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This paper is a preliminary attempt to study the questions, 'How
much information can be communicated in a given situation?'" and, if
meaningful, ''What is the largest possible rate of transmission?" when it
is not appropriate to characterize the distortions and perturbations of the
signal probabilistically, at least in more than a rudimentary way, so that
the Shannon theory cannot be applied. The use of the concept of €-capacity
is not new in the study of such questions (see [1], Appendix, and [ 2]),
but it appears not to be widespread, and most of the emphasis has been

on purely mathematical questions, rather than engineering ones.

In this paper, estimates are obtained for €-capacity When € is not
small; they are not asymptotic estimates. It was desired to represent
situations where there is appreciable additive disturbance or a significant
lack of knowledge about the linear channel. The upper and lower estimates
are not nearly as tight as could be desired, but this seems to reflect not
only the naivete of the author, but general difficulties in the mathematical
theory of packings and coverings. There is certainly room, however, for
the use of ingenuity to improve the results; it would appear (see the
Appendix) that a straightforward application of the classical results on

packings and coverings is not very fruitful.

For time-invariant, or nearly time-invariant channels the notion of
rate of transmission makes sense. Estimates have been computed using the
well-known Kac, Murdock, Szego theorem (see [3]) on asyfnptotic. behavior
of the eigenvalue of a translation kernel. These calculations bear consid-

erable resemblance to Gallager's (see [7]) on the (Shannon) capacity of
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Gaussian channels (they were not, however, motivated by Gallager's
work), and it is of interest to compare results, because the problems

are not the same.

I
SIGNAL SETS AND TRANSFORMATIONS

We use an abstract but very simple model which is suitable for a

large class of communications problems: there is a transmitted-signal

set, which is a specified subset of a suitable function space, a received-
signal set, which is the same sort of thing but which must contain the images
of the transmitted signals under whatever transformation they undergo,

and a channel (or perhaps a class of channels), which is a mapping from

the transmitted-signal set into the received-signal set. In this paper the
channel will always be either a linear transformation or an affine trans-
formation: if x belongs to the transmitted signal set, the element of the

received signal set that corresponds to it is
z=Hx+n (1)

where H is a linear transformation and n is an element of the received
signal space. Conceptually, nis added ''noise', and H is the operation
performed by the transmission medium on the emitted waveform; for
example, in HF radio communication H could represent the transformation |
of the radiated signal effected by scattering in the ionosphere, and n could
represent thermal noise, antenna noise, shot effect, etc., plus, perhaps,

distortion in the receiving equipment.
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Signal Sets

More or less arbitrarily we take all the signal sets to be considered
to be subsets of the space of all square-integrable, real-valued functions
defined on a specified finite interval. We denote by L_(a, b) the space of

(a, b) if x(t) is

2

such functions with the usual inner product, i.e., x € L2

real and

b
g xz(t) dt <

a

Then,

b
(x, y) =§ x(t)y(t) dt

a

~

and ”XHZ = (x, x). Two functions x(t), x(t) are equivalent if x - ;I] = 0;

then, as elements of the real Hilbert space L _(a, b), they cannot be

2
distinguished.

There are other function spaces which could serve and which might
in certain circumstances be more appropriate. However there are some

obvious reasons for the use of L functions of integrable square on a

9t
finite interval correspond to physical quantities of finite energy; the

L2—norrn corresponds to a root-mean-square error criterion, which is

often appropriate — the distance, |x - yl, between two functions is the

square root of the energy of the difference; and, not least, separable

Hilbert space is more tractable for computation than most function spaces.

Because of the identification of the L2 norm with the square root of

energy, it seems appropriate to confine the transmitted signal set to lie
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within a ball in L_(a, b) centered at zero, where by a ball of radius r

o
centered at X, is meant the (closed) set of points x satisfying ”x - X ” <r.
ol

(We say, specifically, open ball to designate the set of points x for which

”x - Xo“ < r, and sphere to denote the set for which “x - XO” = r. The

same terminology is in force when we talk about finite-dimensional

Euclidean spaces.)

Suppose for the moment a = 0, b = 1. One can take as a complete

orthonormal basis for L_(0, 1) the set of functions {1, /2 sin 27nt,

o
/"2 cos 2mt} , n=1, 2,... Then the unit ball (centered at zero) con-
sists of all x(t) = a_+ z ./—é—an cos 2mnt + £ +/2 bn sin 27nt for which
ao2 +Z (an2 + bn2) < 1. This means that there are functions x(t) in the
unit ball with an arbitrarily large fraction of their "energy'' concentrated
in arbitrarily high frequency components. Consequently, the entire unit

ball in L_(a, b) appears at first to be unsatisfactory as a model for a

o
signal set, because, at least in any one given physical situation, signals
cannot be generated with arbitrarily high frequency components containing
non-negligible energy. However there is an artifice for getting around

this difficulty; we return to this point presently.

In an asymptotic sense, any set of functions {d)n(t)} which comprise

a basis for L,(a, b) can be thought of as giving a decomposition of a function

o
in Lz(a, b) in frequency. This is a loose statement, but it has at least
the following simple but precise interpretation. Let { d)n(t)} and {wk(t) }
be two complete sets of orthonormal functions in L2(a, b). Let x(t) be

any function satisfying

[ xl <1
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for some arbitrary € > 0 and some fixed arbitrary positive integer N.
Then, as is easily shown, there exists a positive integer M, depending

on N, {d)n} and {l//n} but not on x, such that

M

x - Z(x, d/k)l[/k < 2€

If now one takes the an's to be the sines and cosines of the ordinary Fourier
series, one can say that any function which has all but a negligible part

of its energy concentrated in the frequencies less than or equal to that of
¢n(t), has all but a negligible part of its energy concentrated in the first

M wk—components. Thus, the condition that the high-frequency com-
ponents of a signal must necessarily tail-off, can just as Well be stated

in terms of the l//k— components, where {wk} is anarbitrary orthonormal

set.

If the previous arguments are accepted, there is then the question
of exactly how to restrict the '"high-frequency' behavior of the signals
which are to be considered admissible for a particular problem, and of
how to state this restriction in terms of an arbitrary orthonormal basis.
This is still a question of mathematical model-making, and not a question
of solving a well-posed mathematical problem. It appears that an appro-
priate and convenient restriction is to require that a class of admissible
signals should be a subset of a compact subset of Lz(a, b). To see why,
let us first note the characterization of compact subsets of a separable
Hilbert space H in terms of an arbitrary orthonormal basis. Let Kbe a
subset of H, and let {d)n} be an arbitrary complete orthonormal set (c.o0.n.

set) in H. Then each element x € K has an expansion
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[o0]
x=) x ¢
/[ n'n
where X = (x, ¢n). The set K is compact if and only if it is closed and

bounded and

lim Z ‘xn\?‘:o (2)
N— l

n=N :
uniformly for all x € K. Thus a subset of a compact set must have the
uniform tailing-off at higher frequencies which we require. Furthermore,
we shall argue presently that the linear operators of interest in our form-
ulation of communications problems are compact operators; as such they
have the property that they carry any bounded set into a subset of a compact
set. So if the signals available come by means of any such operation acting
on a finite energy source, they lie in a compact set. Finally, compact sets
are appropriate from a computational point of view, because, as is evident
from Eq. (2), they are ''nearly finite-dimensional", so that finite computa-

tional algorithms have a chance of yielding good results.

Two particular examples of compact sets should be noted. First,
let {an} be an arbitrary sequence of non-negative numbers such that
z an2 < . Then, the set of all x such that Ixn\ < an is a compact set,

called a compact parallelopiped. Second, the set of all x such that

is compact; it is called a compact ellipsoid with semi-axes 35, 8gsees
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In modeling communications problems it is convenient to take as a

normalized transmitted signal space the unit ball in L_(a, b), but in the

face of the above objections this would appear to be a ioor choice. How-
ever, if one accepts a compact ellipsoid as being a suitable transmitted
signal space, one can conceive of it as the image space resulting from the
operation of a hypothetical linear operator on the unit ball (this statement
is justified later). Then the compact ellipsoid may be replaced by the ball

if the actual channel operator is replaced by a new operator which is the

composition of the actual one and the hypothetical one, as shown in Fig. 1.

H
Signal Space Channel Image in received
(compactellipsoid), (linear operator) signal space

|
|
!
|
|
|
|
|

Unit ball  Hypothetical oper-|
ator (pre-filter) I

Unit ball
taken as signal space

FIGURE 1
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In other words, one can think of the signals as being pre-filtered
before they are transmitted, and hence justify a system model which uses

the unit ball as transmitted-signal space.

Linear Channel Operations

The linear operator H indicated in Eq. (1) we assume to be represen-

table as an integral operator with a real kernel h(t, s); so that if

X € L2(a, b) and Hx = y, we have
b
y(t) =S h(t, s)x(s) dx ' (3)
a

We assume further:
(a) H is realizable, i.e., h(t, s) = 0 for t < s.

(b) H has bounded memory 7, i.e., h(t, s) =0fort>s+
b+T ~b 9

(c) g S h (t, s) ds dt < o
a a

Conditions (a) and (b) imply that y(t) as defined by Eq. (3) vanishes for all
t outside the interval [a, b+ 7]. We put ¢ = b + 7; then condition (c)
implies that Eq. (3) defines a compact (actually Hilbert-Schmidt) linear

transformation H from L _(a, b) to L

9 a, c).

o
The adjoint transformation, H*, carries elements from Lz(a, c)
into Lz(a, b), and is defined by

c
x'(s) = g h(t, s)y'(t)dt, a<ss <b (4)
a

where y' € L_(a, c).

ol
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The transformation H*H maps L2(a, b) into itself, is compact and
self-adjoint. By the spectral theorem for compact self-adjoint operators,
there is then known to exist a (non-empty) orthonormal sequence {d)n} of
elements from L2(a, b) such that

H'H¢ =X ¢, n=1,2 ... (5)

where Kn > 0, where the )\n have finite multiplicity, and (if there are

infinitely many of the Xn) )\n--;»O. We can thereby order the kn so that

xn > An+1'
Put
_ 1
‘//n = ;-17TH¢1’1’ (6)
n
so that
~ 1/2
Ho_ = ' (7)
for all n. Then
HYY = — H Hé
n X 1?2
n
or
K 1/2
8
H'Y =2 % (8)
Also,
1/2

Ho =X ¥, (9)
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Since H is defined on L (a, b), it is defined on the transmitted-signal

ol
set. The image of the transmitted signal set under H is called the received-

signal set for H; i.e., if x belongs to the transmitted-signal set, y = Hx

belongs to the received-signal set. If we are talking about a class of
channel operators H, then the term received-signal set will denote the

union of the received signal sets for each H in the class.

Now if the transmitted-signal set is the unit ball in L(a, b), the

2

received-signal set is a compact ellipsoid in L(a, c). In fact, take for

(
2
an orthonormal basis of Lz(a, b) the set {(bn(t)}- (augmented if necessary

by an orthonormal basis for the null space of H*H). Then the transmitted
0 0

2
signal set is the set of all x = Z Xn¢n such that Z X = 1. The received-

%0 o0
1/2
signal set is the set of all y = Z Xn / ann = Z ynl,lfn such that

(0]

— 2

) X, S 1, or equivalently, such that the Yn = (y, l//n) satisfy
-

2.2

y
'Xrl"Sl (10)
n

Since either kn—»O monotonically or there are only finitely many )\n 70,

the inequality (10) defines a compact ellipsoid with semi-axes akl//k,

where ak = A\/)tk.

A special case of particular interest to us is that of a time-invariant

channel. We say a channel is time-invariant if the kernel h(t, s) char-

acterizing the channel is defined for all real values of t, s and is a function

of their difference alone. Thus we can write h(t, s) = k(t - s). We still
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use the kernel to define an integral operator from L _(a, b) to Lz(a, c),

2
and we retain the requirements of realizability and bounded memory.

Thus, because of these conditions, (a) and (b),

b
y(t) = g k(t - s)x(s)ds, a=<t=<c,

a
or
~v w ~
y(t) = S‘ k(t - s)x(s) ds, -w<t <o (11)
= ‘
where
x(s) = x(s), as<s<b
=0, all other real s
and

:;f(t) =y(t), ast=sc

=0, all other real t

Eqg. (11) still defines a linear transformation from Lz(a, b) into L _(a, c)

o
through x—+x —y —y. We still require condition (c), so the trans-
formation is Hilbert-Schmidt. It should cause no confusion if henceforth

~

we drop the tildes and identify x, X and Yy, ¥ .
Obviously we can write Eq. (11) (with tildes removed) in the form
0
y(t) 1& k(t - s)L, (s)x(s) ds,

where
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I (s)=1, a<s<hb

= 0, otherwise

Then

e

C 0
(Hx , Hx,) = g S K(t - s)L, (8)x,(s) ds

a -0

v 00
g K(t - sHL (s)x,(s') ds' dt

~0

~ 00 o0 o0
= S g‘ K(t - S)L, (8)%,(s) dsg k(t - DI, (s)x,

-0 -~ - 00

Hence, since (Hx sz) = (H*Hx , X,

17 72
(a, b)) we have,

l)

respectively on Lz(a, c) and L2

(s') ds' dt

) (note that the inner products are

[>0] o0 v OO0
(H"\Hxl, x2) = 3 x2(s‘) Soo {Iab(s') —Soo k(t - s")k(t - s) dt Iab(s)}xl(s)ds ds'

e

Thus, still with the identifications x, ;, and vy, ;, the operator H*H is

given by
[H*Hx](s') = g w[lab(s')g(s', S)Iab(s)] x(s) ds
where

The kernel g(s', s), which can be readily shown to define a bounded linear

operator on L (-, «), is symmetric and time invariant, i.e.,

2
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=1

g(s' +u, s+u) = gs'

, 8). Thus we can write g(s' - s) instead of g(s', s).
These facts will enable us later to obtain certain asymptotic results for

the case that the linear channel is time-invariant.

II
COVERINGS, PACKINGS, €-ENTROPY AND €-CAPACITY
Definitions, notation, and one or two elementary results are given in

this section.

A finite or infinite system of sets {K1} covers the set A if AC U Ki'
Let R be either a finite-dimensional real Euclidean space with the usual
norm, or a real, separable Hilbert space. Let AC R be a non-void set
with compact closure; i.e., let A be totally bounded (see [1]) (or just
bounded if R is finite-dimensional). Let the sets Ki of the covering be

translates of a ball, B(é), of radius €/2, i.e.,

K. = B.(e) = B(e) + x_, x.€eR, i=1, 2, ..
1 i i i :

Since A is totally bounded there are coverings of A by finite systems of
translates of B(e). We denote by Ne(A) the smallest number of sets in
such a covering, and call its logarithm

H_(A) = log,N_(A)

the €-entropy of A.
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A system of sets {Ki} is a packing of a set A if K. 1 KJ =6, i7%],
U KiC A. Again, we are concerned with packings by translates of a ball
of given diameter. In an wo-dimensional Hilbert space a compact set
cannot contain a ball of non-zero diameter. However, we are really
interested in the centers of the balls, which form an €-separated set
(to be defined), and the concept of €e-separated set is useful in the
w-dimensional case. As before, let R be either a finite-dimensional real
Euclidean space, or a real, separable Hilbert space. A set S of elements
S|» Sy ... belonging to R is an ¢-separated set if Hsi - Sj“ > €, for

2
alli, j, i # j. It is clear that if, given AC R, we let A' be the union

of A with all points x that satisfy Ix - all<€/2 for some a € A, and if S

is an €-separated subset of A, then the system of balls of diameter €
with the points of S as centers is a packing of A'. Conversely, for any
packing of A' with balls of diameter €, the centers of the balls provide an
€-separated subset of A. It is well known that an €—separated'subset of

a totally bounded set A can contain only finitely many elements. "

Let AC R be totally bounded. We denote by M€(A) the largest number

of points in an € -separated subset of A and call its logarithm
C.e(A) = logzMG(A)

the e-capacity of A.
There is a simple fundamental relation between €-entropy and €-

capacity. For any totally bounded set A

N, (A) < M_(4) = N_(4)

or, equivalently,
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H2€(A) < Ce(A) < HE(A)
To prove the first inequality, note that Me(A) is the number of points in

a maximal €-separated set S. Hence if one centers spheres of diameter
2¢ about each point of S, every point of A must be covered; for any point
not covered could have been adjointed to S, thus contradicting the maxi-
mality of S. To prove the second inequality, suppose Me(A‘) > N€(A).

Then there would be an €-separated set contained in A with more points
than the number of balls in some covering of A by balls of diameter €.
Hence at least two elements of the e-separated set would fall in one €-ball,

which is a contradiction.

BOUNDS ON €-CAPACITY WIITI; KNOWN LINEAR CHANNEL
Suppose the transmitted-signal set is the unit ball in L2[ 0, 1].

Suppose the known channel operation H is linear and Hilbert-Schmidt,
and is realizable and has finite memory 7, so that it maps L2[0, 1] into
L2[ 0, 1+ 7]. Thus, as pointed out in Section I, the received-signal set
is a compact ellipsoid with each semi-axis equal in length to the square-
root of an eigenvalue of H'H. We would like to know how many different
signals can be transmitted, subject to the condition that the received signals
are at least € apart in the L2 norm. Thus, we are asking how many ele-
ments can there be in an €-separated set contained in the received-signal
set, or, equivalently, what is the €-capacity of the received signal set.

Upper and lower bounds for €-capacity are obtained, and, for the special



Willow Ruw Laboratories

INSTITUTE OF SCIENCE AND TECHNOLOGY
THE UNIVERSITY OF MICHIGAN

-16-

case of a time-invariant channel where the concept of rate makes sense,

an estimate is obtained for an asymptotic rate.

Let us denote the ellipsoid in L2[ 0, 1 + 7] that constitutes the

received-signal set as E. We denote its semi-axes by a., a,, a

1: 2) 3}"'}

and assume they have been ordered so that a,z8,2a832... 2 0. The
unit elements along principal axes of the ellipsoid, t//l, v’/z, ..., enumerated
., are taken as coordinates in the received-

to correspond to a_, a

17 72
signal space. The projection, En, of the ellipsoid of possible received

signals on the linear space spanned by wl, 1,1'12, cees wn is itself an ellipsoid
in n-dimensional real Euclidean space, R". The volume of the unit ball

. n, , 7rn/2 .'\ : . .

in R is denoted by kn kn = m ,f: ; the volume of the ellipsoid
with semi-axes al, az, C e, an is then knalaz. .. an.

It is convenient to discuss ellipsoids in R" slightly larger and slightly
smaller than E'. We denote by E'(n) the ellipsoid concentric with E",
with the same principal axes as En, and semi-axes, in order of decreasing
magnitude, a (1+ n/an), a2(1 + n/an), coes oAt Obviously, if n is
negative it must be less than a in absolute value for this notation to be
meaningful. Then, ifn >0, E(n) c E", if -a_<n <0, E'(n) ”E". In
either case the minimum distance between the surface of E" and En(n) is
n. This statement is readily proved by considering concentric spheres
of radius a_ and a + n, respectively, with a small sphere of radius n
centered at an arbitrary point of the inner one. The conclusion is obvious
if one transforms the whole configuration by the non-singular linear trans-

formation that carries the sphere of radius a into the surface of E".
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Upper Bounds

First let us consider a simple upper bound that results from the
obvious volume argument. Let € > 0 be fixed, and temporarily let n 21
be fixed. Any e€-separated set in E" determines a packing of €-balls in
in En(e/Z) if an €-ball is centered at each point of the €-separated set.
The number of balls in such a packing is less than the ratio of the volume

of E'(€/2) to the volume of the balls, hence

k_ T; a(l+e/2)

kn(e/2)n

n
i
1:

=
o
IA

n

(1+ €/2an)n ﬂ (2a/¢€) (13)

i=1

For fixed € this bound is valid for all n, but it is useless for large n
because it diverges to +w (as can be easily seen, since an—-+0), whereas
ME(En) converges monotonically as n—»-o to Me(E)’ which is finite. It
appears that this upper bound starts to become very loose when n is large
enough so that a is smaller than €. We can modify (13) so as to obtain
an upper bound that applies for arbitrarily large n, and hence provides
an upper bound for MG(E), as follows. Choose a valuea, 0 <a <1, and
pick n to be the smallest integer such that a < 325. Suppose S is an
e-separated set in E consisting of points Sl’ 82’ cee, Sm' Consider the
~ ellipsoid En, and note that any point in E can be written as s = s' + s',
" a€

where s' € E', (s', s'") =0, and [s']< a < 5. Now, project S on the

3 ! 3 1 ! 1
subspace spanned by (l/l, w2, e, l//n to give S s a set of points s/, $2. a8
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Since !!s'i' - s}'ﬂ‘s 2an < ae, while Hsi - st > €, it follows that

”si— sj}“ >e fl-a°,14,j=1,2,..., m; i.e., S'c E" is an

/ 2
(e //1 - a")-separated set. Consequently, ME(E) is not greater than

the number of points in some (€y 1 - az)—separated set in En, i.e.,

S e VT i
<’ + o —
N1 -« "
€

where n is the smallest integer for which 2 <5

adjusted so that an = %6-, a <1, for some n, then we can write a little

a<l1l., Ifa <lis

more simply,

1 1\ ’r_li' /28
ME(E)S/——————’r E\ E — (15)
2 \ :
/

[
\ i
ANl - o > /

The bound given by (13) is not satisfactory as a bound for M€(E);
the one given just above in (15) is satisfactory, but can fairly readily
be improved upon. The reason for including (13) is that it is very simple
and gives a sort of bench mark with which to compare a bound about to
be derived. The truncation procedure that carries (13) into (15) can be

used again on the better estimate without change.

To improve (13) we apply the method of the well-known paper of
Blichfeldt [4] to an ellipsoid (instead of to a cube, as he did; this is a
trivial change). Blichfeldt's argument depends on the following inequality
(see [4]; the proof is rather simple, however): if there are m non-

intersecting balls of radius €/2 in R", and if r is the distance from an



Wellow Run Laboratories

INSTITUTE OF SCIENCE AND TECHNOLOGY
THE UNIVERSITY OF MICHIGAN

-19-

arbitrary fixed point to the center of the i'th ball, then
m
9
; 2 € \
i r.” z 2(m - 1)<—41‘, (16)
i=1

Now, one gonsiders balls of radius _eé_ +/2 with a varying '"'mass density"

€ 2
equal to 5 T at distance r from the center. Each of the original m
non-intersecting balls is replaced by one of the "'new'' balls centered at
the same point; the new balls may, of course, intersect. Then, from

(16), since the r, are unchanged

m m
< /si L2
5 = \ 2 ri

The expression on the right is just the total density of the new balls at
an arbitrary point, which has been taken as the origin of coordinates. If
now we consider a packing of En(€/2) with balls of radius €/2, then re-
place each ball with one of the larger, variable density balls centered at

the same point, the new balls will be contained entirely in the ellipsoid
€

(—-—— Yy 2 ) , and the total mass of E" <—2 ﬁ) will be less than

5 times its volume. Hence
e2

2 2 y 2 /2
/ N, /
£ x a [ 1+¥2€ > Mk S € 2 e
2 n 1\ 2a n 2
n 0

i=1

where M is the number of balls. Thus
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or, since this must hold for any packing,

D gy
M (ED) < n+ 2 /1 L€ /2 xn Tr' % : 17
€ - 5. 2n72 2a_ | ; ; e (17)

n

The ratio of the right side of (13) to the right side of (17) is

o =\
2 .2 a +€. 2

2 /9N " C
n+tz  2a tell )

which exceeds one for sufficiently large n. The improvement, however,
for non-realizable € is not as dramatic as might be expected if one com-
pares Blichfeldt's classical upper bound on packing densities for all space
with the simple upper bound given by the volume argument. The reason,
of course, is the appreciable "edge effect' that shows itself when ¢ is

not very small compared to a .

Again, the right side of (17) diverges to +w as n— o with € fixed.
However, by exactly the same argument used to obtain (14) from (13), it

may be truncated to provide an upper bound for M€(E):

' n
n . 2a,
M (E) < =2 2 1+ e TV - o (--1-—- )
€ W 2, € '\}1 - o
n .

T/ 2ai\
; —-—) (18)

.0t 2 :

1 +
2 5 2a
‘./-2—11—(1 n
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where n is the smallest integer for which a < %6—, a<1l. Againif o<1

is adjusted so that a -~ %E, this becomes

n+ AN #1/231‘\. 0
011 E—g) (19)

M (E) s 222
\J—\Jl - o

Taking logarithms gives the bound on €-capacity

n . .
23, ;1 1
— ) + fm——— =
Ce(E) < log < ) nlogi — - =
\42 1-a
i=1
/ k! .
+ log n;’ 2) (20)

where o and n are as given above. The precise value of a to give the
tightest bound depends, of course, on the way thgz ai decrease; no attempt

is made here to investigate this (see [2]).

Lower Bounds

1f S” is a maximal e-separated set in E", then the union of the system
of 2e-balls centered at points of s"is a covering of En, as pointed out in
Section II. The number of sets in a covering of E"” must exceed the ratio
of the volume of E" to the volume of the 2¢-balls, hence

n
kTa.
n n i
n

M_(E) = M_(E") =

Sfe
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This inequality holds for all n, but when it is used to bound M€(E) n
should not be taken larger than the maximum value for which a >¢€,
for then the right side of (21) starts to decrease, and actually diverges

to zero as n —» .

Despite the triviality of the argument leading to (21) it appears dif-
ficult to improve on it substantially. Some justification for this state-
ment can be found in the Appendix, where a lower bound is obtained for
Me(En) which is somewhat sharper than (21), but which is valid only for
small €, and is not suitable for the analysis to follow. This sharper
bound is obtained using a ''best known' result on packing densities, and

improves (21) roughly by the factor n.
The estimate of capacity corresponding to (21) is, of course,

n

[ 2a, .
C_(E)z Z log & —6—1 ) - n log 2 (22)

i=1 ‘

where n is the largest integer such that a > €.

Asymptotic Rates with Time-Invariant Channels

Suppose there is given a kernel h(t, s) defined for all real t, s which
satisfies the conditions for realizability and bounded memory (< 7) and is
square integrable in any bounded domain of t, 's. Then for any finite time
interval [-T, T], h(t, s) determines a linear integral transformation

. with domain L2[ -T, T] and range L2[—T, T+T1]. We define the e-rate

of transmission, if it exists, to be
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2T + 7 m 2T

T—> T— 0

where ET is the compact ellipsoid which is the image of the unit ball

in L2[ -T, T] under the (Hilbert-Schmidt) channel operator.

We shall not attempt here to study the general question of when this
rate exists; we limit the problem to the special case that h(t, s) = k(t - s)
is a time-invariant kernel, and even in that case we do not prove the

existence of the e€-rate; but simply obtain asymptotic upper and lower
C (ET)
bounds for 5T that are valid as T— 0.
We use the facts established at the end of Section I cohcerning time-
invariant operators, and a well-known theorem of Kac, Murdock, and
Szego [ 3], which reads as follows for the special case in which we are

interested: Consider the integral equation
T .
S p(x - y)o(y) dy = A¢(x), -T <x=T (23)
-T

where p(t), -o <t <o, is an even function which is absolutely integrable,

and whose Fourier transform

F(E) = g p(x)e ™

is also absolutely integrable. Then, if NT(a, B) is the number of eigenvalues

of (23) falling within (e, B) and if (a, B) does not contain zero,
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1 1|
lim Z—TNT(a, B) = orle j €:a < F(§) < B}
T—»cc

¢
where u ~| €:a < F(§) < B } means the LLebesgue measure of the set of

et

€'s for which o <F(§) < 8. Note that the conditions on p(x) and its

transform are sufficient to guarantee that both p(x) and F(§) are bounded
and continuous, and that '
-it€ d

o) = | F()eF ae

-0
Now consider the situation that the channel operation is determined
by a kernel h(t, s) = k(t - s), when k(t) is bounded and k(t) = 0 fort <0
and t> 7. Since k(t) is bounded, the condition that Ih(t, S) l2 be integrable
in both variables in any bounded domain is automatically satisfied. We

put

Since k(t) is bounded and non-zero only on a finite interval, it belongs

to L1 and L2. Hence K(f) exists, is bounded, and belongs to L2

Plancherel theorem. Consider the iterated kernel g as given by Eq. (12),

by the

o0
g(u) = g k(t)k(t - u) dt (24)

g(u) is an even function; it belongs to L., because it is the convolution

2
| %

1

of two functions in Ll’ and its Fourier transform is K(f)K(f) = ;K(f)

which also belongs to L

because K(f) belongs to L Thus g(u) meets

1 2°
all the conditions required of the kernel p in the Kac, Murdock, Szego

theorem just quoted.
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We now estimate finite products of eigenvalues of the self-adjoint,

non-negative operator on L, [-T, T] given by Eq. (24),

T
[H"Hx](s) = S\ g(s - s")x(s')ds', -T<s=T
=T

2
Let a_ = |K(0) |” and suppose that a zl. Leta,, ay .. be any

1° % M

finite sequence of real numbers satisfying a ap >ay > ... > ape > 0.

By the Kac, Murdock, Szego theorem the number, nj, of eigenvalues

Xof H'H satisfying aj <A< Qj—l is

r
| b

[
- L

5N H

S:aj < lK(S)l2 < a,

I
j-1 ',

]
T

where nj——*-O as T—=w. Put

-1

-

mj=u {E:aj < |K2(§)! <a. .7

then nj = T/7r(mj + nj). The product, Pj’ of eigenvalues lying between

aj and Qj—l is then bounded by
n, n.
ad <P, < a.’
] il
or
T/m(m +n)) T/7(m +n))
o R 3 (25)
J J J-

Now since lK(f)i2 is the restriction to the real axis of the Fourier

transform in the complex domain of g(t), and since g(t) (by Eq. (24))
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vanishes outside a finite interval and is bounded, it follows that |K(f) iz

cannot take on any one value on an infinite set of points contained in any
finite interval; for, by a well-known theorem of Paley and Wiener, the
Fourier transform of g(t) is analytic and not equal to a constant. Con-
sequently, a fortiori, | K(f) | 2 cannot take on any one value on a set of
positive measure. Thus, given an arbitrary € > 0, it follows that the
number vj of eigenvalues exactly equal to aj is less than or equal to Te/7

for sufficiently large T, j=0, 1,..., M.

We can now write estimates for the product of all eigenvalues greater

than o Suppose the A's are ordered so that 7L1 > AZ > 7\3 2 ..., and
let )\N, N = N(aM, T), be the smallest of the A's strictly greater than o\
(This is possible because the set of A's contains no limit points other
than zero.) Then
+ + +
T/7r(m1 n,) T/7r(rn2 n,) T/7r(mM nM)
@, a, ey
v, Vv v vV v
1 2 M o) 1 M-1
ap @y el g Shlkz...)\NSao @y ey
- +
T/7r(m1+n1) T/7r(rn2 n,) T/7r(mM nM) (26)
a @ ceeQyr g
“o
Now, given €, > 0, take T large enough so that 3nji < mj -3 and so that
€ € '

o | 0 .
Uj <T/=w mj —- and also Vj <T/x mj+1 —» forall j.
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Then
T \lvi e T & 3
P Z_J m. log . - — m, log «a < Z log A
i=1 i=1 i=1
- M . EOT M
- 4+
< - E: m, log ;1 - Z m, log a4 (27)
i=1 i=1

We also have upper and lower bounds on the number n of eigenvalues

exceeding a
m

M M-1 M M
— " e T
n. + 5 - m, + — m
i 4 J T J
J:l 3:1 J:l J:]-
. M € T M
nx = z m, - — Zm. (28)
T J T J
i1 =1

We can now apply (27) and (28) to (19) to obtain an upper bound on

the e-capacity C€(E). Since

2a, 27&.1/2

log —€-1- = log

and since (27) remains valid when all the )Li's and ai's are multiplied by
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a fixed constant (this follows from (25), or from (26)), we have

M
T 4
+ —_— —_—
CE(E) < (1 +e )2 Z rni log62 ai—l
i:
M
(1 +€ T— Zm rlog 1 +l-}
O T J( 2 Q g
f 2 1 -0 J
=

{ M
+ log 2 (1+€O)—2—T7-r- Z mj+1‘

for sufficiently large T, where « is less than 1 and where apy may be

taken (a fortiori) equal to n Now
M M , ;.
LY ptorta =N moogl 2 \
2 z My 0T My 08 e "’1-1/
€ \
i=1 i=1

is an upper approximation to

S log 2/e€ lK(f)I df

2
[K(D)] " >ay,

0262

by simple functions. Since ayp can be taken equal to 7 and since the
2
inequality is valid for any finite sequence a_ >a, > ... >a ., a_ = !K(O)
5 9 o 1 M’ "o l
. a € s

aye =g We have for any positive a < 1 and any €, 0,
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T 2K(f)
+ — D
Ce(E)S (1 eo) - S log . ‘df
o€
lK(f)|>-7
+(1+€)I df log! ! +10
o' e b 5 @
h<;(f)|>T L2 fl -« i
+1 r 1+e )t df + 1! 29
og ; ( 60) o0 e i ( )
Lm IKKﬁ‘>7§' B
for all sufficiently large T. The inequality is weakened somewhat but
simplified if the integrals are taken over the set of all f's such that
K(f); > €/2. Then we can write
T 2K(f)
< (1+ = i L
Ce(E)< (1 60) - log . ' df
€
|K(D] >5
+2.5(1 +€) L S‘ df
o' w ¢
II((f)|>E§’
+logl (1+e )L S df + 1 (30)
| o' 2w
‘ €
| [K(f) >3 :
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for all sufficiently large T. Thus we have finally for an asymptotic

upper bound on the rate:

)
im _e_’_r_s_21_7r S‘ 2K(f)‘df+ 2: g df  (31)
£)>

T —>00
|K(

>5 K>3

These inequalities are valid, of course, for all € > 0.

In analogous fashion we now obtain an asymptotic lower bound. From

(27), (28) and (22) we have for sufficiently large T

r M oM
C(E)=(1-¢)5 z 7(1.-(1-6); Zm. (32)

2
where a1 is equal to € /4. The first sum on the right side of (32) is
1

a lower approximation to

S 1og—§- |K(f)‘ df
2

|K(f)| >ay,

by simple functions. Hence

T
CBp) = (1-¢€) 7 S log .

K(f)| >5 |K(D)] >3

z—iif-);df-u-e)% S df (33)

for all T sufficiently large. Thus,
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lim Ce(ET) 1 S o
T— 2T T 27 g

K() >5 k()| >

‘ df - — df (34)

These inequalities are valid for all € > 0.

The definition of rate is perhaps worth a comment. Implicit in the
definition is that the maximum pérmissible signal energy is normalized
to be 1 as T—»w, and the ''noise energy'', €, is also held constant. This
is equivalent, of course, to letting both signal energy and € grow pro-
portionately as T increases. It seems reasonable in the case of time-
invariant channels that a rate exist (that is that C€(ET) should increase
asymptotically proportionately to T) if one thinks of sending long duration
signals by chopping them into equal duration pieces which are sent one after
the other, but with a pause between transmissions long enough for the

channel to quit ringing.

APPLICATIONS E’XVND COMMENTS
The most obvious application of the estirpates of Section III is to the
situation that there is unwanted noise added to the signal before it is
available for processing at the receiver, where the Lz—norm of the noise
is less than €, and where there is no (or very little) statistical information
about the behavior of the noise so that the Shannon channel capacity cannot

be computed. It has been pointed out by Kolmogorov and Tihomirov [ 1]
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that if it is known only that the probability is zero that the received signal
lies outside the €-ball centered at the image of the transmitted signal,
then the €-capacity is less than or equal to the Shannon channel capacity.
If the statistical structure of the noise is known then the Shannon channel
capacity is obviously a more satisfactory measure of the information-
transmitting capability than is the €-capacity, which usually is sort of a
crude approximation to the channel capacity. In connection with this last
remark, let it be noted that if the norm of the noise is less than € with
probability (1 - n), then the e-capacity is the logarithm of the largest
choice of signals that could be sent with an individual probability of cor-

rect reception of not less than (1 - n).

The location of possible signals in the transmitted signal set has not
been discussed. However, for the case we have been considering in which

the transmitted signal set is the unit ball in L., and the channel operator

2
is compact, it is easy to see that the €-capacity is not reduced if the

signals are all constrained to lie just outside the surface of the unit ball
instead of anywhere within the ball. The argument to show this has been

used already in Section III. In fact, let S be an arbitrary e-separated set

in E consisting of points S1s Sgs-vvs S Then, we have already observed
that if n is chosen large enough so that a_ < %S , the projection S' of S

2
onto E" is an (€ qfl - a )-separated set with m elements. Each of the m
elements of S' can now be ''lifted" to the surface of E; i.e., we can re-

place si by s'i' = si tu, where u, is orthogonal to the subspace spanned by

+
E" and s'i' lies on the boundary of E" ! and hence of E. The set S" of

.. 2 .
points s'i' is a fortiori (e Ajl - o")-separated and contains m elements.

€
T+ 7 )—separated set of

Since a > 0 is arbitrary, we can achieve an <
m elements lying on the surface of E, for arbitrary‘n > 0. Hence,
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if the unit ball is replaced by a ball of radius 1 + n, for any n > 0, there
is a set of m points lying on its surface whose image under the channel
operation is an e-separated set in E scaled up in all its linear dimensions

by the factor (1 + n).

This observation justifies the application of the €-capacity estimates
to one kind of situation where the channel operator itself is unknown.
Suppose the true channel operator H is unknown, but is known to lie within
€ of a Hilbert-Schmidt operator Ho’ when the measure o‘f distance is pro-
vided by the Hilbert-Schmidt norm. Then if [x| = 1, ||Hx - Hoxn <€; and,
in fact, the set of elements of the form y = Hx, where H is any such operator,
is exactly the set of elements in the ball of radius € about the point Hox.
This last statement can be proved by establishing an orthonormal basis in
the transmitted signal space which has x as its first element; establishing
an arbitrary orthonormal basis in the received signal space, and repre-
senting any Hilbert-Schmidt operator H as an infinite matrix with respect

to these bases.

Then it follows that the number of possible signals of norm one which
could be transmitted without error is less than or equal to Me(E) and
greater than or equal to M ¢ (E) for arbitrary n > 0. The estimates of

1+n
Section III apply directly. In particular, if H isa "time-invariant'

channel operator of the kind specified in Section I, the estimates for rate
obtained in Section III apply. Since the upper and lower estimates are

continuous in €, we have from (31) and (34),
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— 1 2K(f) 2.5 S
rs oo log | = !qf + 5= df (35)
€ , €
| K(f)] >3 K(9)] >
and
-1 2K(f)] 1 (
rz 5o 1Og‘_€—'§;df'_2; S df | (36)
€ €
()| >3 [K(H) >3
where
< - Tm log [ number of signals]
2T
T—»
r= lim log [ number of signals]
T—=o0 2T

Note that H does not need to be time-invariant; it simply must be known
to lie within € of a time-invariant operator. These estimates appear to
be of some interest, because they give some notion of communication
rate for ''slowly time-varying channels.' It is reasonable to suppose
that, by virtue of intermittent measurements and suitable calculations
such channels can be approximated for finite 'periods by time-invariant
channels (see [5]). It also seems reasonable not to try to describe the
lack of precise knowledge of such a channel in probabilistic terms, as

would have to be done to permit a computation of channel capacity.
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The restriction imposed above that the signals must be of equal
energy is not a very happy one; it was imposed solely to make the
problem simple. Unlike the situation for additive noise, where essen-
tially it does not matter, the restriction matters a great deal when the
distortion is 'multiplicative' as it is in the case of the unknown channel.
‘When the uncertainty is in the operator H, the size of the ball of possible
received signals corresponding to a transmitted signal x is proportional
to the norm of x, so there is advantage to using signals in the interior of
the unit ball. Indeed, if there is no additive noise, there is no bound to
the number of distinguishable signals lying in the unit ball. A meaningful
problem involving additive noise, unknown channel, and free choice of
signals in the transmitted signal set leads to such a tremendously com-

plicated packing problem, that no effort has been made here to attack it.

APPENDIX

The purpose of this Appendix is essentially to justify the lower
bound obtained in (22). The argument leading to (22) is so simple and
crude that one feels that just a little care should give markedly sharper
results. Since €-capacity has to do essentially with packings, and since
there exist lower bounds on packing densities-in R" (real Euclidean n-
space) which have been arrived at only after rather difficult arguments
it would seem such bounds could be used profitably. Undoubtedly (22)
can be improved. However, using best known results on packing densities
('best known results'' means the strongest results quoted by C. A. Rogers
in his recent monograph [6]) in a straightforward (and perhaps nai{/e)

fashion gives roughly an improvement over (21) only by the factor n.
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Moreover, the estimates are suitable only for small €, and are unsatis-

factory as n—» w, as will appear in the development to follow.

First let us give the definition of packing density used by Rogers in
the reference cited. Let K Rrl where K is a LLebesgue measurable set,
0 < y(K) <o, u(K) = Lebesgue measure of K. Let K be a system
{K + ai}, ai € Rn, of translates of K; let C be a cube in Rn whose sides

are of length s. Define

o+ (K,C)efé—)— Z WK + a,)
(K+ai)nC

where the sum is over those K + aLi which intersect C. Then define the

upper density of the system K to be

o+ (K) = Tim  p+(K O
‘ S —+ 0

and the packing density of K, §(K), to be

)

§(K) = sup p + (K)
K

where the supremum is taken over all systems K of translates of K that

form a packing of R". IfKis bounded, §(K) <1.

We are concerned with packings in bounded sets, not all of space, so
some further considerations are necessary. If a set Ac R" can be packed

with at most a finite number of translates of a set K, we write M(K, A)

for the largest number of sets that can belong to a packing. If both A
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and K have finite, non-zero Lebesgue measure we define the packing

density of K in A to be

M(K, AJ(K)

(K, A) = e

If K is bounded we may assume in the foregoing that it has diameter 1.
Then for € > 0 let K(€) be the set of diameter € which is geometrically
similar to K; i.e., K(e) is K = K(1) scaled down in its li‘near dimension
by the factor €. One can then show with a little fussing but no real dif-

ficulty that for any fixed cube C
lim §(K(€), C) zs(K)
e—=0

where, obviously,

Lim  &(K(e), C) = ILim &(K, C(s)) (A1)

€—e 0 S —m= 0

C being fixed on the left side, K fixed on the right. It is equally obvious
that (Al) holds if lim replaces lim on both sides. But now it is easy to
see that §(K, C(s)) actually has a limit as s—~ow if K is bounded. In fact,

for any €, >0 there is an S, such that

5(K, C(s)) > Tim 5(K, C(s)) - 3

S —» ©

Then for any integer m,

§(K, C(mso)) > §(K, C(so))
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because m" cubes C(so) can be fitted exactly to give C(mso). But, if

ms <s<(m+l)s
o o

P n
5(K, C(s)) 2 s(K, C(nasoni*——ﬁiqj

. m+
since a packing of C(mso) is a packing of C(s). From these inequalities

it follows that

lim (K, C(s)) =2 lim (K, C(s))

S~ »o0 S —® 00

For the special case that K is a ball of diameter €, C is a cube of
side s and the space is R we write Mn(e, s) for M(K(e), C), 5n(€, s)
for §(K(e), C), and 6n for §(K). Then we have (see [6] page 36, and page
98 for the definition of 'rn)

;
lim & (€, 8) 26 =— (A2)
n n n
€ —0 : 2
-3/2
e asS n-—=o0.

where Tn ~n

We now apply this to obtain a lower bound for M€(En). A cube of side

s in Rr1 has diagonal s »/n. For arbitrary n > 0, n< an, put s = -1
. n
and partition R" into cubes of side s, oriented so that their edges are

parallel to the axes of E". Let BC R be the union of the smallest

collection of cubes such that B ~ En(—n). Then volume B = volume En(—n) =
krl (1 - 31\5‘3 a_.... an. Furthermore, B is entirely contained in En
n/

because of the choice of s. Now suppose in addition that € < s = L s
n
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that at least one e€-ball can be packed in each cube. Then
n
Mn(e, s)(€/2) kn

eV n/2
6 (€, s) = =M (€, s)kn {=— ) n
n (r)/-"/Tl)n n \.\2n>

Since at least as many €-balls can be packed into Erl as into B, and

. : n .
since the number of elements in an e-separated set in E  is not less than

the number of €-balls that can be packed into En,

volume B
Ms(En) = volume of cube Mn(e’ )
volume En(—n)
> — Mn(e, S)

(n/ vE)"

6n(€, C)(2/€)Il1(1 - n/an)nalaz. cea

This inequality holds for arbitrary n, n, € as long as the conditions

ne< n <a
n

are satisfied. Then, for arbitrary fixed n and arbitrary n < a since

e*0 n
. n n> 1 - n
611_r20 Me(E )e/2)" 2 5. n/an) a8, .8
Thus

. n n
€-1_1£n0 M_(E )(€/2) 24 a8, ..8,
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for any positive integer n; or, stated fiffe.rently, given any n and any

€, > 0, for all sufficiently small € (depending on n and eo),

/2a
M_(E") 26 (1 -€_ W >

The lower bound on N given by (A2) yields
n .
n _ 'n {
M€(E)2; (l-e ﬂ \
i=

for all n and all sufficiently small €. The asymptotic lower bound on
8 yields

n
n __I’_l_ (1_60)

, a

(A

M B = T N Te (A6)
i=1

for arbitrary €, >0, then for sufficiently large fixed n, and then all suf-

ficiently small € < €(n, eo).

Me(En), (AB) gives a lower bound of sorts, but it is

\%

Since Me(E)
nearly useless for our purpose because it is meaningful only for small
€, and furthermore, there is no criterion available as to how small €

must be.
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