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Inductive therapy with anti-CD4 or anti-CD40L mon-
oclonal antibodies (mAb) leads to long-term allograft
acceptance but the immune parameters responsible
for graft maintenance are not well understood. This
study employed an adoptive transfer system in which
cells from mice bearing long-term cardiac allografts fol-
lowing inductive anti-CD4 or anti-CD40L therapy were
transferred into severe combined immunodeficiency
(SCID) allograft recipients. SCID recipients of cells from
anti-CD4-treated mice (anti-CD4 cells) did not reject al-
lografts while those receiving cells from anti-CD40L-
treated mice (anti-CD40L cells) did reject allografts.
Carboxyfluorescein succinimidyl ester (CFSE) labeling
of transferred cells revealed that this difference was
not associated with differential proliferative capacities
of these cells in SCID recipients. Like cells from naı̈ve
mice, anti-CD40L cells mounted a Th1 response fol-
lowing transfer while anti-CD4 cells mounted a dom-
inant Th2 response. Early (day 10) T-cell priming was
detectable in both groups of primary allograft recipi-
ents but persisted to day 30 only in recipients treated
with anti-CD4 mAb. Thus, anti-CD40L therapy appears
to result in graft-reactive T cells with a naı̈ve pheno-
type while anti-CD4 therapy allows progression to an
altered state of differentiation. Additional data herein
support the notion that anti-CD40L mAb targets acti-
vated, but not memory, cells for removal or functional
silencing.
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Introduction

While various clinical and experimental immunosuppres-
sive therapies promote the acceptance of transplanted or-
gans, it is intuitive that graft acceptance is likely achieved
by distinct immunologic mechanisms depending upon the

therapy. The nature of the immune mechanisms respon-
sible for graft acceptance likely reflects various immune
deviations induced by different therapies that may vary in
strength and resistance to reversal. A better understanding
of immune parameters responsible for maintaining various
forms of graft acceptance would facilitate the development
of strategies aimed at achieving vigorous and nonreversible
transplant acceptance.

For example, we have previously reported that inductive
therapy with either anti-CD4 (1,2) or anti-CD40L (2,3) mon-
oclonal antibodies (mAb) markedly prolongs cardiac allo-
graft survival. However, at 60 days posttransplant, function-
ing allografts in anti-CD4-treated recipients develop signs
of chronic rejection (CR) including transplant-associated
vasculopathy (TAV) and interstitial collagen deposition (4),
while allografts in anti-CD40L-treated recipients do not (3).
These differences correlate with the intragraft expression
of TGFb and induction of connective tissue growth fac-
tor (CTGF) in recipients treated with anti-CD4 (that de-
velop CR), but not in recipients treated with anti-CD40L
(that do not develop CR) (5). This study explored additional
immunologic differences that result from these inductive
mAb therapies and sheds further light on the mechanisms
of action underlying the resulting states of graft accep-
tance. To this end, an adoptive transfer system revealed
differential cytokine production by graft-reactive T cells as
well as distinct sensitivities to reversal of allograft accep-
tance. In this system, cells obtained from anti-CD4-treated
primary recipients (anti-CD4 cells) were skewed toward a
Th2 phenotype and failed to mediate rejection following
adoptive transfer into secondary severe combined immun-
odeficiency (SCID) allograft recipients. In contrast, cells
from anti-CD40L-treated recipients (anti-CD40L cells) ex-
hibited a Th1 phenotype and mediated rejection following
transfer. Thus, the robust and nonreversible graft accep-
tance mediated by anti-CD4 cells correlated with altered
T-cell function whereas anti-CD40L cells maintained the
functional capacities of naı̈ve T cells.

Materials and Methods

Mice

Female wild-type (WT) and SCID C57BL/6 (H-2b) and BALB/c (H-2d) mice
were purchased from The Jackson Laboratories (Bar Harbor, ME) and used
between 6 and 12 weeks of age. Mice were housed under pathogen-free
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conditions in the Unit for Laboratory Animal Medicine at the University
of Michigan. Animal use was approved by the University of Michigan’s
Committee on the Use and Care of Animals.

Culture medium

Dulbecco’s modified Eagle’s medium (DMEM) was supplemented with
2% fetal calf serum (FCS), 1 mM sodium pyruvate, 100 U/mL penicillin,
100 lg/mL streptomycin, 1.6 mM L-glutamine, 10 mM HEPES buffer (all
from Invitrogen, Grand Island, NY), 0.27 mM L-asparagine, 1.4 mM L-arginine
HCl, 14 lM folic acid and 50 lM 2-mercaptoethanol (all from Sigma Chem-
icals, St. Louis, MO).

Vascularized cardiac transplantation

C57BL/6 mice were transplanted with intact BALB/c cardiac allografts (6).
Transplant function was monitored by abdominal palpation. H & E stained
sections of graft tissues were assessed to determine the degree of the
cellular infiltrate, vascular involvement and myocyte death as determined
by loss of nuclei and cross-striation.

Inductive anti-CD4 and anti-CD40L mAb therapies

Anti-CD4 (GK1.5, American Type Culture Collection, Manassas, VA) and anti-
CD40L (MR1, kindly provided by Dr. Randy Noelle, Dartmouth) mAb were
purified and resuspended in phosphate-buffered saline (PBS) by Ligocyte
Pharmaceuticals (Bozeman, MT). To transiently deplete CD4+ cells, allograft
recipients were injected i.p. with 1 mg of anti-CD4 mAb on days –1, 0 and
7 relative to transplantation (1,2,4). Following depletion, CD4+ cells begin
to repopulate the periphery between 3 and 4 weeks posttransplant (4,7).
For inductive anti-CD40L therapy, allograft recipients were injected i.p. with
1 mg of anti-CD40L on days 0, 1 and 2 relative to transplantation (2,3). Both
of these inductive protocols promote allograft survival for >60 days.

Adoptive transfer of splenocytes into SCID

allograft recipients

C57BL/6 SCID mice were transplanted with BALB/c cardiac allografts. Two
days posttransplant, SCID recipients were injected i.v. with 5 × 107 spleno-
cytes obtained from the following groups of C57BL/6 mice: (1) naı̈ve, non-
transplanted mice as a positive control for rejection, (2) mice bearing func-
tioning allografts on day 60 posttransplant that received inductive anti-CD4
mAb, (3) mice bearing functioning allografts on day 60 posttransplant that re-
ceived inductive anti-CD40L mAb, (4) unmodified mice that were rejecting
cardiac allografts on day 8 posttransplant as a source of activated donor-
reactive effector cells, (5) mice that were sensitized with BALB/c skin grafts
70 days previously as a source of donor-reactive memory cells. Where in-
dicated, SCID allograft recipients were given inductive anti-CD40L mAb or
control hamster IgG (hIgG).

Splenocyte proliferation following transfer into SCID

allograft recipients

Splenocytes from naı̈ve mice, anti-CD4-treated allograft recipients or anti-
CD40L-treated allograft recipients were labeled with carboxyfluorescein suc-
cinimidyl ester (CFSE) dye using the Vybrant CFDA SE Cell Tracer Kit (Invitro-
gen, Carlsbad, CA) as per manufacturer’s directions. 5 × 107 CFSE-labeled
splenocytes were i.v. injected into SCID allograft recipients. On day 7 and
14 posttransfer, cells were recovered from the spleens and mesenteric
lymph nodes (LN) of SCID recipients and CFSE dilution was assessed by
flow cytometry to measure in vivo proliferation of transferred cells.

In vivo neutralization of IL-4

SCID allograft recipients were injected i.p. with 1-mg anti-IL-4 mAb (11B11;
purified by Ligocyte Pharmaceuticals) or control rat IgG (Sigma) three times
per week until the termination of the experiment. To verify the presence of
circulating anti-IL-4 mAb in these mice, sera were tested for IL-4 neutralizing

capacity in a competitive IL-4 ELISA as described (2). In this assay, 1:2000
dilutions of sera neutralized 5 ng/ml IL-4, thereby verifying the effectiveness
of this IL-4 neutralizing regimen.

In vitro T-cell subset depletion

CD4+ or CD8+ cells were depleted using Dynal Beads (Invitrogen). Single-
cell suspensions of splenocytes were incubated with anti-CD4 or anti-CD8-
coated beads for 30 min. Bead-bound cells were removed magnetically.
Unbound cells were confirmed to be subset depleted by flow cytometry.

ELISPOT assays for in vivo primed and precursor

graft-reactive cells

ELISPOT assays were employed to quantify in vivo primed and quies-
cent donor-alloantigen-reactive IFNc (Th1) and IL-4 (Th2) producing cells
(8). Briefly, primed cells produce detectable cytokine when stimulated with
donor Ag in short-term overnight ELISPOT cultures while quiescent cells
require stimulation with donor Ag for 72 h in MLC prior to detection in
overnight ELISPOT cultures.

Capture and detection mAb for IFNc and IL-4 were purchased from Pharmin-
gen (San Diego, CA). Irradiated (1000 rads) donor splenocytes (4 × 105)
were added to each well followed by 1 × 106 recipient splenocytes for
primed responses or 5 × 105 recipient splenocytes for precursor responses.
After an 18-h incubation, plates were developed and spots were quantified
with an Immunospot Series 1 ELISPOT analyzer (Cellular Technology Ltd.,
Cleveland, OH).

Real-time PCR for intragraft IFNc and IL-4 expression

Allografts were homogenized in 1-mL TRIzol R© (Invitrogen) and RNA was
isolated as per manufacturer’s protocol. Five lg of total RNA were reverse
transcribed using 10× PCR buffer (Roche, Indianapolis, IN). Ten mM dNTPs,
Oligo (dT), M-MLV-RT (all from Invitrogen) and RNAsin (Promega, Madison,
WI). Products were then cleaned with 1:1 phenol/chloroform/isoamyl
(25:24:1) and reprecipitated with 2 M NH4OAC in pure EtOH overnight at
−80◦C.

Real-time PCR was performed on cDNA using a Rotor-Gene 3000TM (Cor-
bett Life Science, San Francisco, CA). Primer binding to DNA was detected
by SYBR Green ITM dye (BioRad). Relative expression of the gene of inter-
est was expressed as the concentration of the gene product compared to
GAPDH product as calculated by accompanying Rotor-Gene software. Sig-
nificance was determined with an unpaired t-test with Welch’s correction.

Primer sequences:

GAPDH sense: 5′ CTGGTGCTGAGTATGTCGTG,
anti-sense: 5′ CAGTCTTCTGAGTGGCAGTG.
IFNc sense: 5′ GGCCATCAGCAACAACATAAGC,
anti-sense: 5′ CCCCGAATCAGCAGGGACTC.
IL-4 sense: 5′ GCCAAACGTCCTCACAGCAA,
anti-sense: 5′ GCATGGTGGCTCAGTACTACGA.

Statistical analyses

Data were analyzed with Statview 5.0.1 software using analysis of variance
(ANOVA) with a post ad hoc Fischer’s PLSD test. The p-values ≤ 0.05 were
considered statistically different.

Results

While inductive treatment with either anti-CD4 or anti-
CD40L mAb results in prolonged allograft survival, treat-
ment with anti-CD4 results in CR while treatment with
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anti-CD40L does not (3–5). The development of CR is as-
sociated with the intragraft expression of TGFb and CTGF
in recipients treated with anti-CD4 and the absence of
CR correlates with the lack of expression of these cy-
tokines in recipients treated with anti-CD40L (5). This
study explores additional immune parameters that are
associated with prolonged allograft survival under these
conditions.

Donor-reactive precursor cells are detectable in mice

bearing long-term allografts

In Figure 1, we employed ELISPOT (8) to quantify
in vivo primed (left panel) and precursor (right panel) donor-
reactive Th1 (IFNc ) and Th2 (IL-4) using splenocytes ob-
tained from mice bearing functioning allografts on day
60 following inductive therapy with either anti-CD4 (anti-
CD4 cells) or anti-CD40L (anti-CD40L cells) mAb. Spleno-
cytes obtained from unmodified allograft recipients on
day 8 posttransplant were used as a positive control for
T-cell priming while naı̈ve splenocytes served as a negative
control for priming. Anti-CD4 and anti-CD40L cells resem-
bled naı̈ve cells in that primed cells were not detectable
at this late time point posttransplantation. Precursor Th1
and Th2 were detectable at levels similar to those seen
in naı̈ve mice, suggesting that donor-reactive cells were

Figure 1: Donor-reactive T-cell responses in mice bearing long-term allografts following inductive therapy with anti-CD4 or anti-

CD40L mAb. C57BL/6 mice were transplanted with BALB/c cardiac allografts and given inductive anti-CD4 or anti-CD40L therapy. Sixty
days posttransplant, splenocytes from three mice per group were pooled for each experiment and assessed for primed and precursor
donor-reactive Th1 and Th2 by ELISPOT. The averages of 5–11 experiments (three mice per experiment) are depicted for primed responses
and the averages of 10–16 experiments (three mice per experiment) are represented for precursor responses. Error bars represent the
SEM. Naı̈ve splenocytes from nontransplanted mice served as negative controls for T-cell priming while splenocytes obtained from
unmodified allograft recipients that were actively rejecting their grafts on day 8 posttransplant served as positive controls for T-cell
priming.

maintained in a quiescent state in mice bearing long-term
allografts.

Anti-CD40L cells, but not anti-CD4 cells, adoptively

transfer acute rejection responses in SCID

allograft recipients

We have reported that anti-CD4 cells mediate chronic
rather than acute rejection when adoptively transferred
into secondary SCID allograft recipients (4). Hence, we
used this adoptive transfer system to further explore im-
munologic differences in mice bearing long-term allografts
following inductive anti-CD4 versus anti-CD40L treatment
(Figure 2). As expected, transfer of naı̈ve cells resulted in
acute rejection in SCID allograft recipients while transfer of
anti-CD4 cells did not. Somewhat unexpectedly, transfer of
anti-CD40L cells resulted in rejection, albeit slightly delayed
relative to transfer of naı̈ve cells. It should be noted that
this ‘delayed acute rejection’ mediated by anti-CD40L cells
histologically resembled the more brisk acute rejection me-
diated by naı̈ve cells (data not shown). Hence, anti-CD40L
cells behaved like naı̈ve cells in this setting. The difference
in the ability of these cell populations to mediate rejection
(anti-CD40L cells) or not (anti-CD4 cells) was highly repro-
ducible (n = 21 and 28, respectively) and significant (p <

0.0001).
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Figure 2: Cells from long-term

anti-CD40L, but not anti-CD4

mAb-treated primary allograft

recipients transfer rejection to

secondary SCID allograft recip-

ients. C57BL/6 SCID mice were
transplanted with BALB/c cardiac
allografts. Two days posttrans-
plant, SCID mice were infused
i.v. with 5 × 107 naı̈ve cells
obtained from nontransplanted
mice or cells from mice bearing
functioning allografts 60 days
following inductive therapy with
anti-CD4 mAb (anti-CD4 cells) or
anti-CD40L mAb (anti-CD40L
cells). Panel A depicts allograft
survival. The number of individual
SCID recipients for each group is
presented in parentheses, p <

0.0001 for recipients of anti-CD4
versus anti-CD40L cells. Panel B
depicts representative flow
cytometry data for splenocytes
from SCID allograft recipients
receiving anti-CD4 cells (left)
or anti-CD40L cells (right) and
verifies the persistence of T and B
cells following adoptive transfer.
These analyses were performed
on each SCID recipient depicted
in Figure 2A at the time of rejec-
tion for recipients of anti-CD40L
cells or at the termination of
the experiment for recipients of
anti-CD4 cells. Panel C depicts in
vivo proliferation of CFSE labeled
naı̈ve, anti-CD4 or anti-CD40L
cells on day 7 posttransfer into
SCID allograft recipients. Flow
cytometry data are representative
of four separate experiments
evaluating proliferation as as-
sessed by CFSE dilution within
the spleens of SCID recipients.
Similar data were obtained for
CFSE-labeled cells recovered
from the mesenteric LN and
for cells obtained on day 14
postadoptive transfer.
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Figure 2: (Continued)

The differential ability of anti-CD4 versus anti-CD40L cells
to mediate rejection was not due to differences in T- and
B-cell reconstitution of the SCID recipients by transferred
cells. As shown in Figure 2B, the percentages of CD19 +
B cells and CD3+ T cells (top panel) were virtually identical
in SCID recipients of these cell populations. In the T-cell
compartment, the percentages of CD4+ and CD8+ cells
(bottom panel) were also similar between the groups. Sim-
ilar flow cytometry data were generated for each individual
SCID recipient depicted in Figure 2A.

Further, the differences in the ability to mediate rejection
were not associated with differential proliferative capaci-
ties of these cells following transfer into SCID recipients.
Cell populations were labeled with CFSE prior to transfer
and the expansion of CD3+, CD19+, CD4+ and CD8+
cells was assessed by flow cytometry in the spleens
(Figure 2C) and mesenteric LN (data not shown). Virtu-
ally identical proliferative responses were observed for all
cell populations on day 7 (Figure 2C) and day 14 (data not
shown) posttransfer.

In vivo primed Th1 and Th2 responses in SCID

allograft recipients following adoptive transfer

We next asked whether differences in effector functions
correlated with allograft rejection versus acceptance un-
der these conditions. Splenocytes were recovered from

the SCID allograft recipients and used as responder cells
in ELISPOT to quantify in vivo primed donor-reactive Th1
and Th2. Figure 3A illustrates that a primed Th1 dominant
response correlated with graft rejection following transfer
of naı̈ve cells into SCID recipients. This Th1 > Th2 pattern is
characteristic of unmodified rejection in normal mice (Fig-
ure 1, left panel and (Reference 9)). Similarly, this Th1 >

Th2 profile of cytokine production was observed when anti-
CD40L cells were used for transfer and rejection ensued.
Hence, anti-CD40L cells resembled naı̈ve cells in this as-
say. Of interest, the cytokine pattern was reversed with
Th2 > Th1 in SCID recipients of anti-CD4 cells that did not
reject their grafts.

To determine whether IL-4 production was required for
allograft acceptance when anti-CD4 cells were used for
transfer, SCID allograft recipients were treated with 1-mg
anti-IL-4 mAb three times per week (2) for the duration of
the experiment (30 days). Out of seven SCID recipients of
anti-CD4 cells that were treated with anti-IL-4 mAb, none
rejected their allograft indicating that Th2 production of IL-4
was not required for graft acceptance. High levels of neu-
tralizing anti-IL-4 mAb were detectable in the sera of these
mice (see Methods). Further, ELISPOT revealed that the
primed Th2 response was significantly reduced in SCID
recipients of anti-CD4 cells that were treated with anti-
IL-4 mAb (Figure 3A).

American Journal of Transplantation 2008; 8: 2037–2048 2041
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Figure 3: Differential cytokine

production by primed donor-

reactive cells in SCID allograft

recipients following transfer of

anti-CD4 or anti-CD40L cells.

Panel A: Splenocytes were har-
vested from SCID allograft re-
cipients depicted in Figure 2
and assessed for primed donor-
reactive Th1 and Th2 responses by
ELISPOT. Data represent the aver-
age of responses + SEM for 6–21
individual SCID recipients. Where
indicated, 7 SCID recipients of
anti-CD4 cells were treated with
1-mg anti-IL-4 mAb three times
per week for 30 days. All 7 allo-
grafts in anti-IL-4 mAb-treated re-
cipients continued to function nor-
mally until the termination of the
experiment. Panel B: T-cell sub-
sets were depleted from spleno-
cyte populations with immuno-
magnetic beads before culture in
ELISPOT assays to determine the
contributions CD4+ and CD8+ T
cells to cytokine profiles. Bars
represent the average responses
+ SEM of 5–8 separate experi-
ments. Panel C: Intragraft IFNc
and IL-4 gene expression was as-
sessed by real-time PCR. Each
data point represents the cytokine
gene expression level of an indi-
vidual allograft. Horizontal bars de-
pict the mean expression level for
each group.

The contributions of T-cell subsets to cytokine profiles were
determined by depleting CD4+ and CD8+ cells prior to
addition to the ELISPOT assays (Figure 3B). When CD4+
cells were depleted, the profiles of cytokine production
were maintained for both anti-CD4 and anti-CD40L cells.
When CD8+ cells were depleted prior to ELISPOT, Th2
responses were induced in all cell populations, in keeping

with previous reports that depleting CD8+ cells results
in Th2 responses (i.e. Reference 10). These data indicate
that CD8+ cells influence Th1/Th2 balance in this system
by suppressing CD4+ Th2 function.

We next asked whether the cytokine profiles assessed
by ELISPOT analyses of splenocytes were reflective of
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cytokine profiles within the transplant. However, ELISPOT
analyses were precluded due to insufficient numbers of
graft-infiltrating cells. Hence, we performed real-time PCR
to quantify intragraft IFNc and IL-4 expression levels in
the allografts of SCID recipients of naı̈ve, anti-CD4 or anti-
CD40L cells (Figure 3C). IFNc expression levels were
significantly higher in the grafts of SCID recipients of
anti-CD40L or naı̈ve cells relative to recipients of anti-CD4
cells. Similarly, IL-4 expression levels were significantly
higher in the grafts of recipients of anti-CD4 cells when
compared to recipients of anti-CD40L or naı̈ve cells. Thus,
the ELISPOT data obtained from splenocytes reflected the
patterns of cytokine gene expression within the allografts.

Donor-reactive T-cell priming following inductive

anti-CD4 and anti-CD40L in primary

allograft recipients

The finding that anti-CD4 and anti-CD40L cells trans-
ferred distinct cytokine profiles to secondary SCID allo-
graft recipients suggested that these cell populations ex-
perienced distinct events in the primary allograft recipi-
ents. The anti-CD4 mAb GK1.5 depletes peripheral CD4+
cells (11). When mice are treated with our inductive anti-
CD4 regimen, CD4+ cells are transiently depleted and be-
gin to repopulate the periphery between 3 and 4 weeks
(4,7). Hence, we assessed donor-reactive T-cell priming
in anti-CD4-treated primary allograft recipients on day 30
posttransplant and compared these responses to their anti-
CD40L counterparts (Figure 4B). While responses in anti-
CD40L-treated recipients day 30 posttransplant were sim-
ilar to those seen with naı̈ve cells from nontransplanted
mice, primed donor-reactive Th1 and Th2 were readily de-
tectable in allograft recipients on day 30 following induc-
tive anti-CD4 therapy. These data, in conjunction with the
day 60 posttransplant data in Figure 1, indicate that anti-
CD4 cells undergo a transient priming phase as they re-
populate the periphery.

We also asked whether T-cell priming was evident
early posttransplantation in primary allograft recipients
(Figure 4A). Low, albeit detectable Th1 and Th2 priming
was observed in both groups at day 10 posttransplant.
Thus, T-cell priming was short-lived in primary allograft re-
cipients treated with anti-CD40L mAb. This in vivo finding
is in keeping with the in vitro observation of Blair et al. (12)
who reported that cross-linking CD40L results in cytokine
production followed by apoptosis of activated T cells.

Assessing the effects of anti-CD40L mAb

on donor-reactive T cells

It has been reported that memory, but not naı̈ve T cells are
resistant to the suppressive effects of anti-CD40L mAb
(13). Therefore, if anti-CD40L cells are maintained in a
naı̈ve state, then rejection following transfer of these cells
into secondary SCID recipients should be ablated by anti-
CD40L mAb treatment of these SCID mice. To this end,
SCID allograft recipients were infused with naı̈ve or anti-

CD40L cells and treated with anti-CD40L or control hIgG.
As shown in Figure 5A, treatment of SCID allograft recip-
ients of either naı̈ve or anti-CD40L cells with anti-CD40L
mAb, but not hIgG, prevented graft rejection. Prolonged
graft survival by anti-CD40L treatment correlated with re-
duced T-cell priming relative to that observed in SCID re-
cipients of naı̈ve or anti-CD40L cells that were treated
with hIgG (Figure 5B). These observations further sup-
port the notion that anti-CD40L cells are maintained in a
naı̈ve phenotype. As a control for memory cell resistance to
anti-CD40L therapy, SCID cardiac allograft recipients were
infused with cells obtained from C57BL/6 mice that had re-
jected BALB/c skin grafts 70 days previously. As expected
(13), anti-CD40L was ineffective at preventing allograft
rejection (Figure 5A) or inhibiting primed Th1 responses
(Figure 5B) mediated by memory cells. However, an inter-
esting observation was made when SCID recipients of acti-
vated effector cells were treated with anti-CD40L. Effector
cells were obtained from unmodified cardiac allograft recip-
ients that were in the process of rejecting their allografts
on day 8 posttransplant. Unlike in recipients of memory
cells, anti-CD40L mAb prevented rejection in recipients
of effector cells and suppressed primed donor-reactive T-
cell responses (Figure 5A and B). Thus, activated effector
cells were targeted by anti-CD40L mAb, while memory
cells were not. An alternate explanation for this observa-
tion is that effector cells, but not memory cells, undergo
activation-induced cell death upon adoptive transfer into
SCID allograft recipients as opposed to being controlled by
anti-CD40L mAb. While we cannot definitively rule out this
possibility, it should be noted that perturbation of CD40L
on activated T cells has been reported to induce apoptosis
(12) in keeping with the idea that anti-CD40L mAb con-
tributes to the elimination of effector cells.

Discussion

Multiple effector mechanisms of allograft rejection exist
(reviewed in References 14–17). For example, unmodified
cardiac allograft rejection is characterized by a prominent
CD8+ T-cell response (1,10). These CD8+ cells produce
IFNc and little IL-4 (9,10,18), which suggested that Th1
were critical to the rejection process and that inducing Th2
may promote graft acceptance (reviewed in Reference 14).
However, depleting CD8+ cells induces Th2 that recruit
granulocytes resulting in a nonclassical form of rejection
(10,19,20). Similar observations have been made in liver
transplant patients undergoing acute rejection (21). Fur-
ther, complete elimination of IFNc results in IL-4 pro-
duction by CD8+ cells and a granulocytic infiltrate that
is not controlled by depleting CD4+ cells or anti-CD40L
therapy (2). Thus, while IFNc may contribute to rejec-
tion, this cytokine also appears to be required for allograft
acceptance under certain conditions. These observations
point to a delicate balance between allograft rejection and
acceptance.
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Figure 4: Donor-reactive T-cell priming following inductive anti-CD4 and anti-CD40L mAb therapy. Primary allograft recipients
were given inductive anti-CD4 or anti-CD40L mAb therapy. On day 10 (Panel A) or day 30 (Panel B) posttransplant, splenocytes were
harvested and assessed for primed donor-reactive Th1 and Th2 responses by ELISPOT. Data are presented as the mean + SEM For
day 10 posttransplant, data represent responses for 6 anti-CD4 mAb and 9 anti-CD40L mAb-treated allograft recipients. For day 30
posttransplant, data represent responses for 10 anti-CD4 mAb and 7 anti-CD40L mAb-treated allograft recipients. Naı̈ve splenocytes
obtained from nontransplanted mice (n = 4) served as negative controls for T-cell priming.

Figure 5: Rejection transferred

by anti-CD40L cells is inhibited

by anti-CD40L mAb therapy.

SCID allograft recipients were in-
fused with (1) naı̈ve cells, (2) anti-
CD40L cells, (3) effector cells ob-
tained from unmodified allograft
recipients that were actively re-
jecting their grafts on day 8 post-
transplant or (4) memory cells ob-
tained from mice sensitized with
skin allografts 70 days previously.
SCID recipients were given induc-
tive anti-CD40L therapy or con-
trol hIgG. Panel A depicts allograft
survival. The number of individual
transplants in each group is given
in parentheses. Panel B depicts
primed donor-reactive Th1 and
Th2 responses (ELISPOT, mean +
SEM) mounted by splenocytes ob-
tained from these SCID recipi-
ents. ‘Too few cells’ indicates that
adequate cell numbers were not
recovered for the ELISPOT assay.
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Figure 5: (Continued)

Since there are multiple effector mechanisms of rejec-
tion (reviewed in References 14–17), it comes as no sur-
prise that sustained allograft ‘tolerance’ has been difficult
to achieve (22,23). While various therapies promote al-
lograft ‘acceptance’ (reviewed in References 24–27), the
mechanisms by which allograft acceptance is maintained
likely varies depending on the acceptance-inducing regi-
men. Similarly, the vigor of allograft maintenance mech-
anisms and their susceptibility to reversal may also vary
depending upon how allograft acceptance is induced. This
study explored elements of this hypothesis by compar-
ing mechanisms of allograft maintenance resulting from
two inductive mAb therapies that primarily target CD4+ T
cells: the anti-CD4 mAb GK1.5 and the anti-CD40L mAb
MR1.

The anti-CD4 mAb GK1.5 (rat IgG2b) transiently depletes
peripheral CD4+ T cells in vivo and is a cytolytic mAb that
fixes complement (C′) (11). When allograft recipients are
given our inductive anti-CD4 regimen, CD4+ cells begin
to repopulate the periphery between 3 and 4 weeks fol-
lowing initial depletion (1,4,7). Transient depletion of CD4+
cells does not appear to require the classical complement
pathway, in that treatment of C1q-deficient mice (28) with
anti-CD4 mAb is as effective at depleting CD4+ cells as it
is in WT mice (Csencsits et al. Am J Transplant, in press).
Similarly, Ghobrial et al. (11) reported that GK1.5 was ef-
fective at depleting CD4+ T cells in C5-deficient mice.

Regardless of how CD4+ cells are initially depleted by anti-
CD4 mAb, their return to the periphery in allograft bear-
ing mice is associated with donor-reactive T-cell priming
(Figure 4). Hence, the immune status of anti-CD4 cells is
modified relative to that of naı̈ve cells. It is of interest that
both Th1 and Th2 responses were induced since Th2 are
not readily detectable during unmodified acute rejection
(Figure 1) (9). Similarly, Bass et al. (29) observed that when
CD4+ cells repopulate the periphery following total lym-

phoid irradiation that their function is skewed toward Th2
and that Th1 function is reduced. Further, donor-reactive
Th2 dominated the response when anti-CD4 cells were
adoptively transferred into allograft-bearing SCID recipi-
ents (Figure 3A), and this Th2 response was associated
with prolonged graft survival (Figure 2A). Since the pro-
tective effects of Th2 are questionable (reviewed in Ref-
erences 14–17), we neutralized IL-4 in SCID recipients to
determine whether IL-4 was required for prolonged graft
survival (Figure 3A). Neutralizing IL-4 inhibited Th2 emer-
gence, verifying the biologic activity of this regimen. How-
ever, neutralizing IL-4 did not induce rejection, suggesting
that IL-4 was not essential for allograft acceptance by anti-
CD4 cells. A likely candidate cytokine for the suppressive
activity of anti-CD4 cells is TGFb. Anti-CD4 cells transfer
CR to SCID allograft recipients (4) and TGFb has been
implicated in the progression of CR (reviewed in Refer-
ence 30). TGFb has numerous immunosuppressive activi-
ties that are beneficial in inflammation and transplantation
(reviewed in References 31 and 32). Further, TGFb induces
expression of Foxp3 and can convert Foxp3- effector cells
into Foxp3+ Treg (reviewed in References 32 and 33). In-
deed, we observed that intragraft Foxp3 expression was
greater in SCID recipients of anti-CD4 relative to recipients
of anti-CD40L cells at the termination of each experiment
(data not shown), which further suggests a role for TGFb.
Finally, it should be noted that TGFb is expressed within
long-term allografts in recipients that receive anti-CD4, but
not anti-CD40L mAb therapy (5). Hence, future studies will
be aimed at assessing the role of TGFb in promoting allo-
graft survival in this setting.

The anti-CD40L mAb MR1 (hamster IgG3) was originally
described for its ability to inhibit B-cell activation by CD4+
cells (34). CD40L is expressed on activated, but not rest-
ing CD4+ T cells (reviewed in References 35–38). CD40
has a wide tissue distribution and the consequences of
stimulating CD40 vary depending on the cell (reviewed
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in References 36, 38–40). Perhaps the most immunolog-
ically important CD40-CD40L interactions occur between
CD40 expressing B cells or other antigen-presenting cells
(APC) and CD40L expressing CD4+ T cells (35,41). CD40
stimulation on B cells promotes proliferation, induces Ig
isotype switching and enhances APC function by upregu-
lating the costimulatory molecules CD80/86. CD40 stimu-
lation of macrophages and dendritic cells augments their
APC function through upregulating CD80/86 and stimulat-
ing IL-12 production. Hence, CD40 stimulation confers APC
functions that are critical in driving T-cell responses.

The anti-CD40L mAb MR1 is believed to interfere with
CD40-CD40L interactions in what is often referred to as
‘costimulatory blockade’. This infers a physical disruption of
CD40-CD40L interactions. However, reports suggest that
cross-linking CD40L may have direct effects on T cells. For
example, we have reported that CD40−/− BALB/c mice
reject CD40−/− C57BL/6 cardiac allografts (42). Interest-
ingly, anti-CD40L therapy prolongs allograft survival in this
setting, which is completely devoid of CD40. Blotta et al.
(43) reported that cross-linking CD40L on T cells results
in increased production of IL-4 and IL-10, suggesting a role
for CD40L in immune deviation. Similar observations were
reported by van Essen et al. (44), who employed solu-
ble CD40 and CD40−/− mice to demonstrate that CD40L
stimulation was required for isotype switching and germi-
nal center formation. Further, Blair et al. (12) reported that
cross-linking CD40L results in the release of IL-10, IFNc
and TNFa, and subsequent apoptosis of the T cells. Hence,
CD40L functions at levels beyond simple perturbation of
CD40.

Our observation that anti-CD40L mAb ablates rejection
mediated by activated effector cells (Figure 5) supports this
notion. One would assume that the initial CD40-CD40L
interactions required for effector cell generation would
have occurred and that subsequent costimulatory block-
ade would be without consequence. However, the kinet-
ics, level and duration of CD40L expression by effector
cells may make these cells susceptible to removal and/or
silencing by anti-CD40L mAb. Upon activation, naı̈ve T cells
rapidly upregulate CD40L at both the mRNA and surface
protein levels (45–48). CD40L expression is enhanced and
prolonged on Th1, but not Th2 (49). Indeed, the effector
cells used in this study were generated from unmodified
allograft recipients and exhibit a polarized Th1 phenotype
(Figure 1) (9) that may facilitate removal by anti-CD40L
mAb in vivo. This notion is supported by reports that C′

is required for optimal effectiveness of anti-CD40L mAb in
vivo (50,51).

Treg play an important role in allograft acceptance and
maintenance (reviewed in References 25, 52 and 53) and
it is likely that adaptive Treg are generated by both anti-
CD4 and anti-CD40L therapies. Indeed, quiescent precur-
sor donor-reactive cells are present in long-term allograft
bearing mice that received either of these inductive regi-

mens (Figure 1) (3,7), supporting a role for Treg suppres-
sion of effector cell emergence. However, Treg are het-
erogeneous with respect to phenotype, function and traf-
ficking behavior (reviewed in References 54–58). Hence,
an in-depth assessment of Treg and their persistence in
anti-CD4 versus anti-CD40L cells is warranted.

In summary, this study documents differences in the func-
tional capacities of donor-reactive cells obtained from mice
bearing accepted allografts following inductive therapy
with anti-CD4 versus anti-CD40L mAb. These distinct pop-
ulations of donor-reactive cells exhibit differential capacities
to lose or reverse their allograft accepting behavior and sub-
sequently mediate acute rejection. Thus, an assessment
of the vigor and persistence of allograft maintenance fac-
tors would have utility in formulating inductive therapies
that yield enduring allograft acceptance.
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