark, however, that if 6,
is arbitrarily set to zero, then for w, = w the sum of (4.57) and (4.58) reduces to the
diffraction coefficient already derived in [54]. Similar assumptions about the value
of the constant have also been made in [32] and although this may be acceptable in
some cases (i.e. for extremely thin layers or layers of certain composition), it was
already demonstrated above that the constant(s) play an important role and must

be accurately determined. This is the subject of chapter five.

4.4 Conclusion

In conclusion, we have derived a general solution for the diffraction by a discon-
tinuous distributed sheet representing a multilayered slab discontinuity. The solution
can be specialized to a wide variety of material junctions and discontinuities by an

appropriate choice for the polynomial operators Ll?j and L({‘;. Unfortunately, un-

3
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known constants arise in the final solution due to the non-uniqueness of the ﬁﬂite

GSTC/GIBC sheet representations. In comparing the derived diffraction coefficiey,

to a previous result for the material half plane, it was shown that the single Unknown
constant obtained herein was implicitly assumed zero in [54] and (32]. The imp,,
tance of the constant was examined for the case of three grounded slab geomety,
whose GIBC modeling differed only by the value of a single constant 6y0. This cop,
parison demonstrated that for very thin metal-dielectric junctions, the constant by,
was approximately zero, whereas for thicker junctions the constant(s) played a mope

crucial role.



CHAPTER V

RESOLUTION OF NON-UNIQUENESS
ASSOCIATED WITH THE GIBC/GSTC
SOLUTION

In chapter four, a dual integral equation solution was presented for the diffrac-
tion by a multilayer material-to-material junction using a GSTC simulation of the
multilayer slab. As expected, the solution was in terms of unknown constants and it
was shown that these are dependent on the physical properties of the junction (see
Figure 3.1). Consequently, an approach for determining the solution constants is to
enforce tangential field continuity across the junction. This, of course, demands a
knowledge of the fields internal to the discontinuous slab, which, however, are not
readily available when a GSTC simulation is employed. The Weiner-Hopf solution
in conjunction with the GSTC provides only the field external to the slab, and the
majority of this chapter deals with the determination of the internal field from the
external one given in chapter four.

In the following section, a modal representation of the internal field is proposed
comprised of discrete and continuous spectral components. This representation is
compatible with that given by Shevchenko [45] whose eigenfunctions are chosen to
satisfy the continuity boundary conditions across all layer interfaces including the

air-dielectric interface. Consequently the representation is valid inside and outside

101
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Figure 3.1: Symmetric multilayer slab discontinuity illuminated by a plane wave

the dielectric once the coefficients of the modal representation are determined. Thjs
is accomplished by recasting the Weiner-Hopf or dual integral equation solution of
the same problem from chapter four in a form compatible with the proposed modal
representation, thus permitting the identification of the modal or eigenfunction co-
efficients. These are, of course, in terms of the unknown constants appearing in
the Weiner-Hopf solution and the enforcement of field continuity across the junction
leads to a linear system of equations to be solved for the constants. In the final
section of the paper, several scattering calculations are presented for a few material-
to-material junctions which demonstrate the importance of the constants and the

accuracy of the solution.
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Figure 5.2: Symmetric multilayer slab with irregular termination illuminated by a
polarized field excitation

5.1 Modal Decomposition for the Symmetric Slab Problem

Consider a symmetric slab of total thickness 7 with an irregular termination to
its left, as illustrated in Figure 5.2. The slab is herewith assumed to consist of L
homogenéous layers with the m® layer being of thickness 7,, and having relative
permittivity and permeability €, and um, respectively. When this truncated slab is

subjected to some polarized field excitation, the field to the right of the junction at
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the point z can be written as a sum of odd- and even-symmetry fields. That is

Flr.y)=F*(z.y)+ F*" (z,y) (3.1
where

E,, E, polarization,

F= { (5.9)

Z,H., H, polarization,

Fodd(z,y) = —F°¥ (g, —y) and F**"(z,y) = F**"(z,—y). Following [43], the odq

and even flelds everywhere interior and exterior to the slab may be decomposed intq

discrete and continuous eigenmodes as

Ngo ' R N2ad . .
Fodd (.r,y) = Z A‘::dlIIOdd ((/\;’7:)2 ’y> e—]‘:x,\?n +Z B;:ld@frclid (y) e—]kr,\"‘fd
m=1 m=1
+ /c; Codd ([3) \I,odd (/\2, y) e-jkx/\dﬂ (53)
.Vgo ) g0 ‘V::‘J'Gﬂ '
Feven (2?, y) — Z A::en\peuen ((/\_g:)? , y> e—]k.l'/\m + Z Bre:en‘b::cn (y> e-]k:,\;:en
m=1 m=1
+ '/0 Ceven (’3) \peven (1\2’ y> C—jkrAd,’j (54)

where Im{\od¢even} < 0 and A = /T = 37, with the branch of the square root chosen
56 that Im{y/T1 = 3%} < 0. In (5.3) and (5.4), ¥°4%***" are referred to as the cross
section functions corresponding to the continuous modal fields whereas ®2¢%cve" are
the corresponding cross section functions for the discrete modal fields associated with
the surface waves. The cross section function associated with the geometrical optics
fields is also W°49ev" evaluated at A = A\9°, where \%%is a parameter to be determined
later. As can be observed from (5.3) and (5.4), the cross section functions specify the
field behavior in the plane normal to the slab, and hence all information pertaining
to the fields interior to the slab are embedded in these functions.. They will be
chosen to satisfy the orthogonality relations (where u(y) is u(y) or €(y) for E, or H.

polarization, respectively)

/oo T (\2,y) ¥ (12,y)
- u(y)

dy = 0 for A% A
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= (A2,

-x u(y)
and thus each discrete eigenmode ®,, (y)e™/**" and each continuous eigenmode

W (A% y)e™" ) must satisfy the wave equation. Additional details pertaining to

the cross section functions are given-in [43].

5.1.1 Exterior Cross Section Functions

To compute the cross section functions in the exterior slab region |y| > 7/2. we
recall that in accordance with the slab simulation based on the generalized sheet
transition conditions (GSTCs), the external fields satisfy the conditions (see chapter

two)
Oz? ' dz* \
() () o) < w0
dz?® ' dz? ..
i (2) () (28 (e} = o, <50

where F*= F(z,y =7/2), 0zF*= %F(r,y =171/2), and Oy F*= %F(x,y) ly=r/2-
The operators U;; (—%’;) are polynomials in —dz%/k? and their explicit forms for the
multilayer slab are derived in chapter two as a product of the functions
i; (Um, Kmy Tm, —02%/k?) which are completely dependent on the properties of the
m layer. In these, the parameter u,, is p, for E, polarization and e, for H,
polarization, and Km = \/fim€m is the refractive index of the m* layer comprising
the slab. Because of the orthogonality conditions (5.5) and (5.6), each of the cross
section functions ¥ (A\%,y) and ®,, (y) must satisfy the odd or even GSTC (5.7) or
(5.8). In view of this

sin |k —7/2)V1=A2
B (31 = l_syf_l {un () [k (lyl 1_/X3 ]

+Usz (A?) cos [k (ly] — 7/2) VI=A?]}
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= L o ()t = 7200

Ui (A?) Gaa( L. Lyl = 7/2,0%))

L _ -
peven (1\2’ y) — {Mn (/\2) jSII’l Lk (lyl\/li/;zj V1 ,\2]

+Uy (/\2) cos [lc(lyl —1/2)V1=A? }
= {Un (\?) (1,1, ly] = 7/2.0?)

+Ua (M%) Gaa(1, 1. [y} = 7/2,0%)}

where U;; (A\?) are the same polynomials appearing in (5.7) and(5.8), and §;; represent
the infinite order form of the ¢;; layer operators given in chapter two. Once each of
the modes comprising (3.3) or (3.4) is substituted into (5.7) or (3.8), respectively, the
differentiation implied by —0z?/k? reduces to a multiplication by A? and the above
Uod? and We¥*" are then readily shown to satisfy the associated GSTC.

The cross section functions ¥°% (A%, y) and ¥**** (A%, y) may also be rewritten in
the fofm

odd (Az,y) — ’?"j_|gidd ()‘2) e-jk(lyl—r/2)\/i:7

+|_3;|_ g2t (\2) etlll=r/VI=R (5.11)

Jpeven (A2’y) —_ iven (AZ) e—jk(lyl-—‘r/2)\/l—_z\7

+Even (/\2) el k(lyl=7/2)v1=2 (51‘))

for |y| > 7/2, where it can be easily shown that (5.11) and (5.12) satisfy the orthog-
onality relations (5.5) and (5.6). This representation is customarily employed for the
surface wave cross section functions. In particular we set

. o 2
‘I,f’;id(y) — ‘?J_|e—1k(lyl—r/2)\/1—(xvv:") yl > 7/2 (5.13)

y
oo (y) = e M= AVI-0R s 72
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where A%*™*! must now be chosen so that (5.13) and (5.14) satisfy their associated
GSTC. By substituting (5.13) and (5.14) into (3.7) and (5.8). respectively. we find

that AZ#**" must satisfy the polynomial equati. s
1 — (A2)2U,, ([,\s;jd] 2) + Uy ([A:ﬁd] 2) =0 (5.15)
V1= (Ao (A22)) + Uy (D)) = 0. (5.16)

and can be also identified as the poles of the slab plane wave reflection coefficient.

[t is also interesting to note that

podd ([/\,o:dr,y>
Podd ( — . >7/2 (5.17
) ™ ([/\’o:d]Z lyl / )
\I;even [/\’e:eﬂ]z Y
e (y) = ( ) ly| > /2 (5.18)

implyving that for the multilayer slab the cross section function associated with the

discrete and continuous eigenmodes are of the same generic form given by (5.9) and

(5.10).

5.1.2 Interior Cross Section Functions

We consider now the determination of the cross section functions for the region
interior to the slab (i.e. in the region |y| < 7/2). For simplicity let us first assume
a single layer slab of thickness 7 = 27, whose upper face is located at y = ;.
In accordance with the preceeding, the cross section functions associated with the

external fields are given by

\I/odd (/\2’ y)

]z—l {‘In (ul, 'Cl,‘"l,/\2) Gia(1, 1, ly| = 7, A%)
+412 (ula’cl,ﬁ» ’\2) g22(1, 1, |y| — 7, ’\2)}; [yl > (5'19)
peven (,\2,y) = {Q21 (Uu K1, 7'17/\2) G12(1, 1, [y| = 71, ’\2)

+q22 (ul,m.ﬁ,/\z) g2(1,1,|y| - 7'1,/\2)}; ly| > (3.201
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obtained by setting 24;; (A?) = q;; (uy, k1, 71, A?) in (5.7), (3.9) and (5.10). These a
N

orthogonal functions and each must, therefore, satisfy the continuity conditions

\podd (/\2’ ’_1—> — \I}odd (/\2’ T1+)

1 odd 2 _- odd 2 _+
Zay\ll (,\ , T ) = oyv (,\ VT ) (0'22)
peven (/\2, Tf) = \peven (/\2’ Tl+) (523)
1
:L_lay\I;euen (/\2,7'1—> - ay\Deven (/\2’ T1+) (324)
due to symmetry it is not necessary to enforce similar conditions at y = —ry). It ;
Is

now straightforward to deduce that possible cross section functions satisfying (3.2]

- (5.24) are of the form

\D"dd(/\z,y) = l—Z—Iqu(uhKl»ly!’/\z)

T (Why) = qualun eyl A7)

Ot
[

(
(:

%),

Qe
“~o

6)

for |y| < 7. Also, in view of (5.21) - (5.24), the cross section functions for the surface

wave modes remain as given in (5.17) - (5.18), provided (53.25) and (5.26) are used

in place of yeddeven

As a specific example, let us consider a low contrast O(r;) representation of a

single layer. From chapter four, the truncated GSTC operators U;; (—dz?/k?) are

given to O(ry) by
oz%\
o (%)
T .
Uz (—"E;') = Jkuin
T

2
2 'k 2 N
Uz (_?—7) = LD I gy

I
X
-
|
QO
?Sl 8,
N———
—

k

and the corresponding ¢;; (A?) polynomials become

g1 (ltl,hil,Tl,/\2) = ¢z (ul,nl,rl,/\2) =1

(5.27)

(5.29)

135.30
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‘hz(Uhfﬁthw\Q) = Jkuim (5.31)
qa1 (ul.m.rl.,\3> = Ji:l (xf—,\z) (5.32)

q12 (UlJCl, |y ,/\2> = Jjkulyl (5.33)

q22 <U1a"91»lyl’/\2) = 1. (33-1')

When these are substituted into (3.19), (5.20), (5.25) and (5.26) we obtain

_sinlk(]y]=n Jv/ 1A%

VimA
v (3y) = %.' +ikurrycos [k (lyl = ) VISNT]; [yl > 7 (5:33)
Jkuilyl; lyl <
=k (- 17) ST
e (/\2,y) = + cos [k([yl —-71) \/1——T§] ;o lyl>n (5-36)
1; lyl <

as the cross section functions for a single layer slab modelled with an O(r,) GSTC.
For the general case of a multilayer slab, it is necessary that each of the internal
cross sections functions satisfy the continuity conditions at all layer interfaces com-

prising the slab. From chapter two, we obtain that the boundary conditions at the

interface between the L — 1** and L* layer are
i (22) e s
: 2
+% pL-t ('F) {0yF (z,y = y£_,)} =@.37)
pL-1 <—%£;> {weF= (z,y = vi_,)}
~ 2
i (32 fourm (s = ) =0

where y; is the y coordinate associated with the top surface of the L** layer and the
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L- 2 .
operators P! (_a_:_) are given by

K2

Y

PR (- PHE(-%F)

v/ SO _ a-2
FETH (- PR (-3E)

=11

Possible interior cross section functions satisfying these conditions are

\I’Odd </\2, y) = { Odd (’\2) Q12 UL, KL, |y‘ —YyL-1, A? )

( c - 2z2 ( 32
] L-1 {QIl\umﬂhm» imy T T2 ) q12kums’€marm~_k\*_;

Ap2
q21(Ums Kms T '—%) q22(Um, K T,

°dd </\2> q22(ur, kL, [yl — yL- 1,/\2)} yr-1 < ly| < yf3.40,

e (Az’y) = { even <A2 q12 UL,/CL,lyl —YyL- 1’/\0)

even /\2) 922 uLy"L?lyl - Yr- 1,,\2)} Yyr-1 < Iyl < ],(é-ﬂ;

in which Devm24d(\?) are to be determined by demanding that the interior ang

exterior cross section functions are continuous at y = 7/2(= yr). Settingy = /2 n

the expressions for the external cross section functions (5.9) and (3.10), we obtain

odd (Az’y — 7/2) = U, (/\2)
Jeven (/\2’y — 7./2) = Uzz (,\2)
and when these are equated to (5.40) and (5.41) we find
godd (/\2, y) = Iz—l {'Pﬁ-l (/\2) q12(uz, 5L, [yl — yr-1,A?%)
+PL! (’\2) q22(uL, KL, [y = yL-1, )‘2)}

Jeven (/\2, y) = Ple—l (/\2) qlz(UL, KL, Iyl = YL-1, A2)

+P£12_1 (’\2) Q22(uL$ KL, 'yl = YL-1, ’\2)

for yo > [yl > yr-1.

To derive the cross section functions for the other layers, the above procedure

may be repeated in a recursive manner until all layers are accounted for. Doing so.
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we find that a complete representation of the cross section function everywhere is
Uy (A2 Gl 1yl = 7/2,0%)

+02 (A1) Gua( L. Lyl = 7/2.0%)0 [yl > 7/2

=

() = Pirt (A qualu, 60, 1y] = yi-1,A?) (5.46)

= |

<P (A qaa(us k0, Y] = yi=1, A e >yl > wiea

Cquz(ur. &1, [yl A?); lyl <
Z«(gl (,\2) 612(1. 1. !yl - "/2 /\2)
+U2 (A?) Gaa(1, 1. |y — 7/2,A%); lyl > /2
perer (A2 y) = PN qualun K Y] = o1, A?) (5.47)

+P53 A gaalun ki Iyl = yim1 AD); we >yl >y

qa2(ur, K1, [yl A%); lyl <y
7

when these are used in (3.3) and (3.4) in conjunction with (5.17) and (53.18) we have

a complete field representation for z > 0.

5.2 Recasting of the Dual Integral Equation Solution for a
Material Discontinuity

The expansions (3.3) and (5.4) can be used to represent the fields interior and
exterior to the discontinuous slab shown in Figure 5.1. For z > 0, the material
parameters used in the definition of the cross section functions (5.46) - (5.47) must
then be associated with the right hand portion of the slab. Similarly, for z < 0, the
material parameters in (5.46) - (5.47) must be those of the left hand portion of the
slab.

The diffraction by the slab discontinuity shown in Figure 5.1 was the subject of
chapter four where a complete expression for the scattered field was given by em-
ploying a GSTC simulation of the slab. However, owing to the non-uniqueness of the

GSTC, the resulting diffraction coefficient was in terms of unknown constants whose
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determination was shown to require additional constraints. One such constraip, ;
the enforcement of a boundary condition demanding field continuity at the Mater,
junction. but this requires a knowledge of the slab interior fields and the solutigy
given in chapter four pertains only to external fields. However, as shown ip the
preceeding section. the expansion (3.3) and (3.4) is valid everywhere when useq in
conjunction with the cross section functions given in (5.46)-(3.47). Moreover. sip,
the expansion coefficients remain unchanged for the exterior and interior fields. o,
determined. the representation (5.3) and (5.4) can be used to find the field ever.
where. Since the exterior field associated with the slab discontinuity in Figure 3
has already been given in chapter four, it can be used to identify the expansion co.
efficients. This requires that the solution in chapter four is first recast into a form
compatible with that in (3.3) and (5.4), making possible the identification of the up.
known constants which can then be determined by enforcing field continuity across
the junction. In the following, upon stating the exterior solution we then proceed
with the identification of the expansion coefficients.

In chapter four, the discontinuous multilayer symmetric slab shown in Figure 3.1

was simulated by the GSTCs

2 q 2
Uy (-‘9%) {Fedd+} + iufz (—%—) {oyFott+} =0, —co<z<(5.49)

i (-5 ) {Emmp o fon () {avFeme) =0 ey

k2
2 (922 [ podas u 027\ (5 Feddty — 0. o 5.50)
u{~%z { }+ Ty {y } =0, 0<zr<oo (53

Uz (—%) {Fevent) 4 %u,}z ( dz" ) {gyFernt} =0, 0<z< o0 (551)

with the superscripts 1 and 2 again denoting the material to the left and right of the

junction, respectively. The total field is the sum of the even and odd components
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and can be represented as

F!I.yl — chj(l‘.y\) + [feven (l‘y)
{ch(r.y)+F,(r.y)+Fref1(r,y) y>7’/'2
= (3.32)
Ftran(r-y)+Fs($*y) y<—T‘/2
where
ch(‘r,y) = ejk(zcoso,,+ysinq>o) (353)

is the incident plane wave field, F,.f (z,y) denotes the reflected field. which from
(+.3) and (4.7) is given by

e]krsmoo

Fraf[ (l‘, y) [Reven + Rodd] Jk(z cos po—ysindo) (554)

9

with Rfdd and R{ *" given by (4.9) and (4.10), respectively. Similarly, Fi.qn, (2. y) is
the transmitted feld. which from (4.6) and (4.8) is given as

eJkTSU1¢o

Foan(z,y) =

O
Ot
Ot
-

[Reven Rodd] ejk(rcosoéo+ysin¢»o) (
1 . 3.

.-

Finally, Fy(z.y) s the field scattered by the discontinuity and upon employing the
dual integral equation method in conjunction with the GSTC (5.48) - (5.51), we find

(from chapter four)

Fy(z,5) = F* (2,9) + F3 (2,9) (5.6)
where
» - j TV (Vi)
HED = i e TR GO GE G
Nodd—l Nodd-l"m e""'y'me‘”‘”\d)\
Zosa (=2, mn (O F A)™ (AA,)" 5.57
dd )+§1 ’g amn (A + A0)™ (AX,) VI A2 ( )

‘“LPTZ

/ \/'_‘m _ jkr/Z(\/:?:+\/-l:\7)
or

I y) A+ ), gezcn (/\) even (/\o) geven ( ) geuen ( o)
Neuen-‘l;}even“l-m —Jk|y|\/1—7. -sz:/\q\
chen ("')‘/\o) + Z Z bmn (/\ + ’\o)m (/\/\o)n \/1 \2 T 58]
m=1 n=0 -
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In these expressions. \, = cos o,. and

G
GIE (M) G\
GIm (A) G5 (V)
Zogd (—AA,)
Zeven (—AN0)

-
N odd

int {1/2 (Nl + N+ 1)} (55
int {1/2 (Nlen + Vien + 1)}
2 (A7) = oy (W) + VI=Nu, ()
pen (0) = ud (M) + VI=Aug, (A7)
G5 (\*) =udy (A?) + VI=Xud (\Y)
ggeen (/\2) = uy (V) + vVieaug ()

)u122 (—)‘/\o)

Uy (=

—

[ —AA) UL (= AN,)
ofg°dd( )
(A) of g2 (A?)
O()) of G5 (A?)

(
O(/\) of geven ()‘2)

(5.64;

= UL (M) UE (=AN,)] (363,

= Uy (=AX) Uy (=AN.)] (.66

(3.67,-

(3.70)

As seen, the scattered field expressions are in terms of unknown constants an,

and b, and to determine these via the procedure outlined above, we must first

rewrite F'(z,y) in a form compatible with (5.3) and (5.4). To do this we need to

identify from (3.52) to (5.58) the discrete and continuous spectral components. The

discrete portion of the spectrum is, of course, comprised of the geometrical optics

and the surface wave fields. These can be identified by detouring the integration path

in (5.537) and (5.38) as shown in Figure 5.3. In particular, for z < 0 the integration

path may be deformed to one over the branch cut in the upper half of the A plare.

capturing any surface wave poles attributed to the zeros of G¢%¢(\) and G:t°"

Similarly, for z > 0. the integration path may be deformed to one over the ‘.-
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Figure 5.3: (a) C contour in the complex A plane. (b) Deformation for region 1
integrals. (c) Deformation for region 2 integrals.
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cut in the lower half of the A plane causing the capture of the geometrical optjcg bol

at A = =\, in addition to any surface wave poles attributed to the zeros of gods

2+ (_/\;
and G5¥" (M),

Through the above deformation of the integration paths in (5.57) and (5.58) We

obtain
Fo¥ (2.) Fl® (z,y) + Fio* (z.y) + Fiff (zy) 2<0
Ly = (3.7
o 2 odd )
F;édd(x7y)+F31L0dd( ) Fd21.ff (I y) x>0
, FlLeee (z,y) + Fitn (z,y) + Fiify™ (zy) 2 <0
e o y) - 2 2 2.even (572)
FZever (zyy) + Fovem (z,y) + Fapy (zy) >0
where for |y| > 7/2
1 kx cos ¢o
Lodd _ e iklylsingo | podd - jk(ly|-7)sin és -
Flo%(z,y) = _,;_I.___?_ {eJ vlsinde 4 poddg=jk(lyl-7)sin } (5.73).
1 kz cos &
0 y e’ ° ] sin ¢o o -3 —7)sin ¢o -
Fredd(z,y) = PR {eykm ¢o 4 Roddg=ik(lyl=r)siné } (5.74)
jkx cos o ) . i .
Fgl‘;euen (m7y) — 2_5___ {ejklylsmqbo + Relzvene—_yk(lyl—r)sm@,} (573)
jkz cosdo ) . ) .
Fo even (ZE y) — 6_5____ {e_ykly]sméo + Rcuene—]k(lyl—r)smdao} (576)
Rodd _ sin ¢ UZ, (cos? @,) — UF (cos? ¢,) (5.7
2 sin U, (cos? @,) + UL (cos? ¢,)
Reve™r = sin ¢°u222 (COS2 ¢0) —u22 ( 2¢0) (578)
2 sin ¢ U2, (cos? @,) + UZ (cos? ¢,)

1,0dd
Nw

] . 1,
34 (s ot VIOV ) _jhent ot sttty /T

Fl ,odd ( y) y j;n ¢o ,
Lo o 0dd\ Ao agpdd())
W T4 0 gate (1) 0388 (1) 2% 00) [52]
=N
1,0dd Odd-l NOdd—l_m 1,0dd /\ m \l,odd/\ n 579
Zodd( AAL’ ) + Y Y dmm (/\1 + o) ('1 o) (5.79)
m=1 n=0
N2,0dd _sin 4, ej%:(sin¢o+ 1-(A2° )2)e‘jk”\?’°dde'jk|y|m

FroAd(z,y)= | ‘ ABedd ) 2,0dd 8953%(%)
Yl =1 + Ao godd ()\ ° ) fid (/\o) gZOid (’\0) [ 28/\ ]/\_/\2,odd
=

n=0

Noda=1 Noga=1-m m n
[Zadd( AT + Z S ama (AN </\,2'°‘“)\0)] (5.80)
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Ny i (s’“d’°+\/“(*z"m")2> —kzAL ikl T- (T
Fl.cuen (r .7,/) Z —simnmeo, € t
sw L
Al

l.even |, _—’96202"(‘\
- \o geLen </\1 even) geten ( o) geven ( ) [ 15’\ )] L teven
/) =/l

=1

{Zw( AAFen) 4 efj—l \Mi b (A 0) " (A}’”e’uo)”}(s.su
n=0

‘kr [ : —()2.even o
\’2u¢uen o , 15 <51n¢°+\/1 (’\l ) ) _jkr/\f,euen —iklyl /1‘(/\12,euen)2
F'Z even ( y) Z 510 @, € € €

2,even AGsYe (A
i=1 /\1 + /\o gfzen (/\12&11671) fien (/\o) ;ien (’\o) [ g",ia,\( )} \ \2 -

Veu n—1 Veuen—l -m

. !i“elen( A, \2even) + Z Z b, (/\2even+/\ ) <\[2euen\ ) }(583)

n=0

[T kT /2 /@ V132
Flod (o / LVI—/\Z 1A ¢ (\ o )
diff \ T, ¥ 'y| /\_+_/\ godd( )godd A )godd/\)godd( O)

Nodd =1 Noga—1-m —7klyIVI=AT | = jkzA
[de 2+ £ a0 | ST

Féodd<$ y)_ _7_ ] \/l—,\2m jk‘r/2<m.§.\/1__)‘7)
v W Jes 2r T X+ h, G (N 63 () G5 (V) GEF ()

Noda=1 Noga—1-m e—]klylme—sz,\d/\
. Zodd —AX,) +Z D @mn A+ A)" (AN Niey (5.84)

VN e V) 7k /2( \/1-X3+V1=72
fﬂli.even(‘r y)=/ _]- 1 ’\o 1=A e ( )
wEEIT Jog T XT A G (N)GIE (%) R (N G3E ()

(5.83)

n=0

. {Z (—)\/\ )_}J_\rei-l Nweil-?z (/\ ) )m (,\A )n} —Jk|y|\/1—7 -Jk::,\d/) 85)
even o — = mn o o ﬂ
/'— Y3 ikt /2( /1R +VINZ
F;z;;en ( z,y cl 27T A+ ,\1 - odd (/\)e odd(( ) godd( ) >godd( )
br - 1- o
Neven-1 Neven—1-m —Jklyl\/l—_p- —]k:z:/\dA
[Zeuen( AXo) +mzl nz—o bmn A+ A ) ( ) J W—fﬁi .86)

In these, the components F,, Fiu, Fuifs denote the geometrical optics, surface wave,
and branch cut (or diffraction) contributions to the total fields. Also N12 is the
number of captured surface waves (i.e., those with normalized propagation constants

A% such that Im {A\}} > 0 or Im {\?} < 0).
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- (5.64), and (3.77) - (5.78), the geometrical optics terms can be rewritten as

y smd) ejkzcos¢oejkr/25m¢o

1.0d4d
B0 = T oy

{ ( 2) Jsin (ksin ¢, [|y] ~7/2))

sin ¢,

+UL, (A?) cos (ksin g, [|y| — 7/2]) (5.87
)
2.0dd y sing, gikzcosdogikt/2sinds [ \2 jsin (ksin &, [|yl = 7/2])
Fgo (:Cy) ]yl odd (/\2) un ( ) sin ¢,
+U2, (/\ )cos(ksmgoo [Iyl—r/”] 1 (5.38)
in ¢, elk= cosdogikm/2sindo [ jsin (ksin ¢, [Jy| — 7/2"
Fl even (. — ‘y__sm - U 2 ;=)
=y = T A (%) sin g,
+Uzy (A )uw(kmnéolyk—r/°] (5.80)
F2,even (I ) _ _y_sin@ eJkl'cosdweJk‘r/ZsmoSo ( 2) ] sm ksm (250 [lyl _ T/ ]
oY= 0 geen (A2) sin o,
+UZ (/\ ) cos (ksin é, [|y| — 7/2]) ] (5.90)

The bracketed terms in (5.87) - (5.90) are now readily recognized as the cross section
functions given by (5.46) and (5.47) once A, is set to cos ¢,. Thus, from (5.3) and

(5.4) the geometrical optics fields may be expressed as

Fart(a,y) = AP0 U5 (X, y) etme® G
F2%(z,y) = AZ(X,) UsH (A2, y) efkoconse (5.92)
Fgl‘;even (.’v, y) = A;yen (/\0) \I,;vcn ()‘g’ y) elkzcosdo (5.93)
FgZ‘;even (x,y) — A;ven (/\o) \I,;ven ()\Z,y) eikzcosdo (5.94)

where the A expansion coefficients are identified as

sin ¢oejk‘r/2 sin ¢o

A% () eI (00) (5.95)
) sin ¢oejkr/2sin¢o ;
A2dd (/\o) ggdd (/\2) ({)96)

cven sin ¢oejk1-/2 sin ¢o
‘41 (/\0) = - gf‘v;n ()\(2)) (

Ut
Ne)
-1

—
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Sin éoe.‘)k"'/2 sin do

A‘gven (’\O) g;vcn (/\3)

—
t
O
N

—

Also. W***" are the same as those given in (5.46)-(5.47) but are associated with
material parameters to the left of the slab and likewise W3*"*" are associated with
the material parameters to the right of the slab.

To identify the B expansion coefficients we observe that the surface wave terms

are already of the form appearing in (5.3) and (5.4) and can be readily rewritten as

\,1 odd

F311;/Odd (1}, y) — L Bl ud.d( o) [Zodd (_/\o/\[l,odd)

NVodd =1 Nogg=1-m m n 2 . _yl.od
+ Z Z G (/\Mdd /\o) (/\Il.odd/\o> }@idd ([/\ll,odd] ,y) eikzA ?5.99)
n=0

\42 odd

F'.’odd(x y) — Z B2odd [Zodd< /\/\2odd>

K’odd-llvodd—l"m m n 2 .\2:0dd
+3 Y ama (A4 0)T (AFN) ]xpgdd@fﬂdd] ,y) e=kN5.100)
m=1 n=0

Vl even

l{ sven (.’L‘ y) — Z BI even [Zodd( A /\},euen)

ei_l Veve"z":l Z‘mn (/\1 euen+)\o)m (/\ll,even/\o) n]q,;ven( [/\1 Bven] ) —Jkr'\gl;;ui'é
n=0

N3gven
F2 ,even (I y) - Z B2 evcn o [Zodd (—/\OA?'WC”)

+”Z R (e )" () ]\p( e y) =)
m=1 0

n=

with
o jkr/2sin do
Bl]j‘Odd (/\o) /\1 ojzlin+¢: 3godd(/\) c;id d 1 odd\ Iy (5~103)
o [ERR] LGr 00 Gt () Gt 0)
=N
— g1 Jk7[2sin ¢o
B 0) = s e (5.104)

° 0 o agodd A R
Ao glid (/\12 dd) lf‘d (/\0) [_%/\L_)])‘ \2.0dd g id (Ao)



Bl.cven ( \ ) _ —sin () 8,)1:7‘/2sméo
! ° I\},eueﬂ + A, [agemn sven (| ) Geven ()\lieven orn
~ EAY \ \1,:cen 1- ( ) 9 M gi;:n (/ N
=,l )
o (3.103
Blcuen ( \ ) _ — SIiNn O, e]kf/lsmas,,
i o ’\2.cven + A . 2 even ] 3eren () l
l ) g en )‘l' Iuen(/\o) —t ggten(\
1~ - A \= \'2,¢uen 24 / 0)
A=)
(3.108,

It remains to identify the C expansion coefficients and to do this, it is necessy,,
to employ the transformation 3 = v/I1—A2. Doing so in (3.83) permits us to rewrite
Fdll';?d as
Fi () = / ~3,/1-x2

Iyl \/1-,32(\/1—374-/\)
L 2( ‘*2“’) - ikly18 g =ik /155
e (ﬂ‘—— +6i%) () O (VI=F7) 658 (\o)

| {zoﬁ( D sl v (R ey W (Wi N

where the branch of the square root is chosen so that Im(y/I—=3%) > 0 and § is a

vanishingly small positive number. The integral may now be split into its positive

and negative portions and then recombined to obtain
s T2 e+ VIR g (VIZF, )
‘yl or VI=32 \ﬁ_52+/\ ) 0dd (),) Ggdd (m) g3 (A,)

~Jk(lyl=7/2)8 k(lyl=7/2)8 ,
R e e k=T dg (5.108)
G (VI=PT+6) Gi (VI=37-5¢)

1, dd
th;f 'Y

where

Zodd (\/;F,Ao) = Zodd( 1- ﬂ’)
S S S b+ /1=8)" (A/1=87) " (5.109

m=1 n=0



By invoking (35.61), we can show that

¢~ ik(lyi==/2)3 o k(lyi=7/2)3 —23Go% ( _,32)

gt (\/T'——?* 5) - gy (\/1_:-37“' 5) B L (1 - 37 )] - 32U (1 - 1'3‘2)]2

. {qu(u lJ‘ 7/2]) Ul ( 52> + cos (k3 [ly| — 7/2]) Ui, (1 _52*5'110)

where the term in square brackets is identified as U9% (1 — 32,y) as given in (5.46)

for |y| > 7/2. Substituting (5.110) into (5.108) finally yields

it ey) = [ C003) Zoaa (YIm38 00 ) 032 (1 = B2,y) €74V d3

(5.111)
with the expansion coefficient C?%¢ (3) given by
' 8% /1=A\?2
) = L
T VI=3 (VI=37 + A)
kT /2v/1=)2 ~odd /WT_
i Gttt (VI=7) (5-112)

G52 (VI=T7) G5 (0a) 612 (0o) {0ty (1 = 820" = 52 0kl (1 = )]}

In a parallel manner we obtain

FdQlodd / Codd Zodd (\/-1—___;2-’ /\o) ‘I/;dd (l _ ﬁ2,y) e—jkz\/l_‘ﬁ_zdﬂ

(5.113)

Flji}en (.’E, y) —= ‘/0 C;ven (B) Zeven ( /1_52’ }‘o) \I;;ven (1 _ ) —]kzy/l—ﬁ'zdﬂ
(5.114)

Figm (@,9) = [ C8 (8) v (V1= B2, 00 ) 5™ (1= B,y) eV 4
(5.115)

where

Zoren (\/ 1 -2, /“o) = Zeven (“’\o 1"/32>
l)veuen—l Neven"l—m

2 2 bm <Ao+ 1—ﬁ2)m(/\o\/1_—?)g.116)
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and the spectral expansion coefficients are given by
C3(3) = —-J 3% /1-A2
T VI=F (VI=F + o)
ejkr/h/l—A%ggid (m)
Ge2F (VI=37) G5 (0,) 63 (o) {IUh (1= 2 = 2 W (1= 9]}
Celsven (/3) - i 3 \/1_Ag
T VI=F (VI=BT+ A)
ejkf/2\/l—z\%g§id (m)
/ 1 1
G5 (VT=3%) G324 (A,) 624 (o) {[Uh (1 = 32) = 32 [t (1 — 32)1°)
_; 32, /1= 22
C;ven (3) — _r_] - \/—_
T VI=07 (VI=B%+ )
e.}k‘r/2\/1—z\2godd (\/7)
5119
2 (VT=3%) G7% (V) G5 () (08 (L= O = B Wly (L= B}

From (5.3) and (5.4), the modal terms (5.91) - (5.94), (5.99)-(5.102), (5.111), and

(5.113) - (5.113) provide a field representation which is valid everywhere. Since the
odd and even fields are decoupled, two independent representations are obtained for

each of these fields.

5.3 Determination of the Constants

To determine the constants a,,, and b,,,, we may now enforce the tangential field

continuity conditions

F(x:O',y) = F(a:=0+,y); ly| < 7/2 (5.120)
1
0zF (z,y) ._o- = OzF (2,Y),.—o+ ; <T/2 5.121
ae (€,Y) =0 i (2,9)peor s lyl <7/ ( )
with
p12(y) E.-pol
€12(y) H,-pol
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and the subscripts 1 and 2 denoting quantities attributed to the left and right side

of the slab. Substituting (5.71) - (3.72) into (5.120) and (5.121) , we obtain

Fiott (e =07y) + Fig* (z = 07,y) + Fujy' (2 =07,y)

= Fl(z=0%y) 4 F2% (2 = 0%,y) + FE% (= 0%,y) (5123

[l (2,y) + F (z,y) + Fi (2,9)

z=0"

= =00 [Fied (a,y) + Fie% (a,y) + Fisf ()] _,

Fglo..:ven (.T — 0—’y) + Fsllbeven (.’1) — O-,y) + F;‘;t}en (.1‘ — 0—,:{/)
= FRrerm(z=0%y) + Fin (2 = 0%y) + Fjf (z = 0%y)  (5.123)

—0a [Fleen (z,y) + Fiev (z,y) + Fiisy™ (,9)]

=0~

= St (B @) + B @ + FT @),

to be solved for all ap, and b,,. In particular, for an odd GSTC of O(N?%) to
tne left and of O(N$%) to the right of the discontinuity, the number of am, to be

determined is equal to

—_— [~

o Vo <Nodd - 1> Todat dd)L"dd Lzl Nl + N2, is even
No = = (5.127)

2 +N? .
al Odd Odd ’ Noldd + ‘Ngdd 1S Odd

To determine all a constants, (5.123) and/or (5.124) must then be enforced or sam-
pled at a minimum of N, points across |y| < 7/2 and 0 < ¢, < m. Similarly for an

even GSTC of O(N{¥*") to the left and of O(N5*") to the right of the discontinuity,

AT AT Nelv n+mu¢n Nelue +N'2,, n=2 .
v Neven (Ne,,,n - l) (Nesen+ 1V )(s R sve ); Nl..+ N2, iseven
Ny = = 2
2 Ne’uen+N30en) -1
( 8 ; Neluen + Nezven is odd
(5.128)

and thus, the b constants can be determined by enforcing (5.125) and/or (5.126) at
a minimum of NV, points.

Substituting for the fields in (5.123) and (5.124) as given in the previous section.



124

/7
/7
2%07,217 A,
N7 ,"
)336 a5
[ 4
2340

Figure 5.4: Indexing scheme for constants.

we obtain the equations
VOdd (Aovy) =
Vst (Qoyy) = Z%Q%‘i“p (),
where a, = am(p)n(p) With

(n+m—1)(m+n)

Z 4,QF (m (p),n (p), A

n(p), Ao y)

2 Y) (3.129),

(5.130)

(5.131)

(5.133)

p = 5 +m
m(p) = p—%lnt{ 1+8(I;_1)—1}Int{ l+8(;;—1)+1}(5-132)
V1+8(p—1 1
n(p) = Int{ i (I; A }—m(p)

which are in accordance with the ordering of the a,,, constants as the order of the

GSTC is increased (see Figure 5.4). Also,

Ve (Aoy) = A°°“(A)w;’“(Az,y)—A?“(Aow;“(xz,y)

1,0dd
Ny

+ Z Bl odd

N2 ,odd

Zos ( AL odd) godd ([/\1 odd] ,y)

B Z Bredd (), Zodd( /\/\ZOdd) \Ilgdd([/\?,odd}z’y>
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+/ CoH (3 ( )\I,odd — 3y
—/ C24(3) odd(— 1— 32\> (5.134)

Vit () = 2D Ly (a7,) - 22800 andd (Az,y)

1-32,

1 Ed” u2 (y)
B VZ \1 Oddfl(;d)d (/\O)Zodd (_A/\Il.odd> Q({dd ([/\ll,odd}2 ,y)
e L ()
/ ‘/T(C;dd Zodd (— 1—62/\0) v (1-3%y)d3
/ mcodd(ﬁ Zoss <_ 1_'321\0) g (1 _ /32,y) 43

and -

Q¥ (m,ny Aoy y)

\l odd

_ Z Bled () ()\ +)\llodd) (/\ /\llodd lI,odaz<)‘lloamz y

)
+ gdB2odd (/\ _{_)\2044)"‘(/\0/\?044)"\1,0“(/\udd ,y)

- /O crd(8) (Vi=gr+0,) " (Vimgin) wst (1~ 6%,0) ds

+ [Tesw (Vimar )" (VimE) wsH (1- gy) ds (5.136)

odd
BrF(\ y) =
\Il odd

1,0dd p1,0dd
; A f(y) (/\o) ()\o + All,odd)m (Ao/\ll'Odd)n\II‘{dd ([/\Il.oddlz’y>

]V?'.”odd

,odd 32,0dd
- Z /\2 u’iiy) (/\o) (/\o + /\?,odd)m (/\o)‘lz,odd)n\pgdd ([’\12’0“]2,1/)

/ mcodd (

=52+ )" (VImFa,) g (1 - 8%,y) d8
-/, ‘/——ch (8) (ﬁ—_ﬁ?+ Ao)m< 1—[32/\0>n\113‘“ (1-8%y)ds

ug (y)

(5.137)
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Provided V% are even, the integrals in (5.133) and (5.137) converge (see Table 3
and (3.129) - (5.130) can be solved for the constants a, by matching (5.129) at

1
points and (3.130) at .V,, points such that N, + Va2 > N,.

To solvefor the b, constants we substitute for the fields in (5.125) and/or (3. 126),

giving
Ny
‘/r;uen‘(/\o’ y) — Z b even ) , N (p) s /\o, y) (5138)
x\«b
Vark (Aory) = Z Q527 (m (p),n(p), A0 y) (5.139)
with

VT (Aay) = AP (0) 97 (Ay) = A7 (00) 15 (AL, )
1l,even
+ VZ Bl even Zeven (_)‘All,even) \p;vcn ([/\1 even] 2 ’ y)

\ 2 even

Z B2 eten Zeven ( /\/\2 even) \I}even ([/\2 even] 2 >

¥ / C* (B) Zewen (— T=poA, ) U3 (1 - 8%,y) dB
— [T 5% (8) Zunen (—y/1=8700 ) W™ (1= 8%y) dB (5.140
22 Oy) = —A°f:c(;§A°)w;"=n (Az,y)——-—A"fiz’;gA w5 (A2,9)
1,even ,even nl,even
_”’g AL fll(y) )z, () g (=)
+N’.Z_":"‘ Af‘“"ﬁ?(';”)’"(/\o) Zewn (32255 g ( (3] )

/ Vv1i- ﬂfceven Zewn ( 1 g2), ) geven (1 ,32,y)
(

e mcm ) (T 3 (- 3) 5

(5.141)

and

i}/en (/\07 y) =



r:’f“ or |"N¢% or | Junction | Branch cut integral | Order of branch
pren gprer Field (odd or even) cut integrand
even even i E. or H_z— Flip(x=07,y) 16|32 N

Ffiff (x=07%y) |8|-3
odd odd E.or H, | Fli;(z=0".y) |8]~?
Fip(z=0%y) |81
even odd E,or H, F(}iff (z=0",y) |ﬂl—5/2
Flip(z=0%y) 18|73/
odd even E.or H, | Fj;;(z=07,y) |B|~3/*
Fiip(z=0%y) El-s/z
even even Hyor E, | Fii;(z=07,y) |6]~2
Fdziff(z=0+vy) 18|12
odd odd Hyor E, | Fjiy(z=07,y) |67t
Fg.'ff (z =0%y) 1871
even odd Hyor E, | Fji;;(z=07,y) 18|32
Fiss(z=0%y) 18]~/
odd even Hyor E, | Fjitt(z=0",y) |B| /2
Fiss(z=0%y) |8=3/

Table 5.1: Asymptotic behavior of integrand for the functions Fyss (z = 0%, y).
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VZ B1 “e” (A + /\1 eten) (/\ \1 CUE" \I_,P'uen ( AL even )
\2 even
Z B2 even (/\ + /\2 even)m (\ /\12 even \Ileven ( ,\12 even )
=1

—/”b;ven(,@)< 1—52+/\o>m< - ﬁ"Ao) v5een (1 - 8%,y) d3
+ [Tepe ( 1;g2+xo>m( - wo) Upr (1-8%y)d3 (51

sof (Mory) =

NySUe™ | leven pl.even _ ]
lz: Al :91(9) (Ao) ()\o+/\},even) (/\OA},even) \I,;ven([/\},cycn]Z,y>
=1

Aevn

Ve /\2 evenB2 even (

2
+/ \/1_7'Ccven

/ mceven

o) (/\o + A?,even)m (/\o)‘lz,euen)” gven <[/\12,wen]2 ,y)

( -3+ Ao)m ( l_ﬁ%)n\p;m (1-3%y)ds

( 1—52“0)'"( l—ﬂ2)\o)n\Il;"°"(1—,32,y)dﬂ

(5.143)

As before b, = bm(pn(p) With p, m(p), and n(p) given in (5.131)-(5.133). Again,
provided N{%™ are even, the integrals in (5.141) and (5.143) converge and (5.138)
- (5.139) can be solved for the constants b, by matching (5.138) at Vi points and
(5.139) at N,; points such that Ny + Ny > N, Results based on the solution of

(5.129) - (5.130) and (5.138) - (5.139) are considered next.

5.4 Validation of the Solution

In this section we address the validation of the GSTC solution. In particular,
several diffraction patterns are presented for selected material junctions and these
are compared with data obtained by other means. Issues related to the numerical
implementation are also discussed, including those pertaining to the convergence of

the solution and sampling criteria. Finally, some family curves are given for selected
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junction geometries in which the slab thickness is varied.

Figures 5.5. 5.6, and 5.7 present the echowidth of several recessed slab geometries.
These results were computed with the GSMF-GIBC solution of chapter three and the
more general GIBC solution of chapters four and five. The slab having r = .04, € = 2,
i = 1.2 (see Figure 5.5) may be adequately simulated by a low contrast second order
GIBC, whose solution is distinguished by the presence of a single unknown constant
bio. The computed value of this constant is given in Tables 5.2 and 5.3, which also
contain the values of the constants pertaining the simulations given in Figures 3.3
to 53.14. It is observed that the constants predicted by the GIBC and GIBC-GSMF
solutions are practically identical, and the corresponding diffraction curves overlay
one another for the PEC stub case as well as the PMC stub case.

The solution constants for the GIBC solution corresponding to the PEC stub were
determined by applying the boundary condition E, = 0 at the junction. In particular
it was found that a satisfactory solution for by could be obtained by enforcing this
condition at a single point along the junction and for a single angle of incidence.
The nearly-exact values in Table 5.2 result from enforcing the vanishing electric field
at a single junction point for four distinct angles of incidence. We remark that
there is no need for additional sampling points along the junction, since the interior
¥ function is constant with respect to y for a second order low contrast GIBC. A
question may arrise, however, as to why it is desirable to sample at a greater number
of sampling points than the number of unknowns. This is because the GIBC solution
should ideally satisfy the boundary condition over all angles of incidence and at all
points on the junction. Hence by using a sampling grid which spans the junction,
it is possible to obtain a solution which satisfies the boundary conditions across

the junction in an average sense. Once the overdetermined system is generated, a
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solution for the constant(s) may be obtained by standard least-squares techniqueg.

With regard to the computation of the field quantities at the edge, care Mgy
be exercised in evaluating the branch cut integrals. As seen from Table 5.1, y,
convergence of these integrals is not always guaranteed, since the integrand myg
have an asymptotic behavior of |A|7*=% with § > 0. It may then be deduced frop,
Table 3.1 that one cannot match E, or H, at the junction unless the order of 4)
GIBC/GSTC for finitely-conducting bodies is even. We remark, however, that a].
though the branch cut integrals for the PEC and PMC cases above always converge
(they behave asymptotically as |A|=3/? and |A|=5/2 re‘spectively), their evaluation is
not trivial by virtue of the infinite limits of integration. Herewith the infinite interval
is transformed to a finite one. In addition, in case of a pole near the integration path,
the addition and subtraction process described in [51] is employed to regularize the
integrand.

In Figure 5.6, the slab thickness is increased to .1\ and it is now seen that
fourth order conditions are required, resulting in three constants to be determined.
[t is found that nearly 12 junction constraints are needed to adequately specify the
constants by enforcing field continuity a£ three points across the junction for four
angles of incidence. The agreement between the GIBC, GIBC-GSMF, and GSMF-
exact are excellent, and the same is, of course, true for the GIBC and GIBC-GSMF
constants (see Table 5.2). Note that the error in setting the constants to zero in this
case is significant. The final recessed slab geometry has 7 = .4, ¢ = 5, u = 3 modeled
by‘ second order high contrast GIBCs. Again all solutions agree quite well as do the
values of the constant b9 as given in Table 5.2.

Figures 5.8 to 5.14 present diffraction patterns for material half-planes of increas-

ing thickness and are compared to data from a numerical model. The numerical
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model was constructed by first generating the transient response of a finite length
slab using bandlimited frequency domain data. The contribution from the half-plane
edge was then extracted by time gating the transient response. This numerical model
is valid except near grazing, where the surface wave and ray field excited by the back
edge arrives at the front edge in concert with the incident plane wave. Figures 5.8 to
3.11 present the echowidth for low contrast simulations of a half-plane having € = 2,
u = 1.2, Clearly, the agreement between the numerical data and GSTC solution is
excellent. The reader should also note the small values obtained for the constants as
the thickness tends to zero, and this is in agreement with the second order GSTC so-
lutions proposed in [33] and [54]. However, for thicker half-planes the constant plays
a more significant role as evidenced by the erroneous result predicted in Figure 5.11
when the constants are set to zero.

Data based on two high contrast simulations are presented in Figures 5.12 and
5.13 for a material half plane having ¢ = 5 and u = 3. Because of the higher
sampling required, numerical results could only be furnished for a thickness of up
to .05\ (see Figure 5.13). We observe that the results for the .01\ thick half-plane
given in Figure 5.12 are in agreement and the same is generally true for the curves in
Figure 5.13 despite the obvious instabilities of the numerical data. In Figure 5.14 a
GSTC simulation is constructed for a two layer half-plane having , = .005, ¢; = 5,
p1 =3 and 7, = .03, € = 2, uy = 1.2. The a.greemént of the GSTC solution with
the numerical data is quite good except at edge on incidence, and judging by the
abnormal behavior of the numerical data in this region it is conjectured that these
data are in error.

Finally, in Figures 5.16 to 5.21, family curves are given for various half-planes

and grounded junctions. These are limited in thickness by computational restric-
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tions stemming from the rapid increase in the number C;f constants as the order
increased. and additionally from the numerical intensiveness of the routine whic
determines the unknown constants. It is, therefore, necessary that the proper orde;
(the one providing adequate simulation and converged results) of the GSTC be ¢
termined beforehand. This can be generally found by leaving out the constants apq
computing the diffraction coefficient for increasing order of GSTC until convergenc,
is reached. The constants can then be determined for the order of the GSTC rey.
dering convergenée. This procedure was found quite adequate and was employed t,

generate the data in Figures 3.15 to 5.21.
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Figure 5.5: H, polarization backscatter echo width for a recessed slab with r = .4,
€ = 2, p = 1.2 modeled by O(r) second order low contrast GIBC (see
Table 5.2 for constants).
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Figure 5.6: H, polarization backscatter echo width for a recessed slab with r = .1,

€ = 2, p = 1.2 modeled by O(r3) fourth order low contrast GIBC (see
Table 5.2 for constants).
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Figure 5.7: H, polarization backscatter echo width for a recessed slab with T = 4,
€ =5, p = 3 modeled by O(x~') second order high contrast GIBC (see
Table 5.2 for constants).
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Figure 5.8: H. polarization backscatter echo width for a material half-plane with
T = .005, ¢ = 2, p = 1.2 modeled by O(r) low contrast GSTC (see
Table 5.2 for constants).
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r = .05 ¢ = 2, p = 1.2 modeled by O(r) low contrast GSTC (see
Table 5.2 for constants).



138

10.0

-10.0

o/\ in dB

LR L) ¥ ' L ‘ LI ‘I..J l LB ¥ | ] l | DI N B | l L] LB L]
.

-50.0 |||||
300 600 900 1200 150.0 1800

Angle in degrees

o
o

{ T=.10A, £=2-.0001, jl=1.2
ANAAARNANARNNANNRNNNNY

V.o

Figure 5.10: H, polarization backscatter echo width for a material half-plane with

7 = .10, € = 2, p = 1.2 modeled by O(r) low contrast GSTC (see
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Figure 5.11: H, polarization backscatter echo width for a material half-plane with
7 =.20, e = 2, u = 1.2 modeled by O(r) and O(73) low contrast GSTC
(see Table 5.2 for constants).
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Figure 5.12: H, polarization backscatter echo width for a material half-plane with
r = .01, ¢ = 5, p = 3 modeled by O(x°) (even symmetry) and O(x~')
(odd symmetry) high contrast GSTC. The free space side is modeled
by O(r) (even symmetry) O(r%) (odd symmetry) low contrast GSTC.
(see Table 5.3 for constants).



141

10.0

0.0

-10.0

1§ l L] L] LI l T 1 1T T

-20.0

------

g/\ in dB

-30.0

-40.0

numerical

2™ order h.c. GSTCs

cLabel T ' L] LIS ¥ I L} L B S | I LI}

llIllllllllllllllllllllILLll

00 300 600 900 1200 150.0 180.0
Angle in degrees

-50.0

¢
¢ o

E ﬂosx, ﬁé-wom, D\E-s
AAAAALINRARARARANNRNY

Figure 5.13: H, polarization backscatter echo width for a material half-plane with
r = .05, ¢ = 5, o = 3 modeled by O(«°) (even symmetry) and O(x~?)
(odd symmetry) high contrast GSTC. The free space side is modeled
by O(r) (even symmetry) O(r?) (odd symmetry) low contrast GSTC.

(see Table 5.3 for constants).

YA,




10.0

0.0

-10.0

-20.0

o/\ in dB

-30.0

-40.0

-50.0

L lIlLLllllllllllllllLl[llll

. GSTC solution
Numerical

300 600 900 1200 150.0 180.0
Angle in degrees

Figure 5.14: H, polarization backscatter echo width for a two layer .07\ symmetric
material half-plane with 7, = .005, ¢, = 5, 4y = 3 and 7, = .03, € = 2,
p = 1.2. Layer 1 is modeled by O(x°) GSTC, layer 2 and the free space
layer are modeled by O(7) (even symmetry) O(7?) (odd symmetry) low
contrast GSTC (see Table 5.3 for constants).
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Figure 5.15: H, polarization backscatter echo width curves for different thickness
material half-planes with e = 2, 4 = 1.2. All cases are modeled by O(7)
low contrast GSTC (see Table 5.3 for constants).
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Figure 5.16: H, polarization backscatter echo width curves for different thickness
grounded slabs with € = 5, 4 = 3. The number to the left of the
colon denotes the O(7) of the l.c. GIBC for the free space side, and the
number to the right of the colon denotes the O(k~!) of the h.c. slab
GIBC.



o/\ in dB

20.

10.

0.

0

-10.0

-20.0

-30.0

-40.0

Illlr1lllllll1l

LI L | ] ] T LI B

L.
et

c~eao
-

-
e

l =125, (3:2)
-: il 1 I ) 'l 1 ' 1 1 1 1 | 1 1 1 l 'l L 1 L l - L1
00 300 600 900 1200 1500 180.0

Angle in degrees

Figure 5.17: H, polarization backscatter echo width curves for different thickness
grounded slabs with € = 11, u = 7. The number to the left of the
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O(k~1) of the h.c. GIBC for the right hand slab.
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Figure 3.19: H, polarization backscatter echo width curves for different thickness
grounded junctions, with €¢; = 5, u; = 3 and €; = 11, u, = 7. The
number to the left of the colon denotes ne O(x~!) of the h.c. GIBC
for the left hand slab and the number to the right of the colon denotes
the O(x~!) of the h.c. GIBC for the right hand slab.
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Figure 5.20: H, polarization backscatter echo width curves a grounded junctions,
with €, = 2, p1 = 1.2, 7 = .025 and €; = 5, yp = 3. The first number
to the left of the colon denotes the O(r) of the l.c. GIBC for the left
hand slab and the first number to the right of the colon denotes the
O(k~1) of the h.c. GIBC for the right hand slab. The second number
on either side of the colon denotes the O(7) of the l.c. GIBC for the
free space slab needed to give the two sides the same thickness.
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Figure 5.21: H, polarization backscatter echo width curves a grounded junctions,
with ¢, = 5, gy =3, 1 = .05 and ¢; = 11, uy = 7. The first number
to the left of the colon denotes the O(k~!) of the h.c. GIBC for the
left hand slab and the first number to the right of the colon denotes the
O(x~!) of the h.c. GIBC for the right hand slab. The second number
on either side of the colon denotes the O(r) of the l.c. GIBC for the
free space slab needed to give the two sides the same thickness.
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FIGURE 5.5
3IBC (GSMF) -PEC STUB GIBC-PEC STUB
10 = -0.0451+30.02%2 10 = -0.0451+30.0213
3IBC(GSMF) -PMC STUB GIBC-PMC STUB
bl0 = 0.6875+30.3242 bl0 = 0.6875+30.3242
FIGURE 5.6
3IBC (GSMF)
bl0 = -0.4578+30.2593 bll = -0.0408-30.0111
b20 = -0.0401-30.0388
3IBC
bl0 = -0.4596+30.2599 bll = -0.0410-30.0110
b20 = -0.0400-30.0388
FIGURE 5.7
3IBC (GSMF) GIBC
b10 = -0.0831+30.0489 b10 = -0.0837+30.0489
FIGURE 5.8
3IBC
b10 = -.0000+3.0000
FIGURE 5.9
3IBC

-bl0 = .0022-3.0009

FIGURE 5.10
GIBC
bl0 = .0008-3.2323

FIGURE 5.11
GIBC 2nd order
bl0 = 0.0152-30.0166
3IBC 4th order
al0 = -0.0734+30.0138 all= 0.0145-30.0010
a20 = -0.0022+30.0103

]
o

blo .0350-30.0368 bll = 0.0146+3j0.0097 Dbl2 = 0.0035-3j0021
b20 = -0.0013+30.0565 b2l = -0.0004+30.0125
b30 = -0.0022-30.0015

Table 5.2: Values of solution constants for curves presented in Figures 5 to 12
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FIGURE 5.12
al0 = -0.0012-j0.0000

bl0

0.0019-3j0.0005

FIGURE 5.13
al0 = -0.0798-30.0054

bl0 = 0.0171-3j0.0239 bll = 0.0090+3j0.0002
b20 = -0.0019+30.0011

FIGURES.14
al0 = 0.0003-3j0.0000

bl10 = 0.0180-30.0102 bll = -0.0060+30.0002
b20 = 0.0002-30.0001

FIGURES.15

t=,005

bl0 = -.0000+3.0000
t=.05

bl0 = .0022-3.0009
t=.10

bl0 = .0008-j.2323
t=.20

bl0 = 0.0152-30.0166

Table 5.3: Values of solution constants for curves presented in Figures 12 to 15



5.5 Summary

In this chapter a method was proposed and demonstrated for determining the
unknown constants. Specifically, an eigenfunction expansion was presented as ,
representation for both the interior and exterior fields. The solution of chapter foyr
was then recast into this form, allowing the unknown constants to be determineq
by imposing additional continuity conditions across the junction. Various scattering
patterns were given validating the derived diffraction solution for several material

half-planes and junctions.



CHAPTER VI

SUMMARY

The goal of this dissertation was to develop a plane wave diffraction coefficient
for thick multilayered symmetric slab junctions using simulations based on the gen-
| eralized impedance boundary conditions and generalized sheet transition conditions. .
This task was accomplished in four chapters dealing with the derivation of the
GIBC/GSTC, the formulation and formal solution of the plane wave diffraction by
a class of slab junctions, and the subsequent resolution of the unknown constants
which arise in these solutions.

To model multilayered slab junctions, it was first necessary to develop GIBC
and GSTC for multilayered planar slabs, and this was the subject of chapter two.
Recurrence relations were initially developed to relate fields in the adjacent layers
of a multilayered structure, and these were subsequently used to derive infinite or-
- der boundary/transition conditions, conveniently expressed in a matrix product with
each matrix corresponding to a layer. Low and high contrast approximations were
then introduced to approximate the individual elements of each layer-matrix leading
to a finite order GIBC/GSTC for the multilayered slab. Since each individual layer
in the slab was characterized by a separate matrix, a low or a high contrast approx-

imation could be employed for each individual matrix as dictated by the refractive
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index of the layer. The accuracy of the derived conditions was evaluated by copy,
paring the GIBC/GSTC reflection coefficients to their exact counterparts and desigy,
curves were given for various single layer geometries based on the maximum phasq;
error of the approximation.

In chapter three, the plane wave diffraction by a recessed slab in a ground plane
was formulated and solved via the GSMF in conjunction with the dual integral
equation method. The motivation for studying this geometry stemmed from the
availability of exact data for uniform slabs. It thus served as a reference for evaluating
the accuracy of GIBC in junction simulations. Furthermore, the employed GIBC
simulation resulted in a unique solution, thus bypassing the non-uniqueness issue
associated with GIBC/GSTC simulations of more arbitrary material junctions.

The diffraction by a material discontinuity in a thick dielectric/ferrite slab was
considered in chapter four. The slab was modeled by a distributed current sheet
obeying generalized sheet transition conditions (GSTCs). This representation was
then used to develop dual integral equations in terms of even and odd unknown
spectral functions, which were proportional to the sheet currents. The solution for the
spectra paralleled standard procedure but resulted in expressions involving unknown
constants, revealing the non-uniqueness of the GSTC. It was demonstrated that the
unknown constant(s) could be determined explicitly for the recessed slab discussed in
chapter three by comparison with the results therein and it was also shown that the
obtained solution reduces to simpler known solutions, including that for combinations
of resistive and conductive sheets junctions.

One way of determining the unknown solution constants discussed in chapter four
is to employ field continuity across the junction. This however requires knowledge

of the interior fields and in an effort to determine them, an eigenfunction decompo-
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sition was developed for arbitrary symmetric multilayered slabs valid in the exterior
and interior regions. The solution given in chapter four was then recast in this form
permitting the determination of the interior slab field via analytic continuation. The
unknown constants were then resolved by applying field continuity accross the junc-
tion. Specifically, a point matching sche;ne was proposed in which the junction was
sampled across its width for different angles of incidence. The resulting unique solu-
tion was then verified for a number of recessed slab geometries by comparison with
’the GSMF solution iu chapter three, and also for thin material half-planes whose
scattering patterns were computed numerically. It was observed that the constants
are very small for thin slab structures, but become significant with increasing slab
thickness. Finally, family curves were generated for a number of half-plane and junc- :
tion geometries, and it was found that the convergence of the GIBC/GSTC solutions
can be estimated by leaving out the solution constants.

Clearly, the most challenging part of this work was the determination of the
unknown solution constants. The mere fact that this was possible proved that the
GSTC/GIBC are useful for practical simulations. Certainly, the method used in
chapter five for determining the constants could be employed or paralleled in other
applications. However, as noted fherein, the evaluation of the constants for higher
order GSTC simulations becomes numerically intensive and it would, therefore, be
desirable to find alternative means for accomplishing this. For example, instead
of point matching one could explore the orthogonality of the expansion modes or
perhaps use a more efficient evaluation of‘ the integrals.

In this work we explored one application of the GSTC/GIBC simulation, that
of diffraction by multilayered material slab junctions. As can be expected there

are numerous other applications where the GSTC/GIBC can permit analytical solu-
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tions. Examples include the extension of this work to skew incidence; possible chy;.
acterization of junctions other than vertical where this solution may be employeq
in conjunction with a numerical one; and the diffraction by material junctions oy
curved surfaces at normal and skew incidences. Also, the characterization of multiple
diffraction effects among material junctions is a straightforward process following the

method already employed in [13].
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APPENDIX A

MULTIPLICATIVE SPLIT FUNCTIONS

In this appendix we consider the splitting of
G (V) =ua (A?) + VI=X2Up (1?) (A1)

as a product of two functions, one of which is free of poles, zeros and branch cuts in
the upper half of the A plane and the other having the same properties in the lower

half of the A plane. That is, we seek to write G (A?) in the form

g (A?) =G, (VG- (N (A.2)
where the superscript + and - indicate an upper or lower function, respectively.
Noting that

Na
S A 1= (A.3)

n=0

Np
Us (M) = Y B.[1-27" (A4)

n=0

Ua (3?)

with Ny = Np or Ny = Np + 1, we may rewrite G (\?) as

g (\?) = %s: S, [VI=27)" (A.5)

where Ny = Maz(2N4,2Ng+ 1) and S, = Anjpif nis even and S, = Bp_y)/2 if n

is odd. However, since we seek a multiplicative splitting of (A.5), a more convenient



139

form to represent ¢ (A?) is

n=1 “In

Ns .
g <,\2> =5[] (1 L YL-A ) "N

in which v; denote the zeros of the polynomial 775 3, (=\). We immediately .
= : mm vV now

identify that each of the product terms in (A.6) can be factored as

1 — A2 de f
1 = | .- y .« - ( -
+ ——7 = M (M 9) M_ (X Y) (A.T)
where
vV1-2X
A' /\,1 ,7 T —— S
+(N1/y) = My (nr) (A.8)

is the split function characteristic to the impedance half plane having a constant
surface impedance 1/+ [34]. With the branch choosen so that Im(v/1-2\?%) < 0,

M, (A:7) is explicitly given by
My (%v)  Im(y)<0

My (V) = M_(=X7) = { Jn“;\!:(\(f‘)v_z) Im(3) > 0, (A.9)

08 (572 [+ Vo (22522)| [ + VEcon (2550

\/§[\Ix, (B3r/2—a—0)T,(1/2 —a+06)] (A.10)

My (cosa; 1/7) =
In this,
Im(n) 20
A = cosa

Im (\/1 - 1/7]2) <0

= sin™!(n) with 0 < Re(6),

and ¥, () is the Maliuzhinets function [22] whose evaluation in algebraic form has

been given in [50]. We remark that in the limit as y — 0,

1-\?
VI

My (\y—0) = (A.12)
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and as v — oc

The determination of G* (A) is now rather trivial. By substituting (A7) into

(A.6) we easily obtain

G (3 = G- (=3 = /S5 I Me (5 7) Ay
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