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I. INTRODUCTION

The development of instabilities in parallel fluid flows with a
velocity gradient is well known (11, p. 481). The instability arises
because of the relative velocity between fluid layers. This insta-
bility was first studied by Helmholtz and Lord Kelvin in the last
century, and has become known as the Kelvin-Helmholtz (K-H) instability.
While the original work dealt with the instability of heterogeneous
layers of fluid separated by a tangential velocity discontinuity,
Rayleigh (50) studied the effects of a finite shear layer thickness
on the hydrodynamic problem.

In many physical situations conditions are such that a velocity
shear exists in a plasma or a magnetohydrodynamic (MHD) fluid.
Here the behavior of the physical system is modified by the presence
of electromagnetic fields. Our primary interest has been motivated
by one such physical situation, the flow stability at the magnetopause
or boundary between the post shock solar wind flow and the earth's
magnetosphere. The physical situation of the solar wind flow around
the earth is shown in Fig. 1. The supersonic solar wind is slowed
and compressed by the earth's bow shock and then flows around the
earth's magnetospheric cavity. The earth's dipole magnetic field

is compressed and distorted by the solar wind plasma. The stronger
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magnetic ficld of the dipole deflects the solar wind plasma and in
the equilibrium configuration prevents the solar wind plasma from
entering the magnetosphere. A region of velocity shear exists at
this boundary, the magnetopause. At large distances this shear
region appears to be a tangential velocity discontinuity between the
magnetosheath, post shock solar wind flow, and the nearly stationary
magnetospheric plasma. This region is one in which a possible hydro-
magnetic Kelvin-Helmholtz instability may exist. Investigations along
these lines have been carried out by many authors treating the mag-
netopause as a tangential velocity discontinuity. Southwood (61) and
MacKenzie (40) have been two of the latest investigators, and their
papers contain references to much of the earlier work. The hydro-
magnetic Kelvin-Helmholtz instability has been discussed in conjunc-
tion with the interaction between the solar wind and the magnetosphere
(4) and to explain the semiannual variation of the earth's geomagnetic
cavity (7). Although this will be our primary area of concern some
of the results obtained will be applicable to other plasma problems
where a velocity shear may affect the flow field.

Among the many other physical situations with velocity shear
are the regions between fast and slow streams of particles in the
solar wind (13, 32), the behavior of plasmas contained in experi-
mental devices such as Q machines (14, 15, 31) and the flow in MHD

boundary layers and wakes (37-39, 24-26, 49).



In all of these problems a parameter of primary concern is the
plasma 3. We define 3 as the ratio of the plasma kinetic pressure p

to the magnetic pressure due to the magnetic field, B. In MKS units

ﬁ - :%%/uk,- 1.1)

i, is the permeability of free space. For B < 1 we have a physical

this gives

situation in which the plasma may be confined by the magnetic field
while for 8 >1 confinement is not possible. For the magnetopause
problem the range of 8 is shown in Fig. 1. Outside of the magneto-
sphere the plasma streams through space with g > O(1). Inside the
magnetosphere where the geomagnetic field is large we have g << 1.
For the case of a confined plasma both in the laboratory and in space
we generally have B << 1 as is the case with the magnetospheric
plasma. This case in general allows simplification in the mathematics
for dealing with plasma problems. This simplification occurs because
B << 1 usually allows the problem to be treated in the electrostatic
approximation, 'E'? =-{J¢ where E is the electric field and ¢ the electric

potential (63, p. 25)1. For this case magnetic field fluctuations are

not considered in treating wave propagation and stability problems.

1For two more general discussions of the applicability of the electro-
static approximation to § << 1 problems see Montgomery (46).



For the magnetopause problem, however, this is not the case.
The presence of the 8 > 1 region in the magnetosheath means that
the electrostatic approximation cannot be made in this problem.
For this case we must account for fluctuations in the magnetic field.

Before discussing the stability of the magnetopause, let us
review some of the physical aspects of the boundary and the flow
field. A general review of the interaction of the solar wind with the
earth's magnetic field can be found in Scarf (54), the Reviews of
Geophysics (51), and Wolfe and Intriligator (72) among others.
Physical parameters are shown in Fig. 1. On the magnetosheath
side of the boundary the solar wind plasma temperature is 10° °K
and the number density is the order of 10 ion-electron pair per cubic
centimeter. The flow in the magnetosheath is highly turbulent with
fluctuations in both the magnitude and direction of the magnetic fields
in the 30y to 40y range (1y = 107° gauss = 107° Webers/mz). The
magnetosheath field is frequently directed southward (29, p. 302).
For this region B 2 1. The flow velocity is zero at the subsolar
point and increases as one moves away from this point along the
boundary in any direction.

Inside the magnetosphere the plasma density is of the order of
10-1 ion-electron pair per cubic centimeter at a temperature of

around 105 °k - 106 °k (40). Inside the boundary the magnetic field
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strength is of the order of 50y - 100y. The field here is nearly
constant in both magnitude and direction. These conditions give
B << 1. Recent investigations by Smith and Davis (60) show an
additional amount of spreadinthese data with nearly equal field
magnitudes in the magnetosheath and magnetosphere on certain
boundary crossings. These measurements alsoshow the absence
of any significant magnetic field component normal to the interface
indicating a closed magnetosphere and a tangential magnetic dis-
continuity at large length scales. Inside the magnetosphere the
plasma is essentially at rest. For large length scales the magneto-
pause thus represents a tangential velocity and magnetic field discon-
tinuity. This will be true for both ""open' or ''closed'" magnetosphere
model for the low latitude equatorial regions and for the high latitude
regions for @ ‘closed" magnetosphere,k The applicability of a
surface discontinuity model to the high latitudes for an "open'" magneto-
sphere is certainly questionable as has been discussed by Southwood
(61).

While at large length scales the magnetopause appears as a
velocity discontinuity, at smaller scales the thickness is non-zero.
Simple particle reflection theory indicates a magnetopause thickness
in the 150 km to 200 km range for 1 Kev protons and magnetosphere

strengths of the order of 50y (29, p. 300). This corresponds to the
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ion Larmor radius (ai =0, /Qi\ for a 1 Kev solar wind proton enter-
ing the magnetospheric field at right angles. It is considerably

less than the Larmor radius of a magnetospheric proton in the same
field. In the above U,1 is the ion sound speed Ui =y (&/M) T_1

and Qi is the ion cyclotron frequency Qi =eB/M. Satellite data
(29, p. 301) indicates the thickness to be of the order of 100 km or
greater. This distance represents a lower limit and may be larger
due to the motion of the magnetopause. Such motions have been
observed with velocities in the 50 km/sec to 150 km/sec range (60).
The motion appears to be quasisinusoidal with peak amplitudes of
1/3 Re (Re = 1 earth radii) and a period of approximately 2 minutes.
Wave motion has also been detected both inside and outside the
boundary. This appears to be associated with the boundary motion

(2, 20).



II. REVIEW OF PREVIOUS WORK

A general review of the K-H problem in both ordinary fluid
mechanics and in magnetohydrodynamics can be found in
Chandrasekhar (11, p. 481),Drazin and Howard (16), and Gerwin
(23). The material in Chandrasekhar covers work prior to 1960,
that in Drazin and Howard work on inviscid parallel shear flows
prior to 1966, and that in Gerwin work on the K-H problem in hydro-
dynamics, MHD, and plasmas prior to 1968. The work we shall
consider here will be primarily that which is relevent to the mag-
netopause problem. This work, in general, falls into the class of
low frequency linear stability analysis using the hydromagnetic
equations.

In studying the stability of the magnetopause, the general
method has been to investigate the behavior of an interface of zero
thickness between two hydromagnetic fluids in relative motion.

The effects of gravitational forces and the curvature of the boundary
are neglected. The general formulation for arbitrary tangential
magnetic fields and relative velocities leads to a tenth degree disper-
sion relation (61). Using the hydromagnetic equations with infinite
conductivity, Syrovatskii (66), Chandrasekhar (11), and Axford

(3, 5) discussed the incompressible problem while Sen (56),



Fejer (22), Lerche (36), Southwood (61) and MacKenzie (40) included
the effects of compressibility. With the exception of Southwood,

all of the above introduce a number of simplifying assumptions to
reduce the degree of the dispersion relation. Southwood maintained
a general formulation and studied the onset of instability. Both he
and MacKenzie used satellite data to obtain stability conditions at
the interface. The conclusions of the above work can be summarized
by saying that the hydromagnetic equivalent of the Kelvin-Helmholtz
instability does exist for zero thickness shear layers. These results
have shown that compressibility tends to stabilize the interface but
that the effect of the magnetic field can be either stabilizing or
destabilizing (22). In application to the magnetopause problem
MacKenzie (40) has shown that the high latitude regions near the
earth are stable in the quiet solar wind when pre-shock velocities
are of the order of 400 km/sec. At most the extreme reaches

the tail is wunstable at these times. For 'gusty' days when the
pre-shock velocity reaches velocities near 700 km/sec the region of
instability moves in close to the earth at high latitudes. Southwood
(61) has shown that at low latitudes, in the equitorial region, where
the flow velocity has a large component perpendicular to the geo-
magnetic field, the hydromagnetic K-H instability will develop if a

critical magnetosheath velocity is exceeded. As one moves from
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the subsolar point toward dawn or dusk, the magnetosheath velocity
increases and instability is possible. The onset of instability occurs
for the lowest velocity when the magnetosheath field is parallel or
antiparallel to the geomagnetic field, i.e. northward or southward.
Southwood has also shown that the fastest growing modes will be
closely aligned to a plane perpendicular to the earth's field and that
the waves will circularly polarize.

Hans (28) has used the finite ion Larmor radius expansion to
the fluid equations to investigate the effects of finite Larmor radii
and collisional effects on the zero thickness incompressible hydro-
magnetic problem. For a constant transverse magnetic field and
wave propagation parallel to the flow velocity, he has found that the
effects of the finite ion Larmor radius stabilized the flow and that
collisional effects if small provided stabilization but if larger than a
critical value were destabilizing.

Talwar (67) and more recently Duhau et al (18) have extended
the above work to collisionless plasmas with non-isotropic pressure
tensors. These authors utilized the collisionless Chew-~-Goldberger -
Low (CGL) equations (12) to investigate the hydromagnetic stability
of a non-isotropic plasma witha tangential velocity discontinuity.
Their results were calculated for the special case of uniform mag-

netic field with propagation parallel to the field. These results
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show that the instability does exist and that changes in isotropy
do not in general effect the problem.

The presence of the hydromagnetic Kelvin-Helmholtz instability
provides a mechanism for providing a viscous interaction between
the solar wind and the magnetosphere. Such a viscous interaction
has been proposed by Axford and Hines (4) and others to explain
magnetospheric convection and certain auroral phenomena. It should
be noted that the viscous interaction associated with the Kelvin-
Helmholtz instability may be only one of many processes occurring
at the boundary to produce the total viscous drag. Among other
possible mechanisms are the viscous interaction of Axford and
Hines (4) fast field line merging of Dungey (19), Brice (9) and others;
and ion cyclotron damping based on a homogeneous plasma model
of Eviatar and Wolf (21).

Physical evidence in the form of satellite and ground based
observations of magnetic fields has also been presented for the
existence of the hydromagnetic Kelvin-Helmholtz instability at the
magnetopause. Most of this evidence has been summarized by
Dungey and Southwood (20). A brief outline of this work will be
presented here along with other work published since the above paper
appeared. As mentioned previously satellite observations show

multiple crossings of the magnetopause indicating quasisinusodial
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oscillations and the presence of waves on the boundary. Observa-
tions of this nature have been made by Anderson et al (1), Aubrey
et al (2), Smith and Davis (60), and others (see Ref. 20). The
oscillations are in the low frequency range with periods of the order
of 10 sec to 10 min. The recent results of Aubrey et al indicated
these waves travel tailward along the magnetopause with a velocity
of the same order as the magnetosheath plasma flow velocity. These
results are consistent in frequency range and convection velocity
with waves produced by the Kelvin-Helmholtz instability of the
boundary (2, 20). Additional data from Greenstadt (27) and Kaufmann
and Konradi (34) indicated the presence of large amplitude waves
inside the magnetosphere adjacent to the boundary as well as outside
the boundary in the magnetosheath. Wave periods were in the 10 sec
to 10 min range again and consistent with Kelvin-Helmholtz theory.
Kaufmann and Konradi indicated some of the magnetosheath waves
originated at the magnetopause and were attributable to boundary
motion. Dungey and Southwood have correlated the wave magnetic
field oscillation and polarization from Explorer 33 data with that
predicted by Southwood's hydromagnetic Kelvin-Helmholtz instability
theory. These data showed a reversal in wave polarization as the

boundary was crossed in agreement with the theory. Other satellite
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and ground based data on magnetosphere waves and magnetic field
pulsations summarized by Dungey and Southwood also showed ultra
low frequency pulsations in the pc 2 (5-10 sec period) to pc 5 (150-
600 sec period) range. The pulsations often agreed in the sense of
rotation and polarization with surface waves on the magnetopause.
Sen (57, 58) has also correlated micropulsation data with Kelvin-
Helmholtz instability theory and found the results consistent. The
diurnal variation of the continuous pulsations is also explained by
the Kelvin-Helmholtz theory (20) as is the more recent explanation
of the semiannual variation of geomagnetic activity given by Boller
and Stotlow (7). There thus appears to be strong evidence for the
presence of the hydromagnetic Kelvin-Helmholtz instability of the
magnetopause.

All of the above mentioned theoretical work on the hydromagnetic
Kelvin-Helmholtz instability suffers from one drawback, however,
as was pointed out by Lerche (36). In the velocity discontinuity
models used above the largest growth rates, those which will goven
the physical behavior of the interface, occur for the largest wave
numbers. The growth rate increases indefinitely with wave number.
Thus while the theory assumes that all length scales of physical
interest are much larger than the thickness of the shear layer, the

largest growth rates occur for wavelengths approaching zero. In
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this manner the formulation of the problem is inconsistent. Clearly
to obtain a consistent formulation the thickness of the layer must be
taken into account even in the hydromagnetic formulation. In addi-

tion to the layer thickness Lerche mentions other length scales such

as the ion Larmor radius and the Debye length defined as

2
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At these length scales the hydromagnetic formulation must be aban-
doned because of wave-particle interactions and kinetic theory must
be used. Because of the above inconsistency and the failure to include
layer thickness, ion cyclotron radius and possibly smaller length
scales, Lerche argues that the hydromagnetic formulation is not

valid and that a kinetic theory formulation is required to properly
discuss the problem of magnetopause stability.

A similar situation occurs in ordinary hydrodynamics. For this
case, too, the growth rate increases with wave number for shear layers
of zero thickness (11, p. 484). Here, however, when the thickness of
the layer is taken into account, the growth rate remains finite and is
zero for wave numbers beyond a critical value. This result was

obtained originally by Rayleigh (50) for incompressible flow with a
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linear velocity profile. The wave number for zero growth rate, kc,

is given by the solution of the transcendental equation

-2
2¥.= \ + &

'Kc. < K‘lc A
where d is the half thickness of the layer. Recently Schuurman (55)

has included compressibility in the finite thickness linear velocity
profile and has shown that the first effects of compressibility provide
flow stabilization. This is in agreement with the earlier zero thick-
ness work of Miles (44). Stabilization at large wave numbers has
been obtained for other continuous shear layers such as the incom-
pressible hyperbolic tangent shear layer investigated numerically

by Michalke (43). A similar hydromagnetic problem has also been
studied by Gotoh (24, 25) and Gotoh and Namata (26). They considered
an incompressible hydromagnetic free boundary layer with a hyper-
bolic tangent velocity profile and a constant magnetic field parallel

to the flow velocity. Gotoh initially obtained approximate results for
long wave lengths and growth rates near zero. Later he was able to
numerically obtain solutions for the wave number of neutral disturb-
ances. In the high Reynolds number and high magnetic Reynolds
number case these results indicated a critical upper limit on the

wave number where the growth rate became zero. They also indicated
a stabilizing effect for a parallel magnetic field. No quantitative

results were obtained for other wave numbers or larger growth rates.
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Another analogous situation also occurs in the study of the
Kelvin-Helmholtz instability in low g plasmas. Using a two fluid
hydromagnetic approach for a nonuniform infinite plasma slab with
a constant magnetic field, D'Angelo (14) found that instability de-
veloped for shear velocity changes of the order of the ion thermal
speed. Melchior and Popovic (42) extended this work to include
the effects of the finite ion Larmor radius (FLR) and Smith and
von Goeler (59) treated the problem using the Vlasov-equation to
describe the ion motion and the electron fluid equations to describe
the electrons. Recently Baikov (6) has extended this work to include
temperature gradients using the two fluid equations. In all of this
work as the wave numbers becomes smaller, such that the plasma
becomes more homogeneous with respect to the perturbation wave-
length, the growth rates become zero.

In both the finite thickness hydrodynamic problem and the infinite
plasma slab problem the effects of non-zero shear layer thickness
resulted in stabilization of the disturbances. For this reason and
because of the strong experimental evidence of the existence of the
hydromagnetic Kelvin-Helmholtz instability at the magnetopause, we
will further consider the effect of non-zero shear layer thickness

on the hydromagnetic problem. While we agree with Lerche that a
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complete investigation should involve a kinetic theory treatment,

we also accept his observation that such a treatment must be based
on a detailed knowledge of the equilibrium distribution function for
this problem. At present, as at the time of Lerche's observation,
such detailed knowledge does not exist. Thus like Southwood (61),
while acknowledging the limitations of the hydromagnetic theory we
will formulate the problem in this limit, utilizing the fluid equations,
and considering velocity shear layers of non-zero thickness. While
not providing a completely detailed description of the hydromagnetic
Kelvin-Helmholtz instability to all length and time scales, such a
formulation should lead to a better understanding of the nature of
Lerche's inconsistency as related to the hydromagnetic assumption
and the overall behavior of the boundary.

The models we use in this study will employ the hydromagnetic
equations as already discussed. We shall also assume the existence
of an equilibrium magnetopause which will be perturbed to study the
stability of the layer. We shall not enter into a discussion of the
existence of such a layer (10, 33). Similarly while the plasma will
be taken to be collisionless we will assume that sufficient wave
particle interactions take place in the turbulent magnetosheath to in-
sure that the distribution function remains near Maxwellian so that

the fluid equations are applicable in the low frequency regime. Our
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aim again is not to develop a complete theory for the magnetopause
and its stability but to investigate the effect of non-zero shear layer
thickness on the hydromagnetic model.

We begin by studying the hydromagnetic Kelvin-Helmholtz insta-
bility in an infinite inhomogeneous plasma slab using the hydromagnetic
two fluid model. This model neglects edge effects and extends the
electrostatic, g << 1, work of D'Angelo to the B a~-O(1) region with a
nonuniform magnetic field. After this we employ the single fluid
hydromagnetic equations to study the effects of finite shear layer
thickness. As in previous work (14, 40, 61) we will consider a
cartesian coordinate system and assume length scales are such

that the curvature of the field lines are not important.



III. THE TWO FLUID MODEL AND THE
EQUIVALENT DIELECTRIC TENSOR
We first consider the effects of finite 8 on the linear stability
of an infinite inhomogeneous slab of collisionless plasma. The
plasma is taken to be of infinite extent with all nonuniformities in
the equilibrium model taken in the x direction. Figure 2 shows the
equilibrium physical situation. We consider a nonuniform density
and a nonuniform magnetic field along the x-axis in the equilibrium
model. The presence of these nonuniformities leads to a diamag-
netic drift of electrons and ions in the y direction. Additionally we
consider an equilibrium flow in the z-direction with equal ion and
electron velocities. This flow is assumed to have a velocity profile
which is a function of the x-coordinate. All gradients are assumed
to be weak.
To investigate the stability of the nonuniform plasma slab we
will use the equivalent dielectric tensor approach (63, p. 9). The
formulation is based using Maxwell's equations to form a ''dielectric

tensor" for the plasma. In rationalized MKS unit we have

-
VD= e (3. 1a)
-
V:r 3 =0 (3. 1b)
S -
Ix E: -8
-h -d t.}
UxHz T+ ?’7.,_‘2- (3. 1d)

(3.1c)
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Figure 2.

Inhomogeneous Slab Shear Layer Model
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The constitutive relations are
-d
s Mo W (3. 2a)
—
E (3. 2b)

where By and €, are the permeability and dielectric constants for
-
free space. In the above J, the current density, and Py the charge

density are determined by the plasma. Formally

ng: Q(W;_-V\e) (3. 33.)
[N -h -t
T: @ (M- NeVe) (8. 30)

where n,, vy and n, v, are the number density and fluid velocity
of ions and electrons respectively. These can be obtained from the
species fluid equations as will be done here, or from Kkinetic theory,
by taking velocity moments of the distribution function.

Using Eq. (3.2a) and (3. 2b) in Eq. (3.1c) and (3.1d) we obtain a

- -
single equation in E and J

— & i P
VX (IxEYz-y 7 - | 2E
ﬁ L (3.4)

In solving either the fluid equations or the Vlasov equation (since
-
the plasma is collisionless), J will be determined as a function of the
Y
electric field E. Thus formally we now define the conductivity tensor

=or‘ as follows:
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o - =
I= ok, (3. 5)
Using the conductivity tensor we rewrite Eq. (2.4)
- L= -- -d
TxWE)Y 4 L VE L Yo T E = O,
cr (3.6)
This can be written in the form
S -
K.e=0 (3.17)
2
where K is the equivalent dielectric tensor of the plasma. The
2

operator K is a second order differential operator.

:s “ .3
Bz o lox ] 41 2OV L o O
Ot

For low frequency hydromagnetic waves, which we will be considering,
the above relation can be simplified by neglecting the effects of the
high frequency displacement current contributions (45, p. 194). This

S =
results in neglecting the EizE/at2 term in K which can now be written

%Z"V*ivu )T + Mo L ), (3. 8)

-
In the linearization procedure which follows, f{'\ will be reduced to

an algebraic operator. From this form, the dispersion relation can
be obtained for waves propagating in the plasma.
The plasma model is described by the collisionless two fluid

hydromagnetic equations for ions and electrons. We also assume
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(i) an isotropic pressure tensor for each species, (ii) the plasma is
at all times quasineutral (ni 20 =n), and (iii) that the effects of the
finite ion Larmor radius are negligible (ai 2/!22 <1, wz/Qi2 < 1
where £ is the smallest characteristic length and wis the lowest
frequency).

The two fluid equations given below can be derived directly from
the Vlasov equation by the velocity moment method (45, p. 196).
Bowers and Haines (8) have obtained these equations for higher order
in the finite Larmor radius terms at finite 8 for an isotropic pressure
tensor. Macmahon (41) has obtained the same type of equations for a |
non-isotropic kinetic pressure tensor of the CGL form.

With the above assumptions the ion equations of motion can be

written:

Continuity:

'%!;\L.‘.V-Y\-\Z =0 (3.9)
Momentum:
N
-%{ PAYAL VAR Frp en(Es Uux®) 3. 10
Gas Law:
Pz k T. (3.11a)

where with R being Boltzmann's constant

= R (3. 11b)
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These equations are closed by a pressure density relation as a

simplified energy equation

A'P“ = V: A(J,. (3.12a)

where
*
UL = T‘L for isothermal cases (3.12b)
M
=¥ T__ for adiabatic cases (3.12c)
M

/Q~-:~/\ M (3.13)

The above assumptions for the equation of state apply to either prob-
lems where state changes are isothermal or adiabatic. In the deriva-
tion from the moment expansion of the Vlasov equation they are equiva-
lent to considering a zero heat flux vector (8, 41).

For the electron equations, we introduce one further assumption.
Here we assume that the electrons, because of their small mass,
remain in equilibrium with the fields. For the stability problem,
this implies that the electron thermal velocity is much larger than the
phase velocity of the wave produced by the perturbation. Hence the
inertia terms in the equation of motion for the electrons may be

neglected.
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Continuity:
-

’é!.\ + V° Y\ Vg =

Dk
Momentum:

= o =
O = -—V/&Qe - €N LE*VQ*BS

Gas Law:

/Fe: \ rﬂe

Pressure-Density Relation:
g
AMQ: -U-e_ APQ

where again

* ry
Ue: e isothermal case
m
- gT_Q adiabatic case
w
Pe =N !

(3.

(3.

(3.

For the equilibrium configuration assumed previously, Fig. 2,

the above set of equations is satisfied exactly with the diamagnetic

drifts given by

. 14)

. 15)

. 16)

.17a)

17b)

17¢)

18)



Vioy s A\ B - & Eox (3. 192)
S M Al
Neey % - e By (3. 19b)
Do M Q.
where
n: L dn
No d¥ (3. 20)
Eb*'; constant (from Poisson's (3.21)
equation)
g 2
V= wm Ve, (3. 22)

o)
Ua is the ion acoustic speed. The above drift velocities were obtained
from the x-component of the equilibrium ion and electron momentum
equations respectively.

This drift gives rise to a current in the y-direction for the
equilibrium model. From Maxwell's curl equation, Eq. (3.1d), we
obtain the 'standard" hydromagnetic total pressure relation for the

equilibrium configuration

d (doiet foen + Be) = 0.
T Ao + YRee 2'.';\) (3. 23)

The total pressure is constant throughout the layer.
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It should be noted here that the equilibrium magnetic field is re-
lated to the equilibrium density gradient. In the cases consider ed
here

Isothermal case:

\{B: A_@’_o = - [% *l_ (3. 24a)

1
%o .S
Adiabatic case:

W L dBez ¥ an.
» Be dx @YL (3. 240)

For B << 1 it was possible to neglect variations of B, with x.
As can be seen from above, as B increases the variation of the
equilibrium field with x must be included.

At this point we will introduce one further assumption. We
will consider a situation with '"conducting end plates'' such that

the equilibrium electric field is shorted. We will therefore take

Cor = O.
For the magnetopause problem the '"conducting end plates are provided

by the ionosphere. The drift equations now become

t
ViOAa = '\-\_r_i.

* (3. 25)
\Iem; =T Yk_-q“ y
DL
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To investigate wave propagation in the slab, we linearize the above

equations.

N NN,

Vi = Vag* V3,
-- - -
Ve.' Ve, + el
E = E

- -
R:21,th

where the variables with subscript 1 are small such that products of

perturbed quantities can be neglected. The perturbations are taken

to be of the form:

'F\anAa)I)t) : ‘s‘\u) QXP‘_-A.(\{Q I‘é * KE'E (3. 26)
—wt)]
Substituting into the two fluid equations and Maxwell's equations
and after some algebraic manipulation we obtain

Ion Continuity Equation:

AWL Vs A WyVay, + A WyVag

-[-C&_\_/_L“ + Y\Vz*‘

3,97
ax (8.272)

where
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m': W - K:;V&o? - \<§ Vo (3. 27Db)
'\) - Il\ (3. 27¢c)
No

X-Component fon Momentum Equation:

2

= AW Vi = DV, = -V dv e W Ey
A MW
- -y 3.28
—4 8 | Vo, dEuy | Voy dEi (3. 282)
My % d+

Y-Component Ion Momentum Equation:

~AWN:, 4 Qg (\ vl é_\_/_,o,) Vig -«KQU’:\)

QO dy
+ & (W -K¥or) Euy 4 € WKyVor Ena (3. 28b)
M w TR

Z-Component Ion Momentum Equation:

L
—'\vﬁ \/'.Si\ + A&‘?ﬁ Vl‘.t\ - =A \(Q_UA‘\)
dy

+ £ \‘(_\_._\_/_ia’ E.? + _;e_(‘*) _'_‘_K_;,Vaog)Eui (3. 28c)
M w M w
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Electron Continuity Equation:

F AWV : Lu(” Vey,t «WeVeq +SVey, & M Vexy
d

where
v k-4 (.J - \{y VQoa -Ktv‘)‘

X-Component Electron Momentum Equation:

Y-Component Electron Momentum Equation:

0= -aWUaV + QL Ve - & (W -iav)E,
"W

" ¢ Vo.; E
T
Z-Component Electron Momentum Equation:

~
o= -AK“-U“‘\) "Q <a Ve0° E\?
L SRY
- Q.QU‘S;VNQ) i,

r—\

(3.29a)

(3. 29b)

(3. 30a)

(3. 30Db)

(3. 30¢)



31

For the normal mode expansion given above the dielectric equation

(3. 8) becomes

v* qu.é?\) "A.LJ WoMo e&v«\‘-\?e‘ + \) QQO; _-\?E°?\ 1 . (3 31)

The species momentum equations and the electron continuity equation
can be solved to give the perturbed number density and species

_ -t
velocities as a function of the perturbed electric field El' This leads

to the dielectric tensor as indicated earlier. Formally we thus obtain

2

-
X:E,=-0
as indicated earlier. The normal mode expansion, Eq. (3.26), has
reduced% to a second order differential operator.

Before Writing?( explicitly, the dielectric tensor will be reduced
to an algebraic form. For weak gradients this reduction is custom-
arily done by assuming the perturbed electric field to be a very weak
function of the x-coordinate. Thus although the equilibrium plasma
properties vary with the x-coordinate, the perturbations of the elec-
tric field is taken to be independent of x. In this case the equilibrium

properties which occur in the resulting dispersion relation are evalu-

ated at a local position x =x*. This position is usually taken to be
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the position of maximum gradient. Under this 'local approximation"

(35) the differential dielectric tensor is reduced to an algebraic form

with the perturbed electric field -ﬁ, independent of the x coordinate.
The reduction begins by solving the z-momentum equation,

Eq. (3.30c) for v.

Jz AL [\ﬁveo, i (W - WoVeon ) | (3. 32)
Nﬂ\{:;

with this value of v we can solve Eq. (3. 30a) and (3. 30b) for Veyl

and Vex1 respectively. Under the above assumptions we obtain

Vea = € Wo (E\,;n \5_,\:.‘%) (3. 332)
Muw Qi Kz

\leg\ ‘e\'xe Eu—A.e Vo E\;f %y Eix . (3. 33b)

ROML Awl. Sy MULA Ky

The z-component of the electron velocity is obtained by substituting the

above in the electron continuity equation, Eq. (3.29a). This yields

VQ\\" Q-u-e \,( L* ,\_Q L"? '\Je\'f(; .\,AVpi)
ﬂu:\g \3 ﬂun_‘_ K! g

$Ae Eix {'Wew«'\ﬁa“v DELAN AW&] (3. 33¢)

MU Wy Va DA DL dx

Using the value of v from above we solve Eq. (3.28a) and (3. 28b), the

x.-component and y-component of the ion momentum equations,
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simultaneously for the x-component and y-component of the perturbed

ion velocity. Making the low frequency assumption

LS
Weoo<< )
O
we obtain
2 o
VA.M = - /L-e'Ul -—_—-—t'x + g_‘&_& o]
Ma 1'(l+_‘_é_\£«_o; Mo,
S0 dy
— <
+4% Wy Bz L [ OW
Muwz o, (|+lé\’“a .
AQA
¥ Ky Vaoy + \a Voq — _L_“d;/:cy Wa ]

%\--ew Fu-ne | Ew U
Md S\, nu_Q, ( I_&dv ,)

__J—- ‘-\'J‘ Q&' W ‘\“A'a\lﬂv’ {-\(‘\/0‘ N\ 4\’!0‘,(“1 CN

(H— \ é\lnq ‘U&
s

LY

(3. 34a)

The z-component of the ion velocity is obtained by substituting for

Vixl
This yields

in the z-component of the ion momentum equation, Eq. (3.28¢).



dve dv.
Via = - ;;_-ﬁ:_'\{_[:“ .
naﬁx(\-\- A AVw) MW\

AL c\liu TR s 5 (S~ /Uo.)}

=\ %:" A (« V&oa -\-Wﬂ%

““ A (\&-Jc‘%uv)
- &ﬁ.‘é:a W) 3 (3. 34c)

Throughout the above analysis we have retained forms containing
the x-derivatives of the ion and electron equilibrium drift velocity.
Two special cases of the above analysis are possible. The first
assumes the ion and electron equilibrium drift velocities are constant.
For this case the above derivatives are zero.

6Vw? = d\’eog = 0
a4 L (3. 35)
Because of the x-dependence of the equilibrium magnetic field as

well as the x-dependence of the density the above condition requires

%5:0

or

1 (3. 36)
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In the above we have used Eq. (3.24a) to express the variation of the
equilibrium magnetic field in terms of the variation in the density.
The above equation relates the density and magnetic field variation
in the equilibrium model. This gives v independent of x-variations.
The second special case is the one most often employed in the
electrostatic case. This assumes that the equilibrium density varia-

tion is exponential. For this case the density variation is given by

A%
Nolt) =N &,

This gives

G constant, (3. 37)

For this case with B not equal to zero it is no longer possible to take
the drift velocities constant as was the case for the electrostatic approx-
imation. This can be seen clearly from Eq. (3. 36) above. For the

exponential density variation case the derivatives of the drift velocities

are given for an isothermal plasma by

% Qe
't..U.‘
- {_}_ V. (3. 38a)
zm N
6:;/_:0, =- /%y\‘: \3);5. (3. 38b)
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For the case of constant drift velocities we obtain the following

dielectric tensor components:

Y.: K\K;Jr\‘(:) Ca- W

i3 ~.
Kz KaCy- *Q Ve - Wt (3. 39)
213 C 'v kv Wk W 4,09*%\ b‘h)
o LU (W= 5 Veoy)
K% ’Uc.
(6\10{’\«&-&- \‘_(';-\J.QSL;\>
Kx
.
K i PR ORI Ko S "We
\Ca
_ O KU'\ QVea
Koy = Wy (4 =~ iUL’WU’e - s U-_né&l
WQ‘U‘« Wa Ke Q.



where in the above

" \
Ca: BB (3. 40)
Fon\ﬁd\
Ul wed
U= Ut Us (3.41)
CA is the equilibrium Alfven speed. It should be noted that CA is
a function of x. kg is related to n by Eq. (3.24). For the case of

an exponential density variation the dielectric tensor has the following

components:

"

', = O huy) Gy = WL
-Kw. = A Y\.KQ_U.P\

Kyt _,g;? S’L,.[LJ ([.\,»\\Q'UL )

nN

GV 4 m\<e§£~‘_‘w';'_] (3.42)
. D

%

K'\.\: ‘A'V\\(
Rt K\cn—(l-\'\% )u
U\—Wﬂ
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Ty %y Kata - Ky LQ*»\\QGV) (U U

h

.\.\(’V&a., -l-\(k\)u,)-\-‘\\(g-u.@ ] * V\-U-

Wt\)k
J _f\-..; (L) -Vc»’\le‘;?)
At

—\-.7}3\'3 A[é\/e&v (\Jr'\\(f&v ) ¥ KUQS\ ]

-E'n'-‘- - \(.3 Y\ QA‘ + \5_9 Q:\JQ (3.42)cont.

-:K'n: <n - S\ [V +\( \(‘:\f é\l,;,
V~¥"U¢. ~ 'n“ *
n~ 3'~ T‘

\.w,v;tv &vg,, O.,»\K,;\r (KpVioy »fw%v.,wy\\%u 'u:.)}

With either form of the dielectric tensor Eq. (3. 39) or (3.42) it is
possible to write out explicitly the equations governing the perturbed
electric field in the local region of the disturbance. Formally in

matrix notation

K\\ K\m 'K\'s _\ E 38
-Kx\ Y -‘& 3%} t.;

K, E'&\- 333 : i



IV. DISPERSION RELATION AND SOLUTIONS

The dispersion relation for waves propagating in the infinite
slab described in Section III is obtained from the solubility condi-
tions for Eq. (3.43). The system of equations described by Eq.
(3.43) possesses a nontrivial solution if and only if the determinant
of the coefficient matrix [K] is zero. As can be seen from either
the constant drift velocity or the exponential density case, this
condition leads to a seventh degree algebraic equation in the fre-
quency. In carrying out the expansion of the determinant it is more
convenient to nondimensionalize the elements of the matrix. The

following nondimensional frequency is used:

'\b= ...t?.[: . (4.1)
"(ng

The formal condition

K| =0 (4. 2)

now leads to a seventh degree algebraic equation in the nondimen-

sional frequency ¥.
1 b ) Y 3 v
RV L VE LA+ G G+ C W4 G 4+ G20 (43

The coefficients are determined by the dispersion determinant ele-

ments. The degree of the determinant requires that numerical

39
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procedures be used to evaluate the roots of Eq. (4.3). With roots

taken of the form

W= WeeaY (4. 4)

where (WR =real part
¥ = imaginary part,
instability will exist for roots with positive imaginary parts.
¥ O for instability

The expansion of the determinant leads to a form of dispersion
equation (4. 3) with real coefficients. Because of the complexity
of the coefficients they will not be written down here. From the
theory of equations we know that roots of Eq. (4. 3) must be real
or complex conjugates.

Before proceeding to evaluate the rod s for the finite 3 case
we shall take the electrostatic limit of Eq. (3. 39) and (3. 42). For

this case the perturbed electric field will be taken of the form
-—h
E='V¢\

with

d 2 &, wpfaly vt -0 4N

and

(3 <<\,
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q’>1 is assumed independent of x as is customary. For this case the
equilibrium magnetic field is assumed independent of the x-coordinate
as can be seen from Eq. (3.24). For this case the diamagnetic drift

velocities ( v v y) are independent of the x-coordinate for an

ioy’ ‘eo
exponential density variation. The latter density variation is assumed
here. For this case the following relation is obtained from the last

equation of the system given by Eq. (3. 37).

*QKQ‘Z'_\ ¥ \'(-\_\'Z. 333 =0
Expanding this equation for
\‘-ala:l <(\
Kx @, << |
“ L
W QA <<\
and
B <<\
gives
X Y A dVor
VN "'m\<;gf TJ,\ —\'(Q_UP [\‘(\“K" 35 ] - O,
QL e

For an isothermal plasma (T; =Te) this agrees with D'Angelo's

results (14). Solution of the above yields
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(4.6)

in agreement with D'Angelo.

Returning to the finite B case Eq. (4.3) must be solved numerically.
Solutions were obtained for both the constant diamagnetic drift velocity
and exponential density cases by means of a double precision quotient-
difference (QD) algorithim with displacement. This algorithim is a
stored subroutine in the IBM scientific subroutine package (SSP) in
use with the University of Michigan System 360-67 computer. This
subroutine solves for the real and imaginary roots of an nth degree
algebraic equation with real coefficients. A complete description of
the algorithim, DPRQD, is given in Ref. 30.

Growth rate curves have been obtained for various values of the
plasma param'eters. These calculations were carried out for an
isothermal plasma with equal ion and electron temperatures and § =1.
Since the inconsistency in the zero thickness theory occurs at short

wavelengths and since the validity of the local approximation and
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neglecting boundary effects is questionable for long wave perturbations,
we consider here only short wavelength cases where YL/kZ < 1 and
(I/VO) (d.vo/dx)/kZ < 1. For these cases the length scale of the
perturbation is less than the length scale of the nonuniformities.

In discussing the results the following nondimensional parameters

will be used:

T= Y y

dVoq,-
—Aur T AN

(=

\‘(\C‘q Wi m;
S™= Vor WK Yy,
Ca LY"

Solutions were obtained by two procedures. The first of these fixed
the density gradient with respect to the ion Larmor radius by fixing

eg =1 ai. A, AG, o, and k were then varied. For this case changes in
A show the effects of varying k z with 1 fixed. For fixed A changes

in AO, o, and g indicate changes in shear, local shear speed, and ky
respectively. Changing A indicates a change in kz. Since A(7 and g

are normalized with respect to kz a change in A also changes Ao and g
for fixed shear and ky. The second procedure fixes kZ by fixing

€ =k a,. For this case a change in A, A, 0, and/or k indicates a

change in density gradient, velocity shear, local shear speed, and/or

ky respectively. Some representative curves are shown in Fig. 3-6.
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Figures 3 and 4 show the effect of the velocity shear on the
instability. From these it can be seen that the growth rate in-
creases with increasing shear (Ao) and shear flow speed (0). Ve-
locity shear thus tends to be destabilizing as could be expected
from the hydromagnetic and electrostatic approximation problems.
The effects of the density gradient at constant shear conditions can
be seen in Fig. 5. The results show the effects of changing the
density gradient for a fixed wave number. Here kz is fixed by
fixing e. For this case changes in A represent changes in the den-
sity gradient. These solutions show that increasing the density
gradient leads to a decrease in the growth rate in the A < 1 region
under investigation here. An increasing density gradient thus tends
to be stabilizing. This again agrees with the results obtained by
D'Angelo for the 8 << 1 case. For the A< 1 case it can be noted
from Fig. 4 that the difference in assuming constant diamagnetic
drift velocities or an exponential density variation are very small.
The results become larger with increasing A, however.

It can also be seen from the figures that the growth rate is finite
for all cases calculated. If the gradients are fixed (A, Ao’ and o con-
stants) and ky and kz varied it can also be seen that the growth rate
decreases as ky and/or kz become large. In this respect the short

wavelength disturbances are stabilized; the growth rate is decreased
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as the wavelength becomes small. Because of the complexity of the
dispersion relation, Eq. (4. 4) it is not possible to obtain analytic
expressions for the magnitude of the shear necessary for instability.

In summary for the local approximation with weak gradients and
A < 1 a hydromagnetic velocity shear instability does occur ina § =1
isothermal infinite inhomogeneous plasma slab. The growth rate in-
creases with increasing shear and/or local shear flow velocity while an
increasing density gradient at fixed shear conditions decreases the
growth rate. Inthe A < 1 region the results are nearly identical for
either the constant diamagnetic drift velocity or exponential density
distribution case. In all cases the growth rate remains finite for all
wave numbers and decreases with increasing wave number. Two limits
exist to the general extension of the above results to all wave numbers.
The first limit is the very short wavelength limit imposed by the finite
size of the mean ion Larmor radius. To properly include these effects,
one considers the kinetic theory formulation of this problem. The sec-
ond limit concerns the applicability of the local assumption at the long
wavelength limit. As the density gradient and/or the velocity shear
increases (A> 1 and/or Ao > 1) the theory of weak gradients and an
infinite plasma slab become less valid. For these cases boundary
effects must be included. This leads to the study of the hydromag-

netic stability of a velocity shear layer of finite thickness.



V. SINGLE FLUID EQUATIONS AND FINITE THICKNESS MODEL

To investigate the effects of a {inite shear layer on the hydromag-
netic Kelvin-Helmholtz instability, we shall employ the single fluid
hydromagnetic equations as used in the zero thickness models.

These equations can be obtained from the two fluid model considered
in the previous section as outlined by Tannenbaum (68, p. 138).

As in the preceding sections, we consider the plasma to be collision-
less but with an isotropic pressure tensor. The continuity equation

is obtained by adding the electron and ion continuity equations.

- -
%;U\M* Nem) s JeMY, tNeMVe) = O

Defining the global density p and velocity of the plasma y as

P= MMt mAe (5.1)

- - -—
PV: Mn v s M Ye\e (5.2)

we obtain the single fluid continuity equation

-t
'%Ek_\. VnPV‘.‘ O, (5. 3)

Adding the electron and ion momentum equations and using Eq. (5.1)

and (5. 2) we obtain

W, -:,1 - - IR (5. 4)
{olﬁ», ) Ve +3xS

49
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In the above we have employed the quasineutrality assumption made

earlier and have denoted

/F‘:/dq_;\»‘.jpe (5. 5a)

-
Tz & (VA -NeVe), (5. 5b)

If the fluid is considered compressible a pressure density relation is

needed. This now becomes
dyes ¢ d0 (5.6)
where CS2 is the adiabatic sound speed for the fluid as a whole.
=Y RT

This equation assumes that the percentage change in each species
is nearly equal during compression or rarefaction as for a mixture
of perfect gases (68, p. 143).

An Ohm's Law is obtained by taking the explicit expressions for
- -, -t - . . .
Vi and Ve in terms of v and J and substituting into the electron

momentum equation. Specifically

—\7 = M vV _%
foeNe kw\-w‘\)k(o e
,\-\7,,: m M Va3
ﬁ kw\-\i"\)Qﬁv;\- *-é- .
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Substituted into the electron momentum equation yields

-

C+vx€3 .\_\ﬂkﬂh'.a_yﬁ VYA +V«{°-.2.)

- (Pe ”%_‘7: Ve IVp weﬂ.

Following the usual hydromagnetic assumption, we take the terms
on the right hand side of the above equal to zero (68, p. 158). Thus
we obtain the standard Ohm's Law form used by the previous authors
(40, 61).

- - =

E+VvxQ =0 (5.17)

Equations (5. 3), (5. 4), (5.6), and (5.7) along with the low frequency
Maxwell's equations, Eq. (3.1), complete the hydromagnetic single
fluid description of the plasma. The electric field may be eliminated

from Eq. (3.1c) and (5.7) to yield a magnetic field transport equation
S

’ae*v.qs—\'gv\/ +'3vv (5.8)
! '

The physical model for the finite shear layer investigation is shown
in Fig. 6. We consider a shear layer of thickness 2d in the y-z
plane of a cartesian coordinate system. The layer separates two
regions of infinitely conducting fluid. In these regions the equi-

librium fluid and electromagnetic field properties are constant.
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They vary only inside the layer as shown in Fig. 6. All equilibrium
quantities vary only as a function of x. The equilibrium magnetic
field is tangential to the layer. The equilibrium magnetic field is

taken of the form

o A A
Bg: Bba(‘*) eb "\'bb e%. (5. 9)

where b0 is constant. The x-variation of Boy is completely arbitrary.
The fluid velocity has been transformed in such a way that the constant
flow velocities in regions I and III are given by Vog = + V respectively.
Its variation through the layer is assumed to be linear.

We now impose a small amplitude disturbance of the normal
mode form such that the perturbation quantities vary as
exp i (ky y + kZ z - wt) . The basic equations above may then be

linearized and take the form:

+&-\/J'/°. < Po V&;\ * V\* é{o (5.10)
X

-I\\J\/m--—\é \—L AKG 3
Pe é'& (OW'“"1 wE
db
100 2 -M».b*) - Ay Doy b"] (5.11)
..,@J'v\a - -/\.\‘(a 4@\ -\-‘2_“ é.g”?
Po  piio ¥ (5.12)
-/\_b_P( V(*ab-t" " b‘a)
PoMo
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~ AWM =
AWM Vuéa\_’_:a. = -m\‘(%zz\
+A 9_3_19 (Kp\o%—"(\,\ogs

(°o~‘° (5.13)
—Aw\o,g: )\\/\t\Oo\I\x (5. 14)

-AW \9'; + \ix A%:g = AMabe \/\?

R, Vo V
+ oy ' (5. 15)
d\o: A b . -
T + AUy 9-\-«.“\\0%- O (5. 16)
where

W= - WyVeg, (5.17)

In the equilibrium state the pressure balance across the layer

is given by

“
JY{, + B__o = const '&*\'E. (5. 18
LMo -18)
In looking at the effects of finite layer thickness we will consider
physical conditions such as those encountered at the magnetopause.

As mentioned earlier the instability of the magnetopause may occur
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in regions where the flow velocity in the magnetosheath is small.
This can take place not too far away from the subsolar point. Thus
at the point where the instability occurs the flow speed will be very
small compared to, say, the local acoustic speed, i.e. [V]|<K Cg
where C 5 is the local speed of sound. These regions of instability
as also discussed earlier occur in the low latitude regions near

the equitorial plane. The configuration shown in Fig. ¢ approxi-
mates the flow and magnetic field conditions just off the noon-
midnight meridian toward the dusk side near the equitorial plane.
The magnetosphere with its relatively large magnetic field is
represented by region III. Thus the magnetic field increases from
a small value B01 in the magnetosheath (region I) to the larger value
Bo3 in the magnetosphere, with an arbitrary variation taking place
inside the magnetopause (region II) which is represented by the finite
thickness layer. The equilibrium field may also have a small com-
ponent parallel to the magnetosheath flow velocity vector. This is
represented by the constant z-component bO shown in the figure.

Since the flow in the low latitude regions is nearly normal to the
magnetic field in the magnetosphere, we assume b < BoB' We
shall also consider the casev of the most unstable mode in the zero
thickness formulation. This mode propagates in a direction perpen-

dicular to the magnetic field in the magnetosphere (61). Thus we let
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-— A
W~ Ky €, (5. 19)

Since we are considering a physical situation near the subsolar point
with V] <K C, we shall first investigate the incompressible flow
limit to the above set of equations and later discuss the effects of

compressibility.



VI. INCOMPRESSIBLE FLOW LIMIT

For incompressible flow the continuity equation, Eqg. (5. 3)

reduces to

-~
Vev,= 0,
In the assumed linearized form this becomes

C&_l{lt *.. v\\(g V\A) + A \Ua \/|\=' O,
<

In this case the pressure density relation, Eq. (5.6) is not needed
to complete the system of equations. Under the above assumptions,

the system of equations now becomes

dvix + AMaVi= O (6.1)
M

“AW Vg = é_f. [ %&B.’ bg)

+ %o G‘J A.\'(a\oscﬂ (8. 2)

FOMQ

'"'va'9' - \Ot 3‘3& + A¥aloy \99 (6.9
'o',,,(o éi« Lo

-A.-w\l\‘t‘\'vit A_Yf\- 2 =AMy }F\ _;\_309\(1\39 (6.4)
A‘I\ "P"D F;MQ
—~a W Vox = A Koy Vi (6. 5)
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-A..\J\bpf\)mé_g_zy = J‘\Kibo\/\a (6.6)

Iy (6.7)

To obtain the dispersion relation the above set of equations is
reduced to a single ordinary differential equation for the x-component
of the perturbation velocity. First Eq. (6.1) and (6. 4) are used to

express pl/po in terms of v, and by:

1

A 5o AW SV avy d¥er xBoby.

Pe Wr dx Wi dX oMo

This equation is then substituted into Eq. (6.2) and for constant density

we obtain

AWy -2 \'_‘.y,‘é_‘ﬁ* + Vit AV“I
ol K2' d¥ W d¥

-_\_D_o (.é_\g_% - &‘(%\o%j
Posho Qo

1

Equations (6. 7) is now used to express bz in terms of bx and then

Eq. (6.5) is used to express bx in terms of v Performing this

1x’

algebraic manipulation yields the following equation for Vi
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AR TR T
WHW-a 05 § Vi =2 Wa € r VoW dui

Qv d+ X
~ RS TR "
“\V(\.U&W\(y_‘ &_i/_:t)(.w' ‘('tcﬂ ) '\-‘LK\. C;.\ &%’3’)} Vl L O
(6.8)

where
“
CQ: \De

(%Mo

<, is the Alfven speed based on the component of the equilibrium
magnetic field parallel to the flow velocity. The above equation is
valid everywhere for an arbitrary equilibrium shear Vo and the

boundary conditions are
'VI a2 o as x - I wu

At the interfaces, the normal displacement of the layer, the normal
component of the magnetic field, and the normal stress must be
continuous. Assuming a small amplitude displacement of the inter-
face, inline with the linear theory, we can approximately carry out
the matching at x =+ d.

Outside the layer (regions I and II) the equilibrium flow velocity
Vo is independent of the x-coordinate. In these regions the solutions

to the differential equation, Eq. (6.8), which satisfies the boundary
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conditions at x =+ ware

Vu_‘.: A\ B ¥ (4’(1)(5 for x > d 6.9)
6.9

z Q3 RXP (Kax) for x < d

where A1 and C3 are constants.

Within the transition region (region II) the flow velocity Vo varies

with the x-coordinate. To treat this case we define a new variable &

by
E ;\_{L‘f ' (6. 10)
T
In terms of 6 the differential equation (6. 9) may be rewritten as
¥ T " N L b S N
dx dv
This equation is also valid everywhere with boundary conditions
g - O as X—= *t cO
Introducing a further transformation
= Wax- 0 (6.12)

where

ﬂ-: .D.R'\-'\T

ud .
=
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we obtain the following differential equation

4 T8-a) 4o (£ ) =0
LIS @D

(6.13)
where
1 t *
o = K/A
K = \Ka_é
A LW X
A=V /e,
The edges of the interface are now given by
y=d — £:=%:= %-Q
K=—c\ — g".gq_‘: _k\;‘.\&\'
The solutions in the uniform regions become
-5
S) = ﬂ\ e k1 7.3'\
(6.14)

= Q3e.s %4?\_.

The dispersion relation is obtained from the condition that the
normal displacement, normal component of the magnetic field, and
normal component of the stress be continuous at the edges of the
shear layer. Continuity of the normal displacement of the interfaces
is the same as requiring 8 to be continuous (11). This is also the

result for continuity of the normal component of the magnetic field.
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The normal stress condition is obtained by integrating Eq. (6.13),

a form of the x-momentum equation, across each interface from

El -€toé + ¢ and taking the limit as ¢ — 0 (§ means the
, 2 1,2 1,2

interface edge £1 or &2 respectively). Hence the interface condi-

A""S. S}:o

Bua] (5=} e_g] -0,

where A 21 Tindicates the jump in the quantity inside the square
)

bracket at the interface edge él or Ez.

tions are

(6.15)

The results for the zero thickness layer are easily obtained
from the above. For this case we return to the dimensional form

of the problem. In regions I and III we have

- WX
S:A\e x> d
WX
:C-,E_ x< -d

L\‘a'l[ E’k = O

LSRN EA c;\é:ﬂ 20,

Now taking the limit as d - 0 yields the dispersion relation

W= Ky (oY (6. 16)
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Thus for V > ¢, or1 > 1/A2 the interface is unstable. Taking
W - C‘)R + A. Y

the growth rate of the instability is given by

3 I
Y-_-.«{\r(\-%‘) © V> Ca,

V (6.17)

This result is the same as that obtained by several previous authors
(11). Note that the largest growth rate occurs for disturbances with
kZ - o (36).

Let us now return to the case where the interaface is of finite
thickness (d # 0). Inside the layer Eq. (6.13) is valid. This equation is
a spheroidal wave equation with three singular points (47, p. 642).
There are two regular singular points at £ =+ o and an irregular
singular point at £ = . The equation has a general solution in terms
of a éeries expansion in £ or an expansion in terms of appropriate
functions of £. However, since & contains wthe series solution is
awkward for the discussion of dispersion relations. Hence it is
more convenient to find an approximate solution by means of the

WKB procedure. In order to do this we first define a variable £ by
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The differential equation (6.13) can then be transformed into the

standard form:

m——

A:Sz _\Q(‘S)]z §=0 (6. 18)

where
Qs 148 -o'1°

For Q not near zero the asymptotic form of the solution is given by

g Q+ pr{_ggéf.g

'I'z.

In terms of the variable £ we obtain

§ - A, Qf?@) _Q_ . expl9) (6.19)
SRS AT

The WKB validity condition implies that the solution given by Eq.

(6.19) is a valid one provided

AS>|  for W <OU)

(6. 20)
and X for A< O(,\\

It is interesting to note that Eq. (6.19) becomes an exact solution
to the differential equation (6.13) for A -~ «. This is the "vanishing

parallel magnetic field limit". It corresponds to b0 =0; this implies
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in the magnetopause problem that the magnetic field in the magneto-
sheath is aligned with the field in the magnetosphere. In this case
the results are the same as those obtained by Rayleigh for the hydro-
dynamic problem. The condition Az >> 1 above indicates that the
flow velocity, while small compared to the acoustic velocity, must
be large compared to the Alfven speed based on the parallel magnetic
field component b .

Another interesting feature of the incompressible flow case is
‘that the relevant differential equation and its solution are independent
of the variation of Boy' The magnetic field component perpendicular
to the direction of the wave normal of the disturbance and the flow
velocity does not affect the stability of the shear layer. The same
result was obtained in the case of a zero thickness shear layer with a
constant perpendicular magnetic field (11).

To obtain the dispersion relation for this case we again use the
matching condition at the edges of the interface region, Eq. (6.15).
Since for this case £ is continuous at the edges the second relation

becomes
A\,zi%%l = O, 6. 21)

For Al’ C3, A+, and A_non-zero we obtain the following dispersion

relation:
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oy 0t %K- 2 K‘Ql + _&_1) - Iﬂe“? (—w\]}

K (l-{é,jl - K3Q\~-}i‘)+§l[l-€x?(-w)} =0,

(6.22)

For A — o this reduces to the dispersion relation in the hydrodynamic

case with no magnetic field.

\.- Q-_'__'_L_KB -&
q q

Since Eq. (6.22) is a biquadratic equation for @ it is possible in

principal to write out explicit solutions for © by means of the quadratic

formula. Formally we can thus write

n= -ﬁ v(-‘z»("-( H%__) ~l\- e:pt-w)]}

b \i i[ LG Ki( \+-k._) - .‘q + exgt—w)l’"
l.\
& V2

(14 R o4 - cazend]]

Because of the complexities of the above form for Qz we have evalu-
ated the roots of Eq. (6. 22) numerically. Typical growth rate versus

non-dimensional wave number curves are shown in Fig. 7. The
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Cy # 0 growth rate curves shown are for relatively large values of
the Alfven Mach number based on the parallel component of the
magnetic field. For this case the WKB solution is valid in the

k < O(1) region. The well known results for the case of a zero
thickness shear layer are also shown for comparison.

These results show the existence of a critical wave number kC
such that for k > kc the growth rate of the disturbance is zero.
When we have a non-zero parallel magnetic field bo the maximum
value of the growth rate of the instability is reduced. Thus for g
shear layer of certain thickness the parallel component of the mag-
netic field in this sense tends to stabilize the flow. There now
exists a region of wave numbers from the b0 =0 kc to the kc for
b, # 0 for which the flow is now unstable. Since the maximum
growth rate determines the physical behavior of the interface,
however, the overall effect is a stabilizing one in the sense that
the maximum growth rate is lower for b # 0. The exact value
for k , is given by the & = 0 condition which from Eq. (6.22) is given

by the transcendental form:

K:(\--kg - Y% ( |"'-‘ﬁ.‘_)

+L{1- exp-uxd] = O
4 (6. 23)

kc versus A is plotted in Fig. 8.
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For smaller values of A the WKB approximation breaks down in
the k < O(1) region. In these cases we cannot obtain a quantitative
description for the growth rate in the region of the I'-k plane shown.
It is possible to obtain information on the growth rate for large
values of k, however, for all values of A. For k >> 1 the WKB
approximation remains valid for all A. Calculations in these regions
show I =0 for even A < 1. Quantitatively we can thus say that the
growth rate is zero for large values of k in contrast to the zero
thickness theory. Qualitatively we can consider that there exists
a kc such that the growth rate is zero for all k > kc for any value
of the parallel field Alfven Mach number.

In summary, the finite thickness of the shear layer stabilizes
it in regard to short wavelength perturbations. With respect to long
wavelength disturbances it limits the growth rate to finite values.

A parallel magnetic field component bO tends to stabilize the layer
even further by lowering the maximum growth rate, but it extends
the value of the critical wave number somewhat. Two additional
special cases of the incompressible flow limit are discussed in the
Appendix. The results for these cases are the same as those given

above.



VII. EFFECTS OF COMPRESSIBILITY

In order to study the effects of compressibility we first introduce
the following simplifications to our model. The y-component of the
magnetic field Boy will be taken to be constant, while the z~-component
will be taken equal to zero. The latter assumption leads to the maxi-
mum growth rate for the incompressible case. These simplifications
do not influence the basic effects of compressibility oh the plasma.
Since the density is now variable the full form of the continuity equa-
tion as given by Eq. (5. 3) must be used along with the pressure-
density relation given by the adiabatic equation of state, E‘q. (5.6),
The set of equations under consideration including the assumptions

above and parallel propagation reduce to the following:
. iy
—A.T\ff. “‘PQV’V + \,lx C_\_Eg =0 (7' 1)
dx

AW\ =21 4.&9\ - Be, é..‘°3=0 (7.2)
(oo d¥ Pvo Q¥

-LCW‘\/.? : 0 (7. 3)

-.'Aw\h%"\‘\lua_vﬁ = -~ &?\ -."\@‘3 bﬁ (7.4)
dx (og (O° Mo
-aWh, =0 (1.5)
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—aWhy= B.,DV-T\J‘ -9

+AKy by =0 | (7.7
d{& 2 C’:A(O . (7.8)

Following the same elimination type procedure as before we obtain a

single equation for the z-component of velocity:

y 2 -
d V'g - (K-v'\.ﬁ[‘) \i2=0 (7.9)
J¥ Cn
where
1/
CH: (C‘S + dA) = magnetoacoustic speed
and
2 p X
e Bey
Po Mo
The boundary conditions are

Again we introduce the transformation

%:' K@L-.ﬂ_

and Eq. (7.9) becomes
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R 3
A_:l_\% — &\"A: 'S‘)V.; =0 (7.10)
dg*

where

and %3 -57_: .
Ch

9Mis the "magneto-acoustic' Mach number.
In regions I and III the equilibrium velocity is independent of x

and the differential equation for Vig can be written as

\ .t
dViz - Q- $d\Via= O

% (7.11)

where
%, = x-0o
gz z - (\«y -QA.

111

The solutions to Eq. (7.11) satisfying the appropriate boundary condi-

tions are
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Vig= Aerpl0-a )81 5 %59,
= C-; EV\?‘.'\' L\"&ﬁ\z\?l y ﬁ< gz'.

(7.12)
The matching conditions at the interface are again the continuity

of the normal displacement, the normal component of the magnetic

field, and the normal stress. With the aid of the continuity equation,

Eq. (7.1) these may be expressed in terms of Vi, 28

A\, WNgl: “aX Vi ﬁ\\,\‘. Ag%;l

A\,z‘.A_\!ﬁ‘ = O.
S8

As was the case with the incompressible flow limit it is now
possible to obtain the zero thickness results for this case by con-
sidering the d — 0 limit of the above equations. Again we must
return to the dimensional form of the equations and then take the
d - 0 limit. Carrying out the matching we obtain the dispersion

relation

| 1 —
J'f=:_;<__y§%ﬂt3ﬁ%+\ 1.

This is in agreement with the results obtained by Fejer (22). In

dimensional terms
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2 (8 2 t ;
Wy LM Yyt ],
Again one can sec that for unstable cases

meny (X
J 4y’ 2 1+ Mm

the growth rate increases with k.

For a finite thickness in region II the equilibrium flow velocity
is again a function of x and we must solve Eq. (7.10). A similar
equation was obtained by Schuurman (55) for the case of a compres-
sible flow with no magnetic field. The general solution to Eq. (7.10)
may be obtained ih terms of a series expansion in parabolic cylin-
drical functions or hypergeometric functions (48, p. 315). However,
as was the case with the spheroidal wave equation in the incompres-
sible flow case, the functional series solution is inappropriate for
the purpose of discussing the dispersion relation. For this reason
we obtain an approximate solution.

In regard to the magnetopause problem we are particularly
interested in the region of low velocity just away from the subsolar
point. Hence we shall introduce a small "magneto-acoustic Mach
number' approximation, i.e.

‘W= \_Z.: << |

y
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This implies u2 < 1 provided k does not become too small. Phys-
ically uz << 1 represents a low Mach number approximation for
k < O(1), but it may also represent for k >>1 a situation where the
Mach number is high but finite.

We now use a singular perturbation technique and expand v

1z

in terms of the small parameter u?':

LAY
VinsVig 4 Vig -rM \,‘“ C (7.13)

Substituting this in Eq. (7.10) we obtain
- (o)
(&)
Zeroeth order in uzz d\/\tt -Ma =0

L))
First order in ,uZ: d_\%‘ "'\l"é = AIE*?G) C\EX?W)
etc.

The solution to the first order in uz is

Vig + Ayerpl®)] wf LTS I8

(7.14)

+ Cyexp K-%\{\ M NUNITA IR +3)]
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For pz << 1 these lead to the dispersion relation:

8K ,«fJﬁ-\-ﬂ?Y_-‘\ + o (14K 1-8\/\1'—\_@‘(3)]
+ (-2) = exp (-4K) - (»( L\K (7.15)
‘5.\'( + 2 6 Y ) = O,

For uz =0 this relation reduces to that obtained in the hydrodynamic
incompressible case. The dispersion relation above is again bi-
quadratic but of a complicated form. Numerical solutions have been
obtained and the growth rate versus nondimensional wave number is
shown in Fig. 9 for various values of ”}712. The zero thickness
results are also shown.

The results here show that the finite thickness of the layer does
stabilize the short wavelength disturbances which were found to be
unstable in the zero thickness limit. Again the growth rate has a
finite value for each wave number. Also compressibility effects
tend to lower the growth rate of the instability from the incompres-
sible case, and it also reduces the value of the critical wave number
kc. An expression for kc can be obtained from Eq. (7.15) by taking

2= 0. This gives
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2

(-2%e) - exP (-4&e) -%‘@ -gm

-'_3_\'(:-;._@_\«(‘:) = 0. (718

3 S
Solutions to this equation for various ”mz are shown in Fig. 10.
Similar results were obtained by Schuurman (55) who studied the
finite thickness layer with no magnetic field. The quantitative re-
sults he presents, however, are somewhat questionable in the
vicinity of 1«:c where Q@ = 0. The difficulty here arises because of
the expansion used by Schuurman to solve his dispersion relation.
Returning to the case where a magnetic field is present it can

be seen that the presence of a transverse magnetic field does have
an effect when the flow is compressible. It increases the growth
rate towards the incompressible value. This is so because
BOy £ 0 implies CM> C and thus ”mz is reduced. Hence in this
sense the magnetic field tends to be destabilizing. These latter
results agree qualitatively with those obtained when the layer thick-
ness is neglected. For a zero thickness layer Miles (44) found
that compressibility effects stabilize the flow, and Fejer (22) showed |
that a perpendicular magnetic field tends to be destabilizing. How-
ever, the zero thickness assumption always leads to increasing

growth rate as the wave number increases. WhenMis not small,



pIold o1joudeN 9SJISASUBLL
pue £yiqisseadwo) Jo sP8f  ANTIqeIS TeIIMSN 01 oan31g

Mo 01 01 50T ¢-07 9-01

- N _ _ ¥£9°0

-16€9°0

-19€9°0

4 LE9°0

4 8€9°0

80

71 6€9°0

-4 0¥9°0

|



81

then we must have k >> 1 for the expansion to be valid. In this case,
calculations show that the growth rate is reduced to zero by the finite
thickness of the Iéyer although it is not possible to obtain a quantita-
tive growth rate versus k curve.

As was the case for the incompressible flow, one special case
of magnetic field variation is obtainable from the previous results.
This is the case of a step function Boy(X) similar to the step varia-
tion of the parallel field discussed in the Appendix. Here no exact
solutions are possible, however, and no new results are obtained by
consideringt such a nonphysical variation.

These results, in agreement with Southwood (61), indicate that
the low latitude regions of the magnetopause may be unstable. The
instability will be characterized initially by the maximum linear
growth rate. This growth occurs at a fixed wavelength correspond-
ing to the wave number for the maximum growth rate. This is of
the order of ten times the thickness of the shear layer. The real
frequency of the growing disturbance also occurs at a ﬁxed' value.
For the transformed velocity system used here W = 0. For a more
general flow pattern with VO(X) = V1 at x =d and VO(X) =V2 atx =-d
the real part of the frequency is given by

w({ = V_(_;\\R '\'-\71\
2
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Such a linear ixlstability will eventually be stabilized by nonlinear
effects either as a finite amplitude quasiperiod wave or as a region
of plasma turbulence. The presence of a finite amplitude nonlinear
wave would provide a source for the production of wave motion in
the magnetosheath and in the outer magnetosphere, and it would
provide an explanation of the observed quasiperiodic motion of the
magnetopause. Plasma turbulence could also produce wave motion
in the magnetosheath and magnetosphere and either of these nonlinear
phenomena would provide a means of coupling the solar wind flow

with the earth's magnetospheric plasma.



VIII. SUMMARY AND CONCLUSIONS

In this work we have investigated the Kelvin-Helmholtz, velocity
shear, instability in plasma flows with non-zero velocity shear layer
thicknesses. The investigation was carried out in the low frequency
hydromagnetic range for two types of problems. The first consider
the stability of an infinite weakly inhomogeneous slab of two fluid
plasma at finite 3. An equivalent dielectric tensor approach was
used to investigate the local stability of this plasma slab in the very
small ion Larmor radius limit. The effect of a varying equilibrium
magnetic field as well as an equilibrium density gradient was included
in the formulation.

For this case it was found that a shear in the plasma velocity
parallel to the equilibrium magnetic field can give rise to an insta-
bility in the flow. The growth rate of this instability increases with
increasing velocity shear and/or local shear speed, but it was found
to decrease with an increasing density gradient. The 'magnitude of
the growth rate remained finite for all wave numbers investigated and
was found to reach a maximum value at finite wave number.

Additional work remains to be done in this area if one wishes to
know the stability characteristics of the model to all values of wave-

length and frequency. In the low frequency regime the stability at

83
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very short wavelengths cannot be determined from the two fluid
models considered since it does not include the effects of ion vis-
cosity due to the finite ion Larmor radius. At large wave numbers,
small wavelength, these effects become important. A more com-
plete treatment should also consider the effects of wave particle
interactions such as cyclotron and Landau damping. To properly
treat the above cases a kinetic theory approach, employing the
Vlasov equation, should be used. An electrostatic, low B, prob-
1lem with velocity shear has been treated with this approach by
Smith and von Goeler (59). At longer wavelengths, smaller wave
numbers, there exists the problem of the applicability of the local
approximation to reduce the dielectric tensor to an algebraic form.
In this region it may be necessary to treat the differential equation
in x for the perturbed electric field including boundary conditions
to completely formulate the eigenvalue problem. Again some work
has been done in the low B along these lines by Rosenbluth and
Simon (52). They found some special cases for which it was pos-
sible to obtain sufficient conditions for stability for the more
complex x-depéndent problem.

The second problem investigated was the effect of a finite velocity
shear layer thickness on the hydromagnetic Kelvin-Helmholtz insta-

bility. For this case the single fluid hydromagnetic equations were
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used. The velocity profile through the layer was taken to be linear.
Incompressible flows with an arbitrary magnetic field normal to the
flow direction and the direction of propagation were studied. Com-
pressibility effects were included for a constant transverse magnetic
field. These flow regions approximate the flow field at the magneto-
pause at low latitudes near the subsolar point. In both cases the
finite thickness of the velocity shear layer is shown to stabilize the
short wavelength perturbations which were previously found to be
unstable in the zero thickness analysis of the problem. Further-
more in the case of incompressible flow the component of the mag-
netic field perpendicular to the flow velocity and the direction of
propagation of the disturbances has no effect on the instability. On
the other hand the parallel component of the magnetic field reduces.
the growth rate of the instability., When the variation of density is
taken into account the compressibility effects reduce the growth rate
of the instability, but in this case the presence of a perpendicular
magnetic field tends to increase the growth rate towards the incom-
pressible value.

For this case a complete linear stability analysis of a hydro-
magnetic shear layer may constitute a possible area _fdr additional
work. The complexity of the x-variation of flow and field param-

eters in the transition region, however, seems to indicate that a
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numerical approach to obtain eigenvalues and eigenfunctions for a
specific flow configuration will be required. One problem of this
specific nature have been treated in the hydromagnetic case by
Lessen and Desphande (37-39) who were able to numerically deter-
mine the marginally stable modes for a specific problem.

In both of the preceeding cases there remains considerable
additional work in the area of nonlinear stability. For the two
fluid model the complexity of the mathematical model seems to
preclude direct treatment of the problem in a manner such as Stix
(63) and Weyl and Goldman (71) used for the electrostatic drift
wave problem. It may, however, be possible to use a technique
such as that of Weinstock and Williams (70) to obtain some infor-
mation of the nonlinear behavior. For kinetic theory treatment,
or regions of instability it may be possible to apply quasi-linear
kinetic theory (53). The complexity of the finite 8 problem may
even make this type of treatment impossible, however.

The single fluid hydromagnetic case appears somewhat more
accessible to a nonlinear treatment at this time. If one looks at the
behavior of a zero thickness shear layer it may be possible to apply
an expansion in time near the marginally stable state to investigate
nonlinear development. Such a technique was used by Drazin (17)

to study the nonlinear hydrodynamic Kelvin-Helmholtz instability
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of zero thickness layers with surface tension. Since the presence of a
magnetic field produces a '"'surface tension like" stabilizing effect on
the linear problem (11, p. 511), this offers an interesting possibility
for a nonlinear treatment of the hydromagnetic problem. Such a
technique is based on the "normal mode cascade' expansion of
Stuart (65) and Watson (69). This type of work involves two diffi-
culties, however. The first of these is the applicability of only an
expansion in time to a system with no characteristic length scale
(61). The second involves the difficulty introduced by the magnetic
field. For this case the nonlinear flow in the uniform flow regions
no longer remains irrotational and both the differential equations
and matching conditions become more complicated than thé hydro-
dynamic case,

In conclusion, the presence of non-zero shear layer thickness
in the hydromagnetic Kelvin-Helmholtz problem leads to a finite
maximum growth rate at a finite wave number for the two cases
studied. Short wavelength disturbances found to be unstable for
shear layers of zero thickness, with growth rates that increase
indefinitely as the wavelength becomes smaller, are stabilized by
effects of non-zero layer thickness. Stabilization occurred both
in shear layers of infinite thickness and in shear layers where the

thickness was finite. The results of the finite thickness study
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indicate the magnetopause may be unstable in the low latitude equi-
torial regions just away from the subsolar point. The instability
in this region will be characterized by a finite linear growth rate
at a fixed wavelength and frequency. Stabilization of this growth
by nonlinear effects presents a source for coupling between the
solar wind and the magnetosphere and the generation of wave mo-

tion in both the magnetosheath and magnetosphere.
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APPENDIX

In this appendix we will discuss two special cases of the incom-
pressible flow limit. The physical basis of these cases is not as firm
in application to the magnetopause problem but the results are inter-
esting and easily obtainable from the basic model of Sections V and
VI. These cases are oblique propagation with zero transverse field
and a step variation of the parallel field.

1. Oblique Propagation with Zero Transverse Magnetic Field

In this case we take Boy =0. We now consider ky # 0. Follow-

ing the same procedure as was used in Section VI we obtain:

N 7 *
AR W (1o e Tree V)

Y * 3 R oA (A.1)
+ W [1=1 ) =K Ka (-4 V£ K Wy (1-eip(-4B
(&) ghw 7o et J
= O

where K2 = ky2 + kzz. Squire's theorem (38) applies for this case
and the maximum growth rate occurs for ky =(0. This case is exactly
the same dispersion relation as the case for BOy # 0 discussed

earlier. The results are the same as those shown in Fig. A-1.
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2. Step Variation in Parallel Magnetic Field

The second special case considers a crude method for considering
variations in bo. This is applicable to the magnetopause case dis-
cussed first or the special case discussed above. From Eq. (6.13)
and its solutions can be seen that each is a solution in a local region,
i.e. regionI, II, or IIl. The solutions are properties only of condi-
tions single region. Thus one general way of considering a variation
of bO is to take bO constant but a different constant in each region.

For this case we can write the solutions to Eq. (6.13) as

§ = A\e-s y $5%,

v -
=&'-\E\.h'\'9.:.e.\u\ ) g\.""‘%\
Li - 0(-.,\ (:g""u \\
+€
= C, ¢ ;8<%,.

The jump conditions now become

A\,t‘&.l: @
MAERHYETY
A.Eﬁ, da)‘é—gl o}

In the above o will take a different value in each region. For this

case of jump variations in bO one set of bO variations leads to an exact
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solution for the problem. An exact solution is obtained if region II
is considered an infinitely conducting current sheet such that

b02 = 0. For this case ozz

tion reduces to the exact solution
S e g

W——

3 h!

Matching conditions of the interfaces for a z-component field reversal

- A ,
=0 and k =kZ C and the WKB approxima-

across the interface (b03

a0 i\"{ K Q-ac) - =T\ - ex: H”ﬂ]‘g

= - bol) leads to the dispersion relation:

(A. 2)

+ K4 )] \- e L] £ (Kox-o) = 0.
L‘

This equation is valid for any value of A. Numerical solutions were
obtained for this equation and are shown in Fig. A-1. For this very
special case one can see that the qualitative features of the approxi-
mate model, the existence of a kc and the reduction in the maximum
growth rate for all A, agree with the quantitative results of the exact
solution. For b02 # 0 approximate solutions can also be obtained by
use of the WKB technique. Solutions of this type show the same

qualitative behavior as those discussed above.
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