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Games with imperfect information are an interesting and important class of games. They include most card 
games (e.g., bridge and poker) as well as many economic and political models. Here we investigate algorithms for 
finding the simplest form of a solution (a pure-strategy equilibrium point) to imperfect information games expressed 
in their extensive (game tree) form. We introduce to the artificial intelligence community a classic algorithm, due to 
Wilson, that solves one-player games with perfect recall. Wilson's algorithm, which we call IMP-minimax, runs 
in time linear in the size of the game-tree searched. In contrast to Wilson's result, Koller and Meggido have shown 
that finding a pure-strategy equilibrium point in one-player games withour perfect recall is NP-hard. Here, we 
provide another contrast to Wilson's result-we show that in games with perfect recall but more than one player, 
finding a pure-strategy equilibrium point, given that such an equilibrium point exists, is NP-hard. 

Our second contribution is to present a pruning technique for Wilson's IMP-minimax algorithm to make the 
latter more tractable. We call this new algorithm IMP-alpha-beta. We provide a theoretical framework (model) 
and analyze IMP-alpha-beta in that model. IMP-alpha-beta is of direct value for one-player. perfect-recall 
gamcx It also has strong potential for other imperfect information games, as it is a natural (but as yet untested) 
heuristic in those cases. 

Key words: game tree, imperfect information, perfect recall, heuristic search, pruning, alpha-beta, IMP-mini- 
max, IMP-alpha-beta, ,@-hard, NP-complete 

1. INTRODUCTION 

Games with impe$ect infomation are an interesting and important class of games. They 
have been studied at length in the game theory literature and include many important appli- 
cations, for example, 

0 Parlor games like bridge, poker, and Clue. 
0 Economic models of labor-and-management negotiation in which variables like future 

inflation rates are modeled probabilistically. 
0 A distributed computation in which the cooperating processors (each with its own input) 

make certain judgments whose efficacy is determined by the collective input (which is 
modeled probabilistically). 

Game theorists have long known that imperfect information games are different from 
perfect information games in terms of solution theory and expressiveness (von Neumann 
1928). More recently, computer scientists have examined the characteristics of imperfect in- 

'The views expressed herein are those of the authors and do not purport to reflect the position of the United States Military 
Academy or the Department of the Army. 
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formation games from the computational viewpoint. They have found imperfect information 
games to be different from perfect information games in this respect also. Despite the differ- 
ences, there is potential for transfer of ideas between the two classes (Levy 1989; Gamback 
et al. 1991; Barr 1992; Gamback er al. 1993; Smith and Nau 1993; Bampton 1994). Such 
transfer might enable the construction of better algorithms for perfect information games or 
better algorithms for imperfect information games. 

This paper focuses on imperfect information games. It provides an overview of such 
games, extends the current understanding of their computational properties, and extends 
techniques for solving such games both heuristically and exhaustively. In particular: 

1 .  We extend results of Koller and Meggido (1992) to show that solving imperfect informa- 
tion games is AfP-hard,2 even when the input is the entire game tree to be searched. This 
stands in sharp contrast with perfect information games, where the classical minimax 
algorithm (Zermelo 1913; Shannon 1950; Kuhn 1953) is linear in the size of the game 
tree searched. 

2. These results lead one to seek heuristics or special cases. To that end, we introduce to 
the artificial intelligence (AI) community a classic algorithm due to Wilson (1972) that 
solves a special case; we point out that it can be modified for use as a natural heuristic 
in the general case. Wilson’s algorithm, which we call IMP-minimax, is to imperfect 
information games as minimax is to perfect information games. We further introduce 
and analyze IMP-alpha-beta, which computes the same value as does IMP-minimax 
but usually does so faster through pruning (i.e., not examining the value of some nodes). 
IMP-alpha-beta is to IMP-minimax as the powerful alpha-beta algorithm (Slagle 
and Dixon 1969; Knuth and Moore 1975; Luckhardt and Irani 1986; Korf 1991) is to 
minimax. 

The above results are fundamental to an understanding of game-tree search in imperfect 
information games. The first result shows that to find pure strategy equilibrium points, which 
are the simplest form of “solution” for such games, we must seek special cases or heuristics. 
The second and third results complement the first, providing an efficient algorithm for a 
special case, that can be used as a natural heuristic in the general case. 

The next section involves the study of imperfect information games by explaining in 
informal terms how they differ from the perfect information games more familiar to A1 
researchers. It also gives a simple, concrete example to show how games with imperfect 
information are different-from the computational viewpoint and from games with perfect 
information. Section 3 defines the standard game-theoretic terms we use herein, including 
a formal definition of imperfect information games. Section 4 presents the A/?-hardness 
results that are summarized near the beginning of that section. The remaining sections 
present the IMP-minimax and IMP-alpha-beta algorithms and an analysis of the latter’s 
effectiveness at pruning. 

2. WHAT IS IMPERFECT INFORMATION? 

This section motivates the study of imperfect information games by explaining in informal 
terms how they differ from perfect information games. The next section presents the classic 
formal definition of an imperfect information game. 

’By “solving:’ we mean “find a pure strategy equilibrium point, given that one exists”; these and other game-theoretic 
terms are defined in Section 3. 
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Information set X: Deal cards 

... + + ... + + + ... + + + ... + West play6 

... ... 

++...+ ++...+ ++...+ ++...+ ... + + ... + North plays 

... ... ... ... ... ... 

Information set Y: 

FIGURE 1. The top portion of the game tree for bridge. 

Subsection 2.1 uses an example-the card game bridge-to explain, in informal terms, the 
notion of an imperfect information game. Subsection 2.2 gives a simple, concrete example to 
show how games with imperfect information are different, from the computational viewpoint, 
from games with perfect information. In Subsection 2.3, we summarize these differences, 
then conclude with a brief discussion of related A1 work on imperfect information games. 

2.1. An Informal Example-Bridge 

Chess is the prototypical example of a game with perfect information-both players have 
equal knowledge of the game state. Backgammon is also perfect information but includes 
chance nodes (i.e., dice rolls). The card game bridge3 is a good example of an imperfect 
information game. Bridge is played by four players organized into two teams, traditionally 
labeled North/South versus East/West. Figure 1 shows a partial sketch of the top portion of 
the game tree for bridge. The root is a chance node that represents dealing the shuffled deck 
of cards. At depth 1 there is a node, marked by a + sign, for each possible outcome. All of 
the depth 1 nodes corresponding to a single hand that West may have been dealt are grouped 
together in a single “information set,” notated by drawing an ellipse around the set of nodes. 
Thus, there are (::) information sets at depth 1, each containing (E) (:;) (::) nodes. Consider 
one such information set, call it X ,  in which West holds 4 9 0 5743 0 49643 li A84. For each 
node in X there are 13 alternatives (moves), corresponding to the 13 cards West could play. 
Because West does not yet see the other players’ hands, the rules of the game require that West 
select the same alternative from each node in set X .  This is called imperfect infomation. 
For example, West could choose the ninth alternative from each node in X ,  corresponding to 
playing 04. 

The: North/South team plays next, selecting a card from the North hand, after exposing 
the North hand (the so-called dummy) to all four players. At this point, 27 cards are visible 
to the North/South team: their own 26 cards plus the card West exposed. All the depth 2 
nodes in which a particular set of 27 cards is visible to North/South are grouped into a single 
information set. Thus, there are (z:) information sets at depth 2, each containing ( 12) ( 13) nodes. 
For example, in one such infomation set, call it Y ,  North holds 4 K62 0 AQ82 0 KJ85 1 7 6 ,  
South holds 4 AQ8743 0 9 0 72 4 KQJ2, and West has led the 0 4. For each node in Y 

25 13 

3We assume the reader has some familiarity with bridge. Our example ignores the so-called bidding phase that precedes 
the card play. 
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FIGURE 2. Two game trees, with perfect and imperfect information, respectively. 

there are 4 alternatives, corresponding to the 4 diamonds the North/South team could play 
from the North (dummy) hand.4 Again, the rules of the game require that NortWSourh select 
the same alternative from each node in set Y .  For example, North/South could choose the 
alternative from each node in Y that corresponds to playing 0 J. The game tree continues in 
like fashion. 

Bridge cannot be modeled adequately as a perfect information game, even with the 
inclusion of chance nodes. In a perfect information game, at any point of the play, all players 
receive exactly the same description of the current state of the game. In bridge, such a 
description is impossible: cards seen by one player are unseen by other players. 

2.2. Another Example-Perfect Information Versus Imperfect Information 

To illustrate the computational difference between perfect information games and im- 
perfect information games, first consider game tree GI on the left side of Fig. 2; this is a 
one-player game with perfect information. Initially, a chance event occurs with two possible 
outcomes, A or B ,  each equally likely. After outcome A, the sole player can either continue 
to position C, or quit the game with payoff 0. Likewise, after outcome B ,  the player can 
either continue to position D, or quit the game with payoff 0. From positions C and D, there 
are two choices, with payoffs - 100 and 1 from C and 1 and - 100 from D. The player seeks 
to maximize the expected payoff. 

For games like GI that have perfect information (perhaps with chance nodes), a simple 
modification of minimax computes the value of the game tree (Ballard 1983): 

payoff ( X I  if x is a leaf I F [ chance-minimax(y) I y is a child of x ) otherwise chance-minimax ( x )  = 

where function F is a max operator at nodes where the player moves and average at chance 
nodes5 Thus, a single traversal of the tree allows one to compute the value of the game tree 
as well as the optimal moves (by recording the mpx selections). This chance-minimax 

4The rules of bridge require that North ‘‘follow suit” ( i c ,  play a card in the suit led). 
SSee Kuhn (1953). Luckhardt and Irani (1986). and Korf (1991) for the extension to more than two players. 
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algorithm correctly computes that the value of game G 1 is 1 ; the optimal strategy is to move 
left from nodes A, B ,  and D, and right from node C. 

Now consider the game tree G2 on the right side of Fig. 2. This is again a one-player 
game, but here we view the “player” as a team of two cooperating but uncommunicating 
agents. As in G 1, the chance event happens first, then the first agent makes the first decision 
(knowing the outcome of.the chance event). But in G2, the second agent makes the second 
decision not knowing the outcome of the chance event. Thus, the second agent can choose 
only left or right from C and D; the rules of the game require that the same decision must be 
made from both of these positions. 

Both games G 1 and G2 have chance nodes, but G 1 has perfect information while G2 has 
imperfect information (because of the two-node information set containing nodes C and 0). 
For game G 1 ,  with perfect information, the chance-minimax algorithm correctly computes 
the value of the game. The chance-minimax algorithm performs the same computation 
on G2 as it did for G I ,  and, hence, computes both the wrong value for the game and a wrong 
strategy (regardless of how it resolves the conflicting decisions at C and 0). In G2, the 
optimal expected payoff is 0.5, obtained (for example) by moving left from position A, right 
from position B ,  and right from positions C and D. The optimality of this strategy can be 
seen by comparing it to all other strategies on the entire search space. 

2.3. Informal Examples-Summary 

The above examples show that imperfect information games are both interesting and 
different from perfect information games (even with chance nodes). In the first example 
(bridge), one cannot model imperfect information adequately by using perfect information 
games: there is simply no mechanism in perfect information games to model different players 
seeing different portions of the game state. The second example (games G1 and G2) shows 
that perfect information games are very different from imperfect information games,from the 
computational viewpoint. The chance-minimax algorithm solves the perfect information 
game G 1 in time linear in the size of the game tree. However, the algorithm gives an incorrect 
solution for the imperfect information game G2. TheNP-hardness results of Section 4 show 
that such behavior is unavoidable, in general, unless P = AfP. 

Note that our complexity results are phrased in terms of the size of the game tree rather 
than the more common phrase “exponential in the depth of the game tree.” Our results for 
imperfect information games imply that the associated algorithms are exponential in the size 
of the game tree (hence, doubly exponential in its depth), unless P = N P .  Throughout, 
the size of the game tree is the size of the game tree searched. That is, nothing prevents 
the use of a static evaluator (Shannon 1950) to reduce the size of the game tree by treating 
selected interior nodes as leaves, with estimates for the values of the unsearched subtrees 
below them. 

Much of the A1 work on perfect information games has focused on computing a correct 
(game-theoretic) strategy, that is, the minimax strategy. In contrast, A1 work on imperfect 
information games has avoided the task of computing a correct strategy (as described formally 
in the next section). For example, the classic work of Findler (1977) on poker focuses on the 
cognitive aspects of strategies. Quinlan (1979) describes particular heuristics for bridge, as 
does Gordon (1993) for scrabble. Bampton (1994), Barr (1992), Gambslck et al. (1991,1993), 
Levy ( 1989), and Smith and Nau (1993) describe general purpose heuristics and reasoning 
methods applied to bridge. In the game-theory literature, the work of Wilson (1972) and 
Koller and Meggido (1992) are closely related to the results in this paper and are described 
further in Sections 4 and 5. 
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3. DEFINITIONS 

This section presents the classic formal definition of an imperfect information game. 
There are four key ideas. The first is the notion, familiar to AX researchers, of describing a 
game by its game tree. The second is the mechanism called information sets for incorporating 
imperfect information into the game tree description. The third is the classic game-theoretic 
definition for what constitutes a solution to our games, namely, an equilibrium point. The 
fourth key idea is the definition of a certain subclass of imperfect information games called 
peflect recall games. This subclass is important both to the n/P-hardness results of Section 4 
and to the correctness of the IMP-minimax and IMP-alpha-beta algorithms described 
in the rest of this paper. 

Any game can be expressed in the so-called extensive (tree) form (Luce and Raiffa 1957; 
Shubik 1982; Rasmusen 1989) introduced in Kuhn (1953)? Here, each position reachable 
during the game is encoded by a node in the game tree, with the root node encoding the 
initial position of the game. From each node X in the tree, the arcs emanating from X encode 
the various alternatives (moves) available to the player who moves from the game position 
encoded by X. Each leaf of the game tree encodes a position in which the game has ended, 
and contains the payoffs to the players at that position. Formally, an n-player game r consists 
of 

0 A finite tree K: called the game tree.’ The edges below any interior node x in K: are the 
alternatives from x .  

0 A partition of the interior nodes in K: into n + 1 classes: the chancenodes and the 
player-k nodes, for k from 1 to n .  

0 For each chance node x in K:, a probability distribution on the alternatives from x. 
0 For each k ,  1 5 k 5 n,  a partition of the player-k nodes in Ic into information sets such 

that for any nodes x and y in the same information set: 
-The number of children below x equals the number of children below y .  
-If x # y ,  then neither node is an ancestor of the other. 

0 A payoff function h from the leaves of K: to n-tuples of real numbers. 

A zero-sum game is one in which at any leaf, the payoffs to the players sum to zero.* 
To see that the above definition captures our informal notion of an n-player game, think 

of the root of X: as the initial position of the game. To play the game means to follow a 
root-to-leaf path in the tree, with each edge on the path corresponding to a single move in the 
game. If a chance node x is encountered during the play, then “nature” will determine the 
edge below n in the root-to-leaf path, at random and according to the probability distribution 
associated with x. If a player-k node is encountered, then player k will choose the edge (next 

6The extensive form contrasts with the so-called normal form. In the latter form, the game is reduced to a single-move 
game in which each player simultaneously selects a strategy for the game. The payoffs to the players are whatever payoffs 
would occur if the players were to use the selected strategies. In general, the extensive form of the game is an exponentially 
smaller representation of the game than the normal form and hence, more useful when the focus is on algorithms, as is the case 
here. 

’By a E, we mean a rooted tree with an associated parent function. With regard to trees, we use without explanation 
terms like node. edge. path. depth, root, leaJ interior node, parent, child, ancestor, and descendant. (A node is both an ancestor 
and descendant of itself.) See any standard text on data structures, for example, Aho e f  al. (1983). for definitions of these 
terms. 

8For two-player games, this means that what is good for one player is equally bad for the other player. Most parlor games 
(for example, chess, bridge, and poker) are zero-sum games. 
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FIGURE 3. A two-player, zero-sum, imperfect information game tree. Player 1 moves at square-nodes; 
player 2 moves at circle-nodes. The sole chance node is marked by a diamond. At each leaf, the payoff to player 
1 is given. 

move). The outcome of the game for player k is the k* component of the payoff vector h(w) 
at the leaf w reached by the play. Figure 3 shows a simple two-player, zero-sum game tree, 
which we use to illustrate the definitions that follow. 

A pure strategy Xk for player k on K: is a function on the player-k nodes in X, such that 
for any player-k nodes x and y in K: 

0 nk(n) is a child of x .  
0 If x and y are in the same information set, n k ( X )  and Xk((y) are the same alternative (i-e., 

if n-k(x) is the jth child of x ,  then n k ( y )  is the jth child of Y ) . ~  

A pure strategy n in an n-player game r is an n-element vector whose kth component, X k ,  is 
a pure strategy for player k. 

“What a player knows” is reflected in the pure strategies available to the player, which 
are determined by the information sets. If two nodes x and y are in the same information 
set, then the player “cannot tell them apart,” because by definition the player’s pure strategy 
must be the same (choose the j t h  child, for some fixed j )  on the two nodes. Thus, when 
there exists an information set with more than one node in it, the game is said to exhibit 
imperfect information. lo 

The quality of a pure strategy is measured by its expected payoff, which, in turn, de- 
pends on the probability of reaching leaf nodes. Given pure strategy 17 on game tree K, 
the probability of node x under 17, denoted pa ( x ) ,  is defined to be the product of the prob- 
ab i lx s  of the arcs on the path from the root to x ,  with each arc below a nonchance 
node granted probability 1 or 0, depending on whether or not x selects that arc. The 
expected payoff to player k under pure strategy n, denoted Hk(17), is defined to be 

pn ( w )  hk(W),  where the sum is over all leaves w in K: and hk(w) is the kth component of 
payoff vector h(w).” 

A player-k pure strategy nk is optimal for pure strategy n if for every player-k pure strat- 

91n Fig. 3. player 2 has two pure strategies: go left or right from node B .  Player i has four pure strategies: IeWright from 
node A,  and for each of those choices, IeWright from the information set containing nodes C and D. 

“Fig. 3 is a game with imperfect information because of the information set containing nodes C and D. Player 1 must 
either go left from both nodes C and D or right from both. 

“In Fig. 3. consider the strategy in which all players move left at all choices. Under this strategy, the probability for each 
leaf is zero, except for the leaf labeled 10 (which has probability .8) and the leaf labeled 40 (which has probability .2). The 
expected payoff to player I under this strategy is .8 * 10 + .2 * 40 = 16. 
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egy (Yk, we have H k ( I r )  2 &(a). where a! is the same as n except that the k” component of ~r 

is Irk while the kth component of a is ak . A pure strategy ~r is a pure-strategy equilibrium point 
if each component nk of ~r is optimal for n. Thus, in an equilibrium point, no player can 
strictly improve her expected payoff by a unilateral change in strategy.I2 All perfect in- 
formation games and all one-player games have a pure strategy equilibrium point, but some 
imperfect information games with more than a single player have no pure strategy equilibrium 
point. 

As we will see in Sections 4 and 5, imperfect information games with “perfect recall” are 
of particular interest. Informally, perfect recall means the player recalls her previous moves. 
More precisely, for information sets R and S in game r, we say that S follows R if S # R 
and there exists nodes r E R and s E S such that s is a descendant of r .  For any subset X 
of an information set, the ith child of X is the set of all nodes y such that y is the ith child of 
a node in X. A game T’ has perfect recal1l3 if for every pair of player4 information sets R 
and S in r such that S follows R ,  there exists an i such that S lies entirely inside the forest 
of subtrees rooted at the ith child of R.I4 Note that perfect recall is not the same as perfect 
information. 

It is often possible to know from the phenomenon being modeled whether or not it has 
perfect recall. For example, consider the card game bridge. This game is played by four 
players organized into two teams. If one chooses to model the game as a four-player game, 
then it is a game with perfect recall, assuming that each player is capable of remembering the 
cards that have been played. Alternatively, one can model the game as a two-player (team) 
game. In this case, the game will not have perfect recall. After the initial lead, each agent 
sees the cards of the “dummy” (say, North) and her own cards. When the East/West team 
makes a play from the West hand, it “knows” the contents of the West and North hands. 
Later, when the same EastWest team makes a play from the East hand, it has “forgotten” the 
contents of the West hand. In this two-team representation, the rules of the game require that 
the East/West team “forget” some of what it knew at its previous turn. Thus, the two-team 
representation of bridge lacks perfect recall. 

4. FINDING PURE STRATEGY EQUILIBRIA IS “?’-HARD 

The previous two sections describe imperfect information games and motivate the study of 
their complexity. This section presents our negative (.@-hardness) results. The next section 
presents positive results, in the form of an algorithm (IMP-minimax), that is correct for a 
special case and can be used as a natural heuristic in the general case. Succeeding sections 
present an improvement to IMP-minimax called IMP-alpha-beta and an analysis of the 
magnitude of that improvement. 

Subsection 4.1 explains what we mean by the “complexity” of games, presents the rel- 
evant complexity results known previously, and summarizes our new nip-hardness result. 
Subsection 4.2 presents the formal statement of our new NP-hardness result and its proof. 

”The game in Fig. 3 has a single pure strategy equilibrium point, in which player I moves left from node A and right 
from information set C / D .  while player 2 moves right from node B .  

I3It is easy to show that this definition of perfect recall, which is given by Thompson (1953), is equivalent to the definition 
given by Kuhn (1953). 

I4Game tree GZ on the right side of Fig. 2 in Section 2 is an example of an imperfect information game that lacks perfect 
recall. The same game tree would have perfect recall if nodes A and B were placed into a single information set or if nodes 
A and B were player-I moves while nodes C and D were player-2 moves. The game tree in Fig. 3 is another example of an 
imperfect information game with perfect recall. 
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Subsection 4.3 presents some corollaries to this result and then summarizes the consequences 
of these: NP-hardness results. 

4.1. Background 

An equilibrium point in a game is a collection K of strategies, one per player, such that no 
single player can unilaterally improve her payoff by changing her strategy from that specified 
by K. The notion of an equilibrium point is a natural and accepted solution concept for 
games that have equilibrium points. The most “simple” equilibrium point is one in which 
all strategies are pure strategies, that is, nonrandomized strategies. Here we investigate the 
complexity of finding pure-strategy equilibrium points when they exist. 

A1 research on machine game-playing has concentrated on perfect information games, 
like chess or backgammon. For such games, a pure-strategy equilibrium point always exists, 
and the classical minimax (Zermelo 1913; Shannon 1950; Kuhn 1953) and alpha-beta (Slagle 
and Dixon 1969; Knuth and Moore 1975; Luckhardt and Irani 1986; Korf 1991) algorithms 
find one in time linear in the size of the game tree searched. This contrasts starkly with 
imperfect information games, like poker or bridge, as the following result shows. 

Theorem 1 (Koller and Meggido 1992). The problem of finding a pure-strategy equilibrium 
point in an imperfect information game is NP-hard, even if there is only a single player (in 
which case a pure-strategy equilibrium point always exists). 

An imperfect information game has perfect recall if, loosely speaking, the players never 
forget anything they once knew. (See Section 3 for a formal definition.) Games like bridge 
in which players are teams of cooperating but uncommunicating players, can be modeled 
as games without perfect recall, whereas games in which players are single-entity agents 
are typically modeled as games with perfect recall. For one-player games with imperfect 
information but perfect recall, there is a linear-time algorithm (IMP-minimax, as described 
in Section 5) for finding a pure-strategy equilibrium point (Wilson 1972; Koller and Meggido 
1992). Hence, the perfect-recall property forms a natural dividing line for one-player games: 
the class of games without perfect recall is NP-hard, while games with perfect recall can be 
solved in linear time. 

Here we show that the perfect-recall property does not form such a dividing line for 
games with more than one player. We show that finding a pure-strategy equilibrium point 
in an imperfect information, perfect recall, n-player game, given that such an equilibrium 
point exists, is NP-hard, for any n 2 2. This provides an interesting contrast not only with 
the previous results for one-player games, but also with the fact that there is a polynomial- 
time algorithm for finding behavior-strategy (randomized) equilibrium points in two-player, 
imperfect information, perfect-recall games (Koller and Meggido 1992). 

4.2. WP-Hardness Results 

game (n 
the format of Garey and Johnson (1979) the decision problem is: 

Our main result shows that it is NP-complete to determine whether or not an n-player 
2) has a pure-strategy equilibrium point, even if the game has perfect recall. In 

PEW’ECrr RECALL, PURE STRATEGY EQUILIBRIUM (PR-PSE): 
Instance: An n-player perfect-recall game r. 
Question: Does r have a pure-strategy equilibrium point? 

Theorem 2. PR-PSE with n = 2 is n/P-hard. 
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FIGURE 4. The constructed game tree for m = 2, sizes s ( a l )  = 6, s(a2 )  = 8, s(a3) = 7, s(u4) = 6,  
s(a5) = 7, s(ag) = 6, and B = 20. Payoff values to player 1 are shown at leaves. 

Proof. The reduction is from 3-PARTITION (Garey and Johnson 1979, p. 224). 

3 -PARTITION: 
Znstance: Finite set A of 3m elements, bound B f Z+, and a “size” s(a) E Z+ for each 
a E A ,  such that each s(a) satisfies B/4 < s(a) < B/2 and such that 

U G A  

Question: Can A be partitioned into rn disjoint sets S1, S2, . . . , Sm such that 

c s(a) = B 
aES, 

for 1 5 j 5 m? (Notice that the constraints on the item sizes imply that every Si in a valid 
partition must contain exactly three elements from A .) 

Let A = {a l ,  a2, . . . , U M )  be the set of elements (where M = 3m), s the size function, 
and B the bound in an arbitrary instance of  PARTITION. We will construct a two-player, zero- 
sum, perfect-recall game r such that there is a pure-strategy equilibrium point r = (nl , n2) 
for r if and only if there is a partition of A into m disjoint subsets S1, S2,  . . . , Sm such that 
CUES, s(a) = B ,  for 1 5 j 5 m. It will follow that PR-PSE is NP-hard for n = 2. An 
example of an instance r constructed in the manner specified in succeeding paragraphs is 
given in Fig. 4. 

The root of the game tree for r is a chance node with 4m children, and each child below 
the root is equally likely. 

The nodes immediately below the root are the player-1 nodes, each in an information set 
by itself. Of these 4m nodes, rn are called balancing nodes and are labeled bl . . . b m .  The 
remaining 3m nodes correspond to the 3m elements of A ,  and hence are labeled a1 . . . U M ,  

where M = 3m. Thus, we use ai to refer both to the i* element of set A and also to the 
i* nonbalancing node at depth 1 of the tree. 

Each balancing node b, has exactly one child, labeled bj . Each nonbalancing node ai has 
exactly m children, labeled a; 1 . . . aim. These nodes below the player- 1 nodes are all player-2 
nodes. They are separated into m information sets, with the jth information set I, containing 
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1 + 3m nodes: the sole child bi of player-1 node bj and the jth child aij of each player-1 
node aj for i from 1 to 3m. 

There are two leaves below each player-2 node. The payoffs to player 1 at the leaves are 
as follows: 

payoff at the left child of b(i = - B 
payoff at the right child of bi = B 
payoff at the left child of aij = s(ai) 

payoff at the right child Of aij = -s(ai> 

The payoff to player 2 is the negative of the payoff to player 1. The game has perfect recall 
because there is only one level of nodes for each player. 

It is easy to see that the construction of I‘ can be accomplished in time polynomial in 
IAl. All that remains is to show that there is a pure-strategy equilibrium point n = (nl, n2) 
for r if and only if there is a partition of A into rn disjoint subsets S1, S2, . . . , S, such that 
CaSs, s(u) = B, for 1 I j I m. 

By construction of the game r, the expected payoff15 H(n1, n2) for the pure-strategy 
pair (TI, n2) is 

1 1 C - (payoff at x) = - C (payoff at x) 
x 4m 4m x 

where the sum is over all leaves x selected by (nl , n2). For any set X of nodes in the game 
tree, we use the phrase contribution to H(nl,n2) ofX to mean the sum of the payoffs at all 
leaves x below X selected by the pure-strategy pair (nl , x2). 

First, suppose there exists a partition S1, . . . , S,,, satisfying the requirements of 
3-PAR”ION. Consider the player-2 strategy n2 that goes right from every player-2 in- 
formation set and the player-1 strategy n1 that chooses the child aij below node a; if and 
only if ai E Sj in the partition. We claim that the pair of strategies (XI,  n2) is an equilibrium 
point. To see this, consider what happens if we fix player 1’s strategy at n1 and allow player 
2 to change his strategy to 17;. For any player-2 information set Zj, the player-1 strategy n1 
selects exactly four nodes in Z, : node bj and the three nodes up,, aqj and a,j, where up,  aq , 
and a, are the elements in set S, . Hence, the contribution to H(n1,n;) of Z, is 

- B  + s(ap> + s(aq) + s(ar) 

if player 2 goes left at Zj under n;, and is 

B - $(up) - s(aq> - s(ar) 

if player 2 goes right at Z, under xi. Since CaEs, s(a) = B, it follows that the contribution 
to H ( x 1 , n ; )  of each player-2 information set Z, is zero, regardless of player 2’s strategy xi. 
Hence, the total expected payoff H (nl , n;) is zero for every player-2 strategy n;; trivially, 
player 2 cannot improve his strategy. 

Suppose now that we fix player 2’s strategy at n2 and allow player 1 to change her strategy 
to n;. Then, for each balancing node bj, the contribution to H ( n i ,  x2) of b(i is B. For each ai, 
player 1 selects exactly one node Ujk below it, yielding payoff (under nz) of - S ( U i ) ;  hence, 

‘5Throughout the remainder of this proof, by “payoff” we mean the payoff to player 1 .  and we use H(ai, x2) to refer to 
the expected payoff HI ( X I ,  n2) to player 1 .  
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the contribution to H ( n ; ,  n2) of a; is -s(ai). Regardless of player 1’s strategy xi, the total 
expected payoff H ( n l ,  172) is & times 

mB - s (a )  = m B  - mB = 0,  
aEA 

and hence, trivially, player 1 cannot improve her strategy. It follows that (171,172) is an 
equilibrium point. 

Second, consider the case when there is no partition satisfying the requirements of 
 P PARTITION. We will show that there is no pure-strategy equilibrium point in r. To show 
this we first show that if player 1’s strategy is arbitrarily fixed at, say, n1, then there is a 
player 2 strategy 752 for which H (nl , IQ) is strictly less than zero. Then we will show that if 
player-2’s strategy is arbitrarily fixed at, say, xi, then there is a player-1 strategy ni for which 
H ( n ; ,  n;) is nonnegative. It will then follow that there is no pure-strategy equilibrium point. 

Let n1 be any player- 1 strategy. Consider any player-2 information set Ij , and let A, = 
{a;j I n1 chooses aij from some ai}. The contribution to H ( n 1 ,  n2) of I j  is 

if player 2’s strategy n2 goes left from I,; otherwise, the payoff will be the negative of 
the above. It follows that if player 2 chooses the strategy n2 of going left at ZJ when 
C,,,EAJ s(a,) 5 B, and right otherwise, then for each player-2 information set I,, the contri- 
bution to H(n1 ,  n2) of ZJ is no more than zero. Since there is no partition in the instance of 
3-PARTITION with all sets having total size B ,  there must be at least one player-2 information 
set for which CaIJEAJ s(a,) =- B.  Thus, the contribution to H ( n 1 ,  n2) of that information set 
will be negative; hence, the total expected payoff H(n1,n2) will be negative. 

Now let n; be any player-2 strategy. We consider two cases. 

Case I: At all player-2 information sets I], strategy n; goes right. In this case, for each node 
bi , the contribution to H ( n ; ,  IT;) of nodes below bj is B ,  regardless of the player-1 strategy 
xi. Furthermore, n; selects exactly one node a,, from each node a, ,  and the payoff below 
a,, will be -s(a,). It follows that the total expected payoff H ( n i ,  n;) is & times 

m B  - x s ( a )  = 0 
a c A  

and, hence, nonnegative. 

Case 2: At some player-2 information set I j ,  strategy n; goes lef. Let x be the number of 
information sets at which player 2 goes left, and let I j  be any particular information set for 
which player 2 goes left. Consider the player-1 strategy IT; in which for each node ai, player 
1 chooses aij. Then the contribution to H(nL,  xi) of Ij is 

- B  + 1 S ( U )  = (m - l)B. 

The contribution to H ( T ; ,  n;) of each of the m - x information sets at which player 2 goes 
right is B ,  and the contribution at each of the x - 1 information sets other than I j  at which 
player 2 goes left is - B .  Thus, the total expected payoff H(n1 ,  17;) is & times 

aEA 

( m  - l )B + ( m  - x ) B  - (x  - l )B = (2m - 2x)B .  
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Since x is not more than m, we have a total payoff that is nonnegative, completing the proof 
of the theorem. 

4.3. Consequences of the NP-Hardness Results 
Previous results had shown that the perfect-recall property forms a natural dividing line for 

one-player games: the class of games without perfect recall is NP-hard, whereas games with 
perfect recall can be solved in linear time. Our NP-hardness result in the previous subsection 
shows that the perfect-recall property does not form such a dividing line for games with more 
than one player. The following three corollaries to Theorem 2 address further complexity 
issues for imperfect information games with more than one player. (See Blair and Mutchler 
(1995) for proofs of the corollaries.) 

1. PR-PSE is NP-complete for any n 2 2, even if all players but one have perfect information 
and the game is zero-sum with only one level of decisions per player. 

2. Given a zero-sum, perfect-recall game r in which a pure-strategy equilibrium point exists, 
it is NP-hard to find such an equilibrium point. 

3. Given a two-player, zero-sum, perfect-recall game r, it is NP-hard to find a so-called 
ma-min pure strategy (as opposed to a pure strategy equilibrium point). 

Theorem 2, together with the NP-hardness result of Koller and Meggido (1992), implies 
that for one-player games without perfect recall, and for games (with or without perfect 
recall) with more than one player there is no efficient algorithm for finding pure strategy 
equilibria (when they exist), unless P = NP. Several directions are available to resolve 
this dilemma. One can seek algorithms for special cases. Or, one can seek heuristics for the 
general case. Both these approaches are taken in the next section, where a classic algorithm 
(IMP-minimax) for finding pure strategy equilibria in one-player perfect-recall games is 
discussed. As explained in Section 5.3, this algorithm can be used as a natural heuristic in 
the general case. The attractiveness of IMP-minimax is further enhanced by its similarity 
to the minimax algorithm used so successfully (in the form of alpha-beta) for many perfect 
information games. 

Another approach is to abandon pure-strategy equilibria and instead seek mixed-strategy 
(randomized) equilibria. A mixed strategy is any probability distribution over the set of pure 
strategies. When using a mixed strategy to play a game, the player selects a pure strategy 
according to the probability distribution specified by the mixed strategy. For example, if the 
game has 6 pure strategies n] . . . Zf,, then the mixed strategy (1/2, 1/6, 0, 0, 1/3, 0) would 
select n1 with probability 1/2, n2 with probability 1/6, and 7 ~ 5  with probability 1/3. Pure 
strategies are simpler, more natural to humans, and (in general) smaller than mixed strategies, 
which is why we focus on pure strategies in this paper. However, mixed strategies have two 
advantages of their own. First, all games have mixed-strategy equilibria (Nash 195 l), whereas 
not all games have pure-strategy equilibria. Second, there are polynomial-time algorithms 
(Koller and Meggido 1992; Koller et al. 1994) for finding small, mixed-strategy equilibria 
in the special case of two-player, zero-sum, perfect-recall games. This contrasts sharply 
with the results in this section, which show that there is no polynomial-time algorithm for 
finding pure-strategy equilibria in the same special case unless P = NP. The best of these 
polynomial-time algorithms for finding mixed-strategy equilibria first constructs a certain 
sparse M + 1 by N + 1 matrix. Here M is the sum, over the information sets U for player 1, 
of the number of alternatives (“choices”) available at information set U, and N is defined 
likewise for player 2. The algorithm continues by solving a certain linear programming 
problem specified by this matrix. Any natural implementation of this algorithm will require 

- 
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space at least linear in the size of the game tree. In practice then, these algorithms for finding 
mixed-strategy equilibria are slower than the linear-time logarithmic-space IMP-minimax 
heuristic presented in the next section. 

5. IMP-minimax 

The NP-hardness results of the previous section and those of Koller and Meggido (1 992) 
show that, in general, there is no efficient algorithm for finding pure strategy equilibria (when 
they exist), unless P = NP. The rest of this paper responds to this dilemma by introducing 
and analyzing algorithms for special cases that can also be used as natural heuristics in the 
general case. This section introduces the first such algorithm-a classic algorithm due to 
Wilson (1972), which we call IMP-minimax. Succeeding sections present an improvement 
to IMP-minimax, called IMP-alpha-beta, and an analysis of the magnitude of that 
improvement. 

Subsection 5.1 states the formal properties of IMP-minimax that make it an efficient 
algorithm for a special case. Subsection 5.2 presents the algorithm itself. Subsection 5.3 
contains examples illustrating IMP-minimax and its properties. 

5.1. Properties of IMP-minimax 

and Meggido 1992): 
IMP-minimax has the following two properties (Wilson 1972; Blair eta!. 1992; Koller 

0 The run time of IMP-minimax is linear in the number of nodes in the game tree. 
0 If the game has only a single player and has perfect recall, then the strategy computed by 

IMP-minimax is optimal. Otherwise, the strategy might or might not be optimal. 

Thus, IMP-minimax is an efficient algorithm for a special case. 

5.2. Statement of IMP-minimax 
In its simplest form, IMP-minimax is an algorithm for one-player games. Here we 

present IMP-minimax in its top-down, recursive form, as it would be programmed in a 
game-playing program.I6 Before describing IMP-minimax, we define the functions it relies 
on, using the example in Fig. 5 to illustrate them. 

0 Any subset X of an information set is a partial information set, abbreviated PI-set. The 
jth child of PI-set X is the set of all immediate descendants of nodes in X reached via 
the j*  alternative. For a strategy n, to say “set n(X) equal to the jth child of PI-set X” 
means to set ~ ( x )  to the j *  child of x for each x in the information set containing X. 

0 For any node x in Ic, its reachable probability prob(x) is the product of the probabilities 
below chance nodes on the path from the root to x.17 We also permit function prob to 
take a set X of nodes, in which case it returns prob(x) summed over all nodes x E X. 

0 Function puyo#(n) specifies the payoff (to the sole player) at leaf x of K. 

’‘Wilson (1972) and Koller and Meggido (1992) present IMP-minimax in a bottom-up fashion. 
“For the example of Fig. 5 ,  prob(1eaf whose value is - 100) is I /6, since the probability distributions below chance nodes 

are all the uniform distribution. 
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FIGURE 5. A one-player game tree. For any chance node (labeled *), the arcs directly below it are equally 
likely; player nodes are labeled with letters; and leaves are labeled with their respective payoff values. Ellipses 
are used to show information sets that contain more than one node. The thick lines indicate the strategy selected 
by IMP-minimax. 

0 Function extend takes a set X of nodes in K: and returns the set obtained by recursively 
replacing each chance node in X by its children until the resulting set contains no chance 
nodes.'* 

0 Function partition takes a set X of nodes in Ic and first separates the leaves from the 
nonleaves in X, then partitions the nonleaf nodes into their respective information sets.lg 

Figure 6 shows the IMP-minimax algorithm. Note that IMP-minimax both returns 
a value (per the V function) and computes a strategy TT* for L 2 0  It should be clear that 
IMP-minimax assigns an alternative to each information set in the tree and, thus, computes 
a strategy for Ic. 

5.3. Behavior of IMP-minimax 

In  general, the strategy computed by IMP-minimax is not an optimal strategy. For 
example, by tracing IMP-minimax on the game tree G2 in Fig. 2, one can see that the 
information set containing C and D is encountered twice; once to compute V ( C )  and later to 
compute V ( D ) .  The action of TT* on that information set is determined by the computation 
of V ( D )  (which overwrites the action determined by the computation of V ( C ) ) .  Thus, the 
strategy has expected payoff -99/2, whereas an optimal strategy has payoff 1/2. 

The above example illustrates what can go wrong when using V to compute a strat- 
egy: information sets can be encountered more than once, with no effort to make the same 
choice each time. Wilson (1972) showed that such an event is impossible when there is 
perfect recall in a one-player game, in which case IMP-minimax computes an optimal strat- 

'*For the example of Fig. 5, extend ((root ofrhe rree)) yields the five nodes labeled Level 1 in the figure; extend applied 

I9For the example of Fig. 5, letting - 100 and 2 denote the leaves whose values are - 100 and 2 respectively, we have that 

reader may find it instructive to trace the operation of IMP-minimax on the example in Fig. 5.  There, the value 

to the children of the Level 1 nodes yields the Level 2 nodes, and so on. 

parririon applied to { E ,  -100, 2. F, H ,  I ]  returns { ( E l ,  -100, 2, (F], (H, Ill. 

returned by V applied to exrend ( (mot of lc )  ) is 617/12. The strategy H* computed is shown in the figure by thick lines. 
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IMP-minimax: call V (extend ( (mot ofthe game tree) )), where the recursive function V ( X )  takes a set X of 
nodes in the game tree and is given by: 

max ( V(extend (Y))  I Y is a child of X ) if X is a PI-set I 
{ prob(x) payo#(x) + V ( x )  otherwise 

x E panirion ( X )  
x a leaf I x E panifion ( X )  

x a PI-set 

Each time in the recursion that the argument X is a single PI-set, set n*(X) equal to the child of X obtained via 
the alternative selected by the mux operator in the calculation of V (X). 

FIGURE 6. IMP-minimax. 

egy. Again, consider the game tree G 2  in Fig. 2, but with A and B in a single information 
set. (Thus, the game has imperfect information but perfect recall.) Here the computation 
of V(extend ( (root ofrnodijied G 2 )  )) returns the optimal payoff (0) and an optimal strategy 
(go right at { A ,  B } ) .  

In Blair ef al. (1992) we describe a class of one-player games that illustrates the magni- 
tude of the improvement IMP-minimax can achieve over the naive, examine-all-strategies 
algorithm for games with perfect recall. For arbitrary game-tree depth d,  there exists a 
game in the class that allows 2(4d-'-i)/3 different strategies. The naive algorithm iterates 
over all possible strategies, computing the expected value of each and selecting the strategy 
whose expected value is maximal. Thus, its execution time is R (number of strategies). 
IMP-minimax, which takes advantage of the game having perfect recall, has execution time 
O(number of nodes in the tree). These quantities are sharply contrasted when considering 
game trees with increasing depth; for example, with depth 8 the number of nodes in the game 
tree is 16321, whereas the number of strategies is 8.4 x 

IMP-minimax can be extended naturally to two-player zero-sum games with imperfect 
information by replacing the max operator in IMP-minimax with a min operator at the 
player 2 PI-sets. This natural heuristic remains efficient (linear in the size of the game tree 
searched) in this two-player form. Since IMP -minimax finds a pure-strategy equilibrium 
point in one-player games with perfect recall, one might expect it to do the same for two- 
player games with perfect recall, when such an equilibrium point exists. However, not oniy 
does IMP-minimax not accomplish this goal, neither can any efficient algorithm (unless 
P = A@'), as is shown by Theorem 2 in Section 4.21 

6. INFORMATION SET PRUNING 

The previous section introduces to the A1 community a classic algorithm due to Wilson 
(1972), which we call IMP-minimax. This algorithm is correct for a special case (single 

*'Fig. 3 in Section 3 is a two-player game with perfect recall on which IMP-minimax finds a pure-strategy equilibrium 
point. For a simple example on which IMP-minimax fails, modify game tree G 1 ,  which appears on the left side of Fig. 2 in 
Subsection 2.2, as follows: first, convert GI into a two-player game by inserting a player-2 node E between A and C (with sole 
child C) and another player-2 node F between B and D (with sole child D). Then, convert GI into an imperfect information 
game by placing A and B into one information set and C and D into another while leaving E and F in separate information 
sets. The resulting game has perfect recall. It has two pure-strategy equilibrium points, under both of which player 1 moves 
right from information set { A .  E )  to obtain a score of 0. However, IMP-minimax chooses a suboptimal strategy that moves 
left from information set ( A ,  B ) ,  achieving an expected payoff of -99/2. 
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player, perfect recall) and can be used as anatural heuristic in the general case. IMP-minimax 
is to imperfect information games as minimax is to perfect information games. Here we 
introduce IMP-alpha-beta, which is to IMP-minimax as alpha-beta is to minimax. That 
is, IMP-alpha-beta computes the same value as does IMP-minimax but usually faster 
through pruning (i.e., not examining the value of some nodes). The next section analyzes the 
m a g n i t u a e e  improvement of IMP-alpha-beta over IMP-minimax. 

This section first shows that, in general, pruning is not possible in one-player games. Then, 
we show through examples that pruning is possible given a certain natural assumption about 
the payoffs at leaves. Finally, we present the IMP-alpha-beta algorithm that incorporates 
such pruning. 

The following theorem shows that, in general, pruning is not possible in one-player 
games. We assume for the theorem that the probabilities at arcs below chance nodes are all 
non-zero. 

Theorem 3. Let A be any algorithm that correctly solves this problem: given an arbitrary 
one-player game, return the value of that game. Then, for any one-player game G given as 
input to algorithm A, every leaf in G is examined by A. (That is, A determines the payoff of 
every leaf in G.) 

Proof. By way of contradiction, suppose there were a correct algorithm A that determined 
the value of some one-player game G without examining some leaf X of G. Let M denote 
the maximum, over all leaves in G, of the payoffs at those leaves. Let p denote the product 
of the probabilities below chance nodes on the path from the root of G to node X .  Construct 
a new game G’ that is the same as G except that the payoff at leaf X in G’ is y. By choice 
of X and construction of G’, algorithm A computes the same value for G and G’. But this 
contradicts the correctness of d-the value of game G is at most M, and the value of game 
G’ is at least p = M + 1. 

Fortunately, a simple assumption permits pruning in one-player games: suppose there is 
a known upper bound on the payoffs at leaves. This assumption is quite reasonable in practice 
and is also used in multiplayer pruning (Luckhardt and Irani 1986; Korf 1991) and chance- 
node pruning (Ballard 1983). We introduce a new form of pruning, infomtation setpruning, 
which assumes such an upper bound. Before formally stating the IMP-alpha-beta algo- 
rithm that implements this pruning, we show how it works through three examples. In each 
example, we assume that the children of the chance node at the root are equally probable. 

Example 1. Consider the game tree in Fig. 7, where the upper bound on payoffs at leaves is 
10. The left alternative from the information set gives an average payoff of = 8, whereas 
the right alternative can give at most = 6.  Hence, an algorithm that has determined the 
three values specified in the figure need not examine the subtree labeled ’ ‘ ? . ‘ ’ 

Information set pruning is available because the value of an alternative A from an in- 
formation set X is the sum of the values of the leaves and/or information sets into which X 
fragments via alternative A. (Confer the second case in the V function for IMP-minimax.) 
Knowing the values of some elements of this sum and bounding the values of the other el- 
ements of the sum by using the upper bound on payoffs at leaves provides an upper bound 
u on the value of X via alternative A. If information set X is known to have (via another 
alternative B )  a value higher than u,  then the remaining terms of the sum can be pruned. 

Exumple 2. Consider the game tree in Fig. 8, where again the upper bound on payoffs at 
leaves is 10. Let T denote the top-level information set; it contains 13 nodes. The value of 
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FIGURE 7. Information set pruning, a simple example. 
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FIGURE 8. Information set pruning, a more elaborate example. 

T via its left alternative is = 8. The value of T via its right alternative is the weighted 
sum of the four information sets below T and the leaf whose payoff is 3. The first two 
of those information sets have values 13 
20/13, respectively. The last two of those information sets have values at most 2 3  and 5g, 
respectively; hence, the value of T via its right alternative is at most 6 + 6 + +2{ t -5; = 
99/13, which is less than the value (8) of T via its left alternative. Both of the forests below 
the rightmost two information sets at depth 2 can be pruned. 

As in alpha-beta pruning, the source of the pruning bound for information set pruning 
can be either one level above the pruned nodes (shallow pruning) or many levels above the 
pruned nodes (deep pruning). Here is an example of the latter. 

Example 3. In the game tree in Fig. 9 (again with 10 as the upper bound on payoffs at 
leaves), the node marked ? ? can be pruned. This happens not because the left child of its 
parent information set has value = 5/2, nor because the left child of its grandparent 
information set has value = 7/4, but rather because the left child of its great-grandparent 
information set has value - = 8. As we will see, IMP-alpha-beta propagates this 
value (combined with other pruning information) down to the bottommost information set, 
where the pruning of node ? ? occurs. 

Information set pruning is different from alpha-beta pruning (Slagle and Dixon 1969; 
Knuth and Moore 1975), which requires both MAX and MIN nodes. Because our games 
have only a single player, alpha-beta pruning is available to us only in the weak form of 
immediate pruning: if the value of one alternative from an information set equals the highest 
value possible, then the remaining alternatives can be pruned. Information set pruning is more 
closely related to chance-node pruning (Ballard 1983), although the two are by definition not 

0+4 2+4 4+9+7 4fOCO -} = = 6/13 and maxi 13, 
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FIGURE 9. Information set pruning, deep pruning. 

the same because chance-node pruning operates at chance nodes while information set pruning 
operates at collections of information sets that may be far removed from any chance nodes. 

Scoping is indicated by indentation. 
Note that the two subfunctions call each other recursively, with the recursion ending in 
Mixed-Set. Function Max-Set takes a set of game-tree nodes, all of which are contained 
in a single information set. Function Mixed-Set also takes a set of nodes, but the set may 
contain leaves and/or nodes from multiple information sets. 

Theorem 4. (IMP-alpha-beta is correct.) For any real number P and set X of nodes in  
a one-player game with imperfect information, 

Algorithm IMP-alpha-beta appears in Fig. 

V (extend ( X ) )  if V (extend ( X ) )  2 P 
Mixed-Set (extend(X), P) = otherwise. I 

In particular, IMP-alpha-beta computes the same value as IMP-minimax. 

Proof. The proof is by induction on the number of recursive calls to V (van Lent 1993; 
Mutchler and van Lent 1995). 

To obtain the strategy associated with the value IMP-alpha-beta returns, simply 
record in Max-Set the alternative with which best is associated. We note that an efficient 
implementation of IMP-alpha-be ta must make various constant-time optimizations. 

7. EFFECTIVENESS OF IMP-alpha-beta 

The previous two sections present a classic algorithm IMP-minimax and a new algorithm 
IMP-alpha-beta that computes the same value as does IMP-minimax but usually does 
so faster through pruning (i.e., not examining the value of some nodes). In Mutchler and 

22The behavior of most of the domain-specific functions is clear from their names: alternative finds the alternatives from 
an information set; move returns the nodes obtained from following a given alternative from a given information set; puyofl 
returns the payoff of the given leaf; mot refers to the root of the given game tree; and [I is an upper bound on payoffs at 
leaves. The other three domain-specific functions are the functions prob, extend. and parfition, as defined for IMP-minimax 
in Subsection 5.2. 
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IMP-alpha-beta: call Mixed-Set (extend ({root]), -m). 

Max-Set ( x ,  P )  
best = P 
for each alternative A from x 

temp = Mixed-Set (extend (move ( A ,  x)), best) 
if temp > best 

if temp == U *prob ( x )  

best = temp 
return (temp) 

return (best) 

Mixed-Set (X, P )  
sum = 0 
prob-left = prob ( X )  
X :=partitian ( X )  
for each member x of X 

prob-left = prob-left - prob ( x )  
if x is a leaf 

else 

if sum + U * prob-left 5 P 

sum = sum + prob (x) * payo$(x) 

sum = sum + Max-Set (x, P - sum - U * prob-left) 

return (P) 
return (sum) 

FIGURE 10. IMP-alpha-beta. 

* 

+ + +  + + +  + 

+ + +  + + +  + + +  + + +  + + i  

+ +  

+ + +  

FIGURE 11 .  The IMP-model with k = 3, b = 2, and d = 3. 

van Lent (1995) we present an analysis of the performance of IMP-alpha-beta. Here, we 
have space only to sketch the main conclusions. 

In Mutchler and van Lent (1995) we motivate the use of the following IMP-model for the 
analysis. The IMP-model has three positive integers as parameters: k ,  6, and d .  Each game 
tree within the model has a single chance node at the root of the tree. This chance node has 
kd-' children all within a single information set. Each interior node of the game tree, except 
for the root, has b children. For each information set X in the game tree, the Jth child of 
X (for j from 1 to b )  is partitioned into k information sets of equal size; however, depth d 
nodes are leaves. The IMP-model describes only the structure of the game tree. Payoffs can 
be assigned by any method desired. Figure 11 shows an example of the IMP-model. 
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Theorem 5. IMP-minimax examines all (kb)d-' leaves in the IMP-model tree. 

Theorem 6. For any setting of the parameters ( k ,  b, and d)  of the IMP-model with k > 1, and 
for any ordering of the loops in IMP- alpha-be ta, there exist payoff values and a placement 
of those payoff values such that the number of leaves examined by IMP-alpha-beta can 
be23 

0 as many as (kb)d-' (that is, no pruning). 
0 as few as kd-' (further, this lower bound is tight). 
0 as few as 

i f k # b  

if k = b, 

bd-'(b - 1) - kd-I (k  - 1) 
b - k  I b@-*) (bd - d + 1) 

with none of the pruning due to immediate pruning. 

The second result represents the extreme case when all the examined leaves give the 
upper bound and the rest of the tree is pruned through immediate pruning. The second and 
third results in the above theorem show that it is possible to prune vast portions of the game 
tree if the payoffs and placements are favorable, even if the effects of immediate pruning are 
ignored. The third result bears strong resemblance to the best-case behavior of alpha-beta, 
in which approximately 2bd/2 leaves out of bd total leaves are examined (Knuth and Moore 
1975). When k equals b, the above theorem shows that in the best case, fewer than dbd-' 
leaves will be explored out of b2(d-1)  total leaves. 

We also performed an extensive average-case analysis. The three main conclusions from 
the experiments are as follows, where ap and mm are the number of leaves examined by 
IMP-alpha-beta and IMP-minimax, respectively. First, a/!?/mrn decreases as the depth 
d of the tree increases. Second, for fixed k and d ,  function a/!?/mm decreases as b increases. 
Third, for fixed b and d, function aB/rnm increases as k increases. 

In our average case study, less than 20% of the total nodes are examined in the more 
favorable cases (where b = 10 and k = 2). About 96% of the total nodes are examined in 
the least favorable case (where b = 2 and k = 10). 

8. SUMMARY 

Imperfect information games are an important and interesting class of games. This paper 
provides two sets of results fundamental to an understanding of algorithms for solving such 
games: 

1. We show that finding a pure-strategy equilibrium point in an imperfect information, 
perfect recall, n-player game, given that such an equilibrium point exists, is NP-hard, 
for any n 2 2. This provides an interesting complement and contrast with Koller and 
Meggido's result that for one-player games, the perfect-recall property forms a natural 
dividing line. That is, in one-player games, finding pure strategy equilibria is NP-hard 
in general but can be done in linear time in games with perfect recall. 

2. Motivated by these NP-hardness results, we introduce to the A1 community a classic 
algorithm due to Wilson (1972) that solves a special case: one-player, imperfect infor- 
mation games with perfect recall. Wilson's algorithm, which we call IMP-minimax, is 

'3For brevity, we omit the k = I special case; it  is given in Mutchler and van Lent (1995); van Lent (1993). 
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akin to minimax in that it does a single traversal of the game tree but is designed to handle 
the existence of information sets. We introduce a new algorithm, IMP-alpha-beta, 
that computes the same value as does IMP-minimax but usually does so faster through 
pruning (i.e., not examining the value of some nodes). Thus, IMP-alpha-beta is 
to IMP-minimax as alpha-beta is to minimax. Our analysis of IMP-alpha-beta, 
that includes both theorems bounding its performance and empirical data indicating its 
average-case behavior, suggests that IMP-alpha-beta will be a useful substitute for 
IMP-minimax. 

A1 researchers have had great success in developing programs for playing some perfect 
infomtion games, notably, Othello (Lee and Mahajan 1990), backgammon (Berliner 1980), 
checkers (Schaeffer et ul. 1993), and chess (Kopec et al. 1992). Much of this success comes 
from two ideas: the use of a static evaluator (Shannon 1950), and the existence of efficient 
algorithms (e.g., minimax, alpha-beta, conspiracy numbers (McAllester 1988; Schaeffer 
1990) and singular extensions (Anantharaman et al. 1990) for solving perfect information 
games. It remains to be seen whether similar ideas will be effective for impelfect infomuztion 
games like bridge and poker. First, it is not clear whether the use of a static evaluator in such 
games will be as successful as it has been in games like chess. This issue can be determined 
only empirically, by building game-playing programs. Second, whereas perfect information 
gzmes have efficient solution methods (e.g., alpha-beta), imperfect information games do not 
have efficient methods for finding pure strategy equilibrium points, unless P = "P. 
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