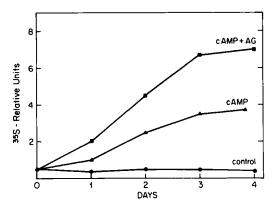
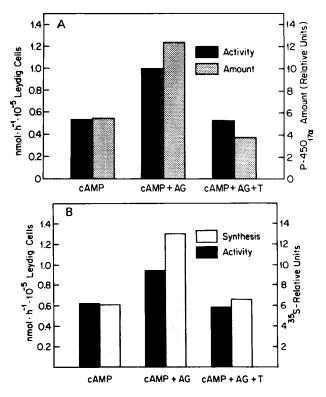
Regulation of *de Novo* Synthesis of Cytochrome P-450_{17 α} in Mouse Leydig Cell Cultures^{*a*}

DALE B. HALES AND ANITA H. PAYNE^b

Departments of Obstetrics, Gynecology, Biological Chemistry, and Reproductive Endrocrinology Program University of Michigan Ann Arbor, Michigan 48109-0278


Studies from this laboratory have shown that chronic (long term) treatment of mouse Leydig cell cultures with LH, or its intracellular second messenger, cAMP, causes a time-dependent increase in 17α -hydroxylase activity.¹ This cAMP-induced increase in P-450_{17 $\alpha}} enzyme activity is enhanced by aminoglutethimide (AG), an inhibitor of cholesterol metabolism. The AG enhancement of cAMP-induced 17<math>\alpha$ -hydroxylase activity can be reversed by supplying exogenous testosterone (T) to the cAMP + AG-treated cultures.² This finding suggests that testosterone produced during the cAMP induction of P-450_{17 $\alpha}} activity negatively regulates the extent of this induction.</sub>$ </sub>

The present study was designed to examine whether the cAMP-induced increase and testosterone-mediated decrease in P-45017a activity are due to changes in the total amount of specific enzyme protein, changes in the rate of de novo synthesis of $P-450_{17\alpha}$, or activation or inactivation of preexisting enzyme protein. Purified Leydig cells were maintained in culture for 7 days prior to the initiation of treatment with 0.05 mM 8-Br-cAMP, 0.5 mM AG, cAMP + AG, or cAMP + AG + 5 μ M T. To determine *de novo* synthesis of P-450_{17a}, cultures were incubated for 3 h in medium containing [35S] methionine. Immunoprecipitable P-45017a was separated by SDS-gel electrophoresis and visualized by fluorography. [³⁵S]methionine P-450_{17a} was quantitated by laser densitometry. The total amount of P-450_{17a} was determined by immunoblotting (Western blotting); SDS-gel resolved Leydig cell proteins were transferred to nitrocellulose paper, incubated with anti-P-450_{17a} antibody, and bound antibody was detected with iodinated protein A. The total amount of P-450_{17a} was quantitated by laser densitometry. 17α -Hydroxylase activity was determined after a 1 h wash, by measuring the conversion of $[{}^{3}H]$ progesterone to $[{}^{3}H]$ steroid products during a 1 h incubation.


To determine whether the 8-Br-cAMP-stimulated induction of 17α -hydroxylase activity was mediated by an increase in the rate of *de novo* synthesis of P-450_{17 α}, the rate of incorporation of [³⁵S]methionine into newly synthesized enzyme protein was measured over a 4-day period. The results shown in FIGURE 1 demonstrate that treatment of Leydig cells with 8-Br-cAMP resulted in the induction of *de novo* synthesis of P-450_{17 α}. The rate of synthesis approximately doubled when cells were treated with 8-Br-cAMP + AG. To test if the AG-enhancement of

^a This study was supported by NIH Grants HD-08358 and HD-17916. Dale B. Hales is supported by NIH Training Grant HD-07048.

^b To whom correspondence should be addressed.

FIGURE 1. Effect of aminoglutethimide (AG) on the rate of *de novo* synthesis of P-450_{17a}. Leydig cell cultures were treated with control media, media containing 8-Br-cAMP, or 8-Br-cAMP + AG. At the indicated time, *de novo* synthesis was determined as described in the text. Each point on the curve represents immunoprecipitated P-450_{17a} isolated from an equal number of trichloroacetic acid precipitable counts.

FIGURE 2. Effect of cAMP, AG, and testosterone on 17α -hydroxylase activity, total amount, and *de novo* synthesis of P-450_{17a}. Leydig cell cultures were treated for 4 days as indicated and assayed as described in the text. A: 17α -hydroxylase activity (\blacksquare); total immunoreactive P-450_{17a} (\blacksquare); B: 17a-hydroxylase activity (\blacksquare) and *de novo* synthesis (\blacksquare).

8-Br-cAMP-stimulated induction was due to the inhibition of testosterone production, exogenous testosterone was supplied to 8-Br-cAMP + AG-treated cultures. 17α -Hydroxylase activity was determined in parallel with total amount (FIG. 2A) or with *de novo* synthesis of P-450_{17α} (FIG. 2B). The results, shown in FIGURE 2, demonstrate that changes in enzyme activity are correlated to changes in both the total amount of P-450_{17α} and its rate of synthesis.

The results demonstrate the following. cAMP-induced increases in activity are due to increased accumulation of P-450_{17 $\alpha}} enzyme protein resulting from increased synthesis of P-450_{17<math>\alpha} and are not due to the activation of a pool of preexisting enzyme protein. The AG enhancement of cAMP induction of$ *de novo* $synthesis of P-450_{17<math>\alpha} can be reversed by the addition of exogenously added testosterone. These data indicate that testosterone produced during cAMP induction of P-450_{17<math>\alpha}} negatively regulates the activity of this cytochrome P-450 enzyme by decreasing its$ *de novo*synthesis.</sub></sub></sub></sub>

REFERENCES

- 1. MALASKA, T. & A. H. PAYNE. 1984. J. Biol. Chem. 259: 11654-11657.
- 2. RANI, C. S. S. & A. H. PAYNE. 1986. Endocrinology 118: 1222-1228.