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CORRECTED PROOF OF THE RESULT OF ‘A PREDICTION ERROR PROPERTY
OF THE LASSO ESTIMATOR AND ITS GENERALIZATION’ BY HUANG (2003)
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IBM T.J. Watson Research Center and University of Michigan

Summary

The Lasso achieves variance reduction and variable selection by solving an �1-regularized
least squares problem. Huang (2003) claims that ‘there always exists an interval of regu-
larization parameter values such that the corresponding mean squared prediction error for
the Lasso estimator is smaller than for the ordinary least square estimator’. This result is
correct. However, its proof in Huang (2003) is not. This paper presents a corrected proof
of the claim, which exposes and uses some interesting fundamental properties of the Lasso.
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1. Introduction

The Lasso (Tibshirani, 1996) achieves variance reduction and variable selection by solv-
ing an �1-penalized least squares problem:

β̂(γ) = arg min
β

‖y − Xβ‖2 + γ
∑
j

|βj| .

For ‘large’ values of γ (defined in a relative sense), β̂(γ) has many zero components. This
was a major motivating factor for the Lasso, as it implies that the Lasso is appropriate for
‘sparse’ models, where ridge regression is unlikely to succeed, since it forces all coefficients
to be non-zero (Friedman et al., 2004). In some cases, the Lasso or equivalent procedures
have provable optimality properties, such as in the case of wavelet shrinkage (Donoho et al.,
1995).

Recently, it has been shown (Osborne, Presnell & Turlach, 2000; Efron et al., 2004) that
the path of optimal solutions for the Lasso, {β̂(γ), 0 ≤ γ ≤ ∞} is piecewise linear, and thus
the Lasso can be solved efficiently for all values of γ using an incremental algorithm. A
simple example to illustrate the piecewise linear property can be seen in Figure 1, where we
show the Lasso optimal solution paths for a four-variable synthetic dataset. The plot shows
the optimal Lasso solutions β̂(γ) as a function of the �1 norm ‖β̂(γ)‖1 . Each line represents
one coefficient and gives its values at the optimal solution for the range of ‖β̂(γ)‖1 values.
We observe that between points marked ‘+’ the lines are straight, i.e. the coefficient paths are
piecewise-linear, and the one-dimensional curve β̂(γ) is piecewise linear in R
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Figure 1. Piecewise linear solution paths for the Lasso on a simple four-variable example

Using this property, Efron et al. (2004) suggest the LAR-Lasso algorithm, which allows
generation of the whole regularized solution path, {β̂(γ), 0 ≤ γ ≤ ∞}, for ‘approximately’
the computational cost of one least-squares calculation on the full dataset (the exact cost
depends on some rather complicated properties of the regularized path, but the assumptions
required to attain the above property are quite mild).

The paper by Huang (2003) describes another interesting and desirable property of the
Lasso (Huang, 2003 p .218, Theorem 2), shown here with modified notation:

There exists a value γ0 > 0 such that for γ ∈ (0, γ0]:

E
(‖ynew − Xβ̂(γ)‖2

)
< E

(‖ynew − Xβ̂‖2
)

That is, the mean squared prediction error of the Lasso estimator β̂(γ) is smaller than that
of the least square estimator β̂ = β̂(0) when the tuning parameter γ is small enough.

This result is correct. However, its proof in that paper is not. Specifically, Theorem 3 therein
is incorrect, and is fundamental in the proof of Theorem 2. In this note, we present a corrected
version of Theorem 3, and a corrected proof of Theorem 2.

The notation throughout this paper is as in Huang (2003), except that we drop the (�)

and (0) superscripts for the Lasso solutions. As in Huang (2003) we assume throughout that
the predictor matrix X is fixed. We denote by y the stochastic response vector used for fitting
the model and by ynew a new, independent copy.

Unfortunately, our proof is not nearly as short and elegant as the proof using the incorrect
Theorem 3. However, we believe it is of independent interest, as it exposes and uses some
interesting fundamental properties of the Lasso — in particular Lemma 2 below and its proof
which describes the ‘piecewise linear’ pieces of the Lasso path analytically.
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2. Corrected results

2.1. Corrected Theorem 3 of Huang (2003 p .219)

The original theorem in the paper reads, with modified notation:
There exists a value γ1 > 0 such that for γ ∈ [0, γ1]

β̂(γ) = β̂ − 1
2 γ (XTX)−1s(β̂) almost surely .

Our corrected version is:
With probability 1 there exists a sample dependent value γ1(y)>0 such that for γ∈ [0, γ1(y)]

β̂(γ) = β̂ − 1
2γ (XTX)−1s(β̂) . (1)

This corrected version does not assume there is a γ1 which applies to (almost surely) all
possible samples, but rather that it is sample dependent. The proof of Theorem 3 in Huang
(2003 p .226) actually proves this corrected version and requires no modification.

2.2. Corrected proof of main result

We consider only the right derivative of the expected error at γ = 0 and prove it is
negative. This concludes an existence proof for γ0 in Theorem 2.

Define β̃(γ) as the solution which just extends the last piece of the Lasso path backwards,

β̃(γ) = β̂ − 1
2γ (XTX)−1s(β̂) ,

and compare this to (1); β̃(γ) = β̂(γ) if and only if γ ≤ γ1(y).

Proof of Theorem 2. Consider the right derivative of the error at γ = 0:

∂

∂γ+

(
E

(‖ynew − Xβ̂(γ)‖2) − E
(‖ynew − Xβ̂‖2))

γ=0

= lim
γ↘0

E(‖ynew − Xβ̂(γ)‖2) − E(‖ynew − Xβ̂‖2)

γ
.

We re-write the numerator as

E
(‖ynew − Xβ̂(γ)‖2) − E

(‖ynew − Xβ̂‖2) = (
E

(‖ynew − Xβ̃(γ)‖2) − E
(‖ynew − Xβ̂‖2))

− (
E

(‖ynew − Xβ̃(γ)‖2) − E
(‖ynew − Xβ̂(γ)‖2)) .

The proof given for Theorem 2 in Huang (2003 p .227) proves that

lim
γ↘0

E(‖ynew − Xβ̃(γ)‖2) − E(‖ynew − Xβ̂‖2)

γ
< 0 .

And so all we have left to prove is

lim
γ↘0

E(‖ynew − Xβ̃(γ)‖2) − E(‖ynew − Xβ̂(γ)‖2)

γ
= 0 . (2)

We start by proving a couple of useful lemmas.
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Lemma 1. Pr(β̂(γ) �= β̃(γ)) → 0 as γ → 0.

Proof. This follows from the corrected Theorem 3, because if γ < γ1(y) then β̂(γ) = β̃(γ).

Lemma 2. There exists M > 0 such that ‖β̂(γ) − β̃(γ)‖ ≤ Mγ for all γ > 0. So we can
say that β̂(γ) is ‘linearly’ close to β̃(γ).

Proof. We first observe that the Lasso optimal solution path β̂(γ) is piecewise linear as a
function of γ (see Efron et al., 2004 for details). One result of Efron et al. (2004) indicates
that within each linear piece of the solution path, the set of predictor variables with non-zero
coefficients is constant, i.e. A = {j: β̂j(γ) �= 0, j = 1, . . . , p} does not change within

each linear piece, and the derivative of β̂(γ) with respect to γ is equal to − 1
2 (XT

AXA)−1sA ,
where XA is the corresponding sub-matrix of X, and sA is the vector containing the signs
of β̂A(γ). Hence it implies that there exist 0 = γ0 < γ1 < γ2 < · · · < γm = ∞ and

A1, . . . ,Am ⊂ {1, . . . , p} and s0 ∈ {−1, +1}p, s1 ∈ {−1, +1}|A1|, . . . , sm ∈ {−1, +1}|Am|
such that if γk ≤ γ < γk+1 then (with a slight abuse of notation)

β̂(γ) = β̂ − 1
2γ1(X

TX)−1s0 − 1
2 (γ2 − γ1)(X

T
A1

XA1
)−1s1 − · · ·− 1

2 (γ − γk)(X
T
Ak

XAk
)−1sk .

Here (XT
AXA)−1s is actually an |A| × 1 vector, rather than a p × 1 vector. For notational

simplicity, we have omitted the zero components, but this does not affect our claims below.

By the triangle inequality we then get

‖β̂(γ) − β̂‖ ≤ 1
2γ max

j
‖(XT

Aj
XAj

)−1sj‖ ,

which uses the specific data-dependent sequence of Aj, sj , but we can easily generalize it to
a data-independent result by observing that

∣∣{s ∈ {−1, +1}|A|: A ⊂ {1, . . . p}}∣∣ = 3p − 1 ,

and thus we can find
M = max

(A,s)
‖(XT

AX)−1s‖

and get the data-independent bound

‖β̂(γ) − β̂‖ ≤ 1
2γM . (3)

Next, we use the definition of β̃(γ) to bound

‖β̃(γ) − β̂‖ ≤ 1
2γ max

s
‖(XTX)−1s‖ ≤ 1

2γM , (4)

and combining (3) and (4) proves Lemma 2.
Now, consider the numerator of (2) again. We define

� = �(γ, y, ynew) = ‖ynew − Xβ̃(γ)‖2 − ‖ynew − Xβ̂(γ)‖2 ,

and get
|E(�)| ≤ ∣∣E(

� I (‖β̂‖ < C )
)∣∣ + ∣∣E(

� I (‖β̂‖ ≥ C )
)∣∣ .

We now analyse the two components of the right-hand side separately, via two additional
lemmas.
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Lemma 3.

lim
γ↘0

∣∣∣E
( 1

γ
� I (‖β̂‖ < C )

)∣∣∣ = 0 for all C .

Proof. We fix C. First we re-phrase the numerator:

E
(
� I (‖β̂‖ < C )

) = E
((

2yT
newX

(
β̂(γ) − β̃(γ)

)

− (
β̂(γ) − β̃(γ)

)T
XTX

(
β̂(γ) + β̃(γ)

))
I (‖β̂‖ < C )

)
. (5)

The expectation is over the distribution of both y and ynew . All the β quantities we have de-
pend on y only. So our next step is to remove dependence on y, by bounding the expectation
by its maximum

∣∣E(
� I (‖β̂‖ < C )

)∣∣ ≤ Pr
(
β̂(γ) �= β̃(γ)

)
max

y,‖β̂‖<C

∣∣∣2Eynew

(
yT

newX
(
β̂(γ) − β̃(γ)

)

− (
β̂(γ) − β̃(γ)

)T
XTX

(
β̂(γ) + β̃(γ)

))∣∣∣ . (6)

The next step is to bound the two expressions inside the maximum. Denote by λ the maximal
absolute singular value of X (so λ2 is the maximal eigenvalue of XTX). Then Lemma 2
gives us ∣∣Eynew

(
yT

newX
(
β̂(γ) − β̃(γ)

))∣∣ ≤ ‖E(ynew)‖λMγ , (7)

∣∣(β̂(γ) − β̃(γ)
)
TXTX

(
β̂(γ) + β̃(γ)

)∣∣ ≤ λ2Mγ (2C + γM) , (8)

and combining (6), (7) and (8) with Lemma 1 we get

lim
γ↘0

|E(� I (‖β̂‖<C ))|
γ

≤ lim
γ↘0

Pr
(
β̂(γ) �= β̃(γ)

)(
2‖E(ynew)‖λM + λ2M(2C + γM)

) = 0 .

This proves Lemma 3.

Lemma 4.

lim
C→∞

lim
γ↘0

∣∣∣E
( 1

γ
� I (‖β̂‖ ≥ C )

)∣∣∣ = 0 .

Proof. Using the same algebra as in (5) we can write

∣∣∣E
( 1

γ
� I (‖β̂‖ ≥ C )

)∣∣∣ ≤ ∣∣E(
2yT

newX
(
β̂(γ) − β̃(γ)

)
I (‖β̂‖ ≥ C )

)∣∣

+ ∣∣E((
β̂(γ) − β̃(γ)

)T
XTX

(
β̂(γ) + β̃(γ)

)
I (‖β̂‖ ≥ C )

)∣∣ . (9)

The first expression is bounded as follows:

∣∣E(
yT

newX
(
β̂(γ) − β̃(γ)

)
I (‖β̂‖ ≥ C )

)∣∣ ≤ ‖E(ynew)‖λMγ Pr
(‖β̂‖ ≥ C

)
. (10)

Next, (i) ‖β̂(γ) + β̃(γ)‖ ≤ 2‖β̂‖ + 2Mγ, by Lemma 2, and (ii) E(‖β̂‖ I (‖β̂‖ ≥ C )) → 0
as C → ∞ for the second term, by the fact that E(‖β̂‖) ≤ ∑

j E(|β̂j|) < ∞ as E(β̂j) = β0
j ,

the true parameter. This also implies Pr(‖β̂‖ ≥ C ) → 0.
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Thus we can now write

∣∣E((
β̂(γ) − β̃(γ)

)T
XTX

(
β̂(γ) + β̃(γ)

)
I (‖β̂‖ ≥ C )

)∣∣
≤ 2λ2Mγ

(
E

(‖β̂‖ I (‖β̂‖ ≥ C )
) + 2γM

)
, (11)

and putting (9), (10) and (11) together we get

lim
γ↘0

|E(� I (‖β̂‖ ≥ C ))|
γ

≤ 2‖E(ynew)‖λM Pr(‖β̂‖ ≥ C ) + 2λ2M E
(‖β̂‖ I (‖β̂‖ ≥ C )

) → 0 as C → ∞ ,

which concludes the proof of Lemma 4.
Putting Lemma 3 and Lemma 4 together completes our proof, since for any C it gives

us an upper bound on (2), and this bound converges to 0 as C → ∞.
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