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1. The Local Arithmetic of John Napier and Walter Minto

In 1617 John Napier published a little book Rabdeoiogiae, Seu Numer-
ationis Per Virgulas Libri Duo in which he described his ““bones’’ or
‘‘rods.”” These are often used as an ilfustrative or enrichment device in
teaching about numeration today"’. These became so popular that his-
torians largely lost sight of the other computational devices which were
included in the back of Napier’s book.

These additional devices and their connection with the binary system
came to my attention as I studied the work of Walter Minto. Minto
(1753-1796) had emigrated from Scotland to become Professor of Math-
ematics (1787-1796) at the College of New Jersey, now Princeton Univer-
sity. Before coming to the United States he had coliaborated with David
Stewart, Earl of Buchan in producing An Account of the Life, Writings,
and Inventions of John Napier of Merchiston. This book, which was cit-
ed by Thomas Jefferson in some of his mathematical writings®, included
an extended discussion, almost the complete translation, of the Rabdolo-
giae,

The section which describes the use of the checkerboard was titled
“Local Arithmetic”. Here ‘““local’’ refers to what we would call a place-
value system, and is, in fact, an implicit use of the binary system which
has not been adequately recognized by historians™. Minto’s version be-
gins, ‘““Local arithmetic is the art of calculating by means of counters on
a chess board or similar table. Divisions at the right and bottom are la-
beled with the geometric progression, 1, 2, 4, 8, 16, 32, etc., which are
called local numbers. Common numbers (vulgari numeri} are reduced to
local by subtraction, and local numbers to common by addition. Num-
bers are represented by putting counters on the squares corresponding to.
the local numbers. The common number 1875, for example, expressed in
local numbers will be found to be 1024; 512; 256; 64; 16; 2; and 1: and
vice versa”’®,

The cut-away drawing of Figure 1 shows how 1875 was recorded by
putting counters in the proper squares of the right hand column of a
ruled board. A counter was placed opposite 1024 since it is the largest
power of 2 less than 1875, The difference between 1875 and 1024 is 851.
A counter was next placed opposite 512 since it is the largest power of 2
less than 851, etc. The second and third celumns from the right in Figure
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FiGure 1,

1 represent 258 = 256 + 2 and 1099 = 1024 + 64 + 8 + 2 + 1. The
sum of these three numbers was found by moving the counters horizon-
tally into the right hand column, but while doing this, wherever two
counters occurred at the same level, taking them off the board and re-
placing them by one counter at the next higher level. The final local num-
ber was then translated back into a common number by addition. In
modern notation this would be represented as
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1875 = 11101010011,
258 = 100000010,
1099 = 10001001011,

3232 = 110010100000,

Today this process would seem to offer little or no simplification in ad-
dition or subtraction.

2. Mulitiplication on a Checkerboard

Napier’s scheme showed a somewhat greater saving and a reduction in
the prerequisite knowledge wihen it was applied to multiplication. Qur
Figure 2 is ““Fig. VIII** of the Buchan-Minto book and corresponds to
the figure on page 138 of Rabdologive. It shows a board set up io find
the product, 19 x 13, The first number is represented by counters placed
along the bottom margin and the second by counters along the right hand
margin. Ail the squares which are opposite a pair of these original count-
ers have also been covered with counters, The multiplication process be-
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FIGURE 2.
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gins by moving the counter in the upper left position of the array. In this
example this is the position 16-8 corresponding to 16 on the lower and 8
on the right hand margin. This counter is moved diagonally upward and
to the right until it comes to rest in the right hand column at 128. The
same move is applied to all other pieces on the board. When two pieces
or counters come to rest on the same square in the right hand column,
they are removed and a single counter placed in the next higher position.
Thus, when the piece in the 16-1 position is moved, it picks up the piece
in the 2-8 position and as a result one counter is placed in the 1-32 posi-
tion on the right rather than two counters in the 1-16 position. In modern
notation this move says that 28 X 2° = 24 20 x 2' = 2¢ and 2* + 2¢ =
2%, These operations on the chessboard mechanically set up all the partial
products, add the exponents of the powers of two by the diagonal move-
ment which rises one level for each unit of horizontal movement, and
sum the partial products. Both Napier and Buchan-Minto stress the anal-
ogy with chess by pointing out that the movements allowed the counters
are those of the knight and the bishop—or, in the older terminology of
Napier, of the elephant and the archer.

The algorithms for subtraction, division, and square root with local
numbers are of less importance and interest. They are fairly easily recon-
structed as the inverses of the processes we have outlined. We omit any
discussion of them. However, a few historical remarks may add interest
and pedagogical utility.

The use of a ruled board or cloth with counters was not new even in
Napier’s day. Few of them have survived until today, but a fourteenth
century drawing in Barnard’s The Casting Counter and the Counting
Board® looks very much like Napier’s diagram. However, the methods
for recording sums and computational procedures on it were entirely dif-
ferent. Squared or checkered counting boards and cloths were less com-
mon than the non-squared reckening-board or loose counter abacus. It s
interesting to note that the squared type of reckoning-board was the ori-
gin of our modern word excheguer. The Oxford English Dictionary lists,
*“The King’s Exchequer. Under the Norman and Angevin kings of Eng-
land: An office or department of State managed by the Treasurer, the
Justiciary, and—. Its function combined the collection and administra-
tion of the royal revenues with the judicial determination of all causes re-
lating to revenue . . . . The name originaily referred to the table covered
with a cloth divided into squares on which the accounts of the revenue
were kept by counters.”” The first recorded use of the word ‘‘exchekers’
in English is dated 1292°.

The second major ingredient of Napier’s local arithmetic was the use
of the geometric progression 1, 2, 4, 8, . . . Progressions and the related
proportions and means played a role in Pythagorean Arithmetica, and
examples of geometric progressions are to be found in earlier Egyptian
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and Babylonian mathematics, However, Napier’s idea that every integer
can be represented as the sum of terms of a geometric progression with
common ratio 2 and the association of these terms with a sequence of po-
sitions in an ordered array can be viewed today as an adumbration of a
base two, place-value system. His use of the term locaf numbers further
emphasized this connection, and yet there is no indication in the Rabdo-
logiae that Napier had the idea of a generalized base-place value numera-
tion system. It is true that he recognized the importance of Simon Ste-
vin's 1585 invention of decimal fractions. Note that the positions in Fig-
ure 2 are labeled 1.0, 2.0, 4.0, etc. rather than merely 1, 2, 4, etc. In fact
Napier’s discussion of this notation in connection with logarithms and
Kepler’s use of it in his work with logarithms were important factors in
speeding the adoption of decimal notation.

3. Position Notation Without (?) a Zero

Napier elaborated one device which could, at first glance, appear to
show that a zero is unnecessary in a position value numeration system.
Note that in our Figure 2 the positions where there are markers are also
labeled with letters. That is in the right hand column 1.0, 4.0, and 8.0 are
also labeled a, ¢, d. By associating the letters of the alphabet, in order,
with the powers of 2 Napier showed how to use the concepts of his local
arithmetic without the board or counters. This was discussed in separate
chapters in his section on local arithmetic in the Raebdologiae, but omit-
ted in the Buchan-Minto summary. In **Caput V’’ Napier says ““toadd
cdehtobcfgh, you first write them together,abccdefgh hand
then “‘reduce’ by abbreviation’’. Reduction is accomplished by replac-
ing any pair of letters by the letter which follows it in the alphabet. Thus
the ¢ ¢ in the sum would be replaced by d. However, upon doing this
there are now two d’s. They are replaced by an e. The resulting two e’s
are replaced by an f, etc. until the final sum is @ b & { which represents 1
+ 2 -+ 128 + 256. The total problem in modern binary notation would
be

10011101,
+ 11100110,
110000011,
This literal numeration makes five symbols, @ ¢ d ¢ # do the work of
eight, 10011101, and appears to omit the zero as well as to lead to quite a
neat algorithm for addition. Actually, of course the use of a zero in the
numeration is implicit in the 1-1 mapping from the ordered alphabet to
the powers of two. A missing letter in the alphabetic numeral corre-
sponds to a zero in the modern binary notation. Here the absence of a
mark is a symbol.

When the final score of Napier’s achievements is reckoned, it does not

seem to be quite fair to give him credit for having, knowing, or originat-
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ing, binary notation. He was on the brink of “‘putting it all together’’ (an
important, even crucial gestalt or element of mathematical invention, as
well as a modern colloguialism), but he didn’t quite make it. His other
accomplishments, however, will suffice to preserve a place for him in the
history of mathematics.

4. Saunderson’s Palpable Arithmetic

Qccasional references to blind persons who did mathematics are found
as early as the first century B.C.””, but the first blind mathematician of
substance and importance was the Englishman Nicholas Saunderson
{1682-1739). His mathematical achievements do not approximate those
of the most famous blind mathematician, Leonard Euler (1707-1783}.
However, Saunderson was remarkable for the fact that he did master and
teach advanced mathematics in spite of having lost not only his sight but
his eyes as a result of smallpox and infection at the age of twelve months.
Euler first lost the sight of one eye in 1725 and did not become totally
blind until after the age of sixty.

Saunderson’s major mathematical contribution was his book, The Ele-
menis of Algebra published posthumously in 1740, This book contains a
biography of Saunderson compiled by a group of friends, as well as **Dr,
Saunderson’s Palpable Arithmetic Decypher’d’” by John Colson, who
was Saunderson’s successor as Lucasion Professor of Mathematics at
Cambridge University,

Saunderson’s palpable arithmetic was a system for representing num-
bers using pins inserted into holes in a board. This board was a little
more than a foot square. The holes were spaced about a tenth of an inch
apart so that the board resembled a rectangular grid with one hundred in-
tersections per square inch. Each of the digits 0 through 9 was represent-
ed by one or two pins positioned in & square defined by three rows of
three holes each. The center hole of each square was marked by a large-
headed pin except when the square was to represent 1. In this latter case
the center of the square was marked with a small- headed pin. If the
square was to represent 0, it was marked by the large-headed central pin
only. All digits other than 0 and 1 were denoted by a square with two
pins, the large-headed central pin and a small- headed pin in onc of the
eight outer holes surrounding the center posiiion.
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In Figure 3 we have represented 2 and 3 showing a heavy central circle
to represent the large-headed pins. The “‘x’" marks show the positions for
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the small-headed pins. A smali-headed pin in the top center represented
2. The digits for 3 through 9 were represented successively by placing the
smali-headed pin in the outer holes in clockwise order.

Figure 4 is taken from Colson’s article. {ts left hand “‘Fig. I'’ shows
the representations of the successive digits. Its “‘Figure 11’ shows palpa-
ble arithmetic representations of 94084 and a series of five digit numer-
als. This system is much like modern Brailie writing which, however, uses
patterns of raised dots based on an arrangement of three rows of rwo po-
sitions each.
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FIGURE 4.

Saunderson was said not only to carry on extensive caliculations using
his palpable arithmetic board bug also to have used it to describe geomet-
ric figures. He did this much as one might do it with a modern geo-
board, using pins set in rows or pins with strings tied around them to rep-
resent geometric figures.

Saunderson, in seeking to overcome his own visual handicap, devei-
oped both devices and a concern for clarity of expression and explana-
tion which made him a good teacher, who spent long hours teaching and
working with students. He never learned to write but he dictated “‘manu-
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scripts’® for his two volume algebra and a book on ““fluxions’’, Newton-
ian style calculus, both of which were published after his death. The alge-
bra was quite influential, going through several editions and being trans-
lated into French and German. The Lords Justices of England granted
his wife, son, and daughter what would today be called a copyright on it
to honor him and help them, It is to be regretted that he never told how
he did his computations. All we know of his “‘palpable arithmetic”’ is this
scheme for representing numerals,
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WOMEN TURNING TO ENGINEERING

“l don’t want to be a woman engineer,”’ says Jean Luning, “‘just an engineer
who happens to be a woman.'’ The 19-year-old Maryland sophomore’s attitude
toward what was, until recently, an almost exclusively male occupation is shared
by many of her classmates at Duke University’s School of Engineering.

Women arc flocking into engineering schools across the nation, drawn by
starting salaries of more than $1,200 a month—the highest for any women’s pro-
fessional group—and the challenge of the work, according to Dr. Marion
Shepard.

Shepard is associale dean of the Duke engineering school, and he’s seen the
number of women there jump sharply in the last five years, In 1972, he said in an
interview, only seven freshmen women walked through the doors; by 1977, there
were 49,

“Women now constitute 22 per cent of the students here,”” Shepard said.
“‘There are 159 women and 566 men, one of the highest ratios in the nation.”’

Women aren’t the only student minority to seck engineering career, the Duke
official said. Blacks are enrolling at the school at the national average of 7 per
cent of the student body.



