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1 Introduction

In this paper we will discuss the following problem: Given a bounded set S C R™, how
can we efficiently sample points Xj, X5, ... which are distributed according to a probability
density function f over S. That is, we require that the probability that X € A C S be given
by [, f(z)dz =: F(A).

In [Smith, 1984] a class of symmetric mixing algorithms (later called “hit-and-run algo-
rithms”, see [Berbee et al., 1987]) was introduced, which generate a sequence of points in a
bounded, open region S, having the property that the limiting distribution of this sequence
is the uniform distribution, independent of the initial point.

In [Boender et al., 1989] a class of “shake-and-bake” algorithms is discussed, which generate
a sequence of points on the boundary of a polytope with a uniform limiting distribution.
Recently this class of algorithms has been extended to the boundary of arbitrary bounded
convex bodies [McDonald, 1989].

We will generalize both classes of algorithms mentioned above to obtain a limiting distri-
bution given by F. Conditions on F' (or f) will be given for this to be possible. Possible
applications of these algorithms include the estimation of volumes or surface areas. For ex-
ample, the surface area of engine components is important to General Motors, for estimating
heat loss over time. Also, these methods can be used for Monte Carlo integration, which is
important in Bayesian statistics when the dimension of the problem is too high for numerical
integration to be efficient. A third possible application is in global optimization. We will
study this application in this paper.

The outline of the paper is as follows. In section 2 we will introduce a general class of Random
Walks, and give some examples. Also, we will give conditions under which a Random Walk
has a limiting distribution given by a density function f. In section 3 we will define a class
of “hide-and-seek” algorithms for global optimization.

2 Random Walks

2.1 The general class

Consider bounded set S C R". The general random walk can be described as follows.

Step 0: Choose a starting point z° € S, and set 7 := 0.
Step 1: Generate a direction d* from an arbitrary probability distribution over a direction



set D. Find the set A' = {\ € R|z' + \d' € S}.
Step 2: Generate a real number A from an arbitrary probability distribution over the set A‘.
Step 3: Set z**! := ' + A\'d* and set ¢ := 1+ 1. Go to Step 1.

Clearly, the random sequence of points {X'};-, constitute a continuous state homogeneous
Markov chain. We assume that the transition density function p(y|z) corresponding to this
chain exists. Furthermore, we assume that there exists a continuous density function f over
S such that

p(ylz)f(z) = p(zly)f(y) Vaz,y€S.

Algorithms satisfying these assumptions will be called Random Walks. An example is the
hypersphere directions (HD) hit-and-run algorithm, discussed in [Boneh & Golan, 1979],
[Smith, 1980], [Smith, 1984] and [Berbee et al., 1987]. In this algorithm the distributions in
steps 1 and 2 are chosen to be the uniform distribution, and the direction set D is the unit
hypersphere. The density f is the uniform density over S.

2.2 Examples

In the following we will assume that a continuous density function f on S is given.

For Random Walk ! the region S must be open. Furthermore, the direction set D is the
unit hypersphere, and a direction will be drawn from the uniform distribution over D. We
choose the density of A* to be the marginalization of f on the line set defined by A':

f(@ + M)

= : , for A € A’
Jai (&' + pd') du

fi(A)

Theorem 2.1 The transition density function corresponding to Random Walk 1 reads:

_ 2 , fy) l
nlvle) = Z e =y Taom £ (& + A=) dA Jordlz#y €S,

lly—2ll

where C, is the surface area of the n-dimensional unit hypersphere, and A(z,y) =

{NeRle + 2=z € 8}

lly==ll

Proof
For all y € S, y # z the transition density function can be defined as:
. Pr{X'e H.(y)|X° =z}
Plvle) = B (L)




where H.(y) is an n-dimensional cube of content ¢™ centered at y and oriented along the ray
from z to y, and where m,(-) denotes the n-dimensional Lebesgue measure. We have:

Pr{X! e H,(y)|X° =z}

p(ylz) = lim i (H.(y))
. 9en-1 Ef(y) 1
= lim n—1 -z e
e Culle =yI" fyo F e+ ApEg) dr €
_ 9 . fy)
Calle =™ Jyo £ (2 + ) A

which proves the theorem. m

In Random Walk 2 the class of regions S, the direction set D and the distribution of the direc-
tion will be the same as for Random Walk 1. The density of A’ is a mixed discrete/continuous
one:

Pr{)' =0} =1-B(ylz) and
_ ﬂ(ylm) i
fi(d) = d(z,7) for A € A,

where d(z,y) is the diameter of S along the line through z and y, and B(y|z) is the so-
called move probability function (see [Boender et al., 1989]), which satisfies the following
conditions:

0<Bylz) L1 for all z,y € §

Blylz) f(z) = B(zly) £(y) for all z,y € 5.

Theorem 2.2 The transition density function corresponding to Random Walk 2 reads:

_ 2 Blylz)
Pl = o dey)

forz#y €S, and

pele) = Pri{X' = alX° =z} =1 - [ pa(yle)dy

forallz € S.



Proof
Analogous to the proof of theorem 2.1. =

In Random Walk 8 S will be the boundary of a full-dimensional polytope. The direction
set D is, once again, equal to the unit hypersphere. The density of the direction will be
expressed in terms of the “hitpoint” y, which is the intersection of S with the line through
a point z € § with a certain direction vector, and denoted by p(y|z). We assume that this
density is absolutely continuous. The density of A is again a mixed discrete/continuous one:

Pr{)' =0} =1 - B(y|z) and

Pr{X = [ly - z[} = B(ylz).
Note that in this case A' = A(z,y) = {0,||y — z||}. Furthermore, 8(y|z) is the move
probability function, satisfying the same conditions as in Random Walk 2.
Theorem 2.3 The transition density function corresponding to Random Walk 3 reads:

ps(yle) = B(ylz) p(ylz)
forz#y €S, and

p3(zlz) ==Pr{X'=z|X" =2} =1- /;pg,(ylx)dy
forallz € S.

Proof
See [Boender et al., 1988] and [Boender et al., 1989]. m

2.3 Limiting density
Lemma 2.4 If the transition density function p of a Random Walk on a set S satisfies

p(ylz) f(e) =p(zly) fly)  foralz#FyeS

where f is a continuous density on S, then f is a stationary density of the Markov chain

{(X'}2,, ie
/S Pr{X"*! € AIX' = ¢} f(z)dz = F(A)

forall ACS.



Proof

/S Pr{X"*! € AIX' = 2} f(z)dz =

= [ [ ple)f@ dyda+ [ Pr{X* = 2|X' = 2} 14(z) f(2) da
[ [ ol sw)dyde+ [ {1= [ stylo)dy} f(2)de
= [ [refwdedy + [ f@)dz = [ [ pylo)f(@)dyda
- /Af(x)dac=F(A). n

Theorem 2.5 If f is a stationary density of a Random Walk, and the absolutely continuous
component of the transition density function is uniformly bounded away from zero, then f is
the limiting density of the Markov chain generated by the Random Walk.

Proof

Since the absolutely continuous component of the transition density function p of any Ran-
dom Walk is uniformly bounded away from zero, the stationary density f is unique, and the
limiting density of the corresponding Markov chain is equal to f (see [Doob, 1953]). =

2.4 Examples (continued)

In this section we will derive more specific conditions on the Random Walks described in
section 2.1 such that these algorithms have a limiting density given by f.

Theorem 2.6 If
fmin 1= i%gf(x) >0

fma:: ‘= sup f(CE) <o
z€S

then the limiting density of the Markov chain generated by Random Walk 1 is f.

Proof

Under the conditions mentioned in the theorem the transition density function p; is uniformly



bounded away from zero:
nlyle) = g LD
Callz =0T Ty Fle + A A0
2 fmin

=)
Cn Tg rs fmaz

where 7g < 0o is the maximum diameter of S:

>0

rs = max [z —y]|.
Now use Theorem 2.5. m
Theorem 2.7 Suppose the conditions in Theorem 2.6 hold. Possible choices for the move

probability function B, such that Random Walk 2 generates a sequence of points having a
limiting density given by f are:

W
Blyle) = I
_ fmin
__ fly)
W)= 1+ )
B(y|r) = min{l, f(y)/ f(z)}-
Proof

The absolutely continuous component of the transition density function p; is uniformly
bounded away from zero:

I R T
pll) = Gy dey)

2 min 2 mazx
_ foinl2mes
CnTS rs

2

Now use Theorem 2.5. m

Consider the HD algorithm (see section 2.1), and choose S to be a strip of width € around the
boundary of a polytope. Letting ¢ go to zero gives as a “natural” choice for the acceptance
probability function 8 of Random Walk 3:



= Ut
/ cos ¢, + 1/ cos @y

It is possible to prove that the algorithm Random Walk 3 with this acceptance probabil-
itv function generates a uniform limiting distribution on the boundary of a polytope (see
[Boender et al., 1989]) if the direction vector is uniformly distributed over the unit hyper-
sphere (see [Boender et al., 1989]) . If, instead of a strip of width €, we choose S to be a
strip of width ¢ f(z) around the boundary of a polytope, we get the following choice for the
acceptance probability function by letting ¢ go to zero again:

) osd,
A8l = F o 6, 7 Fy) cos by

Theorem 2.8 Suppose the conditions in Theorem 2.6 hold. Then we have that the Random
Walk 3 algorithm with the direction vector uniformly distributed on the unit hypersphere and
acceptance probability function By generates a limiting density on S given by f.

Proof
Using the result from [Boender et al., 1989] for the case where f is the uniform density, and
using Theorem 2.5 the result follows immediately. m

In [Boender et al., 1989] a class of so-called “SB algorithms” is discussed. These algorithms
generate a sequence of points on the boundary of a full-dimensional polytope having a
uniform limiting distribution. In the following theorem we will consider an element of this
class of algorithms, characterized by the density of the “hitpoints” p(y|z) and the move
probability function B(y|z), like in Random Walk 3. We will modify the move probability
function in such a way that the resulting version of Random Walk 3 will have a limiting
density given by f.

Theorem 2.9 Suppose the conditions in Theorem 2.6 hold. Furthermore, suppose an SB
algorithm is characterized by the density of the hitpoints p and the move probability function
3. Then the Random Walk 3 algorithm characterized by the same hitpoint-density, and by a
move probability function given by ¥(f(y)|f(z), fmin, fmaz) - B(y|z), such that:

0 <6‘Y S7(f(y)|f(x)’fminafmaz) S— ]' fO‘I‘ all -T,ye S
VWS (@), fmins fmaz) £(2) = Y(F (@) f (W), fmins fmaz) £(y) forallz,y €S.
has a limiting density given by f.

Proof
Using the result from [Boender et al., 1989] for the case where f is the uniform density, and
using Theorem 2.5 the result follows immediately. m
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3 Hide-and-seek algorithms

Consider the following mathematical programming problem:

it

where

1. S C R" is full dimensional and compact.

2. f is twice continuously differentiable.

It is well-known that the number of iterations necessary to get within € of the optimal
solution increases exponentially in the dimension n of the problem if we use Pure Random
Search to approximate the optimal solution of this problem (see [Dixon & Szegd, 19787],
[Rinnooy Kan & Timmer, 1984]).

In this section we will discuss algorithms which generate points from a density function which
is a positive, nondecreasing transformation of the objective function f. We will call these
hide-and-seek algorithms.

Using the methods discussed in this paper we can generate points in the interior of S which
are asymptotically distributed to some density function defined on S. [Rubinstein, 1981]
suggests that points should be generated from the density

g(z; A) o M) (1)

for large values of A. [Pincus, 1968] showed that the expected value of a random variable
defined on S with this density converges (for A — oo) to the point at which the global max-
imum of f on S is attained, under the condition that this global maximum is unique. We
conjecture that the distribution of this random variable for A — oo converges to a (degener-
ate) distribution which is uniform over the set of global maxima. Note also that simulated
annealing algorithms, which have mainly been used for discrete optimization purposes, gen-
erates a sequence of points having the same limiting distribution. (See e.g. [Aarts & Korst,
1988]). So, in this sense our class of hide-and-seek algorithms subsumes simulated anneal-
ing. Our parameter A corresponds to the reciprocal of the temperature used in simulated
annealing.

For a given value of ), the probability that a point generated according to the density (?7)
lies within a ball with radius ¢ around a global optimum z* (denoted by B.(z*)) is given by

fB (z*) C‘q(z;/\) d(L‘
Pr{X € B.(z")} = —
I'{ e e(x )} fs eg(z;,\) d.’E




We are now interested in how the value of A changes with the dimension of the problem and
the precision parameter ¢, if we want this probability to be at least p.

We first analyze this problem for the case

f(z) = -2’z

The density function g then corresponds to a (truncated) normal density. Now suppose that
2" = 0, the global optimum on R™, is an interior point of S, and define B, = B,(0). Then
we have:

I3, e~ M7 g

Jan €% dg

for € small enough. If we use this lower bound on the probability, we are in fact assuming
that the elements X; of X are i.i.d. according to a normal distribution with mean 0 and
variance 1/2A. Performing the transformation Y; = 2\ X; gives:

Pr{X € B.} = Pr{Y € Bz} = Pr{||Y|? < 2)¢%}.

Pr{X € B.} >

We know that the distribution of ||Y||? is x?(n), and so this probability is equal to p € (0, 1)
if :

2Xe? = y(p;n)

or, equivalently, if

_y(pyn)
A= 22

where y(p;n) is chosen such that
Pr{|[Y]* < y(p;n)} = p.
Using the central limit theorem, we can for large n approximate y(p;n) as follows:

y(p;n) & n + V2n z(p)

where z(p) is chosen such that

Pr{Z <z(p)}=p
where Z has a standard normal distribution. So, for large n, we have the following (approx:
imate) result: If

n +v2n2(p)

AD> —
- 2¢?



then

Pr{X € B.} = Pr{

X -z7|

<e}2p
So, we have A = O(n/e?).

Suppose now that, apart from the conditions mentioned above, our objective function f
satisfies the following conditions:

1. —H(z*) (the negative of the Hessian matrix at the optimum z*) is positive definite.
2. z* is an interior point of the feasible region S.

3. ¢ is chosen such that f can be approximated by a quadratic function in the region

B.(z*).

Conditions 2 implies that the gradient at z* is zero. Using a Taylor expansion of f at z* we
get:

(@)~ £(") + 5z = 2" H(z - =)

if z is “close” to z*.
If furthermore the following inequality holds:
/ ME) gy < / M)+ 1 (=2 H(z=2)) g
s s

then we can generalize the abovementioned result as follows: If

y(p;n)
>
A - 2620,,“'.,,,

then
Pr{X € B.(z")} = Pr{||X —z"|| < e} 2 p

where 0., > 0 is the smallest eigenvalue of —H(z*). Using the same approximation of
y(p;n) as above we obtain again A = O(n/e?).
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