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I, INTRODUCTION

Human decision tasks can be described as static or dynamic.
In a dynamic decision task some of the relevant stimull vary as a
function of time, or of past decisions, or both. The decision maker
must keep track of these changes in order to perform satisfactorily.

This experiment examines the human ability to follow or
estimate a time-varying probebility. This probebility could be an
important input to a dynemic decision task., This experiment attempts
to isolate the estimation of the probability from the utilization of
the estimate in meking decisions. The task selected was the estima-
tion of the mean of a binary (Bernoulli) distribution, Samples (0 or
1) from the distribution were displayed sequentially and the subject
made a continuous estimate of the distribution mean, The mean varied
with time. The experimental details are described in Chapter IL.

The study of probability estimation isolated from decision
making is important for two reasons. In decision making under uncer-
tainty the estimation of probabilities is always at least an implicit
part of the task, The ability of the decision maeker to produce deci-
sions according to a maximum expected value criterion will depend
directly on his ability to estimate the probebilities of the various
alternative courses of action,

There is also an applied interest in the human ability to
turn uncertainty into probability., In many systems involving sto-
chastic inputs it is relatively easy to automate the application of

-1-
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decision rules, It is far harder, however, to find automatic means
for supplying the probabilities and payoffs necessary for the appli-
cation of the rules, Probability estimation is a candidate for
inclusion as a human task in semi-automatic information processing
and decision making systems in which the subsequent choice of a

course of action is performed automatically,

Research on Estimation and Prediction

Humen binary choice behavior has been studied extensively.
This experiment complements previous studies by isolating the esti-
mation function and by introducing dynamic probabilities,

Most of the studies on human binary choice have not included
estimation as an explicit part of the subjects' task, These studies
generally generate prediction data which are averaged over blocks of
trials (decisions, choices) to produce prediction frequencies, A
prediction frequency of 0.67 on trials 121 through 150 would indicate
that the predictions during these 30 trials were distributed about
two to one between the two choices., The subject may, or may not, be
told the correct choice after each trial. The correct choices are
drawn in some manner from a stationary binary distribution,

Examples of these experiments, often called probability
learning experiments, are Grant, 19535; Hake and Hyman, 1953; Hake,
1954; Estes, 1957; and Neimark and Shuford, 1959, Most of these
studies report prediction frequencies approaching asymptotically
the frequency of correct choice or the generating probability. This

phenomenon has been named "probability matching". This behavior is



not optimum, The optimum strategy, under instructions to maximize
correct choices, is to predict consistantly the event having the
larger probability, This event can be inferred from the relative
frequency of previous events,

Behavior significantly different from matching has been
reported by Gardner, 1959 and Edwards, 1961, The number of trials
may have been insufficient in some of the experiments in which
matching was found. An unpublished experiment by Tannenbaum and
Edwards at The University of Michigan indicates an interaction
between the amount of reward for a correct choice and the prediction
frequency, ©Some subjects used near-optimum strategies,

A few studies have looked at the estimation ability of the
binary decision meker, Grant (1953) reports an experiment by
Hornseth in which the subject was asked to guess, at the end of
150 choice trials, which event had been the more frequent, The
prediction frequencies for the last 30 trial block were close to
the matching level., The data on guessing the overall frequency
was plotted as the percentage of guesses that one of the events
was the more frequent against the actual event frequency. These
data showed the percentage of correct guesses at a particular
event frequency to be higher than the event frequency, (i.e.,
an event frequency of 0.70 would be guessed to be the more frequent
more than 70 percent of the time, )

Grant concludes from this experiment and presumably from
other probability learning experiments that the processes of esti-

mation and prediction are distinct and that prediction is the more
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accurate, The processes may indeed be distinct but the accuracy of
estimation was not measured by Hornseth's experiment,

Heke (1954) surveys a major portion of the probability
learning literature including experiments by Estes, Grant, Hornseth,
Hake, and Hyman and concludes that estimation is not accurate enough
to be the basis for binary predictions,

The choice behavior in these experiments should have been
based on an estimate of the event frequencies or generating probabil-
ities, To conclude that the non-optimum performance was an indicator
of probability estimation ability is unjustified, however,

Neimark and Shuford (1959) included estimation as an
explicit part of the task in a probability learning experiment.,

In addition to meking a choice at each trial some subjects were
required to estimate the proportions of the past events., The events
frequency was 0,67, These subjects gave an unbiased estimate and had
prediction frequencies significantly higher than the matching level,
Subjects who predicted only had prediction frequencies at the matching
level, These results suggest the explicit estimation improved predic-
tion,

Erlick (1959) looked at estimation without a decision task,
He presented 100 binary events at a rate of five per second and asked
for an estimate of the more frequent event and for an actual estimate
of the event frequency on a continuous scale, Four event frequencies
were used: 0.50 - 0,50, 0,48 - 0,52, 0,45 - 0,55, and 0.43 - 0,57,

The data indicated that the more frequent event would be selected
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correctly 75 percent of the time if the event frequency difference
was approximately 0,08 (0,46 - 0.54), The median estimate of the
frequency was within 0.0l for 0,50 and 0,52; 0,55 and 0,57 were each
estimated about 0,02 high.

All of the experiments reviewed above used stationary pro-
cesses to generate the binary events, A few experiments have used a
dynamic generating process., These experiments have all used prediction
as the required task, however, and thus give only indirect evidence on
estimation,

Grant (1953) reports an experiment in which the generating
probability changed periodically as a square wave, The probability
values always differed by 0.50 with higher values: 1.00, 0.90, 0.80,
and 0,70, The period was 40 events and two and one-half cycles were
presented, A prediction frequency was calculated by averaging over
five trials and about 40 subjects. This prediction frequency followed
the cyclic change only when the higher probability was 1.00 or 0,90;
reaching 0.95 in 20 trials at 1,00 and 0,70 in 20 trials at 0,90. No
systematic performance changes apparently occured during the two and
one-half cycles,

The subjects were evidently not instructed about the non-
stationarity of the generating process, Such instructions would prob-
ably have an appreciable effect,

Goodnow and. Pettigrew (1955) performed a binary prediction
experiment in which a change from 0.50 - 0,50 to 0 - 1,00 occurred,

They found that the response to such a change was more rapid when the
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subjects had initially experienced a O - 1,00 series prior to the
0,50 - 0,50 series. Again, however, no specific instructions were
given concerning the non-stationarity of the generating process,

In both the Grant and Goodnow experiments there is evidence
that a change in the generating probability of 0,50 will produce an
appropriate change in the prediction frequency if the change is to
an extreme probability, These extreme probabilities (1.00 and 0,90)
evidently represent obvious changes even with no expectancy for change
induced by the instructions,

Flood (1954) discusses the strategy of a subject who may not
be convinced that the probabilities are stationary. No particular
results were obtained in an experiment designed to induce certainty
versus uncertainty in the stationarity of a stationary generating process.

The human ability to give a direct magnitude estimate of a
stationary binary probability is uncertain, Most experimenters have
postulated estimation only as an intervening varisble between the
display and a decision task, Decision behavior was improved in one
experiment by including explicit estimation in the task, Two gquestions
seem appropriate: What role does estimation play in a decision task,
and how well can this estimation be performed. This experiment sheds
light on the second question as well as providing a fairly comprehen-

sive look at the continuous estimation of dynamic probabilities,



IT. THE EXPERIMENT

Task Selection

The task was estimating the mean of a binary distribution as sam-
ples (individual drawings) from that distribution were sequentially dis-
played. This task was selected for two reasons. The binary distribution
is completely described by one parameter, its mean. It is thus easily
understood by people unfamiliar with the mathematical aspects of probabil-
ity. The second reason for a binary presentation was its relevance to the
binary decision and estimation literature discussed in Chapter I. Except
where specifically defined otherwise, the word "probability" will refer to
the current probability of drawing a right sample.

Samples from the binary distributions were presented at a fixed
rate by flashing either the right or left light of the apparatus shown in
Figure 1. Directly beneath the two lights is an illuminated dial indicat-
ing the position of the manual response lever. A continuous response
mechanism was selected as appropriate for the estimation of a continuously
varying stimulus. The display and response mechanisms were designed for
convenient and effective interpretation and control. Details of the appar-
atus are given in Appendix A.

The lever was free to move between stops at O and 100 on the
scale. The lever and associated mechanisms contained enough Coulomb fric-
tion to retain a setting without constant force. Neither springs nor vis-
cous friction was used. The smallest scale division was 2. It was pos-
sible to position the pointer precisely to one half of the least division
corresponding to a probability change of 0.0l. A main scale division
occurred at every fifth small division and was marked: O, 10, 20, ..., 90,

100.
-7-
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Dial, Indicating Lever
Position, 0-100 in
50 Divisions

Tracking Lever

Figure 1. Tracking Console.
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The position of the lever was recorded by two means, Friden punch-
ed paper tape and a Sanborn continuous strip recorder. The paper tape was
punched in a Grey, or Cyclically Permuted binary code using six channels
of an eight channel punch to encode 101 symbols, O through 100. Pilot
studies indicated that the rate of output sampling necessary to recover
the response information was dependent on the flash rate and that a re-
sponse sampling rate equal to the flash rate would be adequate. A sample
was thus taken every two seconds at the slowest presentation rate, 0.5
flashes per second, and every 0.125 seconds at the fastest presentation
rate, 8 flashes per second. The punched tape record was later transferred
to IBM cards on a modified IBM Tape to Card Converter and the data analyzed
on an IBM 709 Data Processing System. The Sanborn records were used to
make qualitative judgements about the response and to select appropriate
criteria for the computer analysis. They also permitted continuous mon-
itoring of the task as it was performed.

The subject and his console were housed in a small isolated
room. The subject wore noise insulating ear muffs. He had a two-way
communication system with the experimenter. A low level white noise was
presented by the earphones during the experimental run. His microphone
was always on, and comments during the experimental run were permitted,,l
When the experimenter spoke to the subject the noise was automatically
switched off,

The task has a strong resemblance to a standard unidimensional

manual tracking task. The main difference is the presentation of the

lFew comments were actually made. Most of these were not printable.



target. Instead of being displayed explicitly as a dot or a line 1t exists
only as a parametric description of the method used to select the flash
sequence. In this experiment the generating process was time-variant and
the target could be defined as the mean of the distribution from which the
last flash was drawn. It is impossible to recover the precise target from
the information available to the subjects. The cursor, or 0-100 dial
pointer in this case, is pointed at an estimated value of the target. The
system is essentially open loop since the lack of an explicit target pro-
hibits the formation of an error signal. The dynamics are almost entirely
in the mental computation and there was no indication that motor skill was
a limiting factor.

The use of a tracking lever as a response means is unique in
resegrch on probability estimation. It is appropriate to the task and per-
mits an easy understanding of the response scale by the subjects. Both
end points are well fixed in the same sense that events which are impossible
and certain are fixed in value on a personal or subjective probability
scale. The 50 point on the scale might also be considered as an anchor
point in the sense that all subjects clearly understood that 50 per cent

meant equally frequent flashes.

Input Selection

The input probability changed in a series of discrete steps. This
input form permitted visual, qualitative interpretations to be made from
the data as well as the more extensive analysis done by the computer. It
also permitted static as well as dynamic measurements to be made. The

step change sizes and their directions as well as the number of flashes
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between steps were selected randomly from a finite set of values. The
mechanism for the generation of the sequences is described in detail in
Appendix B. The sequence of steps so generated is called a problem.
Preliminary investigations revealed that step changes ranging
from 0.06 to 0.64 in eight values would adequately cover the interesting
range of probability changea2 The number of flashes between step changes
was selected from a set ranging from 34 to 89 flashes. Thirty-four flashes
was considered the smallest number required to minimize interaction between
successive step changes. The range between 34 and 89 was considered suf-
ficient to prevent any performance improvement due to the learning of
inter-step length. A step change and the flashes up to the next change is

called a sub-problem,

Flash Series Generation

The flashes were drawn from finite populations without replace-
ments. The population size was an experimental variable and is discussed
below. Finite populations were selected to fix the average value of the
flashes for each sub-problem. The effects of finite population sampling

on variances are shown in Appendix C.

Experimental Variables

Five independent variables were used in the experiment: the
rate at which the flashes were presented, the magnitude and sign of the
step change, the probability that the step changed to, a constraint on the
randomness of the flash series, and subjects. The number of flashes be-

tween step changes was not studied as a variable. The values of these

I pilot experiment with a simplified apparatus was run before the main
console was built in order to establish the general form of the response
and reasonable ranges for the independent variables. It is discussed in
more detail in Chapter III.
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variables were as follows:

Rate; 0.5, 1.0, 2.0, 4.0, and 8.0 flashes per second, (fps)

Step size; 0.06, 0.12, 0.16, 0.18, 0.24, 0.32, 0.48, 0.64; both +

and -

Probability; 0.02, 0.08, 0.14, 0.18, 0.26, 0.32, 0.34k, 0.4k, 0.50,

and the complementary values between 0.50 and 1.00.
The step changes and probability values were arranged in two problem types
as described in detail in Appendix B. For one type, the small step prob-
lems, the mean step change is approximately 0.15; for the other, the large
step problems, the mean step change is approximately 0.40. Both types con-
tain the entire range of probabilities and are symmetric about 0.50.

The constraint variable had two values leading to the random and
the constrained problem types. The random problems were generated from
finite populations which were the length of the respective sub-problems
being generated. These finite populations were thus of size 35 through
89 flashes. It was felt that these sizes would be large enough to yield
experimental results fairly close to those which would result from infinite
pepulations.

The constrained problems were generated from finite populations
of 17 flashes. The lengths of the sub-problems were arranged in whole
number multiples of 17: 34, 51, 78, and 85 flashes. It was assumed that
this constraint would be sufficient to indicate those aspects of perform-
ance that constraint would affect. It is not a severe enough constraint
to be readily perceived from inspection of the flash series, however. The
same series of steps and probabilities were used in the random and in the

constrained problems.
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Each of the four subjects performed the task in 15 sessions.

Each session consisted of two or three problems separated by a short rest
period. EHEach session lasted for about an hour. Each subject saw the same
series of problems in the same order.

Rates, small and large step problems, subjects, and constraints
were exhaustively combined. The order of presentation was chosen at ran-
dom under the constraint that the tracking sessions were of about the same
length. Appendix D gives the sequence used. The pilot experiment had in-
dicated that about 25 minutes at two flashes per second was the maximum
time that a subject could be expected to track without a significant decre-
ment in his performance. The problems presented at 0.5 and 1.0 flashes
per second were given in four and two separate sessions respectively in
order to limit all sessions to a maximum of 25 minutes of continuous track-
ing.

Task Instructions

Careful attention was paid to the instruction of the subjects
prior to the recorded experimental sessions. This effort was repaid with
an excellent consistency in the tracking behavior of the eight subjects,
four in the pilot and four in the main experiment. The standard instructions
used are shown in Appendix E. These served only as the initial, formal
introduction, however. Actually about 10 minutes was spent discussing the
task to be performed and the purpose of the experiment. Instruction was
concluded when the experimenter was satisfied that all important concepts
were understood.

A 45 minute practice session was used preceding the 15 hours of

data recording. During this session the response was continuously monitored
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and the subject was assured of the quality of his performance. The lack
of error feedback made it difficult for the subJject to evaluate his own
performance until he had some experience with the task.

The instructions were as complete as the subject seemed to need
in all but one important area. He was told nothing about the dynamics of
the input sequence aside from the fact that there would be changes in the
probability. He was told to expect both rapid and slow changes. He was
instructed that the pay he would receive would be a constant rate per min-
ute of tracking minus the accumulated squared error during the same inter-
val. The amount was computed automatically on an analog computer operat-
ing during the tracking session. The circuit used for the pay scheme is

shown in Appendix F.



III. EXPERIMENTAL RESULTS

The Pilot Experiment

A pilot experiment was run prior to the main experiment in an
attempt to answer three questions. The first concerned the general form
and quality of the response. The responses found were qualitatively sim-
i1lar to the response in Figure 2. Both the response to change and the
estimation of probability were better than expected. The second question
answered by the pilot experiment concerned changes in response with con-
tinued performance of the task, reflecting learning or fatigue. The iden-
tical problems were presented to the four subjects in each of six sessions
about two days apart. There was no indication of a significant change in
performance after the first session. To test for specific problem learning
the problem which had been presented for six sessions was presented again
only backwards. No decrement in performance was observed on this reversed
problem. It was concluded that no specific problem learning had occurred.
None of the subJjects recognized that the problem had been the same in each
of the six sessions nor were they able to describe the changes which had
occurred in the probabilities. Tracking sessions up to 15 minutes caused
no particular fatigue or boredom and it was concluded that sessions of 25
minutes would be permissible on the more isolated, impressive, and com-
fortable console used in the main experiment. The third question answered
by the pilot experiment concerned the kind and amount of instruction needed
to bring the subjects up to a reasonably consistent level of performance.
The instructional method described in Chapter II was the result. The sub-

Jects in the main experiment performed consistently after the instruction

-15-
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and practice. Appendix G presents two interesting exceptions. The impor-
tant task learning evidently occurs during the first few minutes of per-

formance and the 45 minute practice session was sufficient.

Response Measures

The response measures were chosen after study of the Sanborn
records from the main experiment. The form of these responses was the
same as in the pilot experiment and shown in Figure 2. The response was
characterized by fairly rapid changes separated by periods of little or no
change. This discontinuous form indicates that the behavior might be
described in terms of a series of decisions concerning changes in the prob-
ability. A descriptive model with this characteristic 1s developed in
Chapter IV. Several of the response measures were chosen to fit this re-
sponse form. All of the response measures refer to individual sub-problems.
The following measures were calculated:

1. DETECTION, D: The number of samples from the step change to
the point where the response has changed 0.05 in the direction of the new
probability from its value at the point of the step change. If Ry is the
response at point n in a sub-problem which starts at n = 1, the point
of detection is where Rn = RO + 0,05, the plus sign for an increasing step
and the minus for a decreasing step.

2. NO DETECTION, D: The number of sub-problems in which detec-
tion did not occur; R, never changed 0.05 in the direction of the new
probability.

3, CONVERGENCE, C: The number of samples from the step change

to the point where the response is within 0.05 of the new probability.
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The point of convergence is where Rn = P + 0.05 where P is the probability
following the step change. The point of convergence is the first entry into
this region from either side.

L. NO CONVERGENCE, C: The number of sub-problems in which con-
vergence did not occur; R, was always outside the 0.05 region about P.

5. INITIAL CONVERGENCE, IC: The number of sub-problems in which
the response was within the convergence region about the new probability

at the point of the step change. P -~ 0.05 £ RO Sp+ 0.05

6. ROOT MEAN SQUARE ERRCR, RMSE: The square root of the mean
squared error over the entire sub-problem. Error equals the response minus
the probability. The response was measured on a O to 1 scale correspond-
ing to the probability measure and the error can thus be considered to be

an error in probability. For a sub-problem of length M; RMSE =

n=M 5 %
py }:: (R, - P)
M n=1

. ROOT MEAN SQUARE ERROR AFTER C, RMSE,C: The square root of

the mean squared error from the point of convergence to the end of the sub-

~ 1
n=M 5
problem., RMSE,C = |._—_ ‘ (R - P)

1 n This measure and the follow-
M-C p=C+1

ing two were only made when either convergence or initial convergence was

measured.
8. MEAN ERROR AFTER C, ME,C: The mean error from the point of
n=M
convergence to the end of the sub-problem. ME,C = 2 g (Rn - P)
M-C n=C+1

9. FALSE ALARM RATE, FAR: The number of times per sample that

the response left the 0.05 convergence region between the point of convergence



-19-

and the end of the sub-problem. If P - 0.05 2 Rn-l S P+ 0.05 and R< P
- 0.05 or Ry > P +0.05 then the point n would be a false alarm point.

Detection and convergence were measures designed to describe
the discontinuous response form. The 0.05 criterion used in these meas-
ures was selected after an extensive study of the data. A sudden response
to the new probability occured shortly following a step change in about 80
percent of the sub-problems. This movement was interpreted to be the result
of the perception of the change in the probability. The 0.05 detection
criterion was selected as measuring this point with fair consistency. For
step changes greater than about 0.15 this measure is relatively insensitive
to the choice of the 0.05 criterion since the sudden response was character-
istically 0.10 or greater.

Convergence i1s more dependent on the selection of 0.05 as a cri-
terion. The point of convergence was most useful, however, in determining
the beginning of measures 7, 8, and 9. These measures were all averaged
over flashes and the location of the convergence point did not affect their
values. Detection and convergence, as measured with the 0.05 criterion,
are not particularly informative for the smallest step change, 0.06.

Measures 7, 8, and 9, the three starting at the point of con-
vergence, indicate the subjects' static estimation ability. The subject
1s operating under what might be called a dynamic set, however. He has an
expectancy for changes in the probability. Changes in his responses dur-
ing this period could be called "microstructure" tracking since the subject
was not aware that the probability was constant. No measures were made of

the persistence of this microstructure tracking on the longer sub-problems.
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This behavior might begin to diminish with long presentations of a constant
probability.

RMSE was the only measure made on all sub-problems regardless of
their response form. It indicates the overall quality of performance.
RMSE is a common measure in continuous tasks of this kind largely because

it is easily derived and manipulated in mathematical expressions.

Date Analysis

There was one sub-problem for each rate, step size, step direc-
tion, probability, constraint, and subject, 3440 in all. The combinations
of variables presented here was judged to be the most informative set from
among the total available from the computer analysis. These quantitative
performance measures were the intended output of this experiment and since
no testable hypothesis were generated no tests of statistical significance

were made.

Experimental Data

Differences Between Subjects. No qualitative differences existed among

the four subjects used in the main experiment. The four subjects in the
pilot experiment behaved similarly. Inspection of the data indicated that
for general performance information it would be best to average the data

over subjects. Appendix H presents some of the subject-by-subject data.

Detection, D. Figures 3 through 6 show the effects of the independent

variables on detection. The data on step direction showed no appreciable
difference between positive and negative directions and they are averaged

together in all figures. The interaction of step size and rate shown in
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Figure 3 was the most interesting relation found. Detection decreases
fairly linearly with step size and increases falrly linearly with the log-
arithm of rate.

The linear increase in detection with the logarithm of the rate
probably reflects a combination of factors influencing the response. A
small linear increase with rate would be caused by a constant reaction
and movement time. For the usual tracking tasks this might be expected
to be on the order of 0.5 seconds yielding a lag of 2 flashes at L fps
and 4 flashes at 8 fps. The more important factor is probably a change
in the method of performing the task as rate changes. At rates of 0.5
and 1 fps the subjects reported counting the flashes at times, occasion-
ally counting the number of flashes of the lower frequency and comparing
this to an estimate of the total number of flashes. They did not use
any procedure of this sort consistently, however; at least not one appar-
ent to them. They all reported that the rate of 2 fps was the most dif-
ficult. Evidently the methods which they had used effectively at 0.5
and 1 fps became difficult if not impossible at 2 fps. Beginning at L
fps it is clearly impossible to respond to separate flashes and the series
is probably perceived in groups of flashes. The task becomes similar to
a continuous tracking task at these rates. Reese (1945) postulated a
change in the mechanism of counting light flashes at about L flashes per
second.

Figure 3 shows an effect due to the presentation of the step
changes in two separate series, the small and the large step problems.

There is a region of overlap in step size between these two problems.
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The smallest change in the large step problem is 0.16 and the largest in
the small step problem is 0.24. In this overlapping region the small step
problem yields detections of from one to six flashes higher than the large
step problem at all rates. The subjects were evidently modifying their
tracking method according to the type of problem being presented. The
large and small step problems were ordered randomly, of course, and the
sub jects had no prior indication that there were two problem types. This
change is perhaps not surprising considering the difference between the
two problem types. The average step changes were 0.15 in the small step
problem and 0.40 in the large step problem. Step changes of about 0.30 and
larger are readily noticed.

The subjects appear to have made larger, more decisive, response
changes on the large step problem than on the small step problem. This
change to a more responsive behavior is appropriate in quickly reducing the
large errors following the larger step changes.

"No detection" as a percentage of the total sub-problems is
shown in Figure 4 as a function of step size and rate. About 90 percent
of the "no detections" occurred with the combination of rate above 4 fps
and step size below 0.15. Some of the "no detections" were probably caused
by occasional lapses of attention. At 4 fps a 42 flash sub-problem is over
in 11 seconds. In 25 minutes of continuous tracking a few 11 second lapses
are certainly reasonable.

The effect of probability on detection is shown in Figure 5. Per-
haps the most interesting finding is that detection is not appreciably small-

er for the extreme probabilities. In Chapter IV it will be seen that
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responses generated by simple running averages produce detections which are
similarly independent of probability.,

The variability among & set of detections of a particular step
size and rate will depend on the probebility, however. Detections of
central probaebilities, those near 0,5, will have more variability than
detections of extreme probabillities, those nearer O or 1.

The effect of the flash generation constraint on detection is
shown in Figures 5 and 6. Constraint has no particular effect on average
detection. As in the case of probability, however, constraint will effect
the variability of a set of detections. The constrained problems will

yield less variable detections.

Convergence, C. Figures 7 through 11 show the effects of the independent

variables on convergence. The interesting effects are again with step
size and rate. The effect of rate on convergence is similar to its effect
on detection; a linear increase in convergence with the logarithm of rate.
The effect of increasing step size is to increase convergence, although the
increase is small. The number of flashes between detection and convergence
increases as step size increases. This probably reflects the size of the
response more than any other factor. The majority of sub-problems show a
response successively approaching the new probability rather than one that
overshoots.

Convergence shows a similar difference to that noted in detection
between the small and the large step problem in the region of overlapping

step size.
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"No convergence,"

expressed as a percentage of sub-problems, is
shown in Figure 8. "No convergence" remains relatively insensitive to changes
in step size except for the largest step, 0.64, where it is zero. It is
approximately 10 per cent for the large step problem and 12.5 per cent for

the small step problem. "No convergence" rises sharply with increasing

rate, reaching about 28 per cent at 8 fps. This is consistent with the

data which show convergence equal to 35 flashes at 8 fps; about the length

of the shortest sub-problem.

"Initial convergence" has a high of 35 per cent for a step change
of 0.06 and goes to zero for steps of 0.48 and 0.64. It increases slightly
dwith rate from sbout 8 to 12 per cent.

The relationship between probability and convergence is shown
in Figure 10. Convergence is relatively insensitive to probability as was
detection.,

The effects of constraint on the sample generation are shown in

Figures 10 and 11. Again, as with detection, there is little if any effect.

Root Mean Square Error, RMSE. This measure was introduced to provide a

single, overall indicator of the task performance. The most informative
variation of RMSE is with rate as shown in Figure 12. RSME increases lin-
early with rafe from 1 to 8 fps. It is interesting to evaluate this per-
formance measure on a time basis as 1t might be in a situation where it

was desirable to perform the estimation in the shortest time possible.

RSME divided by fps yields values of error-seconds per flash which decrease
as rate increases, going from 0.134% at 1 fps to 0.022 at 8 fps. This de-

crease might well continue with even higher rates as the task becomes the
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tracking of the relative brightness of the lights. Either the limitations
on the judgment of relative brightness or simple reaction time would fin-
ally limit the performance. This performance index must be viewed with
caution. The error itself has a meaningful upper bound at the level where
the lever is left stationary or is moved in some manner independent of the
flashes. As this error level is approached further increases in rate would
continue to decrease the index of error-seconds per flash but the index
would have little meaning.

The following three measures were made from the point of conver-
gence to the end of the sub-problem or from the beginning of the sub-problem
if "initial convergence" occurred. They are therefore measures made on an
average of 85 to 90 per cent of all of the sub-problems and on about 95
per cent of those sub-problems with step changes above 0.15 at rates below

L fps.

Mean Error After Convergence, ME, C. The mean error is shown as a function

of probability in Figure 13. The average estimate is essentially unbiased
at all probabilities. The largest error i1s smaller than the least scale
division on the subJject's response indicator (0002)5 Mean error was not
significantly affected by rate, constraint, step size, or subjects.

This finding contradicts a body of conjecture based in part on
the results of static estimation and choice experiments. Neither the
overestimation of high nor the underestimation of low probabilities appears.
The two distinctive features of this task were the dynamic estimation and
the tracking lever as a response mechanism. The excellence in static es-

timation was undoubtedly due at least in part to these two features.
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Root Mean Square Error After Convergence, RSME, C. RMSE, C is shown in
Figures 14 through 16. The only independent variable not affecting RMSE, C
is step size. This indicates that the period after the point of convergence
is not affected by step size. The constraint on the generation of the flashes
reduced the RMSE, C by about 0.014 and does not appear to interact with
eifher step size or rate. RMSE, C decreases with increasing rate from 0.5
to 2 fps and thereafter remains relatively constant.5 Considered together
with the data indicating smaller detection values at the lower rates it is
high probable that the number of decisions concerning changes in the prob-
ability on a per flash basis, is highest at the lowest rate. Thus the
additional decision time available at the lower rates permitted smaller
detection values but resulted in larger RMSE, C when the probability was
constant.

The effect of probability on the RMSE, C is shown in Figure 16.
The "random" problems are consistently higher than the "constrained" prob-
lems at all probabilities. The N = 17.3 line is the RMS error, or standard
deviation, of a 17.3 flash average. The subject's response is about this

good or better at all probabilities.

False Alarm Rate, FAR. The number of false alarms per flash is shown in

Figures 17 through 19. Its behavior is similar to RMSE, C. It is similarly
insensitive to the size of the step change. Increasing rate causes a de-
crease in FAR up to 4 fps with an apparent leveling off above 4 fps. These

data lend additional support to the hypothesis concerning an increase in

JInter-subject variation was high for U4 and 8 fps. See Figure 27,
Appendix H.
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number of decisions per flash at the lower rates. False alarms can be
considered as indicating decisive changes in the estimate.

FAR remains constant over the entire probability range with the
exception of the extreme values: 0.02 and 0.98. These probabilities
were usually estimated as O or 1 with an excursion away from O or 1 only
following an occurrence of the infrequent flash. Since FAR did not change
with probability it appears that the rate of "decisive" movements (greater
than 0.05 from the probability) remained constant for all probabilities.
The reduction in RMSE, C as the probability tends to extreme values there-
fore indicates that the time spent at these "erroneous" estimates decreased
with extreme probabilities. This hypothesis is supported by observations
made during the tracking sessions. The lever movements appeared larger
although less frequent at the more extreme probabilities. The increase in
magnitude evidently compensated for the decrease in frequency to maintain
the FAR at a constant level.

The constrained series produced a slightly higher false alarm
rate than the random series. The constrained series has a greater num-
ber of runs of right or left flashes and would be expected to yield a
higher decision rate. All of the FAR data will be dependent on the f;lse
alarm criterion level. A larger criterion could well reverse the constraint
finding, for example, since the random series probably produces larger

decision movements than the constrained series.

Summary of Results

The response to a step change in probability can be described in

three regions: The period before any response to the change, before the
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point of detection; the period before the convergence on a new estimate;
and the period from the convergence point to the end of the sub-problem.
These regions were defined mathematically as functions of probability
response form, and somewhat arbitrary constants in order to achieve a com
plete description of the response.

Detection increases with increasing rate and decreases with in-
creasing step size. The range was from 4 to 24 flashes for a rate range
of 0.5 to 8 flashes per second and a step size range of 0.06 to 0.64.
Detection was approximately nine flashes for a step of 0.22 at 1 fps.

Convergence increases with both rate and step size. The range
was from 11 to 35 flashes for the same step and rate ranges stated above.
Convergence was approximately 15 flashes for a step of 0.32 at 1 fps.

Both detection and convergence were independent of the constraint
imposed on the generation of the flash series. Both were independent of
probability.

After the point of convergence the average estimate was un-
biased at all probabilities. This unbiased estimate had an RMS error, or
standard deviation, of about 0.08.,

The overall task performance was measured by the RMS error over
the whole sub-problem. RMSE increased linearly with rate from 0.135 at 1

fps to 0.180 at 8 fps.



IV. MATHEMATICAL MODELS

Three mathematical models will be derived in this chapter.
Two of these will be called normative in that the purpose for their
derivation is to provide standards by which to compare the data pre-
sented in Chapter III. The third is a descriptive model designed to
simulate the human performance.

The normative models are somewhat arbitrary in their form.
They are optimized within this form, however, to provide a best RMS
error fit to the various inputs used in the probability tracking task.
One form selected is a constant weighted average over a finite number
of past flashes. The simplicity of this model makes it ideal for in-
tuitive comparisons with the subjects' performance. The number of
flashes in the running average is selected to give the best fit. The
other model has geometrically decreasing weight for flashes extending
into the past. This model is more appealing from the standpoint of
response to the step inputs. It also corresponds to assumptions often
made concerning the human immediate memory function. The best fit is
found by selecting the appropriate geometric ratio.

More sophisticated linear, and certainly some non-linear,
models would undoubtedly perform this task with a lower RMS error than
the two models selected. The value of more complex models for providing
simple standards is marginal, however,

The descriptive model was derived from thoughts on how the
task was performed by the subjects. Its form arises from the qualita-

tive aspects of the data and from observations of the subjects' behavior.

_39_
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It has four parameters which are adjusted to yield a minimum RMS error
fit to a subject's response.

The normative models to be considered have the form
i=N
r(n) = X wy sp_iq] (4.1)

i=l
where r(n) is the models response or output at the point n in the
sample series and wi 1is a weight attached to the sample s,.i41. The
response at n is thus the weighted average of the sample at n and
its N-1 1immediate predecessors. This is an averaging or smoothing
model intuitively appropriate to this task. It is limited to samples
at and prior to the response point, considering only a finite number of
these, and is therefore physically realizable., wj 1is not a function of
n and could be described as sample~-invariant.

The random variables s, are drawn from an infinite population
and are independent. They have values O or 1 corresponding respec-
tively to left and right on the subject's display. The probability of a
1 dis P and the probability of a 0O is therefore 1-P.

In the situation where the N samples are all generated from
a static distribution described by the probability P it is desirable

that the estimate be unbiased or that

r(n) = P (h.2)

where r(n) 1is the expected value of r(n), an ensemble average. This

simply requires that

i=N

Z Wi = 1 ()43)
i=1



The responses of the two model forms will be derived for a sub-
problem beginning with n = 1 as the first sample of the new probability
and ending with n = M. The previous probability will be P; and the
sub=problem probability Pgo The step change is therefore P, - Pp.

For NW<n<M the response will be called steady-state since the samples
are all from a static distribution. For 1 <n <N the response will

be called transient.

A Model With Geometric Welghting

The first model to be considered is one having a weighting func-
tion

ari-i (4. k)

=
i

where a and r are constants and O < r < 1, This function assigns
geometrically decreasing weights to the samples. Limiting r to the
range O to 1, exclusive, confines the function to one assigning mo-
notonically decreasing weights to samples receding from n.

The value of N, the number of samples included in one computa-
tion, will be selected as a number large enough to assure the relative

unimportance of the weight at n = N, arli-1

, compared to the weight at
n =1, a, This merely implies that the function's memory extends smoothly
to the point of essentially complete "forgetting". The exact value of N

in any particular model of this form is relatively unimportant to the con-

siderations that follow. It will simply be assumed that

<1 (k.5)

and all quantities of this magnitude will be dropped.
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Of primary interest is the selection of r to produce an
optimum model in the least mean squared error sense. This particular
measure of performance was the same one used as a measure of the sub-
Jject's performance and used in the payoff scheme.

The constant a is selected to satisfy Equation (L.3) which

becomes
i=N .
Y oarll casar+ar? 4 .. +arloa o (4.6)
i=1 1-r
or
a=1l-r, r¥<<1 (b.7)
We will be concerned with two quantities; rin), the expected
value of r(n) at the point n, and o%(n), the variance of r(n) at

the point n. These are ensemble averages.
For the expected value of r we have

1=N
r(n) = E[ ¥ Wi sp-j41] (k.8)

i=1

and since the w; are constant over the ensemble

Tor the step function Input r(n) will depend on P; and Po
during the transient phase and on P, alone during the steady-

state phase.

For 1 <n< N we have

r(n) = (Ll-r)(1-r? P, + (1 - (1-r)(1-r? ] P
l-r l-r

(1-r%) Py + rfpy (4.10)

P, - r(P, - By)



For N<n §_M

r(n) = P, (k.11)

For the variance we have the variance of the sum of the
Wisp-i+1 terms. Since the sp are independent we have the sum of the

variances of the individual terms

cg(n) = agos(n) + agrgcs(n-l) + agrhag(n-2) + oene + agrg(N_l)cé(n-N+l)

(4k.12)

2 2
where og(n) 1is the variance of the sample s,. Since og(n) = P(1-P)
where P 1is the probability with which s, was generated, og(n) will
be a constant for constant P and in particular it will have two values

2
during the transient phase, oi = Pl(l - Pl) and o, = Pg(l - Pg)e

For the transient phase we then have

Gi(n) = (l-r)2 LE:EEEL og + [(l—rfzillﬁégl - (1-r)2 <l'r2n)] o%
(1-r2) (1-r2) (1-r2)
- 8—3 (2 - 2R - 2)), ¥ << (4.13)

and for the steady-state phase

o= (n) = (1-r) OS . (h.1L)

We can now proceed with the formulation of the models perform-
ance in terms of its mean squared error. During the transient phase the

error can be written as

e(n) = r(n) - P,

[7(5) - ) + [F(8) - o(n)] (4.15)
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and the squared error is then

The expected value of the squared error is then

eg(n) = [r(n) - P2]2 + o?(n) (k.17)

since [r(n) - Po] is a constant for a particular n and E[r(n) - r(n)]
is O,

The average value of this mean squared error over the transient
phase of the sub-problem will be <£§;T, representing the average over
the ensemble and also over samples in the sub-problem. We will then have

N N

n
(F(2)-Bo)? + § T oR(n) . (4.18)

- 153 &
<e = == Z e n =
g N3 ( )

=i

n=1

Using Equation (4.10) the first term on the right side of Equation (4.18)

becomes
n=N 5 n=N N 5
LY [r() -l =% T [r (P - B)]
N po1 2 N pn=1 . 2

= , rN <1 (L.19)

Using FEquation (L4.13) the second term on the right side of Equation (L.18)

becomes
n=N n=N ( )
1 5 2 1 1l-r 2 2n¢ 2 2
L “(n) = = (05 - r*%(o5 - 0%)]
Np T N o1 (l+r) 2 2 1
) re (o2 - 09)]
N(l+r) 2 12 2 1 (+.20)
2
- (L-r [02 _ r (02 _ 02)}’ I'N < 1
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The average, mean squared error during the transient phase, <e2>T

is then

-, r2 -7 I'2
_ (A1-P) (1-r) [ 2 m(og - )] . (k.21)

The average, mean squared error during the steady-state phase,

<e®>gq, 1is simply the variance, 02(n , as given by Equation (L.1k
r

<@, = L) 2 (4.22)

The average, mean squared error over the whole sub-problem is

then
<82>SP = ll <le >T + M_-..I\I. <62>SS
M M
(P1-Po)2 2 1- 2
- 1 2) r > " ].E ( I'l [02 _ I = <02 _ G%)]
M l-r M (1+4r) N(1-r=)
M-N (l-r) 2
+ (= o
( M (l+r) °
(P1-Pp)2 12 (1-r) ;2 2 2 2
= + los = as - 01)) . (k.23
M (1-r2)  (Ler) = ° M(l-rz)( 2 - 1) (+.23)

We are interested in the performance of this model over the
same types of problems given to the subjects. The average, mean squared

error over a problem is given by

2
Mi <Pi-l - Pi) re 1-r e
T

]
Mi 1-re L

<62>P =

1=S

i=1
(k.24)

where M; is the length of sub-problem i, T is the total problem

length in samples, and S 1is the total number of sub-problems.
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This expression may be simplified by meking the following
assumptions based on the methods used for generating the problems.
(Appendix B.) The Mj were selected randomly, without replacement,
from a set of equally frequent values and assigned to the sub-problems.
The sum of (oi - c?_l)/Mi therefore approaches zero for long series
of sub-problems. Similarly the term Mi ci/T will approach simply
UE/S, Equation (4.2L4) can therefore be written as
i=S

S
(P P.)2 szl oy 2 (4.25)

j=1 1=l 1 1+ S i=1 =

1‘2 *

1-r2

™M

<62>P =

L=

[}

The large step problem had values of |Pl - Pz‘ of 0.16, 0.32,
0.48, and 0.64 occurring in 12, 10, 8, and 6 sub-problems respectively,

yielding

i=5

2
(Py_1 - Py) =0.00251 .

=1l

i=1

0? had values of 0.250, 0.224, 0.148, and 0.020 occurring in 6, 12, 10,

and 8 sub=-problems respectively, yielding

S

Y o =0.162
im1 1

i

wm|+-

T was 2241 samples and S was 36 sub-problems. The average, mean squared

error over the large step problem is then

2
2 T l-r
<e >LSP = O o 002 51 l—-"-é'_r + O o 162 l_-+r ( )‘I' o 26)

The small step problem had values of |P; - Pp| of 0.06, 0.12,
0.18, and 0.24 occurring in 12, 10, 16, and 12 sub-problems respectively,

yielding

i=S )

Y, (Pi-1 - Pi) = 0.000465 .
i=1

Hl=
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0% had values of 0.250, 0.246, 0.217, 0.192, 0.120, and 0.085 occurring

in 6, 10, 12, 10, 6, and 6 sub-problems respectively, yielding

T was 3000 samples and S was 50 sub=-problems. The average, mean

squared error over the small step problem is then

— o
<> = 0.000465 _FZ_ 4+ 0.104 17T L.2
S5P 7 1a2 e (h.21)

It will be of interest for comparative purposes to evaluate
this model for the case in which only one value of r 1s used for both
the large and small step problems. This model will be called non-
discriminating in Chapter V. In this case the sums in Equation (k.25)
are over both problem types with T being equal to 524l samples and S

being 86 sub-problems. We have

i=8 5
L ¥ (P, ; -P;)" =0.,0013k
T i=1 ( i=-1 1>
and
i=8 5
]_' Z Gi = 0.181
S i=1

The average, mean squared error over the large plus the small step

problems, is then

. 2 l-r
<e2>, _ = 0.00134 =~ + 0,181 == .28
S+L 3 1-12 1+r ( )

We are interested in the selection of an optimum value of r

for these three problem types. Equation (L4.25) can be written as

2 re 1-r
<e>P=kl--_IE+VE-_I’- (4-29)
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where k and v are the constants for the specific problem type. The

minimum of this function over r can then be found by setting

d <e®>p _ 2vr® + (2k + Wv)r - 2v

=0 (4.30)
dr (1 - re)2
which yields two roots
2 1/2
k k
r)p =2 + 2V * [( + EV) - 1] (4.31)
2V 2V

The minus sign yields a value of r betwgen O and 1 and is also the
minimum,

For the large step problem Equation (4.31) gives an optimum
r = 0.883. Using this value of r in Equation (4.26) we have a corre-
sponding minimum mean squared error or 0.0190.

For the small step problem Equation (4.31) gives an optimum
r = 0.953. Using this value of r in Equation (4.27) we have a corre-
sponding minimum mean squared error of 0.00931.

For the large plus small step problems Equation (4.31) gives
an optimum r = 0.915. Using this value of r in Equation (4.28) we

have a corresponding minimum mean squared error of 0.01L47.

A Model with Constant Weighting

The second model to be considered is a model giving a constant
weight to each of N samples, a simple averaging model. The derivation
of the response and errors for this model will parallel that for the
geometric model and some of the detailed explanations will be omitted.

The weighting function is

w; = 1/N (k.32)
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where N 1s the number of samples in the average and the weight is
1/N to satisfy Equation (4.3).

In this case the transient response will be

Pl = Pl + P—————2 1;_ Pl n ()‘4'-33)

o) =P . (4.34)

The variance of r(n) during the transient phase will be the

variance of the sum of N terms each with weight l/N

2 _N-n 2 1n 2
or(n) "B of + =0y
_ 1l 7.2 ny¢2 _ 2
=5 [0 + T (oF - 07)] . (L4.35)

The variance of r(n) during the steady-state phase will simply be

2
2a) - 2 (k.36)

Following the same procedures and arguments developed in the

derivation of Equations (L4.15) through (4.19) we have

n=N n=N _
LY (f(m) -2,0% =L % [+ 2-TLn-p)°
N n=1 N n=1 N
n=
(P2 - Pl) 5 (_11 _ 1)2
N n=l N
2 /1 1 1
= - 1_1 L,
(P, - Pp) (3 N + gﬁg) (4.37)
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and analogous to Equation (4.20) we have

1’1=N n=
1Y ¢°(n) =1 ¥ [0° + 18 (¢° - ¢9))
F o %) ol O+ g (o - o))
=12 M2 2
== o] + P (02 cl) . (L.38)

The average, mean squared error during the transient phase is then

5 2,1 1 1 1 2, Ml (2 2
<e®>p = (P - P)? (R L4 1) - (839
T 2 . 3 2N 6N oo ( ) )

The average, mean squared error during the steady-state phase is the vari-

ance given by Equation (4.36).

-
g = E (L.ko)

The average, mean squared error over the whole sub-problem is then

<e2>SP = % <e2>T + Mﬁﬁ <e2>gs
2
2
N 101 1 1-N , 2 2y o
== (P - P — - — + + — (05 - + == Lok
i (P1 - o) S-mta tam (2D g (b 40)

As with the geometric weighted model we are interested in the
performance of this model over the problems given to the subjects. The

average, mean squared error over a problem is given by

. P ey -P)P N 1 1, 1N L. s . o
i i-1 - P4 - i
< = = - - T+ = = - g% —=
er=Lr i G-zra@ *ams - i)yl
(k.k2)
With the same arguments leading to Equation (4.25) we have
JE— l=S 1=S
2ep M _L_ L1 S p)2 . 2



These sums are the same as those calculated for the geometric weighted

model, For the large step problem we have

<e?>1ap = 0.00251 (N - L1y 10,160 L b b

e=>1,5p 5(3 2+6N)+ T (4. 4L)
For the small step problem

<2 = 0. N_1l,1 ) L

e®ggp = 0.000465 (3 = 5+ zo) + 0.19k & (k. 45)

And for the large plus small step problems

2 _ N
<e“>p .o = 0,0013L (§ - =+

) +0.181 % (L. b6)

|+
O\II—'
=

The minima can again be selected by letting k and v Dbe the constants

for the particular problem type.

sy ok (W o1, 1y, ¥ e
e=>p (3 2+6N>+N (4. 47)
and solving
2.
TP _k_k vV _ (4. 48)
an 3 6N2 N2
yielding
W [k, YR (. 19)
=[5+ 7 .

For the large step problem Equation (L.49) gives an optimum
N = 14,1, Using this value of N 1in Equation (k4.44) we have a corre-
sponding minimum, mean squared error of 0.0220.

For the small step problem Equation (4.49) gives an optimum
N = 35.3. Using this value of N 1in Equation (4.45) we have a corre-

sponding minimum, mean squared error of 0,.0107.



For the large plus small step problems Equation (4,49) gives an
optimum N = 20.1. Using this value of N in Equation (L.L46) we have

a corresponding minimum, mean squared error or 0.0172.

A Descriptive Model

Upon inspection of the subjects' response data it is evident
that the estimation task was not performed in the smooth manner of the
two normative models. The responses were characterized by rapid adjust-
ments separated by periods of little or no movement. This evidence,
together with thoughts on how this task might be performed, led to the
postulation of the following model as an attempt to describe the human
performance,

This model operates in the following manner: The subject main-
tains a short, running average of the previous k3 flashes. This average
is of exactly the same type as the second normative model discussed above.
At each flash this average is compared with the existing setting of the
response lever and the difference noted. If this distance measure is
greater than a prescribed criterion level, the response i1s changed to a
new value at some point intermediate between the old response and the
running average. If the difference is less than the criterion level,
the response remains unchanged.

This model has several features making it attractive from a
descriptive standpoint. It uses the lever as a memory device, moving it
only a fraction of the distance to the new average and thus preserving
some of the information in the previous setting. This memory function

permits a smaller number of flash in the running average than would



otherwise be required to produce the levels of mean squared error meas-
ured from the subject's responses. The criterion level corresponds to
the concept of the subjects' smallest perceptable difference between the
running average and the lever position. It permits the response to re-
main stationary through periods of small deviation of the running average
from the response.

This model's operation can be thought of as a form of hypothesis
testing. At each flash it is testing the hypothesis that the running
average is from a population described by the response lever setting,
using the criterion level as a form of significance measure. The subject's
performance is thus viewed as a succession of decision making situatilons.,
This framework is appropriate with the inclusion of more higher mental
processes than are in the usual manual tracking task.

This model can be described mathematically as follows:

1 i=k3
u(n) = K 121 Sp-i+l (4.50)

where u(n) is the running average of k3 flashes, sp. With r(n)

as the current lever setting if

|r(n) - u(n)| <k (k.51)
where kq 1s the criterion band, then

r(n+l) = r(n) . (4.52)
If, however,

|r(n) - u(n), > ky (4.53)
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then

r(n+l) = r(n) + ko [u(n) - r(n)] (4.54)

where k2 is the fractional lever adjustment.

A fourth parameter, k), was also considered, representing a
time (flash) shift between the subject's and the model's responses. The
subject's response at n was compared to the model's at n - k.

The four parameters are constrained to the following ranges:
0 <k <1 (4.55)

where O yilelds adjustment decisions at each sample and 1 would yield

no adJjustment decisions.,
0<k <1 (4.56)

where O yields no response changes and 1 represents simply the follow-

ing of the running average whenever an adjustment decision is made:

1 <k3<XK, k3 an integer (4.57)

where K 1s some reasonable maximum number of flashes that the subject
could be expected to assimilate in one averaging calculation. No definite
values for K are known for this task. It 1s certainly reasonable to
assume that the flashes are not simply remembered as a succession of
binary symbols but are encoded into a larger symbol set, perhaps one de-
pending on the lengths of runs of one of the binary symbols. Considering
the nature of the task and its difficulty it would seem unreasonable that
more than 20 flashes could be used in an averaging calculation and that

a value closer to 10 would be more appropriate.
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There are no particular constraints on k) except that
ky <0 implies subject prediction with respect to the model.

Having thus chosen the model form the task is now to select
parameter sets (kl, kp, k3, ku) which will make the model best de-
scribe the human performance. The criterion used for this selection
was the minimization of the mean squared error between the subject's
and the model's responses over particular problems. This measure was
selected as providing the best single measure of performance, as was
discussed in Chapter II. The selection of the minimum mean squared
error for the criterion assures a fairly close fit to the transient
portion of the response where the error is large, at the possible ex-
pense of fit to the steady~-state portion.

The actual minimization process was carried out as follows.
The model was programmed on an IBM 709 computer. The computer was then
fed four of the input problems used in the experiment plus the responses
of one of the four subjects to these problems. At each sample point
the squared difference between the subject's and the model's responses
was calculated and accumulated. These values were simply printed out
at the end of each particular problem-parameter set combination. The
large number of parameter sets possible and the possibility of numerous
minima precluded the possibility of an automatic searching technique for
the minima. Several computer runs were made in which previously se-
lected parameter ranges were either extended or filled in according to
the results of the previous run. The total variation of the parameters

was through the following ranges.
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0,02 < ky <0.20 (6 values)
0.10 <k, <0.90 (7 values)
1 S_k3 < 28 (12 values)

-2 <k, < L (6 values)

The four problems investigated were the large and small step problems,
random constraint, at 1 and 4 fps. The subject was S-2.

Several parameter sets with approximately equal minimum error
measures were found for each problem type. In each case these minima
represented either a valley in the error function or fairly distinct
minima separated by regions of higher error. Table I shows the various

2
<eMS>P° In

parameter sets and their corresponding minimum errors,
each group of parameter sets various trade offs can be seen among the
parameters yielding the approximately equal error measures.

The following method was devised as a means for selecting the
best descriptive model from among these parameter sets with approximately
equal <e2 >

4 MS~P*

The subject's error, eg(n), can be written as

eg(n) = ey(n) + eyg(n) (4.98)

where ey(n) is the model's error and eyg(n) is the error between the

subject and the model. Squaring this error we have

eg(n) = eﬁ(n) + eﬁs(n) + 2¢ey(n) eyg(n) . (4.59)

The average value of this squared error over a particular problem is then

p) 2 2 "
g”p = <epp + Cyg”p + <CeMeNSP (4.60)
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The minimization process used to select the parameter sets was concerned
with finding minimum values of <e§s>. The computer also calculated
values for <e§>P, the model's error. <e§>P was, of course, one of the
measures made on the subject's performance. The term <2eMeMS>P can
therefore be calculated from Equation (L4.60).

These error terms can be interpreted in the following manner.
Consider the subject's error at any point in the sample sequence to be
composed of two components; one dependent in some manner on the actual
input samples and the remainder on other phenomena not related to the in-
put. The first part of this error might be termed coherent and the re-
mainder noise. Consider now a descriptive model and its relationship to
these two error measures. If it performs the task in exactly the same
manner as the subjects, it will have an error, <eﬁ>P, which is equal
to the subject's coherent, or sample dependent, error and the error be-
tween this model and the subject, <eﬁS>P would be equal to the subject's
noise or sample independent error. The subjects' noise can be considered
to be random fluctuations in the response about the coherent value. Since
<ey>p approaches zero over a large set of sub-problems then <eMeMS>P
will also approach zero.

If, on the other hand, the model does not represent the entire
coherent part of the subject's response, that is if it is not a complete
descriptor of the subject's coherent behavior, then eMS(n) will be
partially dependent on the sample series and therefore correlated with
eM(n)o In this case the term <2eMeMS>P will not approach zero. This

correlation can therefore be used as an additional selection device. It
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can be written in the normalized form

<eye
o = MUSTP (.61)

(<e1\2,[>P <eﬁS>P)l/2

Table I shows the wvalues of <e§>P, Leyeysps and  p.

The normalized correlation, p, provides a measure giving good
discrimination among the parameter sets for the large step problems.

For the large step problem at 1 fps parameter set 2 has a value of p
which is essentially zero. At 4 fps parameter set 4 has a very low
value for op. Neither of the small step problems, however, produce a
correlation which discriminates among the parameter sets or which is as
small as that found for the large step problem. It would appear on the
basis of this evidence that the postulated descriptive model better rep-
resents the subject's performance on the large than on the small step
problems,

Zero correlation, as defined by Equation (4.61), does not
necessarily imply a complete lack of dependence of eyg(n) on the sample
series., Two hypotheses could be used to explain the fairly large <e§S>P
which remained even for p= O, One would simply be that this level of
noise did exist in the subjects' performance. The other would be that
this "noise" component had at least some portion which was related to the
sample series but which was uncorrelated with eM(n). Perhaps one reason
for a fairly large noise component would be variations in the subjects'

method of performing the task during the problem run,
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A Normative Variation

The descriptive model discussed above was constructed as an
approximation to the human performance on this task. It is interest-
ing, however, to see how well this model form can do if the parameters
are selected to give a minimum <e§>P : to be normative in the same
sense as the models with geometric and constant weighting. Normative
parameter sets for the large and small step problems were found using
the computer to calculate <eﬁ>P and converging on the minimum value
by successive selection of the parameter sets as in the selection of
the minimum <e§S>P for the descriptive models. k) was set equal to
zero for this selection.

The large step problem yielded one distinct and interesting
minimum; k3 = 0.02, ko = 0.10, and k3 = 1. All three of these parame-
ters are the smallest values examined and this minimum is in one corner
of theerror surface. This model would operate as follows: with k3 =1,
the running average would have values of either O or 1, depending on
the most recent sample, with k, = 0.02 there would be a response ad-
Justment at every sample except when the response was within 0.02 of
either O or 1. This adjustment would be 0.10 of the distance between the
previous response and O or 1. The root mean squared error for this model
was 0,12k,

The best normative parameter set for the small step problem
was found to be: kj =0.20, ky = 0.10, and kg = 6. Again we have the
minimum occurring at the smallest value of kp but in this case the
criterion for changing the response is fairly high and we have six samplcs

in the memory. The root mean squared error for this model was 0.099.
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Both the geometric and constant weighted models are included
as special cases of this descriptive model. With k3 =1 and ky =0
the descriptive model is identical with the geometric weighted model with
r=1=-kp. With k] =0 and kp =1 the model is identical with the
constant weighted model with N = k3. The best normative parameter set
for the large step problem deviates from the simple geometric form only
when the response is within 0.02 of either O or 1. The best normative
parameter set for the small step problem does not yield as low an error
as either the optimum geometric or constant weighted models. The equiva-
lent parameter sets for these models were outside the parameter range
investigated, however,

It would seem that this decision model, within its restricted
parameter sets, represents a reasonable method for performing this task
when the step changes are large, but not when they are small. It is in-
teresting in this light to note that the decision model did not seem to
describe the subject's performance on the small step problem as well as
on the large step problem.

Figures 20 and 21 show a small representative portion of three
responses to the same input sample sequence. The normative model at the
top is the parameter set selected above as the best normative set for the
decision model. DNote the rapid response changes of the large step model.
The center response is that of two of the descriptive parameter sets and
the lower response, the subject's. The descriptive parameter set for the
large step problem is the one with the low value of p. The set for the
small step problem was selected somewhat arbitrarily as one of the five
sets that seemed like a reasonable description. The fairly high coherent

subject's error is clearly evident in these figures.
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V. DISCUSSION

The response measures presented in Chapter III do not provide a
direct answer to the question of how good is the performance. Quantitative
standards are necessary for the measures. Mean error is an exception in
that a standard of zero is reasonable and was in fact achieved. The nor-
mative models derived in Chapter IV provide the standards for the other
measures. They permit a comparison to be made between the subjects' per-
formance and that of several simple machines.

Several important differences exist between the subjects' and the
models' knowledge of the task. The subjects were not instructed on the
step-function nature of the input. In fact they were specifically told
to expect slow, continuous changes in the probability. The models, on the
other hand, were optimized for step input functions. It is reasonable to
assume, however, that the subjects' original ignorant and misinformed state
did not persist for long after the tracking began. The rapid performance
asymptote (less than 45 minutes) and the discrimination between the small
and large step problems attest to this. The model does not have learning
and adaptive abilities, of course, and it was therefore given the maximum
knowledge that the subjects could theoretically derive from the task. The
model-subject comparison thus includes the subjects' learning and adaptive
abilities. This method of subject instruction will allow more valid gener-
alization of the measured estimation ability to other input forms.

The same situation exists in the relative knowledge of the input
statistics possessed by the subjects and the models. The models were

completely informed of the distributions of step size, step direction,
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sub-problem length, and probability. The subjects knew nothing of these
initially. Again, however, it can be assumed that the subjects learned a
considerable amount about these distributions while performing. The adap-
tation to the small and large step problems is an example of the subjects
distinguishing between two distributions of step size.

The models were provided with a definite criterion for optimum
performance; the minimum mean squared error.. The subjects were instructed
to use the same criterion. The actual criteria used by the subjects, how-
ever, corresponds to their conception of best performance and is a function
of the instructions, of performing the task, and of personal abilities and
sensitivities.

The comparison between the subjects and the models will be made
using the following measures: detection, D; convergence, C; roct mean
squared error, RMSE; and root mean squared error after convergence, RMSE,C.
These four measures, plus mean error, provide a fairly complete description
of the performance,

Detection and convergence were calculated using Equations 4,10
and 4.33. These measures are for the expected values of the responses and
are not“the expected values of detection and convergence. The difference
is not important of this comparison,

The root mean squared error was calculated using Equation 4,23
and 4,41,

The root mean squared error after convergence was calculated
using equations 4.22 and 4.40 with the addition of a correction for the
small error contributed by the remaining transient after convergence. This

transient error was calculated using Equation 4.19 and 4.37.
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Two values of RMSE,C were calculated, one with an infinite sample
population as implied in Chapter IV and one with finite populations such as
those used in the experiment. The correction factor for the finite popula-
tions is derived in Appendix C. It was calculated using an average number
of flashes for the sub-problems and corresponds to the random problem type.

Two specific step sizes were selected for the comparison: 0.40
for the large step problem and 0.15 for the small step problem. These are
approximately the average step sizes in their respective problems. These
step changes are examined at a flash rate of 1 fps and with the random
problem type.

Three forms of each normative model are used. Two of these
correspond to the optimum models selected for the large and small step
problems considered separately. They are called "discriminating"” models.
The third model is "nondiscriminating" in that it is required to be optimum
over both the small and large step problems simultaneously. The parameters
for these models were calculated in Chapter IV. The non-discriminating
models represent the only case where the models are not provided the com-
plete statistical information.

The models' and subjects' performance measures are shown in
Table II, Also included are values of detection and convergence for the
descriptive models used in Figures 20 and 21. These measures are averages
over & set of sub-problems with average step sizes of approximately 0.40
and 0.15. RMSE and RMSE,C were not available from the descriptive model's
data.,

The response speed of the nondiscriminating model lies between

the rapid response of the large step discriminating models and the smoothing
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responses of the small step discriminating models. The discriminating
models have lower values of RMSE, of course, since this was the optimization
criterion., The nondiscriminating models are between the two discriminating
models in RMSE,C, having lower values for the large step problem and higher
values for the small step problem,

The subject~model comparison shows a striking difference in the
detection values for the large step problem. The normative models have
detection values considerably smaller than the subJjects., This results, to
a large extent, from the difference between the models' smooth response
and the decision, criterion testing, nature of the subjects' response
hypothesized in Chapter IV. The normative models begin to respond to the
step change with the first flash of the new probebility. The subjects
require a number of flashes to perceive a significant probability change
and the necessity of a response change. The large step descriptive model
has a comparable detection value with the subjects',

On the small step problem the subjects' detection values 1s higher
than any of the models' although it 1s comparable to the discriminating
model,

In convergence, however, the subjects performed comparably to the
models., On the large step problem only the discriminating, constant model
has a smaller value. On the small step problem the subjects' convergence
value lies between those of the discriminating and nondiscriminating models.

The hypothesis that the subjects were adapting to the difference
between the small and large step problems receives support from the con-
vergence comparisons., The nondiscriminating models show a considerable

decrease in convergence from the large to the Small step problems. The
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discriminating models show an increase in convergence fom the large to the
small step problem as they change to a smoother response form. The subjects
showed a similar slight increase in convergence from the large to the small
step problems,

The subjects' delayed detection with comparable convergence
illustrates the discontinuous nature of their behavior. Although unable,
Oor unwilling, to indicate the presence of a change in the probability for
the first seven to twelve flashes, they were then able, however, to converge
on the new probability in five to seven more flashes.

The subjects were slightly higher than the models in RMSE. This
1s to a considerable extent the result of the subjects' pre-detection
period where the errors were large.

The subjects compare favorably in RMSE,C with the infinite
population values but are poorer than all but one of the finite population
values., The introduction of the finite population correction caused an
appreciable drop in RMSE,C, particularly for the models with long averages.
It appears then, by comparison, that the subjects were not fully utilizing
the series constraint, The subjects’ RMSE,C dropped on the average only
about 0,014 from the random problem type with an average population of
close to 60 to the constrained problem type where the population was only
17.

In comparison with these models the subjects seem fairly adept at
converging on a new probability after they decided a change had occured.
This aspect of the task may well have received the most attention., Concen-
tration on this would lead to increased RMSE,C due to false decisions
during the static portion of the sub-problem, This represents a deviation

from the explicit instructions.,
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Conclusion

The human performance cn this task was considerably better than
had been expected. Two features distinguish this task from other investiga-
tions of probability estimation. One is the dynamic set under which the
subjects were performing. This expectancy for changing probabilities was
probably induced primarily by the subjects' actual experience in estimating
the dynamic probabilities. The change in behavior from the large to the
small step problems could be viewed as a partial loss of this dynamic set.

The second distinguishing feature was the display and response
mechanisms, The particular arrangement of lights, scale, and lever probably
had a high stimulus-response compatability.

It seems unlikely that probability estimation is, or at least
need be, the limiting factor in human binary decision making. Furthermore,
it is reasconable to inquire into probability estimation as a possible useful
function of man in future man-machine systems involving information from

uncertain or probabilistic sources,
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TABLE II

COMPARISON BETWEEN THE PERFORMANCES OF THE
SUBJECTS AND THE MATHEMATICAL MODELS

Detection
( Flashes )
Large Step
Problem
(step = 0,40)
Geometric
r = 0,883 1.1
* r = 0,915 1.5
Constant
N =14 1.8
¥ N =20 2.5

Subjects {1fps) T.5
Descriptive Model 4.2
Small Step
Problem
(step = 0.15)
Geometric
r = 0,953 8.4
* r = 0,915 4.6

Constant
N = 55 1107
* N = 20 6.7

Subjects (1fps) 12.5

Descriptive Model 7.2

Convergence
(Flashes)

16.7
23 .k

12.2
17.5
15.0

14,2

22.8

12,4

255
15.3
17.5

21.0

RMSE

0.14%
0,148

0.155
0,161

0,170

0.094

0,103

0,100
0,110

0.112

RMSE, C
(Probability)
Infinite Finite
Population  Population
0,101 0.087
0.086 0.067
0,108 0.093
0.090 0.072
0,091
0.073 0.0k2
0.094 0.073
0.076 0,048
0.099 0.079
0.095

*
r =0.915 and N = 20 are the nondiscriminating models.
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APPENDIX B

INPUT PROBABILITY GENERATION

The input step sequence was generated by exhausting the
step changes systematically using the tables shown below, The gener-
ation procedure was as follows: All problems were started at P = 0,50,
the row identified as "probability from," 0,50, The table entries are
step sizes, those to the right of the diagonal being positive and to
the left negative, One of the step changes in the 0,50 row was selected
at random, This step selection led to a new probability, "probability

1

to," This new probability was in turn selected in the "probability from"
list and a step change from it selected randomly., The step selections
were made without replacement, This procedure was continued until the
entire table was exhausted. It was actually necessary to constrain the
random selection at times in order to exhaust the table without repeat-
ing steps., This selection method gave a "problem" with exactly one step
of each size and direction to each probsbility, The large step problem
and the small step problem were produced by separate tables,

The number of flashes at each probability was selected randomly
from the set; 42, 5k, 66, and 78 for the small step problems, and 35, 51,
74, and 89 for the large step problems, For the constrained problems,
both large and small step, the values were multiples of 17; 34k, 51, 68,
and 85,

Five problems were generated from each table, one for each rate,

The same series of steps was used for the random and constrained problem
types.
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Large Step Problem

Probability .02
From

.18

.5)4-

.50

.66

.82

.98

Small Step Problem

.08
J1b

.26

.52
il

.50
.56
.68

.86
.92

_T2-

Probability To

.02 .18 .3k .50 .66 .82 ,98
- .16 .32 18 .64 - -
.16 - 160 .32 A48 ek -
.32 .16 - 160 .32 48 L6k
48 32 .16 - .16 .32 L8  Steps + and -
TS .32 .16 - 160 .32 .16, .32, .18,
- Lok L8 .32 .16 - .16 and .64
- - O 8 (32 16 -
Probability To
.08 .1k 26 .32 b 50 560 .68 LTk L8692
- .06 .18 2k - - - - - - -
.06 - .12 .18 - - - - - - -
.18 .12 - .06 .18 L2k - - - - -
2k .18 .06 - 120,18 ek - - - -
- - .18 .12 - .06 .12 L2k - - -
- - 2k 18 .06 - .06 .18 .2k - -
- - - L2h 12 06 - .12 .18 - -
- - - - Lo 18 12 - .06 .18 L2k
- - - - - L2k 18 06 - .12 .18
- - - - - - - .18 .12 - .06
- - - - - - - L2 18 06 -
Step + and - .06, .12, .18, .2k



APPENDIX C

VARIANCES OF SAMPIE AVERAGES FROM FINITE POPULATIONS

Consider a population Vi with mean Y and with M members.

Let N samples x4 be drawn from y; with

i=N i=N
X = j{J WiX4 where j; Wy o= 1
i=1 i=1
The variance of x is
i=N
— =2 . * _12
E[(x - ¥)7] = E-{ [ j; WX - Y]
i=1
i=N

I
=1
—M
|
e
a2
.
=
L
no
N

i=1
1=l i=N
- & {Z W (x, - T) | W (x, - ?)}
i=1 J=1

1=N =N
=) ) ey B (G - Dy - D)
i=1 j=1

This expression contains terms which can be written as

2 1 = 2
E(xy - Y) = v 251 (v - Y)
k=1
and k=M 4= k=)
ey - Dty - D =g [) ) Ge-Dlyy-D =) =D
k=1 £=1 k=1
k=M
-1 =2 s
= M(M-l) z (yk = Y) ) 1 % J
=1
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The variance then becomes

i=N k=
R, 1 VU 2% _.2
HE-D -5 ) v ) Gy -D
izl =1
i=N j=N i=N k=
- [ ke WiEJ [i' Z (v - Y)E]
(M-1) ’
M i=1 j=1 izl ]
i=N k=M
1 ) ‘ =2
= M j; Wit -1 ZEJ (y, - ¥)
M(M-1) [ A } k
i=1 k=1

For a sub-problem with P; = Y and of length M; we have

For the geometric weighted model with W, = ar

5 M; }:3 1 2
0 %(n) = {(ﬁzfi)(l+r> Mi_l] oy




APPENDIX D

EXPERIMENTAL PRESENTATION ORDER

The problems were presented to the subJjects in the following order.

1]

Where L, S = large and small step problems

R, C = random and constrained problems
1, 2, «.0y 5 after R or C = the particular problem

Part 1, 2, 3, 4 = divisions of a particular problem

Session Problem Part Rate (fps)

1 IR1 2
LCl 1 1
2 SC1 L
SR1 8

1c2 1 0.5
3 IR2 1 1
SR2 2

L 1IR3 1 0.5
1R2 2 1
1C5 8
5 SR3 b

102 2 0.5
IR5 Ly
6 sce 1 1
SRL 1 1

7 SC3 1 0.5

SR5 1 0.5
8 1C3 2

SR5 2 0.5

9 SC3 2 0.5
Lok I
LRA4 8

10 SR5 3 0.5
SRU4 2 1

11 1e2 3 0.5
sch 8

SC3 3 0.5
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Session Problem Part Rate (fps)
12 SR5 L 0.5
SC5 2
13 Lc2 L 0.5
IR3 2 0.5
IR3 3 0.5
1k SC3 L 0.5
IC1 2 1
15 IR3 L 0.5
sc2 2 1



APPENDIX E

INSTRUCTIONS

The following formel instructions were used. The instruction

method is discussed in Chapter II.

"This experiment is concerned with your ability to estimate prob-
abilities and to follow changes that occur in them as time passes. You will
see g display of two lights, a left and a right light. At each flash one
or the other of the lights will light, indicating right or left. This is
exactly analogous to the drawing at regular intervals of red and green balls
from a jar. You will be asked to estimate, by setting a dial, your best
guess as to the percentage of balls that are right. The dial is calibrated
from O to 100 representing no right to all right flashes. For example, if
you think that about 68% of the flashes are right then set the dial at 68.
The actual percentages cover the entire range from O to 100 and have all
values in between. The percentages do not necessarily fall on the dial
markings.

"The important new work to come out of this experiment is your
ability to notice changes in the percentages and to follow the changing
percentage with the dial setting. The analogy with the balls in the Jjar
is the case where one or the other color is being taken out of the jar
by another person without your knowledge. At times the percentage will
change slowly in a continuous fashion. At other times the percentage will
change suddenly, as though a whole handful of one color had been removed.
If you are uncertain as to the percentage set the dial at 50.

"You will be paid according to how well you do. At the end of
each problem, 10 to 25 minutes, you will be able to read the amount of
money off the meter on the computer. The computer calculates the differ-
ence between your estimate and the actual probability, the error, and
accumulates this error over the problem. It also adds up a constant amount
of money per minute. You are pald the difference. The computer is adjust-
ed so that if you left the lever at 50 you would get no money.

"You will wear a pair of earphones and have a microphone. A low
'seashore! type naise will be fed into the earphones in order to mask out noises
from the street and the laboratory. When I talk to you the noise will be
removed. You can be heard at all times through your microphone. You are
welcome to make verbal comments during the experiment. These are not
being recorded and any sort of language 1s acceptable.”
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APPENDIX G

TWO QUALITATIVE RESPONSE EXCEPTIONS

On two occasions during approximately 70 hours of tracking the
tracking response was qualitatively variant from the norm. These two
situations lasted for a total of approximately 35 minutes.

The first occurred during the pilot experiment. During one
particular problem in the third session a subject was accumulating error
at a much higher rate than in any of the previous sessions or problems.
Upon inspection of her records it was noted that detection was considerably
higher than it had been before. The instructions concerning the error
formation and the payoff were repeated with special emphasis on the rapid
error build up with large discrepancies between probability and response.
Her response returned to normal on the next problem.

The hypothesis here is that she was computing the new probability
to a high degree of accuracy before she responded to the change. The "nor-
mal" response produces movement toward the new probability as soon as it
is perceived, with further refinements as more data, flashes, are accumulat-
ed.

The second anomaly occurred in the response of a subJject in his
12th session of the main experiment. He was tracking a large step problem
at 2 fps. The experimenter noted that the payoff was going negative; the
error accumulation was faster than the pay accumulation. Upon examining
the records it was established that for about the first 5/@ of the prob-
lem, about 15 minutes, the response was the mirror image of the proper or

normal response. The scale was reversed in relation to the light flashes.
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A check on the equipment failed to reveal any malfunction. Upon gquestion-
ing after the session the subject stated that he was a bit mixed up at
times. He evidently had no idea that he was doing a fairly good Jjob of
mirror image tracking.

He was given this particular problem again in a special 16th ses-

sion and this second run was used in the analysis.



APPENDIX H

DATA NOT AVERAGED OVER SUBJECTS

Figures 22 through 28 show some of the principal variable inter-
actions for individual subjects. The data for detection and convergence
show appreciable magnitude variations between subjects but maintain the
same qualitative relationships as regards direction of change and the dis-
tinction between the small and the large step problems. Subject S-1 was
quite consistently slower in his response than the other three. All sub-
jects show a similar increase in RMSE with rate from 1 to 8 fps. Subject
S-% is consistently higher. All subjects show a decrease in RMSE,C from
0.5 to 2 fps. Subjects S-2 and S-4 show a continued decrease at 4 and 8
fps whereas S~% and S-1 show an increase. FAR decreases with rate for three
sub jects; subject S-1 having little variation by comparison.

Mean error did not vary significantly among subjects.
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Figure 25. Convergence as a Function of Flash Rate for Four Subjects. Convergence
is measured in flashes.
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