Abstract

A solution of the diffraction from a dielectric-metallic join due to an incident

E,-polarized plane wave is presented. Direct diffraction, coupling, launching, and reflection

subproblems associated with a loaded parallel plate waveguide are treated via the dual integral
method. The results are subsequently combined in the context of the generalized scattering
matrix formulation to obtain the diffraction from the truncated parallel-plate waveguide with a
recessed stub and a dielectric loading extending to infinity. The stub is then restored to the
waveguide mouth to obtain the diffraction by the dielectric-metallic join. As expected, the
final expressions involve several Wiener-Hopf split functions and an efficient numerical
technique for their evaluation is given in an appendix. ‘The convergence of the solution with
respect to the number of included modes is examined and & number of scattering patterns are

presented.
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L. Introduction

The problem of interest is the diffraction by a thick metallic-dielectric join

illuminated with an E,-polarized plane wave, as illustrated in Figure 1. To the authors'

knowledge, this problem has not been attempted although various researchers have considered
related problems. For example, Bates and Mittra [1], and Uchida and Aoki [2] have studied
the grounded dielectric slab with a truncated upper plate with regard to surface wave excitation
by the dominant parallel-plate waveguide mode. Uchida and Aoki [2], as well as Fong [3],
have investigated the radiation cause by the incidence of the dominant waveguide mode upon
the waveguide mouth. Also, Aoki and Uchida [4] attempted a solution of the closely related
problem of a dielectric-dielectric junction by introducing a Fourier series representation of the
field and its derivatives at the interface. Using such an expansion, Wiener-Hopf equations
were generated in terms of unknown spectral functions related to the total field.
Unfortunately, the authors attempt to obtain an explicit expression for these was not realized.
Instead, their computation involves an iterative solution requiring knowledge of rather
complex integrals and functions whose evaluation is cumbersome and could only be done
approximately.

The dielectric-metallic join problem is of interest primarily as a canonical one in
microstrip structures, since a simple application of image theory yields the solution to a
dielectric slab recessed in a perfectly conducting ground plane. Further impetus is derived
when one considers the presence of composite materials on man-made structures where the
occurrence of material-metallic junctions is common place.

The solution to the diffraction by the metallic-dielectric join is obtained by first
considering the closely allied problem of a parallel-plate waveguide with a dielectric loading
extending to infinity and a perfectly conducting stub recessed a distance from the waveguide
mouth as shown in Figure 2a. Upon a solution of this, it is then a simple matter to extract the

solution for the metallic-dielectric join by setting the distance d to zero. The diffraction of the



-
I

Fig. 1. Geometry of the metallic-dielectric join.




recessed-stub geometry due to an incident plane wave is treated in the context of the
generalized scattering matrix formulation (GSMF) [5]. This method requires a solution to a
number of canonical problems, illustrated in Figures 2b-2f. Specifically, in addition to the
direct diffraction problem, one must also consider the coupling, reflection, and launching of
waveguide modes at the loaded waveguide mouth. Each of these will be analyzed via the dual
integral equation approach [6], which provides a reduction in complexity over the parallel
Wiener-Hopf technique. A crucial step in e’very one of thesc: problems is the factorization of a
particular complex function into components regular in the upper and lower half complex
plane. Unfortunately, the factorization cannot be done analytically and to circumvent this
difficulty an efficient numerical method is introduced for the factorization of an arbitrary even
complex function.

In the first part of this report, the formal solution to the problem is presented. After

a short summary of the GSMF, the integral equations for E,-polarization incidence are
formulated in a consistent manner by imposing the necessary boundary conditions. The
coupling and direct diffraction coefficients, as well as the launching and reflection coefficients
are then extracted from a solution of the appropriate integral equations last presented. In the
final part of the report, families of computed scattering patterns are presented for selected
material parameters to illustrate the scattering behavior of the dielectric-metallic join as a
function of slab thickness. The convergence behavior of the formal solution is also examined

with respect to the included number of modes.

IL Scattering Matrix Formulation

The problem to be considered is that of an E,-polarized plane wave incident upon

the structure shown in Figure 1. In order to apply the GSMF procedure, the stub must be

recessed a distance d into the waveguide, as shown in Figure 2a, forming the genesis of the
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individual problems illustrated in Figures 2b-2f. At the end of the procedure, the distance d is
set to zero restoring the original geometry.
In accordance with the GSMF, the individual problems to be considered are as
follows:
1) Evaluation of the direct diffracted field by the substructure in Figure 2b due to

plane wave incidence. This field will be denoted as
e ikp

Epp (4 0) ~Spp (9. 9) T

p

where Spp is usually referred to as the diffraction coefficient and (p, ¢) are the cylindriéal

coordinates of the far zone observation point.
2) Evaluation of the field coupled into the loaded parallel-plate waveguide due to
plane wave incidence as shown in Figure 2c. Hereon we will denote the field associated with

the nth coupled mode as

E (0)=C, ()¢ '

where C;, (¢, is usually referred to as the coupling coefficient and k,, is the propagation
constant associated with the nth mode.
3) Evaluation of the modal field reflected at the stub. This will be written as

[ ejkm . where[ mn is the stub reflection coefficient of the nth mode to the mth mode.

mn

4) Evaluation of the reflected field at the waveguide mouth due to the nth mode.

This will be denoted as Rmn C-ka i where Rmn is the reflection coefficient of the nth mode to the mth

mode.
5) Evaluation of the far-zone radiated field due to an incident nth mode at the

waveguide mouth. This field will be denoted as



- jkp
E_@~L, ()=

)

where L, (¢) is usually referred to as the launching coefficient associated with the

nth waveguide mode.
Accordingly, the total far-zone diffracted field by the recessed stub geometry in
Figure 2a is given by

¢ i
E, (0, 0,:d) ~ [SDD @, 0)) + Syop (@ 5 d>] — M
P

where Syiop (9, ¢,,; d) is associated with the presence of the stub and, therefore, includes the
contribution of the modal fields within the waveguide. It can be written in a matrix form as
[7]
-1
Svop @ 0D =[L_@® 1 {l 11- [P I I[P ] Rmnl} [P_11[_1[P_1[C ()]

()

in which the brackets signify column or square matrices depending on whether one or two

subscripts appear, respectively. In addition, [I] denotes the identity matrix and [ Py,,] is the

modal propagation matrix whose elements are given by

_jhnd
e ;. m=n

P = ) €))
0; m#n

Clearly to obtain the far-zone scattered field by the dielectric-metallic join it is only required

to setd =0in (1) and (2). In this case [ P,,,] reduces to the identity matrix and

Smop (¢, ¢,) becomes



-1
S5 @ 0= 8,00 6.0 0= [ L @ 1" {111~ (R} (T_10C, @)1 .
4

III. Plane Wave Diffraction and Coupling
The plane wave (an eJ®t convention is assumed and suppressed throughout)
Ei jk (x cosd, +y sind)

Z=e

; jk (x cos¢  +y sin,
H = Ysing, ¢ o ©)

i jk (x cos, + y sin
H =+Ysing e )
y o

is assumed to be incident upon the structure in Figure 2b, where Y = 1/Z is the free space

admittance and ¢, is the angle of incidence measured from the positive x-axis.

In the absence of the perfectly conducting half-planes, the plane wave (5) will
produce the following total field

E +E y>0
z z
B =\E, 0>y>-2t ©)
E" y<-2t ,

where

Jk (x cosd, - y sind
E =R_¢ !
Z E

(Ta)

. ) ) ) §2kt sing,
jkx coso, | (14 RE) sin[k' (y + 2t) sm¢0'] - TE sin(k' y smq;o') e
e

sin (2K’ tsing)

E, = (Tb)



jk (x cosp, +y sin¢,
BT ¢ - (70
2
o Rep(L-FyP) - _(LRYPRP, 9
— 2 N - _2_-2_
1-R;, PP, 1-Rg,PLP,
jdkt cosd, cotd,’ j2K'tsin ¢ ' 2kt cos(d, - 9,)/sind,’
e_] cos ’ Pb _ eJ i o, Pc _ ej cos sin ©

and Rgq is the usual plane wave reflection coefficient associated with a dielectric half-space

having relative constitutive parameters €, and | . In addition

K=k pe =xk , (10

where K is the refraction index and ¢’ is defined according to Snell's law as

kcosd =Kk cosp' . (11)

The presence of the perfectly conducting half-plane causes the generation of the

additional field
EZl y>0
E=\E, -2t<y<0 (12)
E::s y<-2t.

These may be represented in terms of an angular spectrum of plane waves [6]. Specifically, a

suitable spectral representation for them takes the form



E = J' P, (cosc) 7% "V gy (13a)
C

Eiz _ [ Q, (coso) (kP cos@+a) Q, (cosa) oIt sin _-jip cos(d - a)] @ (13b)
c

E; - [, (coso S sina jkp cos@+) | (130)
C

where C is the contour on which cosa runs from +eo to -e as shown in Figure 3 and P} 5(cosa)
with Q; 5(cosa) are the spectra which must be determined via the application of the necessary

boundary conditions. Note also that o and o' are different parameters whose relationship will

be established later. The introduction of the factors ekt sin@ and e-j2k't sind’ i totally
arbitrary and could have been omitted. However, such factors are expected to appear in the
final expressions for the spectra and are therefore introduced from the start in order to reduce
the complexity of the resulting integral equations. The corresponding expressions for the

x-component of the scattered magnetic field are
H =Y '[ sinat P, (cosa) e °*® Vg (142)
C
Hi =-Y J‘ sino! [ Q, (cosar) o Ikp cos(é + ) _ Q, (cosa) o J2Kt sina’ -jip cos(e - a')] do .
C
(14b)

H,=-Y J' sino. P, (cosor) ¢ 1% TP 5@+ D g (140)
C

where
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The total field due to a plane wave incidence in the presence of the configuration in

Figure 2b can now be expressed as

E"=E"+E , (15)
Z z A

with EIZ’w and Ei as defined in (6) and (12) respectively. For its complete determination we must find
the scattered field EZ , implying an explicit knowledge of the angular spectra P, ,(cosa) and Q, ,(cos)

appearing in (13). This will be accomplished in the subsequent sections via the application of

the following boundary conditions:
1)  The total tangential electric field is continuous over <o < x <o, y = {92t , implying
B1) E:1=E;2 Over-o<x<oo, y=0 ,
®2 E,=E, Over-o<x<es, y=-2t ,
since E:w is already continuous.
2) The total tangential magnetic field is continuous over x <0, y = (?21:}, implying
®3) H =H, over x<0,y=0,
B4) Hi =H over x<0, y=-2t .

3) The tangential electric field vanishes on the perfectly conductive half-planes, implying
B5) E,.+E.+E =0 over x>0,y=0,

(B6) E:+E;3=O over x>0, y=-2t .

11



The application of boundary conditions (B1) - (B2) gives

kcosa=k' cosa' or k'sina' = k‘/ Kz - cos2 o , (16)

and that

-j2kt J - cos2 a 17

P1 (cosa) = Q1 (cosa) + Q2 (cosa) e
2 2 1

Thus, (17) reduces the number of unknown spectra from four to two and a complete

knowledge of the scattered fields can be deduced from Q) 2(cosa) alone. Additionally, the

branch of yf & - cose. in (16) s choosen such that Im (% - cosa. ) <0 for 0< Re (@) < 7. This

defines a mapping from the a-plane to the a'-plane as shown in Figure 4.

Next we employ the boundary conditions (B3) - (B4) demanding that

i ina’ L 52k't sinat' |
sino, P, (cosa) + Y sinoc Q, (cosor) - Y sinat’ Q,(cosor) ikt sina’| e coso

da=0; (18a)

Q)

x<0,

. . -j2k't sina’
sinQ Pz(cosa) - Y sina Ql(cosa) gl an

+ Y sina’ Q(cosar) | e ©** do=0;  (18b)

(o] S—

x<0.

When we further incorporate (17) into (18), change the variable of integration from ¢ to

A = cosa and add and subtract the resulting equations we obtain the decoupled set

N 2 .2 .
j[Q,(Mi-Qz(x)]%m) ran=0 x<0 (19
- 1-A° 4

where

12



iur\[ﬁcosh(kt\llz-xz)+‘/x2_,<2 Smh(ktm)]

E )= o Tz ,  (202)
and
E[ur,/xz-l sinh (k432 -2 ) + 222 cosh (ke /22 )1
F,A) = . (20b)

2
1+ 1) /Xz_Kz eth i
Note that in deriving (16) we have used the relations sz-l =j\/1-k2 md A2 = A2

In addition, the complex A-plane defined by the mapping A = cosa is shown in Figure 5.

The boundary conditions (BS) and (B6) imply the integral equations

——", ) e """‘dx_-(uR) ix cosb, x>0 | (21a)
j2kt sing, jkx cosd,
P, ™ dh=-T,e" o Jx sty 50 (21b)

U—

Substituting (17) into (21) and adding and subtracting the resulting equations we find

I[Ql(l)th(k)] F, (x) WG o (1aRET e ) e 0
J1-42
(22)
with
F)=1£2 VY @3)

13
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The dual integral equations (19) and (22) are now sufficient for a solution of

Q; (A) £Qy (X). However, before such a solution can be pursued, it is necessary that

Fj 5 (V) and F3 4 (A) be factorized into functions regular (i.e. free of poles, zeros and branch
points) in the upper and lower half of the complex A-plane. Utilizing the factorization

procedure outlined in Noble [8], F 5 (A) may be factorized as

FW=LMUQ , 24)
2 2 2

where the functions denoted by L/U are regular in the upper/lower half of the A-plane.
Expressions for L 5 (A), Uj 3 (A) are given in Appendix A. On the other hand, the

factorization of F3 4 () into

EM=L,MU,H , (25)
4 4 4 ,

is much more involved. Notwithstanding, numerical and analytical techniques do exist for

accomplishing it [1,9]. The factorization of F3 4 (A) herein will be accomplished through a

recently developed numerical procedure with the final expressions of U3 4 (A) and L3 4 (A) in

terms of an integral over the convenient finite interval [0,1], as given in Appendix B. The
utility of this numerical technique also stems from the fact that it may be applied to a very

wide class of complex functions with no special preconditioning of these necessary (i.e.

involved treatment of poles, etc.). In passing, we note that for the special case of k = 1,

Fj 2 (A) reduce to functions already encountered [10] and F34M) =1

15



Using the factorizations (24) and (25) we may now proceed for a solution of the

spectra Qy 5. Since (19) holds for x < 0, we may close the path of integration by a

semi-infinite contour in the upper half of the A-plane and employ Cauchy's theorem along with

(25) to deduce that

2 A2

KA T=LOuLM=0,0 (26)

,/11 4

where Uy g (A) are unknown functions regular in the upper half of the A-plane. Similarly,

[Q, W+, ] ==

(22) holds for x > 0 enabling us to close the path of integration by a semi-infinite contour in

the lower half of the A-plane and again invoke Cauchy's theorem along with (24) to obtain

j2kt sing
R T °y La(})
[Q, )£ Q,(W)] ==L, W) U, () = — A+ RgETpe ) "B

/1 A2 2 2 27j A+ cos L, (-cosd )
B

@27)

where L g (A) are unknown functions regular in the lower half A-plane. Substituting (26) into

(27) it may be de&uced that
Ly V)
L, ()= —2 , (28)

16



j2kt sin k-4 Jx-A UsR)Us Q)
U O)=——(1+R T e "°)\/ V 3o 1

B o A+h, U )U O
2 2

(29)

since L p and U, p are associated with different regions of regularity. Finally from (29) and

(26) it follows that
0 (7»)=L /1.,.1 Jl-x ‘/K-XO {(1+R oT e-j2ktsin¢o) U, (A)
b fean AR BE LAMU, MU, ()
2kt sing, U,A)
+(1+R,-Tye' )L “;x - } (30)
s MU, AU, R)
and from (17)
P = 1 /11‘/1-7» \/K-ko {(1+R o T e-jzktsin¢o)1.l(7~)U3(Xo)
2 am feon MM EE LMU, Q)
-j2kt sin L,AU, (A
i(l+RE'TEcﬂh 4"’)_&(_2)_} , (31)

L, M) U,R)

where A, = cos¢,,. These may now be substituted into (13) to obtain the field scattered by the

loaded parallel-plate waveguide. This requires an evaluation of the resulting integrals as
described next.

To compute the field diffracted by the geometry in Figure 2b, (31) is substituted in
(13) and a steepest-descent-path approximation is performed for large kp. Noting that the

pertinent saddle point is at o = ¢ when ¢ < 7w and at o = 2% - ¢ when ¢ > 7t we find that

chp
E,~Spp 4, 0) ==

)

17



where Spp (9, 9,,) is the direct diffraction coefficient given by

e mﬁsin%,/x-cos&bo(l )

52kt sing
nfonk Jxrcosp  cosproosg,  \€ "

Spp(®> 9;) =

(1+ R, +T, e—jZkt sin¢o) L, (cos$) U, (cosd ) (14 R,-T, e—j2kt sin¢°) L, (cos) U, (coso ) |
L; (cos) U, (cosd,) L, (cos$) U, (cosd )
(32)

in which the upper sign holds for 0 < ¢ < & and the lower for & < ¢ < 2r.

For the computation of the field coupled into the waveguide (x>0), kp cannot be

assumed large. Therefore, one must employ a technique other than the steepest descent

method for its evaluation. A standard procedure is to transform (13b) to the A-plane giving
B = = V5
z- 2T o J_
=y K+L A+1Q)
[2 2 -2kt sing, U, (A [2 .2
cos [k(y+t) lcz-kz]+j(1+RE-TEej - ) s ) sin[k(y+t) Kz-lz]}

L, MU, M) U, ()

2kt sin¢°) U )

(1 +R+Te
LLAMU, AU Q)

E

. 2 .
VN ok gy 33)
Since x>0, the above integrals can be evaluated via the residue theorem after closing the path
of integration by a semi-infinite contour in the lower half of the A-plane. In doing this, it

should be remarked, that the above integrand does not have a branch at A = x. Noting now

that Uy 5 (A) have zeros at

18



2 ,nn .2

A=k =[x -('2—1&') ) G4
we find
= cos -jkx A,
E=E,= ), Cn[Zg+]e 35)
n=1,2...
where
ry A. 5 sin
C, <¢) {J} J (—) 2, o9, Y (4R ETge )
cosd+ A
Us(cos ¢)
4 (36)
U, (W)U, (cos )L, ()
2 2 4

are the coupline coefficients. In the above, the subscripts & denote odd and even n, respectively, and

du; (A)
2 |
A=A

n

U, (A)=
2

As a check, we note that when g =W, = 1, (32) and (36) reduce to the known

expressions given in [10]. In passing, we also note that if we were concerned with the modal

fields in the region'x < 0, we would also have to consider the residues of the poles

corresponding to the zeros of L3 4 (cosa). These are precisely the surface wave modes of a

dielectric waveguide. Furthermore, any branch-cut contribution would also have to be

included.

19



IV.  Radiation and Reflection by a Waveguide Mode
This problem is illustrated by Figures 2d, 2e, and 2f. The modal field (see (34) )

i cos| nm jkx Ay
Ezb—sin[z—t(y+t):|c ,
[

i _.Y nm _sn| ng jlox Ay
HX°=+J-;(2_k-t')OOS|:7(Y+t)]e
[

is now assumed to be incident toward the waveguide mouth and present throughout the region
-0 <X <00, 0>y> -2

Our solution for the radiated field and that reflected back into the waveguide will
follow the same general steps employed in the plane wave incidence analysis. The sum of the
radiated and reflected fields are now the scattered fields and since they are solely caused by
the currents on the perfectly conducting half-plane they can again be represented by (13) -
(14). In addition, all of the boundary conditions (B1) - (B6) stated earlier are still valid.

Their mathematical forms are now given by

(B1) E:1=E;2 OVer -0< X <oo, y=0,

S
23

B2 E

22E

OVEr -00< X <oo, y=-2t,

®3) H =H +H ower x<0, y=0,
(B4) }_1;3=Hi2+Hi over x<0, y=-2t,

ty,

(BS) 21=O over x>0, y=0,

B6) E,=0 over x>0, y=-2t,

z

since E, is already zero over the perfectly conducting half-planes.

20



Application of the boundary conditions (B1) - (B2) again result in the relations given

by (17). Thus the determination of Q1 2 (cosa) is our only remaining task. To find these, we

proceed with the application of boundary conditions (B3) and (B4), then add and subtract the

resulting equations to obtain

.j nm . . . jkx A
¢ A2 kxA H+1(F)Sm(-2_)e
J.[Qlo(l)+Q20(7»)]-——21.3(X)U3(k)el a={H ;x<0 ,
- e e 1-1
0

(37
[ A2 ik j ; nw.onm kA
I[Qlo(k)-on(X)]——2L4(7»)U4(7»)e’ a= (e (™™ ixco.
-00 e e 1-A H

(38)

By enforcing boundary conditions (B5) - (B6) and again adding and subtracting the resulting

equations, we also have that

I[Qlo(k)+Q2°(X)] lle MU, W)™ =0 ; x>0 , (39)
“ o8 8 1-A

kxA

J‘[Qlo(k)-—on(k)] =0 ;x>0 . (40)

——‘/_i_—_-z- LYU,MWe
1-A

Equations (37) with (39) and (38) with (40) form again a coupled set sufficient for

the solution of Q; 5 (A). In proceeding with this solution, we note that since (39) - (40) are

21



valid for x > 0, the path of integration may be closed by a semi-infinite contour in the lower

half of the A-plane, giving

[Q, W +Q, ] LMY MW=L, ® , @1)

1-x2

[meﬂm Lawa)%m “2)
1-22

where Lo (A) and Ly (A) are again unknown functions regular in the lower half A-plane.

Similarly, because (37) - (38) apply to x <0, we may close the path of integration with a

semi-infinite contour in the upper half of the A-plane resulting to

sm(-—) U, (x)

-n

a2
munu§m]

¢ ‘/1 A2

U, ME, M
Uy W E; ()
2 2
[o, W-qQ, (M]EL4 Mum={ () g @
s X Y :

@ +12ke A+A Ug (A)
where Uy, Up are unknown functions regular in the upper half of the A-plane and E4 p (A) are

unknown entire functions whose justification for the appearance of will soon become apparent.

Substituting (41), (42) into (43), (44) respectively, and equating regions of regularity we find
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U, () x4

U M=U,N\)= 45
AT A U, () -
U, (A ,/ A
Uy M) =1, (A):.L_f___ , (45b)
e G, ®*)
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sin(5-) k-h, LML QY
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e L ()
1 E, () ,
\g(x),/xﬂ §
[ Lo
z Eg() ,
LA yx+A
LBO ) = { - 45d)
N S R LN A IS
\(”r"'l)“ K+A A +)) LML, &)

We may now use (17), (43), (44), and (45) to determine the spectra Pio (A) as

,/1-x2L ) sin (22 [ Ji- 2 L1 (ML (A)
P1 (X)= - % EBO\v)‘-F cos 2 1+)\' Jl )\'\/K )\'n % 12 n ,

> 2yx+A L, A @ +1)2n /K+X A+ A I%(X)Lz(ln)
3

(46)
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Ji Lo S fron Jin Jen, LoLay

P, W=3 Ey (M) -
: A (Do f A+, MLy 3,
24 x+A LgO») K+ A Li Li

(47)
with the evaluation of E (A) and Ej (A) remaining. From a straight forward examination of
the field behavior at the plate edges, it can be shown that [9] P (A) ~ A-1/2 as Re (A) — o0 and

since Ly 5 (A), L3 4 (A) = 1 as Re (L) — o, one concludes that

E,M)=E;M)=0 . @8)

Consequently, we find that

. N
P \)=tP, \)=7; ') Y1+A Jl-)“/;')‘n le(l)L%(xn) @)
1 =2 + )
e e (B +1)2n ,/x+x A+ L%(K)L%(kn)

sm(_) / 14 Jx-A L1 ()
4,05 (x)—+(“ 1)2 /l+ ix x{ U, ) 2m o
+1)2n | +
e K 12 LZ L% n

(50)

The radiated field is now found by substituting (49) into (13). After employing a steepest

descent path evaluation of the resulting integrals for large kp we obtain
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E, ; O<o<m
e P

E = ~—=L, ® (51)

S Y

T<P<2W

where the launching coefficients L (¢) are given by

[

\

Asin(ﬂz’l)

LY P {2sin($)fx-2, Ly (cost) L1 (1)

; [ A A
e \Bcos(%’-‘-)l 2k (. +1) y x+cosp cosp + A, Li(COS‘P)L%( y

inwhichA=-1,B=1when0<¢<mand A =B =-¢ i2ktsin¢ when 1 < ¢ < 2m.

The field reflected back into the waveguide is Eiz in (13) and is evaluated by the same

procedure employed for the coupled field. Specifically, we transform the integration path to
the A-plane and invoke Cauchy's theorem after closing the path of integration with a

semi-infinite circle in the lower half of the A-plane to obtain

e e m=1,2... e
where
i\ gp, DN
Caf)a® i ue e
—4 e 9
mfoe mr (ur +1) xn + A'm Ul' O"m) L3 O‘m) L3 O\'n)
2 4 4

(54a)
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=R =0 (54b)
are the reflection coefficients.

Finally, the matrix elements rm“ due to reflection from a perfectly conducting slab

are given for the E,-polarization by

-1, m=n,
[ = 55)
mn 0, m#n,
implying that - [ ] is the identity matrix.

This completes the analysis required for the evaluation of the diffracted field Ei by the thick

metallic-dielectric join shown in Figure 1. Below we present some numerical data which
describe the scattering behavior of the metallic-dielectric join as function of thickness and the

dielectric's constitutive parameters.

V. Numerical Results
Before proceeding with the computation of the diffracted field by the join as given
in (1), it is essential to first determine the minimum number of modes required to achieve

convergence of the infinite sum implied in (4). Such a test was performed in [10] for the thick

perfectly conducting half-plane, equivalent to the dielectric-metallic join with e, =p_= 1.

However, the conclusions in [10] are incorrect due to a programming error in the computation
of the higher order modal fields and thus one cannot draw expectation from these results.
The convergence behavior of the backscattered field is presented in Figure 6 for a

dielectric-metallic join .95-wavelengths-thick and for the three sets of material parameters
(€ =2j.0, p =1-j.0), (e, =5-j.5, u = 1.5-j.1), and (¢ = 7.4-j1.1, p_= 1.4-j.672). In each case,
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Fig. 6. Convergence test of the solution given in equation (1).

(@)2t=0950, e, =2, =1.
(b) 2t=0.95X, &, = 5-j0.5, . = 1.5 - jO.1.
(€) 2t=095X, & =7.4-jL.1, u = 1.4 - j0.672.

27

180.00



30.00

20.00
|

¢

10.00

0.00
|

Backsc_a';c'(clgr Echo Width in dB>wl

' | ' |
Backscatter

g, =5.0-j05,u=15-j0.1
2t = 0.95\

0 modes
—6—— 3 modes

—2A—— 6 modes

180.00

2

- -
!

2

8. . L l 1 l L I 1 l

|

0.00 30.00 60.00 90.00 120.00 150.00

Angle in Degrees
(b)
Fig. 6. Cont.

28



10.00 20.00 30.00

0.00

Backsc_algggr Echo Width in dB>wl

-20.00

-30.00

2y

L} ] v l ¥ l ¥ ' 14 l T
Backscatter 0 modes
g =74-jl.1,u =14-j0.672 ——6—— 4 modes
2t =095\ W —#&—— 7 modes: |
4
T -
. 1 l 1 I 1 l I l
0 30.00 60.00 90.00 120.00 150.00 180.00

Angle in Degrees

(©)

Fig. 6. Cont

29



30.00

| ' I ) | }
Backscatter E
81' = 2, “T = 1 [

20.00
I

10.00

0.00
I

Backsca}ggr Echo Width in dB>wl

-20.00

30.00

2t/ A
0.01
——6—— 0.1

—A— 025
—+ __ o5

—¥—— 0.75

I

— . P B B
30.00 60.00 90.00

Angle in Degrees

o
[=]
o

(a)

120.00 150.00 180.00

Fig. 7. E,-polarization calculated echowidth family curves for 2t =0.01, 0.1, 0.25, 0.5 and

0.75 wavelengths. The constitutive parameters of the dielectric are €=2,Uu.=1
(a) Backscatter case. (b) Bistatic with ¢, = 45°. (c) Bistatic with ¢, = 150°.

30



30.00

360.00

1 I 1 [ [ ] I ¥ I ¥ l )
Bistatic, ¢, = 45° 2t/a
. —— 0.01
e=2,u.=1
8 =S —o— 0.1
S —A— 025 |
—+ 05
i —*%— 0.75 ]
S
—~2 7
=
A
m -
@ |
o
..-‘c
S |- —
Lo
+.J
o)
o
= - .
£8
Lo
W - —
S
- _
|
S
8. l 1 l
'0.00 60.00 120.00 180.00 240.00 300.00
Angle in Degrees
(b)
Fig. 7. Cont.

31



30.00

360.00

| ' | ' 1 v T o |
. 2t/
i Bistatic, ¢, = 150° .
% 0.01
3 i E=2,1u=1 o 01 I
& —A— 0.5 B
—+ 05
I —*%— 0.75 h
8
—S _
=
A
m -
-U i /
c
—o /
ca / =
5 /
o
= . 4
£8
UO ped
W
S
° —
N ,
8 )
=1 | N | ; \ | | '
'0.00 60.00 120.00 180.00 240.00 300.00
Angle in Degrees
(c)
Fig. 7. Cont.

32



20.00 30.00

10.00

0.00

Backscatter Echo Width in dB>wl

1 I T I T I T I T ] T
2t/ A

- 0.01
—&6—— 0.1

— A— 025
—+ o5

—*—— 0.75 7

Backscatter
€.=5-j0.5, K, =1.4-j0.1

Pe e e  A—

8
= &
=L —
8. /'«
S L / : _
|
8 5
g A | L ] ' | A |
'0.00 30.00 60.00 90.00 120.00 150.00 180.00
| Angle in Degrees
(a)
Fig. 8. E,-polarization calculated echowidth family curves for 2t = 0.01, 0.1, 0.25, 0.5 and

0.75 wavelengths. The constitutive parameters of the dielectric are €. =5 - j0.5,
1 =1.4-j0.1. (a) Backscatter case. (b) Bistatic, ¢, = 45°. (c) Bistatic, ¢, = 150°.

33



30.00

20.00
|

10.00

0.00
I

Echo Width in dB>wl

-10.00

-20.00

' [

Bistatic, ¢, = 45°

€=5-j0.5, u,=14-j0.1

I 1 F/: L

2t/ A
0.01

——o—— 0.1

— A 0.25
—+ 05

—*— 0.75

(U

120.00 180.00
Angle in Degrees
(b)
Fig. 8. Cont.

34

240.00

300.00

360.00



20.00 30.00

10.00

Echo Width in dB>wl
0.00

-20.00 -10.00

30.00

© Py
=

| N | n I ) 1 ' }

Bistatic, 9, = 150° 2t/
€=5-j0.5,1u.=14-j0.1

Angle in Degrees
©

Fig. 8. Cont.

35

60.00 120.00 180.00 240.00 300.00 360.00



Backscatter Echo Width in dB>wl

30.00

T ] LI I 1] ] L B ‘ ‘[
- Backscatter
g e, =74-jlL1,u.=14-350.672
3 - -
8’ —
S
S _
[ =]
3
o . —
T
3
8 = —
)
= | | ]
< 1 1 [
o » v/ |
0.00 30.00 60.00 90.00 120.00 150.00 180.00

Angle in Degrees

(a)

Fig. 9. E,-polarization calculated echowidth family curves for 2t = 0.01, 0.1, 0.25, 0.5 and
0.75 wavelengths. The constitutive parameters of the dielectric are €, = 7.4 - j1.1

and 1 = 1.4 - j.672. (a) Backscatter case. (b) Bistatic, ¢, = 45°. (c) Bistatic,

¢, = 150°.

36



30.00

T l T ' I T [ ! T '
- Bistatic, ¢ = 45° 2t/ x
1salc,¢0_ 0.01
8. 8r=7.4-j1.1,p.r —5— 0.1
& , —A— 0.25 7
=1.4-j0.672 | ] 05
- | —%— 075 -
S
—~S [ -
= J
A
a
=) B -
c
..-‘°
q L pa—
Lo
o
o
-
= } 3 & h J
£8
EES * -
3
& - ]
1
3
Sa | L WA AN
'0.00 60.00 120.00 180.00 240.00 300.00 360.00
| Angle in Degrees
(b)
Fig. 9. Cont.

37



20.00 30.00

Echo Width in dB>wl
0.00 10.00

-10.00

~30.00

o

-20.00

I L e
2t/ 1
- Bistatic, ¢, = 150°
istatic, ¢, = 15 0.01
g,=7.4-jl.1, 1 =14-j0.672 ———— 0.1 |
B —A— 0.25 7
—+ 05
2 1
[.
” X
N I R e / ]
00 - 60.00 120.00 180.00 240.00 300.00 360.00
Angle in Degrees
(©)
Fig. 9. Cont.

38



it is seen that the scattered field is well-converged with the inclusion of modes up to the first
evanescent one. It is also apparent that an increase in material loss decreases the significance
of the modes, allowing the converged field to be more closely approximated by the direct
diffracted field.

Having established the convergence of the solution (1), we may now proceed with
the computation of the field scattered by the dielectric-metallic join given in Figure 1.

Backscattering and bistatic echo width curves are given in Figures 7 - 9 for dielectric-metallic

joins of thickness varying from 2t/A = .01 to 2t/A =.75. Each figure includes backscatter and
bistatic curves corresponding to one of the material parameter sets chosen above.
Unfortunately, comparison with alternate solutions is not possible since to the author's

knowledge neither experimental nor alternative analytical results are presently available.

VL. Summary
The dual integration approach has been used along with the generalized scattering

matrix formulation to obtain the field scattered from a dielectric-metallic join for an

E,-polarized incident plane wave. This was accomplished by first considering the diffraction
from the loaded parallel-plate waveguide with a recessed stub (Figure 2a) and subsequently
restoring the distance between the stub and the waveguide mouth to zero. The solution to the
recessed-stub geometry was formulated via the GSMF, requiring in turn solution of the five
subproblems illustrated in Figures 2b-2f. We initially considered the subproblems of the direct
diffraction and mode coupling of an incident plane wave on the loaded parallel plate
waveguide. The p;'oblenls of radiation and reflection due to waveguide mode incident upon
the waveguide mouth was considered next. In both cases the scattered field was expressed by
a suitable angular spectrum representation involving unknown spectral functions. These were
then determined via application of the necessary boundary conditions and explicit expressions

for the scattered fields were subsequently obtained by employing an asymptotic or residue
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series evaluation of the pertinent integrals. Implicit in this analysis is the Wiener-Hopf
factorization of several functions and in some cases this was accomplished via numerical
means using a new technique described in Appendix B.

At the end of the report, the convergence behavior of the scattered field with
respect to the number of included modes was examined for three different material
compositions and it was found that inclusion of modes up to the first evanescent one provided'
a well-converged result. It was also seen that an increase in material loss de-emphasized the

modal contribution to the diffracted field. Finally, families of backscattering and bistatic

echowidth curves for join thicknesses ranging from 0.01A<2t<.75A were presented for various

sets of € My
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Appendix A

Expressions for the Split Functions L; 5(A) and Uj 5(A)

The split functions U; 5 and L, 5 arise in the factorization of the functions

-j2kt 2
te ) as follows:

a

. 2 A2
122V vy . (A1)
2 2

The U functions are free of branch cuts, poles and zeros (i.e., regular) in the upper half of the

A-plane shown in Fig. 5. Similarly the L functions are regular in the lower half of the A-plane.
These functions may be derived using the procedure given by Noble [8]. The appropriate
expressions for the ej®@t convention employed in this paper are

-2kt
UM =LN=J2 exp[-T(X)-Xl(K)]_f;ig’ \ T | A exp(i2iahnn) (A2)
. _'2
U, =LA = I e e exp[-T(L)-X,(V)] _Yz‘i4 ) (—J;mﬁ) (A-A) exp(i2kt\/nm)
(A3)
where
-1
T = -y 42 [1 : M] , (a4
T
X, = 221 0.4228 + 1n (f—t) 3 mz] + _k;i , (A5)
n
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and

(A6)

The branch of the above logarithm is defined such that - < Im(In) < 7t , while all other branches
in the above expression are explicitly defined in Figures 3, 4, and 5.
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Appendix B
An Efficient Numerical Wiener-Hopf Factorization Method

A crucial and major step in obtaining a solution to a Weiner-Hopf equation is the

factorization/splitting of an even function F(a) into a product of two functions such that

F(o)) = L(ox) U(v) (B1)

where o =0+jt. In the above, U(a) is free of zeros, poles and branch cuts (i.e., regular) in the

upper half of the a-plane (t>t_) shown in Figure B1, while L(a) is regular in the lower half of
the a-plane (t<t,), where T <1, . To accomplish the factorization (B1) we must generally
assume that F(o) is regular within the strip t. < T <1, , where T4 are allowed to approach

vanishing values. If we further demand that F(a) — 1 uniformly as ol — o within the strip,

then U(a) and L(c) are formally given by [9]

U(a) = L{-a) = exp[H(t)] , Im(ct) >0 (B2)
where
H(o) = 1. J' hEP) i (B3)
mj s B-a
- 1

with C1 as shown in Figure B1. Note, however, that this last condition on F(x) does not

necessarily restrict its form since any F(ct) can be modified as such in a recoverable manner.

Additionally, due to the even property of F(c) , we may set T_=-t, implying that the contour
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C1 (t=0) remains within the strip Itl < T4 as T4+ become arbitrarily small.

Despite its general applicability, (B2) contains several barriers to its direct numerical
implementation. In addition to displaying infinite limits of integration, the contour integral
possesses an integrand which may become singular depending on the contour's location. Further,

care must be exercised to insure that a proper branch of the logarithm is taken so that In[F(B)] is
continuous on Cj . Under certain circumstances, however, these problems can be largely

alleviated via appropriate modification of (B2).

To this end, suppose that in addition to being regular in the strip Itl <t , F(B) is also
regular in the angular sector {B(t) = tei®:0<0< 80,0 <t<oo} forsome 6pand F(B(t)) — 1

uniformly as t — oo throughout the above sector. Since F(B) is even, this also implies it will

have the same properties in the additional angular sector {B(t) = tel®;n<6< n+8y, 0 <t< oo} .

Further, it should be noted that in general most functions requiring factorization in diffraction

theory are of this type and, therefore, this is not a significant restriction on F(e) . With the above
provisions on the regularity of F(B), it follows that C can be rotated counter-clockwise about

the origin by an angle 6(0 <8 <8) to contour Cy , as shown in Figure B2. H(x) is thus
modified a

H(@) =h(@ - 0,) nFo)] + — [ g (B3)
where
Ofor 6<04 , B4
0= BY)
B -8,) 1for 6>0 4,
and
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(BS)

Addressing the singularities associated with the integrand of (B3), it is clear that the

numerator becomes infinite when B =, where B,,n=1,2,..N are the N zeros of F(f).
By virtue of the stipulated regularity of F(B) in the angular sectors defined above, B, are,
however, precluded from lying upon the contour C . Nevertheless, as 6 approaches 0 or 8 , it

is possible for any of the B, to become arbitrarily close to Cp (for ® — 0, this is true if T4 tend

to zero, which is often the case). Fortunately, the resulting singularity is logarithmic, implying that
it need be removed only a small distance from the contour C» to substantially reduce the

singularity of the integrand. The obvious solution, therefore, is to restrict the permissible angular

variation to 8, <6 <8, - 8, , where 3, , are small angles which may be determined empirically.
This scheme will work provided B,, are not in the vicinity of the origin, which prevents the

contour in being distanced from the pertinent B, via a simple rotation.

In contrast to the numerator which may display a multitude of singularities, the denominator

contains a single zero at B = o . Recall that the only condition on ¢ is that Im(ct) > 0, admitting

the possibility of o lying close to or upon Cj . The simplest method to prevent this is to again

Im(o)
Re()

imposerestﬁctiongone ,sothat O ¢ [0o+¢€, 0 y-¢€], where 9a=arctanl: ] and € isa

small angle to be determined empirically. However, the involved singularity is of higher-order

than the one previously encountered, implying that € >> §. This greatly restricts the permitted

range of 0 if 0 <6y <6, and is undesirable since the quantity In[F(B)] may exhibit different

rates of convergence as (t) > e among the admissible 6. One would therefore prefer to
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choose an optimum path Cp from the standpoint of numerical accuracy. Hence, it is of interest to

reduce the restricted range [0 + €, O - €] so that the likelihood of this range superimposing

itself upon a region of optimum convergence is minimized. An appropriate modification to (B3)
for accomplishing this is considered next.
The integral in (B3) is obviously not convenient for numerical implementation and it is

therefore necessary to rewrite it for that purpose. By introducing the substitution P = tei® along

with the even property of F(B) we obtain

jo
H(o)=h(0 - 0 )n[F(at)] + I In{Fte’ )] , (B6)

229

which presents a numerical difficulty when the pole at t= aeJO is near the real axis. This can be
treated via an addition-subtraction process, provided o ¢ C» . Specifically, we add and subtract

to the numerator its value at t=oe-0 . By evaluating the additive term analytically, (B6)
becomes

- .
H(o) = %m[F(a)] + aej_ InfFi(te’ A -InlF@l (BT)
RN

where the integrand is now regular at t=oe-J® . This effectively reduces € to the orderof &,

increasing the range of allowed 6 and thus eliminating the concerns noted in the previous

paragraph.
A final obstacle to the numerical evaluation of H(a) is the infinite upper integration limit of

(B7). This may be remedied via the change of variables [11] v = ;?; arctant to obtain
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Y F{ei" tm(%)} - In[F(o)]
!

5 dv . (B8)
J indl T 620 - o2 costl ™
sin’| -0 cos'|

H(o) = 5 In{F(0)] +

The integral can now be easily evaluated especially if 0 is chosen such that F(v) exhibits a rapid
decay as it increases from 0 to 1.
Expressions (B2) along with (B8) provide a complete prescription for factorizing an even

function regular on the strip Itl <t and the angular sectors 0<8< 0y, <0<m+86p. The
integral in (B8) is over a convenient finite interval, and will be numerically tractable for 81 <0<
89 <8, , provided 6 ¢ [0, +¢, 0 - €] if 0 <6y <O and the zeros of F(B) are not too close

the origin. This allows a selection of 8 such that the numerical accuracy of (B2) and (B6) is
optimized. Additionally, care must be taken in defining the branch of the logarithm in (B8) so that

v
F{cJe tan ( —2—)} remains continuous on the path of integration, eliminating a branch cut

contribution.
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