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Summary

When confronted by disparate environments,
microbes routinely alter their physiology to tolerate
or exploit local conditions. But some circumstances
require more drastic remodelling of the bacterial cell,
as sporulation by the Bacillus and Streptomyces
species of soil bacteria vividly illustrates. Cellular
differentiation is also crucial for pathogens, the chal-
lenge for which is to colonize one host, then be
transmitted to the next. Using the Gram-negative
Legionella pneumophila as a model intracellular
pathogen, we describe how biogenesis of the repli-
cation vacuole is determined by the developmental
state of the bacterium. Subsequently, when replicat-
ing bacteria have exhausted the nutrient supply, the
pathogens couple their conversion to stationary
phase physiology with expression of traits that pro-
mote transmission to a new host. The cellular differ-
entiation of L. pneumophila is co-ordinated by a
regulatory circuit that integrates several elements
that are broadly conserved in the microbial world.
The alarmone (p)ppGpp promotes transcription
directed by the alternative sigma factors RpoS, FliA
and, probably, RpoN, and also post-transcriptional
control mediated by a two-component regulatory
system, LetA/S (GacA/S), and an mRNA-binding pro-
tein, CsrA (RsmA). By applying knowledge of micro-
bial differentiation in combination with tools to
screen the complete genomes of pathogens, experi-
ments can be designed to identify two distinct
classes of virulence traits: factors that promote repli-
cation and those dedicated to transmission.
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‘Adapt yourself to changing circumstances’

Even the simplest of organisms heed this Chinese prov-
erb, as bacteria acclimate to fluctuations in their environ-
ments. Whether to make use of local energy sources or
to tolerate a range of acidity, osmolarity or temperature,
microbes adjust their physiology via sophisticated signal
transduction pathways. Unicellular organisms can also
respond to environmental cues by activating morphoge-
netic programmes during a life cycle, a commitment that
we shall distinguish from metabolic regulation by referring
to it as differentiation.

Conspicuous examples of microbial differentiation are
the obligate intracellular pathogens, which must periodi-
cally abandon a cytoplasmic or vacuolar niche to face
unpredictable circumstances during their transmission to
a new host. For example, Coxiella burnetii, which causes
Q fever, alternates between the replicative large cell vari-
ant and the environmental small cell variant, a form that
is highly stress resistant (reviewed by Samuel et al.,
2003). Similarly, during its biphasic life cycle, the common
sexually transmitted pathogen Chlamydia trachomatis
changes between an intracellular replicative reticulate
body and a resilient and infectious elementary body
(reviewed by Hammerschlag, 2002). Because neither
pathogen can be manipulated genetically, identification of
the regulatory circuits that control their life cycles is a
formidable challenge.

Insight into the molecular mechanisms of differentiation
by pathogens has been obtained from studies of more
tractable Gram-negative bacteria. The Bordetella species
are extracellular respiratory pathogens that use a BvgA/S
phosphorelay together with sigma factors that regulate
both motility (Frl) and a type Il secretion system (BtrS) to
control expression of three sets of traits: those thought to
promote colonization of the respiratory tract (Bvg*" form),
transmission to a new host (Bvg form) and survival in the
environment (Bvg™ form; reviewed by Cotter and Jones,
20083; S. Matoo and J. F. Miller, personal communication).
As an experimental model for analysing a pathogen’s
reciprocal expression of replicative and transmissive
traits and its impact on host cell biology, we focus here
on the Gram-negative intracellular bacterium Legionella
pneumophila.
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Emergence from amoebae to human pathogen

Ubiquitous in aquatic environments, L. pneumophila
endures a range of temperatures, osmolarity and other
stresses, including ingestion by protozoa that feed on
bacteria. Aerosolized microbes that are inhaled by
humans can also replicate inside alveolar macrophages.
When a robust host defence is absent, the progressive
and potentially fatal pneumonia known as Legionnaires’
disease develops (reviewed by Fields et al., 2002; Swan-
son and Hammer, 2000). However, as L. pneumophila do
not spread from person to person, humans have been
inconsequential to the evolution of its virulence. Rather,
the ability of L. pneumophila to colonize alveolar macroph-
ages probably reflects conservation of cell biological path-
ways between the professional phagocytes that patrol the
lungs and those that inhabit ponds. Indeed, the microbe’s
life cycle in amoebae and macrophages is remarkably
similar (Fields et al., 2002), bolstering the notion that the
virulence strategy of L. pneumophila has been shaped by
selective pressures in aquatic ecosystems.

Cycles of replication and transmission
Legionella differentiation

In natural and potable fresh water supplies, L. pneumo-
phila probably resides within biofilm communities, where

it falls prey to grazing amoebae. When ingested, the
microbe can resist digestion and, instead, replicates pro-
fusely before killing its protozoan host and returning to the
aquatic reservoir. As predicted for a microbe that transits
between phagocytes and water, the L. pneumophila life
cycle consists of at least two phases. In pioneering stud-
ies, Rowbotham (1986) infected amoebae and watched
as the bacteria alternated between two morphologically
distinct forms, changing motility, shape, surface and
stores of energy-rich polymers. Subsequent analysis of L.
pneumophila differentiation has been expedited by the
discovery that many aspects of the pathogen’s life cycle
can be modelled in synchronous broth cultures, as judged
by the growth phase-dependent expression of numerous
traits and genes (Table 1). Identification of regulatory ele-
ments that govern the bacterial life cycle has also been
advanced by the development of genetic tools to study L.
pneumophila, including transposon mutagenesis, transfor-
mation via natural competence, conjugation and elec-
troporation, recombinant green fluorescent protein (gfp)
genes and the genome sequence. Accordingly, the work-
ing model put forward here assimilates data obtained from
several independent morphological, genetic and molecu-
lar approaches.

In the model’s simplest form, the L. pneumophila life
cycle is composed of two reciprocal phases: replication
and transmission (Fig. 1). When conditions are favourable
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Fig. 1. The life cycle of L. pneumophila. Studies of broth and phagocyte laboratory cultures support the following model for the persistence of L.

pneumophila in aquatic reservoirs.

1. Free-swimming transmissive L. pneumophila that are engulfed by phagocytic cells (amoebae or alveolar macrophages) establish vacuoles that

provide protection from lysosomal digestion.

2. When nutrients and other conditions are favourable, intracellular bacteria repress transmission traits and activate pathways that promote

replication.

3. As conditions in the replication compartment deteriorate, the progeny stop dividing and co-ordinately express traits that promote survival in

the environment and transmission to a new phagocytic host.

4. After a prolonged period, the microbes may continue to develop into a mature intracellular form (MIF), a cell type that is highly resilient and

infectious.

5. The phagocyte host is lysed, and the microbes are released into the aqueous environment.
6. L. pneumophila that do not immediately encounter a new phagocyte probably establish biofilms in both water systems and ponds, where they

are resistant to biocidal agents.

7. When planktonic microbes encounter a new phagocyte, the cycle begins anew.
8. Microbes cultured in broth to either exponential or stationary phase display many attributes of the replicative and transmissive forms,

respectively, that are observed in phagocyte cultures.

© 2004 Blackwell Publishing Ltd, Molecular Microbiology, 53, 29—40
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Table 1. Reciprocal expression of multiple traits by replicative and transmissive L. pneumophila.

Replicative Transmissive
Traits phase phase Regulators References
Replication*® + - +: CsrA, RpoS? Bachman and Swanson (2001);
Molofsky and Swanson (2003);
Bachman and Swanson (2004a)
CsrA global repressor + - —: LetA/S Fettes et al. (2001);
expression*? Molofsky and Swanson (2003)
(p)ppGpp - + +: RelA, SpoT? Hammer and Swanson (1999);
accumulation Zusman et al. (2002)
Motility/ - + +: RelA, LetA/S, Byrne and Swanson (1998);
flagellar LetE, RpoS, Fettes et al. (2001);
regulon*a® RpoN/FleQ, FliA Hammer et al. (2002);
—: CsrA, FlaR, Heuner et al. (1999);
RpoS Heuner et al. (2000);
Lynch et al. (2003);
Molofsky and Swanson (2003);
Rowbotham (1986);
Zusman et al. (2002);
Bachman and Swanson (2004a,b);
Jacobi et al. (2004)
Contact-dependent - + +: LetA/S, FliA Alli et al. (2000);
cytotoxicity*® —: CsrA Byrne and Swanson (1998);
Hammer et al. (2002);
Molofsky and Swanson (2003)
Stress resistance — + +: LetA/S, LetE Bachman and Swanson (2001);
—: CsrA Hales and Shuman (1999);
Lynch et al. (2003);
Molofsky and Swanson (2003);
Bachman and Swanson (2004b)
Pigment production - + +: LetA/S, LetE, Molofsky and Swanson (2003);
RelA Zusman et al. (2002);
—: CsrA Bachman and Swanson (2004b);
Fettes et al. (2001)
Beta-hydroxybutyrate - + ND Faulkner and Garduno (2002);
storage granules*® Greub and Raoult (2003);
Rowbotham (1986)
Small coccoid - + +: LetA/S, LetE Faulkner and Garduno (2002);
cellg*abe —: CsrA Fettes et al. (2001);
Molofsky and Swanson (2003);
Rowbotham (1986);
Bachman and Swanson (2004b)
Lysosome evasion*? - + +: LetA/S, FliA Byrne and Swanson (1998);
—: CsrA Hammer et al. (2002);
Joshi et al. (2001);
Molofsky and Swanson (2003);
Sturgill-Koszycki and Swanson (2000)
Endoplasmic - + ND A. O. Amer and M. Swanson (in
preparation)
reticulum
recruitment*?
Sodium sensitivity*® - + +: LetA/S, LetE, Bachman and Swanson (2001);
RpoS Byrne and Swanson (1998);
—: CsrA Hammer et al. (2002);
Molofsky and Swanson (2003);
Bachman and Swanson (2004b)
RalF, LidA® or Low High ND Conover et al. (2003);
SidC expression — Luo and Isberg (2004);
Dot/lcm substrates Nagai et al. (2002)
Mip¢, DotO?, DotH?, Low High +: RpoS (MagA) Watarai et al. (2001a);

MagA°® expression —

Wieland et al. (2002);
Bachman and Swanson (2004a);
Hiltz et al. (2004)

Traits regulated similarly by L. pneumophila cultured in both broth and macrophages?, amoebae® or HelLa cells® are indicated by *. Traits only
regulated during macrophage infection but not in broth culture are indicated with ¢. Regulators controlling various traits are indicated: — indicates
repression; + indicates activation; ND indicates that experiments to identify regulators have not been done.

© 2004 Blackwell Publishing Ltd, Molecular Microbiology, 53, 29—-40
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for replication, traits that promote transmission are
repressed, and the intracellular bacteria multiply (Fig. 2A).
As vacuolar nutrients become limiting, the progeny differ-
entiate into the transmissive phase, repressing multiplica-
tion while expressing a number of traits that are believed
to equip L. pneumophila to escape from its spent host cell,
survive as a planktonic cell and re-establish a replicative
niche within a new phagocyte (Fig. 2B). In particular, as
broth cultures enter the stationary phase, the bacteria co-
ordinately express: (i) an inducer of phagocyte necrosis;
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(i) motility; (iii) resistance to the stresses of UV light, heat,
osmotic pressure and nutrient limitation; and (iv) factors
to evade degradation within phagocyte lysosomes
(Table 1 and references therein). We define these pheno-
types as transmission traits to emphasize that none is
expressed by replicating bacteria and all are thought to
promote spread of the pathogen from its protective vacu-
ole in one host to that in another. After successfully
assembling another intracellular niche, L. pneumophila
reverts to the replicative form, beginning the cycle anew.

Fig. 2. Reciprocal expression of the replicative
and transmissive phenotypes is co-ordinated
by (p)ppGpp levels and an integrated net-
work of alternative sigma factors and a post-
transcriptional control regulatory system. A
model deduced from genetic studies of regula-
tory interactions that may be direct or indirect
is shown.

A. During the replicative phase, nutrients are
abundant, and the post-transcriptional regulator
CsrA represses transmission traits and pro-
motes replication. The alternative sigma factor
RpoS also stimulates intracellular replication
and osmotic resistance and inhibits FliA-depen-
dent traits. CsrA inhibits flagellar production
and the co-regulated traits of lysosomal evasion
and induction of phagocyte necrosis (cytotoxic-
ity) by repressing the flagellar sigma factor FIiA
(c?®) directly or indirectly or perhaps by regulat-
ing the putative master flagellar regulators
RpoN (5**) and/or FleQ. CsrA also represses
resistance to several environmental stresses,
sodium sensitivity and endosomal evasion.

B. During the transmissive phase, a poor amino
acid supply may trigger the ribosomal-
associated enzyme RelA to produce the alarm-
one (p)ppGpp. Alternative intracellular signals
may stimulate the SpoT hydrolase/synthase to
produce the alarmone. (p)ppGpp stimulates the
two-component system LetA/S, the enhancer
protein LetE, the alternative sigma factor RpoS
and perhaps the putative master flagellar regu-
lator RpoN, which together promote the expres-
sion of transmission traits. Active LetA may
induce the production of a csrB-like regulatory
RNA to sequester CsrA and relieve CsrA post-
transcriptional repression, whereas RpoS, FliA
and RpoN probably activate transcription of the
transmission regulon genes. In macrophage
culture, undefined signal(s) can bypass both
RelA and LetA to induce transmission. FliA-
dependent and -independent pathways are
induced that promote escape, motility, resil-
ience and infection of a new phagocyte host.
Type IV Dot/lcm secretion is required for
cytotoxicity as well as evasion of the endocytic
network, probably by directly exporting the
effectors of virulence, whereas RpoS induces
expression of the FliA regulon and traits that
confer endosomal evasion and sodium
sensitivity.

© 2004 Blackwell Publishing Ltd, Molecular Microbiology, 53, 29—40



Although the experimental support for the current
model of the pathogen’s life cycle was initially obtained
by studies of exponential and stationary phase broth cul-
tures, the reciprocal expression of numerous replicative
and transmissive traits by L. pneumophila has been con-
firmed by analysing the pathogen’s life cycle in macroph-
ages, amoebae and Hela cells (Table 1). For example,
when a stationary phase inoculum of cytotoxic, sodium-
sensitive, flagellated and motile cells is incubated with
macrophages, the microbes that are ingested subse-
quently suppress each of these traits during the replica-
tion period; as the primary infection period ends with
macrophage lysis, the progeny then induce the expres-
sion of all four traits (Byrne and Swanson, 1998; Alli
et al., 2000).

Likewise, four L. pneumophila proteins known to pro-
mote bacterial entry are expressed during the invasion
and exit period, but not during the replication phase in
macrophages; these proteins are FlaA, Mip, DotO and
DotH (Cianciotto and Fields, 1992; Hammer and Swan-
son, 1999; Dietrich etal., 2001; Watarai etal., 2001a;
Wieland et al., 2002). Conversely, the repressor of trans-
mission traits, CsrA, exhibits the opposite pattern of
expression: its promoter is active exclusively when intra-
cellular bacteria are multiplying (Molofsky and Swanson,
2003). Remarkably, even the trait that is a hallmark of L.
pneumophila virulence, lysosome evasion, is inactive dur-
ing the intracellular replication period (Sturgill-Koszycki
and Swanson, 2000; Joshi et al., 2001), as discussed in
detail below.

Advantages and limitations of the broth model

Compared with phagocyte models, synchronous broth
cultures offer several technical advantages for studies of
L. pneumophila differentiation. With relative ease and
economy, large quantities of pure populations of replica-
tive or transmissive bacteria cultured in defined medium
can be obtained. Moreover, the samples are free from
eukaryotic protein, DNA and RNA. Accordingly, broth cul-
tures are an attractive system for studies of L. pneumo-
phila differentiation by modern molecular approaches
such as DNA microarrays, proteomics and real-time poly-
merase chain reaction (PCR). Broth- and agar-grown
microbes are also amenable to classical genetic screens,
an approach that has already identified several of the
activators and repressors of L. pneumophila differentiation
discussed below.

Although studies of broth-grown microbes have accu-
rately predicted many of the pathogen’s behaviours in
macrophage or amoebae models (Table 1), more com-
plex experimental systems have revealed additional
attributes that are not observed in broth cultures. For
example, to replicate to large numbers in macrophages,

© 2004 Blackwell Publishing Ltd, Molecular Microbiology, 53, 29—-40
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L. pneumophila requires an acidic pH, whereas exponen-
tial phase broth cultures are acid sensitive (Sturgill-
Koszycki and Swanson, 2000). The bacterial progeny
that emerge from amoebae are more infectious than cells
harvested from agar (Cirillo etal, 1999). Even more
striking is the phenotype of L. pneumophila after pro-
longed culture in HelLa epithelial cells. In this setting, the
pathogen differentiates into a thick-walled, pleomorphic,
highly resilient and infectious mature intracellular form
(MIF) (Faulkner and Garduno, 2002; Garduno et al.,
2002), a cell type also observed in amoebae and clinical
specimens (Greub and Raoult, 2003). Although this
developmental form shares several traits with stationary
phase broth-grown L. pneumophila, MIFs appear to be
hyperinfectious and -resistant to environmental stress.
Analogous to the small cell variant of C. burnetii, the
spore-like MIF is postulated to be the transmissive form
of L. pneumophila in nature (Garduno etal., 2002).
Therefore, broth-grown stationary phase microbes proba-
bly represent an intermediate stage of a developmental
pathway that culminates in the MIF transmissive cell type
(Fig. 1). A different habitat in which L. pneumophila sur-
vive for extended periods are biofilms, complex microbial
communities that pose a significant hazard to potable
water supply systems, especially in hospitals (reviewed
by Fields et al., 2002). How closely the bacterial forms
that develop in either broth or eukaryotic cell culture
resemble the cell types that persist in biofilms is a critical
open question.

Developmental state determines fate in phagocytes

To survive ingestion by a phagocyte, L. pneumophila
avoids immediate delivery to digestive lysosomes (Hor-
witz, 1983a,b). This hallmark of the species’ virulence
dramatically illustrates how microbial differentiation
impinges on the host cell response and determines the
outcome of the encounter. When transmissive, station-
ary phase L. pneumophila are phagocytosed, they
immediately occupy a spacious cholesterol-rich com-
partment that does not fuse with lysosomes (Joshi
etal, 2001; Watarai etal., 2001b). If L. pneumophila
are genetically locked in the transmissive form, the bac-
teria infect macrophages efficiently, but persist for days
without replicating (Molofsky and Swanson, 2003). In
contrast, when macrophages are fed L. pneumophila
that are in the replicative state, the bacteria are deliv-
ered to the endocytic network and swiftly killed. In par-
ticular, L. pneumophila fail to evade the destructive
lysosomes when the transmission regulon is inactive,
because the bacteria are in the exponential growth
phase, lack an activator of transmission or constitutively
express a repressor of transmission (Byrne and Swan-
son, 1998; Joshi et al., 2001; Molofsky and Swanson,
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2003; regulators depicted in Fig.2 and described in
detail below).

Like exponential phase cells obtained from broth cul-
tures, L. pneumophila that have begun to replicate in
macrophages are also delivered to acidic lysosomes.
When macrophages are infected with stationary phase L.
pneumophila, the bacteria persist without multiplying for
several hours in a vacuole that appears to be completely
separate from endosomal traffic (Horwitz, 1983a,b; Joshi
et al., 2001). However, once replication vacuoles contain
six or more bacteria, exclusion of the late endosomal and
lysosomal protein LAMP-1 is rare (Sturgill-Koszycki and
Swanson, 2000). During the next 10-15h period, the
pathogen replication vacuole continues to accumulate
lysosomal markers. Yet, it is evident that the intracellular
L. pneumophila are acclimated to this harsh environment,
as the bacteria multiply profusely in an acidic vacuole
(Sturgill-Koszycki and Swanson, 2000). Thus, transmis-
sive cells pause phagosome maturation, then the bacteria
differentiate into an acid-resistant replicative form that
exploits phagosome—lysosome fusion to multiply to large
numbers.

The model in which L. pneumophila downregulates vir-
ulence factors that arrest phagosome maturation during
its intracellular replication period is further substantiated
by molecular genetic studies of the Dot/Icm type IV secre-
tion system (reviewed by Sexton and Vogel, 2002). The
pathogen requires Dot/lcm function to enter cholesterol-
rich spacious vacuoles, avoid immediate delivery to the
endosomal pathway, associate with endoplasmic reticu-
lum and establish its replicative vacuole (Berger et al.,
1994; Swanson and Isberg, 1995; Watarai et al., 2001b).
Nevertheless, dotA mutants can replicate to large num-
bers within macrophages when their initial trafficking
defect is bypassed experimentally, either by inducing tran-
sient expression of dotA from a heterologous promoter or
by forcing co-habitation in a vacuole with a wild-type
transmissive microbe (Roy etal, 1998; Coers etal,
1999). As dotA is predicted to encode an integral compo-
nent of the Dot/Icm apparatus (Roy et al., 1998), the data
indicate that, although type IV secretion is necessary to
block immediate fusion with endosomes, it is dispensable
during the period of bacterial replication. Likewise, two
other Dot/lcm-dependent traits that promote replication
vacuole biogenesis, namely recruitment of vesicles from
the endoplasmic reticulum and activation of caspase 3,
are vital only during the first 30 min of infection (Kagan
and Roy, 2002; Molmeret et al., 2004). In addition to
these studies of replication vacuole biogenesis, results of
multiple independent genetic and cell biological experi-
ments support the model that the transmissive and repli-
cative states are reciprocal (Table 1). While expressing
transmission properties, L. pneumophila do not replicate;
conversely, replicating cells do not express transmission

traits, including factors that block their delivery to
lysosomes.

The host signals that trigger differentiation of transmis-
sive L. pneumophila to the replicative form are not known,
but the switch occurs before its delivery to lysosomes.
First, vacuoles that harbour as many as four bacterial
progeny typically lack the late endosomal/lysosomal pro-
tein LAMP-1; not until vacuoles harbour more than five
microbes do most contain appreciable LAMP-1. Secondly,
when acidification and maturation of phagosomes is inhib-
ited by treating macrophages with the proton pump inhib-
itor bafilomycin, L. pneumophila multiplication is inhibited,
but the bacteria do not arrest at the single-cell stage
(Sturgill-Koszycki and Swanson, 2000). Therefore,
although an acidic lysosomal network promotes robust
microbial growth, a signal other than acidic pH triggers
differentiation to the replicative form. Perhaps after differ-
entiation, during the first cycles of pathogen multiplication,
virulence factors that block phagosome maturation
become dilute or unstable; consequently, the paused vac-
uole merges with the lysosomal compartment, a rich
source of both nutrients and vacuolar membrane. Alter-
nately, replicative phase L. pneumophila could actively
alter gene expression to promote lysosomal fusion.

Like L. pneumophila, the intracellular pathogens C.
burnetii and certain Leishmania spp. practice a similar
‘pregnant pause’ strategy to thrive in macrophages. All
three pathogens alternate between an infectious sta-
tionary phase cell type that initially blocks phagosome
maturation and an intracellular form that replicates in
acidic lysosomes (reviewed by Swanson and Fernan-
dez-Moreira, 2002). The reciprocal expression of trans-
mission and replication traits is a logical strategy for
intracellular pathogens to limit costly energy expendi-
tures. When nutrients are plentiful in the replication
niche, transmission phase virulence structures are nei-
ther required nor built. Conversely, when conditions are
not favourable for growth, the biochemical pathways
that promote replication are superfluous and not
expressed.

Although the biogenesis of the L. pneumophila replica-
tion vacuole has been described in some detail, numerous
important questions remain. By what mechanism does L.
pneumophila arrest phagosome maturation? How are
vesicles from the endoplasmic reticulum recruited to the
phagosomal membrane? Does the endoplasmic reticulum
contribute to bacterial survival? What intracellular cues
trigger differentiation of L. pneumophila to the replicative
form? What is the composition of the vacuole in which the
microbe begins to replicate? Knowledge of the regulatory
circuitry that controls microbial differentiation can provide
experimental tools to investigate the macrophage cell biol-
ogy that determines the outcome of an L. pneumophila
infection.

© 2004 Blackwell Publishing Ltd, Molecular Microbiology, 53, 29—40



Coupling transmission to the stationary phase

To escape deteriorating conditions in its replication niche,
L. pneumophila co-ordinately activates traits necessary to
exit a spent host, survive environmental stress and para-
sitize its next host, while repressing traits dedicated to
intracellular multiplication. Knowledge of the environmen-
tal cues and components of the regulatory circuitry that
co-ordinate this developmental programme has been
obtained from genetic and molecular studies of the L.
pneumophila life cycle in both broth and phagocyte exper-
imental models.

Alarms

In broth cultures, L. pneumophila accumulate (p)ppGpp
as they exit the exponential growth phase, the amino acid
supply is limited, or the expression of relA is induced
(Fig. 2; Hammer and Swanson, 1999). Subsequently, the
bacteria stop replicating and differentiate into the trans-
missive form (Fig.2; Hammer and Swanson, 1999). By
analogy with the Escherichia coli stringent response,
when L. pneumophila that are replicating in macrophages
exhaust the amino acid supply, the enzyme RelA is pre-
dicted to be activated. In response to uncharged tRNAs,
the ribosome-associated RelA synthase converts GTP to
(p)ppGpp. In L. pneumophila broth cultures, this second
messenger then co-ordinates entry into stationary phase
with expression of traits thought to promote transmission
of the progeny to a new host (Fig. 2B; Hammer and Swan-
son, 1999). Genetic data also support the model in which
RelA activity is dedicated to the transmissive phase and
is dispensable during the replication period. L. pneumo-
phila relA mutants replicate efficiently inside amoebae
and macrophages but, when cultured to stationary phase,
they fail to accumulate detectable (p)ppGpp and express
some transmission traits poorly, including motility and pig-
ment (Zusman et al., 2002). Nevertheless, the impact of
the stringent response on differentiation of intracellular
microbes has not been established. For example,
(p)ppGpp accumulation during the pathogen’s life cycle in
phagocytes has not been measured, and the ability of re/A
mutants to express many of the transmission traits when
cultured in either broth or phagocytes has not been exam-
ined. The broadly conserved stringent response pathway
appears to be monitored by a wide array of pathogens,
including Vibrio cholerae, Mycobacterium tuberculosis,
Listeria monocytogenes, Streptococcus pyogenes and
Pseudomonas aeruginosa (Primm et al., 2000; Chatterji
and Kumar Ojha, 2001; Okada et al., 2002; Taylor et al.,
2002; Haralalka et al., 2003). By coupling expression of
transmission traits to (p)ppGpp accumulation, pathogens
can respond to metabolic stress by seeking more fertile
territory.

© 2004 Blackwell Publishing Ltd, Molecular Microbiology, 53, 29—40
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In addition to the stringent-like response, additional
signals and/or regulators appear to control L. pneumo-
phila differentiation both in vitro and in macrophages.
For example, the transmission trait defects of relA
mutants are milder than those of other regulatory
mutants (/etA and rpoS; discussed below) or replicative
microbes obtained from exponential phase cultures of
wild-type L. pneumophila (Hammer and Swanson, 1999;
Zusman etal,, 2002). Accordingly, factors other than
RelA probably trigger microbial differentiation. One can-
didate that has not been examined is the SpoT
(p)ppGpp hydrolase/synthase, an enzyme that also gen-
erates (p)ppGpp in E. coli and appears to be essential
for viability of L. pneumophila (Zusman et al., 2002).
Furthermore, bacteria that lack either RelA or the trans-
mission activator LetA appear to spread in macrophage
monolayers as efficiently as wild-type microbes, as
judged by the rate of increase in cfu throughout a 72 h
infection, a period composed of secondary and tertiary
infections (Hammer et al., 2002; Zusman et al., 2002).
Therefore, when L. pneumophila are crowded in a repli-
cative vacuole, certain transmission traits may be
induced by signal(s) that can bypass both RelA and
LetA. As predicted by this model, when compared with
their broth counterparts, letA mutants harvested from
macrophages are more infectious (B. Byrne and M.
Swanson, unpublished). Although genome searches
suggest that L. pneumophila lacks a classical quorum-
sensing mechanism, it is plausible that an unorthodox
form of quorum sensing induces transmission traits.
Alternatively, each replicative L. pneumophila cell may
respond independently to other cues in the lysosomal
vacuole to activate the transmission programme. As
timely differentiation is paramount for intracellular para-
sites, it is likely that L. pneumophila uses multiple
redundant pathways to monitor (p)ppGpp levels and
other local parameters to judge whether to divide or
escape. Because methods to interfere with microbial dif-
ferentiation could be exploited to prevent or treat infec-
tion, identification of alternative signal(s) of differentia-
tion is one imperative of future research.

Sigma factors activate the transmission programme

To respond to the (p)ppGpp alarmone and differentiate
into the transmissive state, L. pneumophila requires a
number of alternative sigma factors (Fig. 2). The station-
ary phase factor RpoS (c%/6%), the flagellar regulator FliA
(6®®) and the alternative sigma factor RpoN (¢**) have
been determined genetically to be activators of particular
transmission traits (Hales and Shuman, 1999; Bachman
and Swanson, 2001; Hammer et al., 2002; Heuner et al.,
2002; Heuner and Steinert, 2003; Jacobi et al., 2004).
Studies to determine how L. pneumophila differentiation
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is co-ordinated by this cohort of alternative sigma factors
have been hampered by a lack of knowledge of the effec-
tor genes of transmission. Therefore, transcriptional con-
trol of the flagellar regulon has been the primary focus of
research (for a recent review, see Heuner and Steinert,
20083).

Although the mechanism remains to be examined in L.
pneumophila, biochemical and genetic studies of E. coli
by Nystrom and colleagues indicate that (p)ppGpp acts
as a global regulator of transcription by biasing the com-
petition among sigma factors for binding to the RNA core
polymerase (Farewell etal., 1998; Jishage et al., 2002;
Laurie etal., 2003). In particular, (p)ppGpp appears to
destabilize the interaction of the predominant vegetative
sigma factor, o° (67°), with RNA core polymerase. As a
consequence, an alternative sigma factor can replace c°
in the core and recruit the enzyme to its cohort of promot-
ers. Accordingly, (p)ppGpp accumulation is predicted to
increase the amount of RpoS protein and also the activity
of both RpoS and RpoN (Jishage et al., 2002). The pre-
diction that L. pneumophila RpoS competes with other
sigma factors for binding to RNA core polymerase is con-
sistent with the phenotype of bacteria that lack or overex-
press rpoS. For example, when present in multiple copies,
rpoS inhibits the expression of three fliA-dependent trans-
mission traits in primary murine macrophages (Bachman
and Swanson, 2004a) and inhibits intracellular growth in
Acanthamoeba castellanii (Hales and Shuman, 1999).
How (p)ppGpp couples expression of RpoS-dependent
stationary phase traits with FliA-dependent transmission
traits can be analysed biochemically once genes that
encode effectors of the L. pneumophila transmissive state
are identified.

Legionella pneumophila requires the flagellar sigma
factor FliA not only to synthesize the flagellar filament and
for motility (Fettes et al., 2001; Heuner et al., 2002), but
also to express contact-dependent cytotoxicity, lysosome
evasion in macrophages and replication in the social
amoebae Dictyostelium discoideum (Hammer et al., 2002;
Heuner etal., 2002; L. M. Shetron-Rama and M. S.
Swanson, unpublished). Therefore, the FliA sigma factor
(6®) of L. pneumophila may activate promoters of the
flagellar regulon as well as other virulence effector genes
(Hammer et al., 2002; Heuner et al., 2002; Molofsky and
Swanson, 2003), a pattern also observed in Salmonella
enterica (Eichelberg and Galan, 2000). An alternative
mechanism that links motility to the expression of addi-
tional virulence traits is illustrated by Vibrio cholerae,
which responds to flagellar motion and sodium gradients
in a complex manner to alter expression of the ToxT viru-
lence regulon (Hase and Mekalanos, 1999). Whatever the
mechanism, identification of the cohort of genes regulated
by FIliA together with analysis of representative flagellar
development mutants can provide insight to how L. pneu-

mophila escapes from one host, then blocks phagosome
maturation in the next.

Post-transcriptional repression of the transmission
regulon

Whereas the alternative sigma factors RpoS, FliA and
RpoN govern transcription initiation to induce transmis-
sion traits, post-transcriptional regulation of this class of
mRNAs is likely to be controlled by the two-component
regulatory system LetA/S. Originally identified in an L.
pneumophila screen for mutants defective for flagellar
synthesis, LetA/S, together with the novel protein LetE,
induces a large panel of transmissive traits in response to
the alarmone (p)ppGpp (Hammer etal., 2002; Lynch
etal,, 2003; Bachman and Swanson, 2004b). Several
diverse bacterial species also rely on homologues of LetA/
S, called ExpA/S, GacA/S, UvrY/BarA, VarA/S and SirA/
BarA, to express a variety of extracellular virulence factors
and to modulate carbon pathways when conditions dete-
riorate (reviewed by Heeb and Haas, 2001). Whether
(p)ppGpp activates the membrane-bound sensor kinase
LetS is not known but, in homologous systems, an active
LetS sensor kinase phosphorylates the LetA response
regulator to change gene expression. Consistent with the
regulatory hierarchies delineated in E. coli and other
microbes, genetic data indicate that the major, if not sole,
function of activated LetA is to relieve repression by the
global regulatory RNA-binding protein CsrA (RsmA).
CsrA belongs to a highly conserved family of global
regulators that typically control stationary phase traits
post-transcriptionally (reviewed by Romeo, 1998). In E.
coli, CsrA binds near the ribosomal binding site of the
9lgC and cstA mRNA transcripts, preventing their transla-
tion and promoting premature degradation (Liu and
Romeo, 1997; Dubey et al., 2003). CsrA can also stabilize
transcripts, including those of the master flagellar regula-
tory locus flhDC (Wei et al., 2001). Microarray analysis
revealed that the CsrA of Salmonella enterica co-ordi-
nately controls a host of metabolic pathways as well as
virulence traits encoded by the SPI-1 pathogenicity island
(Lawhon et al., 2003). In E. coli, CsrA activity is inhibited
when the repressor is bound by either of the two untrans-
lated regulatory RNAs known as csrB and csrC, which are
induced by UvrY/BarA (LetA/S homologues). In L. pneu-
mophila, every transmission trait that has been examined
is repressed by CsrA (Table 1, Fig. 2B). Moreover, genetic
inactivation of the repressor csrA bypasses the require-
ment for the /etA inducer of the transmission phenotype
(Fig. 2B; Molofsky and Swanson, 2003). Accordingly, by
analogy with other Gram-negative bacteria, it is likely that
LetA/S in L. pneumophilainduces as yet unidentified csrB-
like regulatory RNA(s) that bind and inhibit CsrA activity
when nutrients are limiting, thereby inducing virulence
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traits and perhaps metabolic pathways that promote trans-
mission of L. pneumophila.

A subset of the CsrA-repressed traits requires the
flagellar sigma factor FIliA for its transcription (Fig. 2B).
Specifically, CsrA represses and FliA activates the trans-
missive phase traits of motility: contact-dependent cyto-
toxicity and immediate evasion of lysosomes (Table 1;
Fettes et al., 2001; Hammer et al., 2002; Heuner et al.,
2002; Molofsky and Swanson, 2003). Accordingly, CsrA
is predicted to inhibit either fliA mRNA stability or transla-
tion directly or fliA message production indirectly. An effi-
cient mechanism for CsrA to control multiple transmissive
traits would be to repress the master switch of the flagellar
regulon in L. pneumophila, presumably RpoN and/or FleQ
(Fettes et al., 2001; Heuner and Steinert, 2003; Jacobi
et al., 2004), but this possibility has not been examined.
As CsrA represses multiple phenotypes linked to L. pneu-
mophila virulence, identification of the mRNA species that
it targets is a viable approach to delineating the molecular
mechanisms of L. pneumophila pathogenesis.

Dot/lcm regulation

The type IV secretion system remains the best character-
ized virulence factor of L. pneumophila; accordingly, its
substrates and transcriptional regulation have been the
focus of considerable investigative effort. Encoded by the
defective in organelle transport/intracellular multiplication
loci of L. pneumophila, the apparatus is postulated to
secrete the virulence effectors that immediately isolate the
pathogen vacuole from the endocytic pathway (reviewed
by Sexton and Vogel, 2002). In addition to its effects on
macrophage cell biology, the Dot/lcm complex translo-
cates protein—plasmid DNA complexes between bacteria
(Vogel et al., 1998).

Whether L. pneumophila express a functional type IV
secretion apparatus in both the replicative and transmis-
sive phase has not been established definitively. The effi-
ciency of plasmid transfer by pure cultures of exponential
and stationary phase L. pneumophila has not been
reported, although it appears that bacteria replicating on
solid agar fail to conjugate plasmid DNA (Segal and Shu-
man, 1998). A series of studies using /acZ translational
fusions demonstrated that, of nine dot/icm loci examined,
the products of five were more abundant in the stationary
phase of broth cultures but, in each case, the effect was
modest (Gal-Mor etal., 2002). Of these, only icmP
expression was reduced by mutation of relA, rpoS or letA
(Zusman etal, 2002; Gal-Mor and Segal, 2003a).
Whether the two- to threefold increase in expression of a
subset of the dot/icm genes that occurs when L. pneumo-
phila enter the stationary phase in broth contributes to the
dramatic concomitant increase in lysosome evasion has
not been tested. Also, the effect of LetA on transcription
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and translation of particular dot/icm genes warrants more
detailed study, as another group who analysed total RNA
instead of reporter constructs concluded that LetA is a
strong inducer of dotA expression (Lynch et al., 2003). A
second activator, the periplasmic stress two-component
response regulator CpxR, strongly induces expression of
icmR, a non-structural gene of the secretion apparatus,
and more modestly activates the dotA/icmV and icmW/X
operons in broth cultures (Gal-Mor and Segal, 2003b).
However, as cpxR mutants replicate efficiently in mac-
rophages and amoebae (Gal-Mor and Segal, 2003b), L.
pneumophila must encode another mechanism to gener-
ate sufficient dot/icm expression to establish its replication
niche. Biochemical studies of the Dot/lcm complex
throughout the life cycle in broth and phagocyte culture
are needed to determine whether regulated synthesis or
assembly of the secretion system accounts for the dra-
matically different intracellular fates of replicative and
transmissive L. pneumophila.

One possibility is that the type IV secretion apparatus
is synthesized constitutively, but the effector substrates
are expressed solely during the transmission phase. Pro-
teins likely to be translocated by the Dot/lcm system have
been identified by a variety of genetic strategies, and the
expression pattern of the proteins and the ability of the
corresponding mutants to establish replication vacuoles
has been examined. As predicted for virulence factors that
govern phagosome maturation, the RalF, LidA and SidC
proteins are each induced when L. pneumophila is cul-
tured to the stationary phase in broth. Furthermore, when
cultured in macrophages, all three proteins are translo-
cated to the phagosomal membrane by a dotA-dependent
process (Nagai and Roy, 2001; Nagai etal, 2002;
Conover et al., 2003; Luo and Isberg, 2004). Neverthe-
less, none of these translocated proteins is required by
the pathogen either to evade the endosomal network or
to replicate in macrophages. Either the RalF, LidA and
SidC proteins are redundant or they contribute to some
other aspect of the pathogen’s life cycle. The model of the
genetic circuitry that controls the L. pneumophila life cycle
(Fig. 2) can provide a conceptual framework for the design
of experimental strategies to identify virulence factors that
directly alter membrane traffic in phagocytes, which are
predicted to be targets of FliA, CsrA and RpoS regulation.

Impact of differentiation on experimental design

Appreciation that the expression of transmission and rep-
lication traits by intracellular pathogens is probably recip-
rocal and also genetically separable can facilitate the
design and interpretation of classical and molecular
genetic analyses to identify their virulence mechanisms.
Typically, experimentalists focus on those virulence deter-
minants that have a measurable impact on replication, as
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judged by the slope of intracellular growth curve plots.
Given the reciprocal pattern of the transmission and rep-
lication phases, this strategy risks discounting determi-
nants that promote immediate bacterial adherence, entry
and lysosome evasion, traits that are likely to be vital to
the establishment of infection in human hosts. For exam-
ple, L. pneumophila that lack the LetA/S or FliA positive
activators, the Hsp60 or RtxA surface proteins or the FlaA
flagellar filament protein have discernable phenotypes
when initial host—pathogen interactions are quantified.
Nevertheless, the minority of each of the mutant microbes
that adhere and survive phagocytosis proceeds to repli-
cate at wild-type rates (Garduno et al., 1998; Cirillo et al.,
2001; Dietrich et al., 2001; Hammer et al., 2002; Heuner
etal., 2002; Lynch et al.,, 2003). Therefore, unless early
events are quantified, the contribution of this class of
transmission factors to L. pneumophila pathogenesis can-
not be appreciated. On the other hand, certain transmis-
sion defects do prevent subsequent intracellular growth:
stationary phase dotA and dotB mutants of L. pneumo-
phila fail to establish replication vacuoles and, instead,
persist without replicating in a non-toxic endosomal com-
partment (Joshi et al., 2001). By designing specific assays
to measure either transmission or replication, both
classes of virulence factors can be identified.

In the post-genomic era, a comprehensive analysis of
microbial adaptation to a particular environment can be
achieved by applying powerful molecular genetic methods
such as microarrays, proteomics, in vitro expression tech-
nology and signature-tagged mutagenesis. As L. pneu-
mophila differentiates in response to nutrient levels,
insight into the physiological pathways that distinguish its
transmissive and replicative stages can be obtained by
comparing synchronous exponential and stationary
phase populations obtained from chemically defined
medium. In contrast, the heterogeneity of cell populations
harvested from agar will obscure the microbe’s biphasic
design. Whether candidate loci are indeed dedicated to
one phase of the pathogen’s life cycle can then be con-
firmed by more laborious analysis of phagocyte cultures.
By incorporating knowledge of microbial differentiation
into experimental design, the physiological patterns
obtained by modern genomic methods can be brought
into sharp focus to illuminate the mechanisms of micro-
bial pathogenesis.
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