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ABSTRACT

The basic theory of electronic random se-
lectors is presented. An electronic random selec-
tor is a completely electronic device that makes a
truly random selection of one item from a set of
items.

Randomness requirements, probability con-
trol circuits, and randomness generation are dis-
cussed. A brief comment on predictable binary se-
quence generators is included.






THE THEORY OF ELECTRONIC RANDOM SELECTORS

1. INTRODUCTION

In 1953 when the development of N. P. Psytar (Epise Programed
Psycophysical Tester and Bgcorder) was begun at the University of Michigan
there were no electronic machines which could produce truly random selec-
tions in response to a given request. Thus,as a part of the overall N. P.
Psytar program electronic random selectors were developed.

An electronic random selector can usually be separated into two
parts---a probability control circuit and a randomness generator. In line
with this breakdown,the organization of this report consists of a discus-
sion of the randomness requirements, probability control, randomness gen-

eration, and a brief comment on predictable binary-sequence generators.

2. THEORY OF ELECTRONIC RANDOM SELECTORS

2.1 Preliminary Discussion

The input to a random selector is a request that a selection be
made. This request is called a "question," and the time at which it is
made is called the "question time." The output of a random selector is a
selection from a set of possibilities. The probability of selection for
each of the members of a set of possibilities is established prior to the
"question time." Following this, the random selection is made in accord-

ance with the established probabilities. For the purpose of analysis,



then, any random selector or random-number generator can be thought of as
having two main parts: a probability control; and a randomness generator

(See Fig. 1 ).

RANDOMNESS PROBABILITY
GENERATOR CONTROL

Fig. 1. Random selector.

A set of possibilities for a random selector might be, for ex-
ample, the letters of the English alphabet; and the probability of any par-
ticular letter being selected could be equal to the frequency of its occur-
rence in the language.

The balance of this section is devoted to the expansion and clar-
ification of the foregoing material in the following order: first, the
randomness requirements are set forth; second, the theory of the probabil-
ity control is described with the assumption that the input is a random
function of time; third, the theory of generating this random input is de-

scribed; and fourth, predictable binary-sequence generators are mentioned.

2.2 Randomness Requirements

In general three requirements must be met if selections are to

be random:

1. The selections must be independent of one another. This
means that the a priori probability of any selection must be
the same as the conditional probability for all selections.

2. The selections must be independent of their applications.

For this to be meaningful a universe of discourse must be



specified. Within this universe there is an experiment or
test with events from which random selections are required.
That the selections must be independent of their applications
means that the events within this universe and the selections
must be independent. Thus, the probability of any selection
from the random selector must remain unchanged by any knowl-
edge concerning the experimental or test events.

3. For each "question" one and only one selection can be made
from N possibilities.l The probability of each of the N
possibilities must depend on only the probability control.

In effect, this requirement means that probabilities should
not change unless the probability control is changed.
These requirements have been set forth to give sequences of selections

that do not have predictable patterns and that have stable probabilities.

2.3 Probability-Control Circuit

The probability-control circuit is a device which, upon receiv-
ing a "question" input, makes one selection from a set of N possibilities.
The probability of each selection is determined by the setting of each
probaebility control. In some circuits the probabilities will be predeter-
mined when the circuit is designed; manually operated controls will be
provided in others so that an operator may adjust the probabilities.

It is meaningless to talk of a probability-control circuit if
nothing is said of randomness. For instance, by improperly designing a
random selector it would be possible to always make the same selection in-

dependently of the probability setting for that selection. A proper design

1. For other types of outputs, logic circuits can be employed to obtain
the desired characteristics.



requires that the following conditions be met: (1) If the probability-
control circuit does not have a built-in random source, then the "question
times" must be randomly distributed in time. (In effect, the probability-
control circuit transforms the random "question times" into random spatial
selections.) (2) 1If the probability-control circuit has a built-in ran-
dom source, then the "question times" need not be randomly distributed in
time. But, depending upon the nature of the random source, certain re-
strictions on the input may be necessary.

Any random selector and probability control is dependent on time-
varying factors. For this reason it is possible to describe all probabil-
ity controls as spinning disks. This means that an analogy can be made
between any electronic probability-control circuit and an appropriate me-
chanical spinning disk® (Refs. 1, 2).

The typical operation of a spinning-disk probability control is
as follows: The disk has N segments, one for each selection, and is nor-
mally spinning. A selection is obtained by stopping the disk at a random
time. The segment indicated by a fixed arrow indicates the selection. A
set of selections is obtained by repeating this procedure for each addi-
tional member of the set.

Greater attention will now be given to the general theory of the
probability of a selection. The above ideas should be kept in mind as
background material, but they should not be allowed to confuse the new
ones.

The spinning disk may be considered as a device which transforms

a part or all of the infinite time-domein into some finite space. A

1. Mechanical spinning-disk random selectors with which many people are
familiar are roulette wheels and carnival wheels.



graphical intepretation is shown in Fig. 2. If the disk spins at & uni-

form rate it transforms the infinite time domsin into a finite time domain

—@ —— INFINITE TIME DOMAIN —_——+O
<< A i 7
N \;\\ / \ ,/'/ /
~ AN / /
> \ ol

FINITE SPACE

Fig. 2. Transformation of the infinite time-domain
into a finite space by the spinning disk.

of duration T. The time for the disk to make one revolution is called the
modulus period and is symbolized by T.

There is associated with each of the possible random selections
& segment in the finite space. These segments are nonoverlapping because
they correspond to the segments on the disk, which are nonoverlapping. A
"question time" occurs in the infinite time domain, and the disk is stopped
at this "question time." Corresponding to this time in the infinite space
there 1s a point in the finite space which is the transform of the "ques-
tion time." The segment of the finite space containing this point is the
selection.

Over the finite space there is a probability-density distribu-
tion, g(x), of the stopping point. An arbitrary function, g(x), is shown
in Fig. 3. The shape of the probability-density distribution is, of course,
a function of the design of the equipment. More will be said about the
actual formation of this probebility-density distribution in section 2.3.

The segments shown in Fig. 3 identify the parts of the finite

space corresponding to the possible selections. The probability of selecting



g(x)
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Fig. 3. Probability-density function, g(x),
over the finite space vs. x.

the ith segment, Py is given by

X, .
i+1
b, = J  elx)ax (2.1)
X,
i
where
n+l
J g(x) ax = 1
X
o
and
X is the abscissa of the left-hand side of the ith segment,

X541 is the abscissa of the right-hand side of the ith segment,

g(x) 1is the probability-density function of the stopping point
in the finite space, and

pi 1s the probability of the ith segment being selected.

If the disk is spinning at a uniform rate, the finite space is a finite



time domain and x may be replaced by t.

The probability-density function, g(x) or g(t), results from the
transformation of some other probability-density function, f(t), in the
infinite time domain into the finite space.

Suppose that in the infinite time domain f(t) is described by
the function in Fig. 4. Further suppose that a spinning disk has a con-

stant speed and is phased such that the leading edge of the "O" segment

f(t)
— - 0 —
|——T——|
t, t;
t—»

Fig. 4. Probability-density function, f(t), in the
infinite time domain.

coincides with t,. The effect on g(t) a(t)

of the disk rotating at three differ- FOR T=0.75T,
ent speeds is shown in Fig. 5, where

T is the time for one rotation. It

gt
should be obvious from these curves
| FOR T=T,
that the probability of a selection t—
is influenced by the speed of rotation
of the disk relative to the probabil- g(t)
ity-density function f(t) for the par- : FOR T=1.2T,

ticular conditions of the example.
Fig. 5. The probability-density func-

If it is possible to obtain a proba- tion, g(t), in the finite time domein
obtained from Fig. 4 by rotating the
bility-density function g(t) in the disk at different speeds.



finite space that is essentially uniform and not influenced by small changes
in the speed of the disk, then a satisfactory probability control which
will have stable probability settings can be designed. The method of ob-
taining such a uniform distribution is described in the section on random-
ness generation. For the present discussion it is assumed that a uniform
density function is available in the finite space.

2.3.1 Probability Control for Equal Probabilities. The spin-

ning-disk probability control can be realized electronically in a number
of ways. If N equally-likely selections are needed, then a modulus-N
counter (i.e., a counter with N states, 1, 2, 3, . . . N) driven by a

cyclic pulse generator is one of the best realizations (see Fig. 6).

RECURRENT | quesTioN MODULUS-N SELECTION
GENERATOR SWITCH COUNTER READOUT
INPUT
(OPEN THE SWITCH NOTE: AN ALTERNATIVE CIRCUIT
AT A RANDOM TIME PLACES THE QUESTION
TO READ OUT THE SWITCH BETWEEN THE
SELECTION) COUNTER AND THE

READOUT CIRCUIT.

Fig. 6. Equally-likely random selector with N possibilities.

2.3.2 Probability Controls for Unequal Probabilities. If a bi-

nary selector with an adjustable probability is required, a modulus-N
counter driven by a recurrent pulse generator with a flip-flop readout can
be used. If the flip-flop is placed in state A at the end of count N (i.e.,
just preceding count O) and in state B at the end of count M, then the

probability of selection A, P(A), is



and the probability of selection B, P(B), is

assuming, of course, that f(t) is uniform.

ment of probability adjustment is 1/N.

P(B)

P(A) =

==

N-M
N

= 1 - P(A)

See Fig. 7 for a block diagram.

(2.2)

(2.3)

Note that the smallest incre-

RECURRENT QUESTION MODULUS~-N PROBABILITY FLIP A
Ggﬁgkg$0R SWITCH COUNTER SELECTOR FLOP ——B
INPUT
Fig. 7. Binary random selector with adjustable probability.

Continuous probability control may be desired in some applica-
tions. A realization for a spinning disk of this type may consist of a

cyclic sawtooth generator, a Schmidt-trigger circuit, and a flip-flop (see

Fig. 8). The probability of a selection A, P(A), is given by Eq. 2.k,
RECURRENT SCHMIDT QUESTION ELIP —A
SAWTOOTH TRIGGER > .
GENERATOR CIRCUIT SWITCH FLOP | g

VOLTAGE TO INPUT
ADJUST PROBABILITY
Fig. 6. Binary random selector with continuously adjustable

probebility control.



provided that the sawtooth waveform is linear and has a negligible retrace

time.

P(A) = h (2.4)

where

e, is the trigger level of the Schmidt circuit (e is the pa-
rameter used to adjust the probability),

E2 is the peak voltage of the sawtooth, and

E, 1is the minimum voltage of the sawtooth.

1

If the desired relationship between probability control voltage
and probability is nonlinear, then the desired result can generally be
achieved by modifying the waveform of the sawtooth generator.

If the probability range to be controlled by the voltage is
small, then the waveform of the sawtooth generator should be modified as

shown in Fig. 9.

Epff m—————— ——— —— —

.—.o—.. —

|
|
|
bolobe
bt
N

STATE A ON STATE B ON STATE A ON
L |
| T —

Fig. 9. Waveform for voltage-adjustable random selector
for small probability range.
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The probability of selection A, P(A), for the waveform of Fig. 9 is

ct

e -E t, -t

1 s 1

= + . (2.5)
T E2 - El T

P(A) =

In general the binary adjustable-probability random selectors
can be extended to have more possible selections by means of simple logi-
cal circuits.

It is possible to combine two or more binary random selectors in
logical switching circuits to obtain probabilities smaller or larger than
those readily achieved with the above random selectors. When this is done
it is necessary that independent random sources be used for the individual

binary random selectors.

2.4 Randomness Generation

The randomness generator is responsible for the randomness of a

random selector. Three requirements must be met.

1. The randomness source, in conjunction with the question in-
put, must produce an input to the probability control in
such a manner that the selections are independent of one an-
other.

2. Similarly, the probability control input must be such that
the selections are independent of their applications.

3. If the probability control does not contain a random source
as an integral part, then the probability control settings
should not be influenced by the choice of & randomness gen-
erator.

2.4.1 Satisfaction of Randomness Requirement 3. If g(t) is uni-

form, then requirement 3 is satisfied.

11



The combination of the question operation and the randomness
source will produce some distribution f(t) in the infinite time domain.
It is necessary to know whether f(t) produces a uniform distribution for
g(t) in the finite time domain. When f(t) is segmented by the probability
control, it is transformed to g(t). This technique of segmenting f(t), or
for illustration wrapping it around a cylinder, is called the wrap-around
effect.l

As an illustration of the wrap-around effect consider a cylinder
of circumference T with a plot of f(t) to the same time scale around the
cylinder as shown in Fig. 10. The sum of all the ordinates around the cyl-
inder is g(t). If f(t) is of the proper character, then g(t) will approach
a uniform ordihate.

A meassure is required to represent the closeness to a uniform
distribution. The fractional peak-to-peak error € is such a measure and
is defined as

(t) - g(t) .
c = €\ ax ~ 8 >m1n (2.6)

g(t) avg

Since the area under g(t) = 1, it is readily seen that g(t)avg = 1/T. For
convenience the period T will not be used. Instead, the period or circum-
ference of the cylinder will be described as Ko, where K is a constant and
o is the standard deviation of f(t). As a further simplification K will
be used to represent the period; then comparisons can readily be made be-
tween different values of f£(t).

Thus the defining equation for € is

1. T. G. Birdsall originated this analysis.



e = K[g(t), - 8(t)y,] @D

The quality factor Q is defined as

Q = 1l/e (2.8)

Note that Q approaches « as g(t) ap-
proaches a uniform distribution.

2.4.2 € and Q for Several

Distributions. The maximum value of

the fractional peak-to-peak error,

€, is derived for the following dis-

tributions:

1. Uniform distribution.

2. Triangular distribution.

3. Exponential distribu-
tion.

4. Exponential distribu-
tion alternated.

5. Normel distribution.

6. X2 distribution with

N degrees of freedom.
See Appendix A for the derivationms.
The results of these derivations are
plotted in Fig. 11, with € as a func-
tion of K for o = 1.
These curves may be some-
what deceptive; therefore particular

attention should be given to the

f ()= PROBABILITY

(&) Segmented normel delay
distribution function.

(b) Cylindrical wrap-around
representation.

x
7

q|o
o

T

Q

(¢) Wrap-around effect for a
normal delay distribution function.

Fig. 10. Probability-density curve
wrapped around a cylinder.
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PEAK -TO -PEAK FRACTIONAL ERROR OF THE WRAP-AROUND PROBABILITY DENSITY FUNCTION

€

102 CURVE ORIGINAL_DISTRIBUTION _f(t)
4 . T UNIFORM  DISTRIBUTION
6§ O 2. TRIANGULAR DISTRIBUTION
3o EXPONENTIAL DISTRIBUTION
4 EXPONENTIAL DISTRIBUTION
ALTERNATED
3 5. ... ... NORMAL DISTRIBUTION
0 6 - - X2 DISTRIBUTION
(Nt
fy(th = ————— FOR N=I0
(N—1)!
i0*
10°
10°
0 o) 20 3.0 40 50
- I
k e

Fig. 11 Peak-to-peak fractional error of the wrap-around
probability-density as a function of the wrap-around factor K.
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following values of g. For curves 1, 2, 3, 5, and 6,0 is the calculated
standard deviation of f(t). For the case of curve 4 it is not easy to
calculate o of f(t). Therefore, in this case the o calculated is for the
exponential before alternation. Actually this is more informative because
the improvement resulting from alternating the exponential is seen by com-
paring curves 3 and L.

Curve 6 has only one point shown. A great deal of work is re-
quired to calculate Af(t) for this distribution. However, it was deemed
desirable to give the reader some idea of the position of this curve since
it is a realizable practical distribution. The significance of curve 6
for N = 10 is that it is close to the normal distribution and is readily
generated. Note that if N is varied curve 6 will have upper and lower
bounds given by curves 3 and 5 when N = 0 and N = «,

Curve 1 is drawn as a continuous curve. Actually € goes to zero
when A\ is equal to an integral multiple of T.

Several general statements can be made regarding the magnitude
of € with respect to the shape of f(t). For a symmetrical distribution e
will be smaller than for a skewed distribution. As the wrap-around dura-

tion T is made smaller, € will decrease.

2.4.3 The Satisfaction of Randomness Requirements 1 and 2. To
determine that condifions 1 and 2 are satisfied it is necessary to analyze
the randomness source, the probability control, and the universe of dis-
course relative to one another. Now it will be assumed that the wrap-
around probability-density function g(t) is uniform. The method of analy-
sis will be described by means of a typical example. For other applica-
tions the reader will have to carefully form his own analysis procedure.

Example: this example is concerned with the design of equipment

15



for a psychophysical experiment. The universe of discourse consists of
(a) individuals that are subjects and called observers, (b) a set of sig-
nals, and (c) random selection equipment to select signals to present to
the observers. The random selector has as a randommness generator a noise
source that produces output pulses with the density function of curve 6,
Fig. 11. The original source of these pulses is a counter of pulses gen~
erated by the decey of a radiocactive element. Every tenth pulse is used
as an output pulse. The probability control is driven by a stable oscil-
lator, and K = T/o is selected so that g(t) is essentially uniform. There
is no known causal relationship between the radiation from the radioactive
element and the oscillator, and therefore the selections are independent
of one another. There is no causal relationship between the noise source
and the observer, and therefore the selections are independent of their
application. Thus, in this application all three requirements are satis-
fied.

2.4.4 Determination of Minimum Allowable Time Between Questions.

An important practical design factor is the maximum rate of making selec-
tions. This is of course related to £(t). If f(t) has a positive tail
that extends to infinity, then an allowable probability of failure to make
a selection (Fig. 12, crosshatched region), PF(Tl), must be chosen. Con-
sider the f£{t) shown in Fig. 12.
Then

o

f(t) PF(Tl) = Tf f(t) at  (2.9)
1

A

where

Fig. 12. Probability-density function.

16



probability of failure to make a selection

P(T,)

T, = minimum time allowed between question pulses.

Generally PF(Tl) will be chosen to be a very small probability. However,

if f(t) hes a positive tail that terminates at time T_, then it is possi-

2)

ble to make PF(Tl) = 0, provided T, > T The selection of a value for

o
PF(Tl) will depend upon the application of the random selector.

2.4.5 Random Selector With Random Source as an Integral Part of

the Probability Control. When the circuit design is such that the random

source and probability control cannot be physically separated, then the
random selector falls in this category. Randomness conditions 1 and 2
must be satisfied, and condition 3 does not apply. As an illustration of
this type of random selector consider the following exarple. A Gaussian
noise source is full-wave rectified, and this voltage waveform is then
used in the circuit of Fig. 8 in place of the recurrent sawtooth generator.
Photographs of typical samples of full-wave rectified Gaussian noise are

shown in Fig. 13. The amplitude density function of this full-wave recti-

10 MILLISECONDS ‘ | . 50 MILLISECONDS

Fig. 13. Full-wave rectified gaussian noise.

fied noise voltage is

17



2
D, = 2 e 29 0<e<w (2.10)
ve2n o
where
De = 7Probability density of the full-wave rectified Gaussian
noise voltage
0 = standard deviation or RMS noise voltage
e = voltage measured from the base line of the noise voltage.

This function and the original unrectified density function are
plotted in Fig. 1.
The probability of selection B, P(B),

is given by Eq. 2.11

«— FULL WAVE RECTIFIED 2
GAUSSIAN NOISE e

€ de, 0<e_,
e2n g s
Dg — s (2.11)

where -
«—— GAUSSIAN NOISE

P(B) = probability of se-
lecting B
e, = Schmidt circuit

trigger level.
Fig. 14. Density functions for rec-
tified and unrectified Gaussian noise.
It is important to note two problems
with this type of random selector.
The probability P(B) is sensitive to (1) changes in the shape of the den-
sity function, and (2) changes in the ratio of e, to o.
To obtain the required independence of selections it is neces-

sary that the noise source be independent of the questioning time and in-

dependent of the application. To obtain independence among selections

18



the time between question pulses must exceed a minimum time T T, is de-

37 73
termined by the maximum allowable correlation between selections. The
correlation function for the noise is then determined by the impulse-re-

sponse function of the network which determines the spectral distribution

of the gaussian noise.

2.5 Predictable Binary-Sequence Generators

A predictable binary-sequence generator is a device which pro-
duces a sequence of M binary digits in a deterministic manner. If the de-
sign and the stored contents or initial conditions of the device are known,
then the output is predictable for & person with this information, but may
be unpredictable for a person without this information. Examples of possi-
ble predictable sequence generators are:

1. Printed random-number tables.

2. Random-number routines for digital computers.

3. Punched paper tape.

4. n-stage shift register with feedback loops.

5. 2n-modulus counters with a suitable output matrix switch.

If a shift-register generator or similar sequence generator pro-
duces a periodic sequence of period ot = M, then by proper design it is
possible to match the statistics up to the nth order. This means that the
probability of a particular subsequence of K digits, for O < K < n, is the
same as the probability of any other subsequence of K digits. An example

is illustrated below:

1 t t '
Sequence 011100010111000101110001011100010

Period Qn, n=3
Probability of a K-tuple = P(K) = —% for 0 < K<n

2

19



By actual count:

Sub sequence Number of Subsequences Probability

0 Y 0.5
1 L 0.5
00 2 0.25
0l 2 0.25
10 2 0.25
11 2 0.25
000 1 0.125
001 1 0.125
010 1 0.125
011 1 0.125
100 1 0.125
101 1 0.125
110 1 0.125
111l 1 0.125
0000 0 0.000
0001 1 0.125
0010 1 0.125
0011 0 0.000
0100 0 0.000
0101 1 0.125
0110 0 0.000
0l1ll 1 0.125
1000 1 0.125
1001 0 0.000
1010 0 0.000
1011 1 0.125
1100 1 0.125
1101 0 0.000
1110 1 0.125
1111 0 0.000
etc.
23
For n = 3 there are 2 = 256 different binary sequences, but there are

only 16 ways in which the above sequence can be written and still retain

the desired properties.

The importance of the sequence generator is that by proper de-
sign the statistical properties are like those of the truly-random binomal

distribution with p = 0.5. It should be noted that this statement is true

20



for 0 < K < n but does not hold for K > n.

Thus, for applications in which it is desirable to have repeat-
able experiments or where the statistics must have precise values in the
experiment, this type of device may be used as a random selector. As an
example, psychologists often want random sequences in which the statistics
up through the fourth are precisely matched. They do not want the fluc-
tuations that result from sample variance, and of course sample variance
is present in a truly random sequence. It is extremely important that the
use of the sequence generator for a random selector satisfy the randomness
requirements given on p. 1ll.

For instance, consider the psychophysical experiment described
on p. 16. If a binary sequence generator is used for the random source
and if the sequence complexity is such that the observer cannot remember
the sequence, then the output will meet the randomness test. Now, if in-
stead, the observer has an identical sequence generator, then he can pre-
dict the sequence, and randomness requirement 2 fails.

To ensure independence it is possible to randomly change the
code on the sequence generator after every«/é£~digits for a sequence of

length 2n.

3. SUMMARY

The basic requirements for randomness have been presented. Tech-
niques for building random selectors have been described. However, no
circuit details are given. The actual circuits used in N.P. Psytar are to

be presented in a subsequent report (Ref'. 3).
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APPENDIX A

THE DERIVATION OF ¢ AND Q FOR SEVERAL TYPES OF DISTRIBUTION

A.1 Derivation of € and Q for Uniform Distribution

rnt -

0 T A t—

Fig. A.l. Uniform distribution.

Let
A = NT +a o<a<T
u = A/2; mean time of the distribution
1 1 1
g(t) o - 8t) 0 = 2aelt) = (W+1) T-NF = %
for

e - ki . K
A afg
a3
“ =X

A.2 Derivation cf ¢ and Q for Triangular Distribution

£t) = - (s )
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2
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Fig. A.2. Triangular distribution.

=]

o= B(t) = [ trf(t)dt
p) ) 2 < o2 2
o- = B(t-p)” = [ t% g(t) dt - u
Let
AN = NT + a
then
L= N3
= xe/la
A
g = -—
Ve
Assume a2 = 0
2 t
£(t) _ﬁ(l-ﬁ) 0<t<NT
_ g_(l iT+t') 0<t'<T
= NT T TNT i=0,1, 2,
N-1
g(t) = X f£(t)
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1 g
8(t)=ﬁT—[N+1-2—T~] 1<N
8(t) gy - 88y = c8(t) = 2/NT = 2/A
For
o=1; A=3v2; K=T
3
342
N 2K

Using this same procedure, it is possible to evaluate € or Q

for the symmetrical triangular distribution.

A.3 Derivation of € and Q for Exponential Distribution

f(')T-/-II_

Fig. A.3. Exponential distribution.



© 1 —’];(1+T)T
g(t) = L = e H® 0<t'<T
i=0 *
tl
Lo e "
= 3 —7
1l -e W
1 1
ety = 8(t) = 28(t) = = = 3
For
g=1; K=T
e = K
or
Q = 1/K

A.4 Derivation of € and Q for Exponential Distribution Alternated

|
f({t) —-
H

Fig. A.L4. Exponential distribution alternated.

t
l-(i+%§ i=0,1,2.
£(t) = Se M 0<t'<T
t = 12T + t°!



1
l-(i‘*’l-:%'T’)g i=o,l,2.-.
£(t) = Je K 0<t'<T
t = (i+41) 2T - ¢!

where u is the mean for the nonalternated exponential distribution.

02 is the varience for the nonalternated exponential distribu-

tion.
t'y 2T R Yy oT
o -(1 + 55) = (141 - =) =
0<t!' <
g(t) = X Le o W L o A T
i=0 LH H
]
1 © -i?_T_ _E._ _(2T_tl).}.
g(t) = = Z le He ¥ +e "
Hi=0
L.t (I . EL)
1l e H By e M H
Tow T _T
e M e M
l L
1 cosh " (T - t')
K sinh 2
I
1 1 1
g(t) -g(t) . = ong(t) = =( - )
max min ' tanh I sinh -~
U
Iet
nw=1; o= 1; K=T
1 1 cosh K - 1
e = Kgmx SToh K %)
or
1, sinh K
@ = K(cosh K - l)



For small K (neglecting third- and higher-order factors) we obtain
€ = K?/E

A.5 Derivation of € and Q for Normal Distribution

T f(1)

Fig. A.5. Normal distribution.

e
f(t) = —— e ° o=1
Nen
1 ]2
- _ giK}e N [(i 3 e)K
1 1 2 L 2
rg(t) = — + 2 L — e -2 2 —= e
vex i=l V2= i=l ~N2n
For
i = O, l) 2 . .
K = T
1,12
. _ gi}Qg - [(i B 2)K]
= L 1+2 L \e 2 - e e
N 2% i=1
This numerical evaluation is most easily obtained by means of
tables.

28



A.6 Derivation of € and Q for X 2 Distribution with 2N Degrees of Freedom

f(t)T

Fig. A.6. X 2 distribution with 2N degrees of freedom.

tN-l e-t L= N

B N-1): o = VN

Ag(t) 1is not easy to express for all N and is also difficult
to calculate. As N —» »; g(t) approaches the normal

distribution.

The curve of € as a function of K is not so good as the

normal distribution.
Note: When N = 1, f(t) is the exponential distribution.

If numerical calculation of € is desired for small €,

then a digital computer should be used.

€ as a function of K(o = 1) is plotted for each of the above

wrap-around distributions in the text in°Fig. 11.
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