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ABSTRACT

Certain Banach spaces, denoted ,Z,ﬂ,?,of equivalence classes
of functions of a real variable are introduced and investigated., These
are to be used as system input and output spaces for systems operating
for all time. Some basic properties of causal systems with finite
memory are established. The concept of forming time-interval trun-
cations of a time-varying system is formalized and investigated.
Trajectories of such truncations are studied. It is proved that under
certain reasonable conditions, the trajectories /of a class of systems
are generated by a strongly continuous semigroup of linear operators,
It is also shown that £-representations of the truncations can be gener-
ated by an induced semigroup. Thus, the evolution in time of classes
of, in general, nonlinear, time-varying systems, is described in the

framework of a linear dynamical theory.



INTRODUCTION TO PART 2

A "system' as defined in Part 1 is simply an input space, an
output space, and a mapping carrying inputs into outputs. In Part 1
some abstract structure and representation theory is established for
classes of systems for which the system mappings are bounded and
continuous, and for which certain conditions are satisfied by the input
and output spaces and by the class of mappings itself, In Part 2 the
interest is in systems and classes of systems where the inputs and
outputs are functions of time. Again there is no restriction to linear
or to time-invériant systems, The chief emphasis is on causal systems,
and indeed on causal systems with bounded memory,

The emphasis on causal systems needs no justification, but
there might be a question raised as to why one should consider systems
with bounded memory. The primary answer is: the bounded memory
condition turns out to fit very conveniently in the mathematical structure
used, and since almost any system of interest has a decaying memory it
can be approximated as well as desired by a system with finite memory,
The goal in this work is to set up approximate models or representations
of classes of systems to be used in identification, so approximation is
permissible., It is certainly realistic to stipulate that the observation
periods for both inputs and outputs be of finite duration, and this require-

ment influences the mathematical structure chosen.



The first Section after this introduction is devoted to setting up
and investigating certain function spaces which are appropriate for
modelling input and output spaces for systems; the second to establishing
basic facts about causal and bounded memory systems. In the third
Section the concept of trajectories of time-limited truncations of systems
is develof)ed. The time-limited truncations are, roughly speaking,
observable portions of a system which is operating for all time. In the
fourth Section families of trajectories associated with a class of systems
are considered, Under certain circumstances, these trajectories can
be generated by semigroups of linear operators.

The results of Part 1 are not used explicitly in Part 2 till near the
end of the fourth Section. However the work of Part I influences what is
done in Part 2 throughout. Some of the material of Sections I and III

appeared, with only partial proofs, in the conference paper [1] .



I. SOME FUNCTION SPACES FOR INPUTS AND OUTPUTS

We want to be able to treat systems for which the inputs and
outputs are functions of time, real or vector-valued with finitely many
components, and extending for infinite time. We do not want it to be
required that the inputs and outputs must always die out in some sense
in the infinite future or infinite past. Hence, function spaces, such as
the Lp spaces with 1 < p <, which have the property that their con-
stituent functions all get arbitrarily small (in some sense)as t >+ o
will usually not be suitable for modelling admissible collections of inputs
or outputs. The spaces of bounded or essentially boun‘ded functions are
satisfactory on this score, and sometimes we shall use the space of
bounded contiﬁuous functions on R! with the sup norm. However, there
are certain non-standard function spaces that are suitable and especially
convenient, and which will be used customarily, These are spaces of
functions that are uniformly local-time L, provided with one of a family
of norms to be given in the definition below., These spaces are only
Banach spaces, but the local L, character is advantageous. Since it is
quite as easy to define such spaces more generally using a local-time
Lp property, 1 < p <o, we do so, even though the local L, spaces are
the ones chiefly desired.

Let y be either a real-valued function of a real variable, or a

vector-valued function that has finitely many real-valued components.

In the second case, |y(t)| will denote the Euclidean norm of the vector



y(t). Define the operator P, by

[Pty] (s)

1]
=
w
9]
IA
e

(1)

As usual, let Lp(A) denote the Lebesgue space of p-integrable N-vector-
valued functions on the measurable set ACR!, It will always be assumed

that 1 < p<ow., The Lp norm is written || . ”p . Letfcfp) be the space of

all functions y that satisfy the following condition: y Eefcfp) iff for any T,

0 <T <w, there is a positive number K = K(T,y) such that ” (Pt+T - Pt)y“psK
for allt ¢ R . Obviouslyafo(p) is a linear space over the real numbers under
the usual addition and scalar multiplication of functions, It is made into a

normed linear space by the assignment of a norm:

Iyl

= -P
sup (1 ®y,r - Pyl (2)

where T is an arbitrary fixed number, 0 <T <o, We call the resulting

normed linear spaceoZ,I(,p).

Proposition 2.1 j;‘p) is a Banach space if its elements are interpreted
. . . f(P)
to be the equivalence classes of functions in o that are equal a.e,

Lebesgue.

Proof: It is immediately verifiable that I,I(,p) is indeed a normed linear
space, so it remains only to show it is complete. Consider a particular
set of half-open, half-closed intervals (kT, (k+ l)T] where k is any integer,
-0 <k <w. Since for any (t, t,t+T] C (kT,(k+1)T] U ((k+1)T, (k+2)T]

for some k, we have



up I®y,p - POyl < sup 1P es2yr = Prer) V1

<2sup [|[(P

. (k+1)T ~ PkT)Y”p

<2 Hy” ':([‘p). Now let {yn} be a

or, Iyl P =2 swp I® 0 - Pyl

sequence such that for any € >0, ”ym -V, ” 'I(‘p) < € whenever m,n = no(e).

Then, for any integer k

| @

- - < 2

Since Lp (kT, (k+1)T] is complete, there is a y(k) € Lp (kT, (k+1)T] which
is the limit of the sequence {(P(k+l)T - PkT) (yn)}, regarded as a sequence
of functions on (kT, (k+ 1)T]. Let y be the equivalence class of functions on

R! that are equal a.e. on each interval (kT, (k+1)T] to any function
q

representing y(k). Then ye€ nz.,é‘p) , and

ly -y 1P <2 up I ® es1yr = P -yl

Since,
- - < >
I ®Pis)r = Per) @ yn)”p 2¢ for nzn_(€)
and all k, ”y-yn I é‘p) < 4€ for n2n (¢). Thus y is the limit of yn.T
Henceforth, unless there is some particular reason to be precise,
" I s z(p)ll n : 2 "
we shall refer to the '""functions in T or the '""functions in Lp(A)
instead of to the elements, which are properly equivalence classes of

functions, Some elementary properties of the spaces»fé,p) are noted in

the next proposition and succeeding remarks,

Proposition 2.2 Let N, the number of (real) components of the vector-

valued functions under consideration, be fixed, Let T,, T, be any



positive numbers., Then,

(a) ‘Z' ,I(,F) and f;I‘(zp) are comprised of the same elements, and
the norms on these two spaces are equivalent.

(b) If p >q, then any function belonging to fé‘p) belongs also to

fé‘Q). Also, convergence in {’I(‘p) implies convergence in 'sf,ISq).

Proof: The elements of OZ',I(,p) and "Z,pr) are the elements of ,,Zo(p) (for
E— 1 2
the fixed N in question), Suppose T; < T, and m is an integer such that

m Ty >T,. Then for yeZ P, lyllp < lyly <mlyl,, .

Part (b) follows from Holder's inequality. In fact,

Iyl 2 = sup (@, - Pyl )

t P-g
<sup {| (B, - Pyl - TP}
t
=Pyl P

Let 72L(A) denote the set of functions in 413) which vanish a.e.
outside the interval A = (a,b), where -0 <a <b =< +w, Then clearly
7)1_(A) is a closed linear subspace of of,i,p), forany 0 < T <ow, Ifaand
b are finite, M(A) may be identified with either Lp(A) or with a closed
linear subspace of Lp(Rl), and the 1:1 correspondence in either case is
a linear homeomorphism, If T =b - a, the correspondence is isometric,

We denote the operations of translation by c to the left or right,
respectively, by LC and Rc ;i.e., (LC u) (t) =u(t+c). LC and RC are
linear operations on "Zcfp) which pressure norm in any oZ./,pr), and

L =R = R;l . The following identities hold for any function u defined



on R! and any real numbers a, b, c:

Lc (Pb- Pa) u = (Pb-c - Pa-c) Lc u (3)

R (P -P Ju=(P, -P )R u
a a' "¢

It will sometimes be convenient in order to avoid an awkward locution to
apply Lc or RC to elements of an Lp(A), for some finite interval A, When
this is done it will always be intended that Lp(A) be identified with ﬂ((A),
as above, so that the operation is defined. Care must be taken of course
to ensure that this operation is meaningful,

Compactness of input spaces is required for much of the structure
described in Part I, Because that structure is to be applied to what follows,
compactness in some form will again often appear as a requirement, but
usually not as the condition that an input space be a compact subset of an
,f,l{,p) space. A weaker condition is appropriate, one which says that
ordinary compactness only hold locally in time (not local compactness).
This notion is formalized, and it is proved below that there is an abundance
of éubsets of ofé,p) which have this property along with certain other
desirable properties.

A subset (2 of ofo(p) is T-compact if (Pt+T - Pt)(ﬂ, regarded as a
subset of Lp (t, t+T] is compact for every t. Relative T-compaciness is

defined correspondingly,

Proposition 2,3 If fis a compact subset of aZJ,I(,p) it is T-compact, but
the converse is not necessarily true. Also, if {2is T-compact for a

positive number T, it is T,-compact for any other positive number T, .



T

Proof: Obvious.

Another property of input sets that will be essential is the following:

a subset ULof oZo(p) will be said to have the projection property, denoted

(P), ifue Z(implies that Ptu, (I- Pt)u and (Pt - Ps)u belong to ZC for any
real numbers s and t, Of course, if s = t, (Pt - PS Ju =0, so in particular

the zero function must belong to Zé

o
Proposition 2,4 Let L’/éo be any compact subset of Lp(O, T]. Then there

exists a set & C o{,i,p) with the following properties:

1) (PT - PO)Z(_ 37,(0 (using the identification explained previously
between Lp (0, T] and m (0,T])

2) ZC has property (P)

3) U is T-compact

4) {L is invariant under time shift; thus if ue (Pt+T - Pt)a then

Ltue (PT - Po)u , and vice versa,

Proof: We first enlarge uo so as to have a set that is closed under the

!
projections (P, - Ps)’ 0<s, t<T. Let 7,(0 be the subset of Lp(O,T]

t.

consisting of all functions u' satisfying
u'=(® -Plu, uweld , 0ss,t=T

a.s. Z,(; is compact in Lp(O,T] . In fact, let {u;l}be an infinite sequence

of elements of u' ;u' = (P, - P, )J)u. Form a subsequence of the positive
o n t, Sy’ n

integers, {ni}i, such that tni >t sni s, ”uni - ug ”p -0asi—->ow,

L -
Put u, = (Pto Pso) u_. Then



which is arbitrarily small for sufficiently large i. Z{; is closed under the

projections (Pt - PS) since (Pt - Ps)u' , u'e ?,('O , can always be written

(P, - Ps Ju, ue uo’ for some t; and s;.
1 1

t

~
Now construct a subset ’L(of ;Z'I(‘p) as follows: let the elements

ue UL be defined by

u(t) = u (t) , 0<t=s T

ul (E+T) ST<ts< 0

w{t-T) , T<ts<2T

u (t-kT) , KT <ts (k+l)T

where the w_are any sequence of elements from 'Z(_'o Put U= U L
. (p)
1 D .
Obviously U ’L(O and U ¢ uI‘ .
~
2 has property (P) since 1L does and translation does not affect
the property.
7,{ is invariant under time shift., By the way it is constructed, U

is invariant under shifts which are integer multiples of T. Since any shift can



be decomposed into a shift by NT for some integer N, and a shift L. ,
n
0=<n<T, uis invariant for any shift,
U is T-compact. It is sufficient to prove that (PT - PO)Z( is
. o s . . a
compact, Let {zn } be an infinite sequence contained in (PT - PO) .
By the construction given, each z must be of the form:

. !
z = (I- Po) Lnnur1 + Py RT"’\n u,

where u u;le u; , and 0 < n, <T. Let n, be a subsequence such that
1 ! | !
”uni -y ”p ‘0 , ||uni - ug ”p 0 and nni n, where u and u_ belong to

a'o and 0 <n < T. There is such a subsequence because of the compact-

ness of 7/(:) (and of the interval [0, T]). Then

lim !
i - o % (I-Po) Lnu0+PTRT-nuo

L I-P)u +R P u
n( m o T-n m o

In fact, since "L u u”p-*O as @ >0, it follows that L, u; >~ L u and
o

"n, yl

_ i
. ' . . . o
RT - i, w R n u by the triangle inequality. The limit element belongs

to (Pp, - P )1 by the definition of w. T

T
T-compactness cannot be replaced by compactness here, In fact
it is trivially verifiable that if 7,(0 has even two distinc;t elements, then
any u.satisfying 1) and 4) in the theorem is not compact, whether it
satisfies 2) or not. Indeed, a need only be invariant under shifts by
integer multiples of T to make compactness impossible: with no loss of

generality let Z{o consist of the functions fo(t) =0, 0<t<T, and

fi(t) =1, 0t <T, Then it is sufficient to observe that the sequence

10



{un}, u defined by un(t) =1, nT<t<(n+1)T, un(t) = 0 for all other
te R', has no limit point.

The construction given in the proof of Proposition 2.4 depends on
T and happens to give a class U that includes all the periodic functions of

. J' . .

period T generated by Z(.o. However, we remark that if U is a subset of
,fcfp) which is T;-compact, shift-invariant and has property (P), then it
is T,-compact and, of course, still shift-invariant with property (P).
Thus, in modelling a system, an input space 2 can be chosen with the
desirable properties listed without any consideration being given to the
value of T to be used.

Clearly the bounded continuous functions on R! (denoted*gc) are

. in a1l 2 P) . . o
contained in all o and convergence in the uniform norm of BC implies
in L \P) .

convergence in ol for any p and any T. It is easy to see also that the

functions of B_ are not dense in any Zé,p). We give a characterization

of the closed subspace of Zé‘p) which is generated by gc'
(k)

Proposition 2.5 For any y eo{cfp) , lety
(k)
y

€L [0,T] be defined by:

(t) = y(t+kT), 0=t<T, for all integers k, Then, a necessary and
sufficient condition that y can be approximated inpz’ép) norm by functions
frofn 6C is that the functions [y(k)(t)] P he uniformly integrable.

(k

Proof: (Sufficiency). Let B (b) = {t < [0,T): ly )(t)|p >b}. The

k

condition that the [y(k)] Pare uniformly integrable is that, given any n > 0,

there exists b > 0 such that f ly(k) (1:)|p dt < n for all integers k,
B, (b)

*To be consistent, what is here denoted Bc should be g(R1 , Rn), but it
seems less confusing to introduce a new symbol for this special case.

11



(k)

y  (t) whenever

e\P (k)
Let € > 0 be given, and putn =7 ) . Let Yy (t)

2
(k)

|y (t)l < bl/p and equal to zero otherwise. For each k, there is a

function f(k) defined on [O,T] which is continuous on [0, T], and satisfies

|f(k)(t)| <b!/P and ”yb(k) - f(k)Hp <n. Then,
(k) &)y (k) (k) k) (k)
e T e I P
< 1 1
- []fB (b)'y(k)(t)lpdt] /p+ ns N /p+n <e€
k

when € < 2. Now if ch is the function formed by piecing together the f(k),

(p) _
Iy - el = sup By, - P,

) (y - f)”p

IA

sup (P o - Pep) & - D,

IA

2¢€

(Necessity). Suppose that ||y - fn ” é‘p) - 0 as n~— o, where the fHGBC. It

follows that ”y(k) - frfk) ”p = 0 uniformly in k, Suppose further that the
[y(k)]p are not uniformly integrable; we shall obtain a contradiction. Then,

1
for some € > 0, € < 3 and for every real number b > 0, no matter how

large, there is an integer k' = k'(b,e) such that

!
f |Y(k)(t)'pdt>3€
For the same €, let n be a fixed integer so large that “y(k) - frﬁk)"p < €

for all k, We have,

(k) (k) ,.,ip . JP
]f3 [y ) - £ ()] dt]

12



for any b, for allk, Put K_= sup Ifn(t)|, and b =2K_. Then, for

t
k=k'(b,e),
(k') (') o (kY (k')
o - wl = 1y el - e ol
1yl - 1101 2 1y -k, for teB ).
Hence,
1 1 ! 1/p
8 s [ ™ el -k P a
P B, (b)

> [f |y(k')(t)|pdt]l/p- [f KP dt]l/pl

B, ,(b) B. ;(b)

1/p

> 30'P - k_[w(B, )]/

kl

where p(B) is the Lebesgue measure of B, But since

k! k! 1/p
ez [y )-fri )”p2 [f (ZKn'Kn)pdt]
B, (b)
1/p
=K, [b(B,,(0))]
and since 3¢ = (3€)p, we have
Iy - f,:k')ﬂ > 3¢ - €= 2€

t

which yields a contradiction,
. P e s .
Clearly, if y € o satisfies the condition of Proposition 2.5 for
T >0 it also satisfies the condition for any other T'> 0, Since the value of
c . Z® .
T is immaterial, we can denote the class of all y € o which satisfy the
condition by ozz(é)). The functions belonging to efm(zp)’ or more properly

the usual equivalence classes of such functions, belong to j,;,p) for any

13



T >0, and as a subset of Iép) this class is denoted JT(E)' An

immediate corollary of Proposition 2.5 is:

Proposition 2,6 o{,ISE) is a closed linear subspace of Df,l(,p), and is the

smallest closed linear subspace containing 460

T

Proof: Obvious.

With reference to Proposition 2, 4 it may be noted that since the
set ZZO is a compact subset of Lp [0,T] the functions belonging to Z{)
are uniformly integrable. Then the construction given for ZZ guarantees

that the functions belonging to U satisfy the hypothesis of Proposition 2.5,

Hence Z{ Cc IT%)) .

14



II. PRELIMINARIES ON CAUSAL AND BOUNDED
MEMORY TRANSFORMATIONS

Let Z{ be a metric space whose elements are either functions
of a real variable t (time) or are equivalence classes of such functions
that are equal a.e. Lebesgue. Correspondingly, let % be a Banach
space of functions or equivalence classes of functions of t, If both U
and ? have property (P), the properties of causality and bounded
memory for a mapping F from 2L into g can be defined, and in the
usual way: F is causalif P, F(u) = P,FP (u) for alltand allu € 2 ;

F has bounded memory (d) if I - P,) Fu)=(I1-P)F(I-P

¢ " t-d) (u) for all

tand allu € 2( . Note that the same symbol, Pt’ is being used to denote
the linear projection on the past in both 7L and % , but this should cause

no confusion,

Proposition 2.7 If F is a mapping from U into ’% that is causal and

has bounded memory (d), then for every T >0,

for allt and allu e .
Conversely, if equation (4) is satisfied for some T >0 and all t and

allu € 2, then F is causal and has bounded memory (d),

Proof: The assertions appear to be obvious. However a proof is given in
Appendix A, where the algebraic properties of the Pt are isolated and are

T

used precisely.

15



In the class of bounded continuous mappings 7 = /]' (U, g ),
let :}'0 denote the subclass of causal mappings, and let GL’Z denote the
subclass of causal mappings with bounded memory (d). Henceforth we
only consider metric function spaces UL that have property (P), and ?
can always be chosen to be either one of the of,l(,p) or /7 , both of which
have property (P). Hence 590 and :}’,Z are defined. In some instances,
however, where /3 could be used for ? it may be convenient to take y
to be a subspace of /5 that does not possess property (P), e.g., the sub-
space of bounded continuous functions (:fc This is alright, because in
this situation where the elements of y are functions (not equivelance
classes of functions) the definition of causality may be replaced by:

F is causal if, for all t and all u,
[Fu] (s) = [FPtu] (s) for all s < t,
An equivalent condition is the apparently weaker statement:
[Fu] (s) = [F Ps u] (s) for all s and all u.
In fact, suppose the second condition holds, Since U nas property (P),

Ptu € Z{for all u eZ{ . Take t >s, then

[F (Ptu)] (s) = [F P (Ptu)] (s) = [F P u] (s)

and [Ful (s) = [F Ps u] (s) .
Hence, [Ful] (s) = [F Ptu] (s) for all s < t,

Analogous statements hold for the case of bounded memory.

Proposition 2.8 6’»0 and 713 are closed linear subspaces of 61' .

Proof: Z} ©

d is obviously linear; we need to prove it is closed. First, let

16



us note the following., If ye¢ F/A =Z'I€p)’ then by definition

|lyl|=8}clp I, . -»Pt)y”p , Ye%

On the other hand if y € ? =[{ , then

Iyl = sep Iy = sup [P g - POyl

where

I, . - Pt)V”é, =tSSS\SJIZ+T|Y(s)|

is the norm in /3 of the truncation of y to [t,t+T]. Thus in either case,
”y” = s?p ” (PHT - Pt)y " , where the norm on the right side is appropriately
interpreted.

Now suppose that Fn € 95’ and lirrln Fn = F where F ¢ 5‘:‘; . Put

A =P -Ptand A't=P

¢ e+ T -Pt_ . Then

t+T d

”Fn -F| = sup sup ”At (Fnu - Fu)|
ue€ t

- !
= szp s::rp ”At Fn At u - At Fu”

'y - J
aswi.lp S}:p ”At Fn Atu AtF AtuH

- IIAt FA u- A Full

!
For some to and s ” Ato FuO - AtoF Atouo H 2 a, > 0, whereas for

sufficiently large n_,

[ Ap Fp (& u) - & F (& u) I

< ”Fn (A'tou) -F (A'tou)” <a/2 , n2n

17



Hence ||F - Fn” >2a/2,n2 n_ which is a contradiction. The proof for
4° is similar, 1
If F is any mapping from U into E , then one can reasonably

define the causal part of F, denoted F°, and the causal and bounded-memory

(d) part of F, denoted Fg , by

[FOu](t) = [F Ptu] ), for allt, allue ZC

[Fgu] t) = [F (P - Pt_d)u] ), forallt, allue?f.

t

For the rest of this Section, we assume ? = g .

Proposition 2.9 Let 2L have the property that for any u, u' € Z( and any

s,t, dl(P - P )u, (P - P )u]l=sdlu,u]. LetFe % . Then a sufficient

condition that F° 65770 and FZ € 3"3 is that F is uniformly continuous on .

Proof: That Fg is causal and has bounded memory (d) is shown by a simple

verification. Fg is a mapping into /:2 and is bounded; in fact, for any u and t,

I[Fgu] (t) ]|

[[F (P, -P,_ul®)

IA

Irle, -2, jul |l < |7

t
To show that FZ is continuous, choose € > 0 arbitrarily, Let § > 0 be
small enough that if u', u satisfy d[u', u] < &, then |[Fu' - Fu| = €/2.

Take any such pair u', u, then there is a to such that
o 1 _ o < O 1 _ (o]
”qu qu”_l[qu](to) [qu] ('CO)| + €/2

=[PPy - Py _gu'ltty) - [F@ - Py _gul )] +e/2

IA

7 [P,

o Pe W] -FLE - Py g ulll +er2

IA
m
~

o

+
m
~

3]

1l
m

18



(0]

by the uniform continuity, Hence Fd

is continuous, and indeed uniformly
continuous. The same sort of argument shows that Fe (71’ . t

It is to be noted that F ¢ g does not by itself necessarily imply that
FO ¢ (?,0, or F; € (?'3 ;i.e., a continuous mapping from 7L into ?/ )
where ZC and ’é/ satisfy the conditions of Proposition 2.9, does not
necessarily have a continuous causal part, nor a continuous causal and
bounded memory part., The condition of uniform continuity is perhaps the

most obvious condition that guarantees the continuity of F° and F The

o
d .
(¢]

d is not continuous, even though F ¢ g' .

following is an example where F
Consider the set £ of real-valued functions on R! described as

follows., Eachue E is of the form, for some 7;,7T,, -0 =T <T,< 0,

uft) = 0 , t=<m7
=u(ry) , T <tsT,
=0 , T, <t
where -1 <u(t,) £ 1, and where the convention is made that if T; = -0,

u(t) = u(r,), t £7,; and correspondingly, if T, = +ow0, u(t) has a constant
value for allt >7;, Thus the constant functions, and the functions that are
constant except for a single step up from zero or down to zero are included.

Obviously Ec 6, has property (P) and is T-compact,

Let F, a mapping from Z into ﬁ , be defined as follows:

[Ful (t)

i
o
-+
IA
-

-

19



where

i
oY)
[
[ ey
—‘
1A
—

¢ (a,T)

It
EY
oY
+
Yt
1
A
-
-~
P
N
1
N
—
]
[rV)

H
o
e
Hh
1
I

It will be noted that F carries all the constant functions in E , and in fact
all the functions in E with 7, = +0, into zero. It is readily verified that

F is a bounded continuous mapping from E (regarded as a metric subspace
of Jed ) into = . Actually, the range of F is contained in 5 .

_ 1
t)s1-—-—, n=1,2,.-- ., The functions
n n

Now, letu(t) =1 andu

. . o)
uandune E , and un*um 6 . Consider F u,

[F°u] t) =[F Pt“] (t)

ult) = 1, |t] <1

= |t u)+1-]t] =1, |t|<1f1 = o
i.e., [Fou] (t) =1, On the other hand,
0 —
[Frul®)=[FPul®
1.1 s
n
S-Sy =o e <a
n n

o , |t|>n

Thus F° U does not converge to Fou in /_2 , although of course
[Fo un] (t) -*[Fo u] (t) for each t. Hence F° is not a continuous mapping.
For these particular u and u F?u = F%u, and F?un = F° u » SO it

follows that F? is not continuous either,
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The following very simple result gives some justification for
introducing the concepts of causal part and of bounded-memory causal

parts of mappings, at least when the intended use of these mappings is

for approximation,

Proposition 2.10 Let F and FZ € ,7 . If for some @ > 0 there is a

Ge &'Z such that HF - G” <o, then ”F - FZ H <2a. The corresponding

statement is true for F° and Ge 370.
Proof: For any € > 0 there is a ue Z{ and a t, such that
lc - Fg” < [[Gul ) - [F (Py_- Pto-d)u] t )] +€/2
= |lG (P - Py _g)ul (t) - [F Py - Py _g)ul t,)] + e/2

< |lc-F|| +e/2

Hence |G- Fo) =[G~ F|, and |F-F}) <2a.]
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III. FINITE-TIME-INTERVAL PROJECTIONS
OF SYSTEMS AND THEIR TRAJECTORIES

The general situation to be discussed next is the following., The
kind of system in question consists of an input space U of functions of
time, an output space %L of functions of time, and a continuous bounded
mapping F from U into 7 . The mapping F may or may not be causal
and of finite memory, but there is some emphasis on the case where it is,
Such a system operates for infinite time, We want to look at pieces of
the system corresponding to finite observation intervals for both input
and output, and at the relations among such pieces and between them and
the entire system. Each real number t can be taken to be the epoch of an
observation interval. If the observation intervals are of fixed duration,
then as t changes, a trajectory of comparable finite-time systems is
generated by the original system. The elementary properties of these
trajectories are investigated in this Section,

It is assumed for the remainder of the paper that U is a subset
of .,Z’f for some fixed p, 1 < p <o, and that it is TQcompact, shift-
invariant and has property (P). U is to be regarded as a metric sub-
space of "Z£+d for some T and d >0 as given. Since all I; spaces
with the same p are topologically equivalent, changing T and d changes
only the metric on 'u,; it does not affect the T-compactness, We have

then always’

ol = sup [P, - P we U

¢ t+T-d)u”p ’
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/% is always either an \lvg space or Vot , the Banach space of bounded
functions on R' with the uniform norm, or a closed linear subspace of one
of these., In the propositions of this Section, whenever y is to be one of
some particular class of spaces that fact is stated; otherwise it may be
any of the spaces just indicated. One slight technical annoyance is that
sometimes it is desirable to take g to be ﬁc , the bounded continuous
functions regarded as a subspace of B , but this space quite obviously
does not have property (P), which is usually needed. It is not always
satisfactory just to replace /.‘/J)C with /2 in every statement, but it will
be clear that when necessary, /S_C can be imbedded in .5 in order to make
the calculations meaningful, {77' = ’}’ ( U, 7% ) is the family of bounded
continuous mappings from U into % made into a Banach space

with the sup norm, as before. Thus,

|Fll = sup sup ”(PHT- Pt) Fu)| , Fe ?’
uell t

in all cases, where the norm on the right is the Lp norm or the uniform
norm as appropriate.
We now introduce notations for the finite-time pieces of a system.

Let T >0 and d >0 be given, Put

Peyr - Pood) U )

<

o -

|
o

! ! ' 1
67 P,r-P)Fu , ueZét’T (6)

Equation (6) does define a mapping on Z(t T

since u' belongs to the domain

of F by property (P). Further, because of shift invariance we can write
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d , :
Z/L = L 7,(_' U ' for all t. Define Ft T by

T t ““t,7° “Ct,T
d 1
Ft’T 7z = Lt Ft’T Rt z (7)
=L (P, -P)FR 2z
= (P -P)LFR, z , oze U

If y has property (P), then F is a mapping from /LCT into é/ , and

t,T

clearly it is bounded and continuous. But Ft can also always be regarded

, T
as a mapping into a smaller space, denoted yT I g = Z; , then

Ft, T is a bounded continuous mapping into %r = Lp (0, T] , and with the

same norm as if its range space is taken to be % . Similarly, if y = 5 ,

Ft T is a bounded continuous mapping into '?T = /3 (0,T] with the same
]

norm; even if 7;[ = /_20, F is a bounded continuous mapping into

t, T
7%1" = /3c 0,T], although it is not a mapping into ? .
If T is fixed throughout a calculation we write simply Ft for Ft T "

It often avoids confusion to write

F = (P

¢ )

7 P PR (Pp- P g
even though the projection on the right is redundant. When we are dealing
with mappings F with finite memory, d is usually chosen to be the duration
of the memory; however the above definitions are to be applied in the
general case, whether F is causal with finite memory or not, Causality

and finite memory are not to be assumed in what follows unless explicitly

stipulated,
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Let m g( U, ’[;} ) - ffr( /Z/(’I‘ , ’L/T) be the mapping that

carries F into Ft according to equation (7).

Proposition 2,11 The mapping ™ is linear and continuous; in fact

le, ®ll < 7] .

Proof: The linearity is obvious, Also

v, ¥l = 170 = sw NP, -P)L FR u
ue uT
< s Ir Rl < raly - IFD
ve U, w

where the norm on the left is for the space f]’ ( IL(T ) YfT) . f

For each t, Ft =, F is an element of 6‘ ( ﬂT , %), soast
runs through R! a trajectory is generated in ,7( ?,(T ) yT) corre-
sponding to F, If F is a time-invariant mapping this '"trajectory' reduces
to a single point, of course, but we are interested in time-invariant systems
only as a special case. Since in general for time-varying systems these
trajectories describe the evolution of the systems, we wish to investigate
their properties. Note that the trajectories depend on T; however, for

now, we keep T fixed arbitrarily,

Proposition 2,12 Let U C ,f_g,_,uq <w,and {f be ozf’;

or /ﬁc . Then, for any F ¢ 5’7 ( (74 , y ) the trajectories Ft = TI’tF

y 1<p<o,

with values in ? ( Z’(T , yT) are continuous in t, Furthermore, if

}’l[ is a compact subset of 7 ( U , ? ), then the trajectories Ft = F,

t

Fe % , are equicontinuous functions of t.
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Proof: Suppose 1% = ‘;Z'E’ then

|F, - F

t t+h”' sup ”(Ft-FHh)u”p

ue ’l{T

E;Ll;p IPy - P) Ly F R w - (P - P Lo ¥ Rt+hu”P

T
< sup || P,-P)L FRu- (P, -P)L  FR u
T
tsup [(Pp-P )Ly FRou- (Pp-P)L,, FR, uf

U

Denote the first term on the right-hand side of the inequality by I, the

second by II, Then,

I< sup ”Lt (PT+t- Pt) FRtu - L

t+h
Uy

+ sup "L

(Prye - Pt) FRy u”p

-P)FRu-L . (P ) F R, ull

t+h T+t t+h

T+t+h t+h

Denote the two terms on the right-hand side of this inequality by Ia’ I.b,

respectively. Then

L= 590 Ly [Pry - Py Py - P FR u”p
T

< sup | Pyt ™ Proesn) T Ry u”p
'?'(T

+ sup || Pt+h - Pt) F Rt u”p
T

Now, F(Rt 1L T) is a compact subset of g since U T is compact in Lq

(by the T-compactness of U ) and FRt is continuous. Let Yo i=1,-¢-, N,
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be a set of points in y such that the balls of radius ¢ about the A cover
F (Rt ’L(_T). Then the first term in the expression dominating Lb is in

turn dominated by

sup min  {[(P

, T4t~ DTesn) (F Ry - Yi)”p
T i=1l,..-,N

+ (Prit ~ Prsesn) Vi ”p}

Let h be sufficiently small that

[Py - Proee) vill, <

for alli =1,.+.-, N, Then for any such h the above expression has a value
<2¢. The second term in the expression dominating lb can be treated in
the same way, so we have that for some h; >0, Ib < 4 ¢ whenever |h|< b .

The term Ia' can be written as

sup (L, - L, ) (P

-P)FR, u
t+h t t
Uy P

t+T

Since (P - Pt)FRt UT is a compact subset of Lp one can choose a

t+T

finite set {zi}, i=1,°+, M, of elements of Lp such that the balls of radius

¢ about the z, cover (P ) F Rt '(,{T . Then, since for h sufficiently

T+t

small “ (Lt - z II < ¢ foralli=1, -+, M, we have, very much as

t+h

above, that for some h, >0, Ia <2¢ wheneve'r Ihl <h,.

To bound II, we have

= sup ||,y (Pryy - Py [FRu-

al Il

t+h

< sup || (), - Pyp) [F R u-FR R ul llp
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when |h| < T. Now X = Rh uT is a compact subset of Lq

)
h|=T

(as in Proposition 2. 4) and (P P ) FR, is a uniformly continuous

2T+t ~ " t-T t

mapping from }ﬁ into Lp. Hence, there is an m >0 so that

| P P )FRtu“llpse

L. -
JFR u! - (P, om - Py g

t+2T ~ Pt-T

whenever ||u' - u"”q <mn. Let {Wi}, i=1, *++, K, be the centers of balls

of radius n that cover % . Then

P )FRtu-(P

t+2T ~ " t-T

1L = sup the ¢42T

P )FR, w|
-T t
UT t i'p

+ (Pt+2T ) Pt-T) FRow, - (P - P’c-T)FRtRhu”p}

Let hy > 0 be small enough that ”Rh LA ”q <n/2 foralli=1,-*+, K
whenever |h| < hj3, and temporarily fix such an h, With this fixed value
of h, there is u_ so that the supremum in the inequality above is realized

to within € by u = uj. This gives

I s | Priar " Prop) TR U - Buor - P p) FRy W, ”p

+ Popor = Poop) FR W, - P - Py ) FR Ry ug ”p

+ ¢, foralli=1, ---, K
There is at least one w, s0 that ”u0 - W ”q < 1n/2; choose such a W

Then the first term on the right is < ¢, With this particular W

IA

IN

n/2 +n/2 = n
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so the second term is also < ¢, Thus for |h| <h;, Il < 3¢, Combining

these estimates gives the result that if Ih' < max (h;, h,, h;) then

|F ||sIa+Ib+IISZ£+4£+3£=9£.

¢ Feen
This proves the assertion for a single trajectofy with g = 1,5 .
An inspection of the proof will show that if F ¢ ?‘/ , A a compact subset
of :71' ( ZZ , 9 ), then the compact sets chosen above can each be replaced
by compact sets chosen independently of F in 774 . For example, the
compact set F(Rt ’Z,(T) is replaced by ﬂ/(Rt Z(T), which is a compact
subset of g since A restricted to Rt Z(T is a compact set of bounded
continuous mappings, and Rt 'ZLT is a compact subset of Lq' Also the

mappings (P ) F Rt restricted to X , F € %, are equicontinuous

2T+t ™ TtoT
by Ascoli's theorem., These facts yield the assertion that the Ft are equi-
continuous,

The proof of the assertions for the case 'y = /3 . is similar,
although obviously some modifications are required. The details are not

t

given,
Two consistency relations are introduced for the trajectories Ft .

The second of these will also be used as an interpolation formula. Con-

ditions under which they hold are given in the Proposition to follow.,

(P - PO) L

T-n Ft RT\ (P -P )

M

= (P -P)F, (P -P ),0sn<T (8)
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T T-n Ln-T Forr Rn-T (Pp - P )

Proposition 2.13 i) If Ft = F, Fe 9'( u, 7%), then Ft satisfies

t
equation (8) for allt, ii) If Fe 7 c:i( Z{ , % ), then Ft satisfies equation

(9) for all t, iii) If Ht’ Ht+ H are any mappings from (7 T into % T

T’ “t4n

that satisfy equation (9), then they satisfy equation (8),
Proof: The proof of i) is given by the calculation:

" Fo) Ly [(Pp - POL FR (Pr-P IR (Py  -P )

= (P -P )P -P L F P -
( T-m o)( T-m -'q) nt+t Rn+t( T-m -d-m T-m -d

n Po) I"1'|+t F R'q+t (PT-'n- P-d)

= (P P ) [(PT - PO) Lt+n F Rt_m (P - P

T-n -d

= (Pp_ - P)F,, (Pp -P_)

T-m T-n  -d

To prove ii) we use i) for the first term on the right side of equation’
(b) and make an analogous calculation for the second term, Then the right-

hand side of equation (9) becomes

)JF (P -P ) (10)

(P T-n" tn T ~T-n-d

- P P -P - P
Ton” Fo) Fiyn { )+ (P

n  T-7m -d

If F is causal with bounded memory (d), then so are all the Ft’ and this

expression reduces to
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(PT-n "o Ft+n T T-n Ft+n Ft+n

which proves ii). iii( can be verified immediately by substituting Ft+

T

from equation (9) into the right-hand side of equation (8).
The consistency condition (9), if required to hold for

all tandall n, 0£m =T, is not quite enough to guarantee that F is

causal with bounded memory (d), It does guarantee something a little

weaker, and to state this we use the definition: F is weakly causal and

of bounded memory (d) if for every A > 0, and for all t,

(1) (P

-Pt)F(PH -P, )= (P )

A Tt-d A-P)FE, -P

t+A

t+ t-d

whenever t + A <a, and

(2) (P

t+A - By

“P)F(Bp-Pg= @ t+A ~ b

t+A t-d B Pt) F (P
whenevér b<t-d

This definition rules out non-causality and non-bounded-memory (d)

that depend on interactions between past and future,

Proposition 2,14 If Fe ] (U, % ), then equation (9) is satisfied for
allT >0, allt, andallm, 0 <n < T, iff F is weakly causal and of bounded

memory (d).

Proof: The right-hand side of equation (9) is given in different form in (10);

consider the first term of (10). Since (9) is satisfied, we must have that

= (P -P)F (P -P ) .
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This may be rewritten,

Lt+n (PT+t B Pt+n) F (PT+t B Pt+'q-d) Rt+n

= L (P -P, )F (P

t+n T4t t4n ) R

-P
T+t+n tim-d’  tin

which is equivalent to

(P

pt+'q)F(PT - P )= (P -P )F (P ) .

- -P
T+t +t~ t4n-d T+~ t4n T+t4m t+m-d

Puta=T+t+m, s=T+m and A = T-1n. Then this is in the form of
condition (1) for weak causality and bounded memory (d), and a, s and A
can be given arbitrarily by choosingn >0, tand T >1. An analogous
argument applied to the second term of (10) yields condition (2). The
converse follows immediately from equation (10) and the definition of Ht+'r]

From a family of mappings carrying ’L(T into QT it is possible
under certain circumstances to synthesize a mapping from U into Z% .
We want to be able to do this, because we want to be able to go from
trajectories {Ft} back to an overall system mapping F. The transformations
Py to be defined below accomplish thié. If v denotes the transformation
carrying F into a trajectory {Ft}’ then the p, are roughly inverse to T,
However the situation is a little complicated in general, and Py and 7 are
inverse to each other only when F is causal with bounded memory of
sufficiently short duration, These comments are made precise in what
follows.

We usé the notations:

A = (P P )

n,t t-(n-1)T ~ " t-nT
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A = (P

n,t t-(n-1)T ~ Pt-nT-d) ’

where T >0, d >0 are fixed, Let & be a bounded subset of f} ( UT' VT)

with the additional property that the Ge fz are equicontinuous, Let {Gn}

L :
be a sequence from \l . For any real number t, define
t o0
- 1 :
G = ; An,t Rt-nT C'n L1:-nT An,t (1)

It is clear that G‘c is a mapping from WU into g if g = o{,? or /3 :

however, see Appendix A for a formal justificatioh of the infinite sum.

Proposition 2, 15 Gt as defined by equation (11) is an element of .‘.7 ( Zf , 9 ),

where Z/ is either f? or /3 .

Proof: Take Z% = Z; . Given € >0, let § >0 be such that ”zl - zz“ <,
Z), 2Z; € uT’ implies ”Gn (zy) - Gn(zz)" <¢foralln=1, 2,..., as is
possible from the hypothesis on .ﬁ . Foruy, ue u , ||u1 - U, ” <8,
one has

16" () - " | = sup | P,

t
: -P) [Gt (w) - G )] ||p

+T

1
<
= s;p I At Rewer O Mot Bk, ¢ W)

R G L

]
A R e )T Gt Do )T Pkl )

!
y Ak,t Ri kT Gk Dioxer Bt (uz)

- A '
k1t Nto (kt1)T Cktl Toe (1) Skt t (uz)"p

' 1
2 ” An,1: P\t:-n'I‘ Gn Lt—nT An,t (w)

IA
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B An,‘c R'c-nT Gn Lt nT n t (uz)"

- 1
=2 ” (PT ) Po) l:Gn Lt-nT An,t(ul)

U
n I'Jt-nT An,t (uz)] ”p toe

for some n, But

” Lt-nT A'nt u - Lt-nT A'nt u, “ < ”u1 -, “ <6

1] /
and Lt-nT Ant ue€ L(T , hence

Gt () - GP o) <26+ 6=3¢

The boundedness of Gt follows similarly, The same proof holds for

g = A if the Lp norms are changed to uniform norms.T

The transformation that carries the sequence {Gn} of equicontinuous
t . . rs .
mappings into G is denoted Py Note that the equicontinuity condition is
natural, since, when we to the other way we have that the th,

Fe g( 7,( , Z% ), are equicontinuous with respect to t.

Proposition 2,16 The transformation P, is continuous in the following

sense: if there are two sequences of equicontinuous mappings from Z(T
~ ~
yT’ {Gn} and {Gn}, and || G - Gn” < § for all integers n for some

6 = 6(¢), then [lp ({6} - o, (G N = ¢.
. . - p '
Proof: Again take ’Z% Z’ T Then,

le, €G_}) - p, G Dl

< 2 sup ”A R [ L A (u)
u n n -



for some n by a calculation very similar to that in the previous proof.

But the right side of this inequality can be rewritten as

2 SZ’Z) ” (Gn } Gn) (Lt-nT

!
An,tu)“p + ¢

since, by the shift invariance of w, any z € Z(T can be obtained by
truncating some u by (Pt-(n-l)T - Pt-nT-G) for arbitrary t,n. Hence,

if |G_ - En | is sufficiently small for all n,
le, ({G 1) - p, {G Nl <26+ ¢=3¢

Again, the same proof holds for y = /2 if the Lp norms are
T

changed to sup norms.

. s O .
Proposition 2,17 If Fe ? d ( U , % ), then for any t, {vt-nT F}isa

family of equicontinuous causal mappings from U, to %T with bounded

T

memory (d), and F = P, { F}). Conversely, if {Gn} is a sequence

Trt-nT

of equicontinuous causal mappings from Z(T to Y%T with bounded

memory (d), then P, ({Gn}) € jv(zl( U, g ) and Gk =T kT ° pt({Gn}).

Proof: The assertion that the LI F are causal with bounded memory (d)

is obvious; indeed all the T F are causal with bounded memory (d). Further,

P ({mw nTF}) =

t-
o0
]

- Z An,t R'c--nT [(PT B Po) Lt--nT F Rt-nT (PT ) P-d)] L1:-nT An,’c

00

= ! =
Z An,tFAn,t F
-00
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It is also obvious that p, ({Gn}) is causal with bounded memory (d).

The second inversion identity is given by the calculation:
Trt-kT ° pt ({Gn})

00
! . _
Pr-Po) Lkt [2; An,th-nT G L nt An,t] Rexr Pr P-d)

= L A, R G L Al

t-kT “k,t t-kT "k t-kT k,th-kT (Pp- Py

T -d

- T
(P -P)G (P -P )=G_ .

When F is not causal with bounded memory, the operations ™ and
N obviously cannot be inverse to each other because some information about
F is lost in the truncations given by the LA which cannot be restored, The
sense in which they are approximately inverse to each other is given in the

next Proposition,

Proposition 2,18 Let {Ft}, - 0 < t <ow be a family of mappings in

:}Z ( Z( T 7% T) which is bounded and in which the F, are equicontinuous.

k
For any fixed s consider {F },n=.eo, -2,-1,0,1,2, ... ., Put

s-nT"* =~
H 4 (P P)L F R (P -P )
s-nT+n =~ "~ T-n "o "m s-nT 7 ' T-q -d
+(Pp - PT-n) Ln-T Fs-(n-l)T R'n-T (P - PT-n-d)’
0sn<T . (12)
This defines H, for allt, and H =F . Further, define
t s-nT s-nT
(1) d
H= pg ({Hs-nT})
1) d _ (1)
W= m o Py ({Hs-nT}) Ty H



) d )y, _ (1)
PR (CIE Ll ST o
Then,
)M -H forant
¢ ¢
i) 1 - gt

iii) If Ft satisfies equation (9), then Ht = Ft

() _
and Ht = Ft

Proof: By the definitions, Hil) is given by
00

= - Al -
(PT IDo) Lt [z An,s Rs-nT Hs-nT Ls-nT n,s] Rt (PT P-d)

=00

(1)
Hy

At most two terms from the infinite sum can contribute anything, by virtue

of the projection (PT— Po)' Let k be that integer such that

s -kT<t<s-(-1)T ,

and let
n=t-(s-kT)
Then, since F =H , the expression for H(l) above reduces to
s-nT s-nT t
, _ . . () _
the expression for Ht = Hs-nT+n given by equation (12), Thus Ht = Ht

@) _ ()

forallt, and H " = H ") follows from this equality and from the definitions.
The assertion iii) is obvious, since quation (12) becomes equation (9) if H

is replaced by F. f

We conclude this Section with a simple error bound on the inter-

polated Ht+'q as given by equation (9) when Ht and Ht+T are in error,

|| < ¢, Then, if

~ ~
Proposition 2,19 Let || F - F, | < ¢ and ||Ft+n - Fo

ft+n and Ft+n are each given by equation (9) in terms of %t ) %"HT and
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F,F , respectively, HIT" || <2¢,

-F
t* " t4T t4n ~  t4n

~ ~ ~
Proof: Expressing Ft+n' Ft+n in terms of Ft’ Ft+ and Ft’ Ft+ from

T T

equation (9) yields

|]Ft+n - thll < sup IIFt Rn (PT_11 -P_Ju-F, R, (PT-n' P_d)ll
T
+Z?p "Ft+T Rn-T (P - PT-n-d) " Fopr Rn-T (Pp - Pr_ -d)” (13)
T

Now, by the properties of U ,

~
Hence, sup ”Ft Rn (P

P J)u-F R (P
t
Ur "

T-n  -d T-n P-d)”

~
< sup ||Ftu- Ftu” < ¢
T

The second term in the inequality (13) is also dominated by £, by essentially

T

the same argument,
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IV. TRAJECTORIES OF THE FINITE-TIME PROJECTIONS
FOR CLASSES OF SYSTEMS

We now consider a class of systems ,i = (?/, f,% ,%) in its

natural representation form, ’Io = ( 9”, g,f’y,% ), where U is a shift-

T+d
is ‘Zg or ({ . #is, of course, a subset of ?(ﬁ[,% ); further

invariant, T-compact subset of fp with property (P), and where Z/

hypotheses on %[ will be made as needed, Each Feﬁwill generate a
trajectory {Ft} € %T’ whethef F is causal with bounded memory less
than or equal to d, or not, If 77(C 3’3 (W, y ), then each of these
trajectories will yield the corresponding F.through the mapping p. We
investigate some basic properties of these families of trajectorigs.
Temporarily take T >0 to be fixed, Let 7?0 be the closed linear
subspace of the Banach space (7, y ) generated by A and let
77“ =, 7’}1 . 7}(‘5 is a linear subset of 5‘ ( @CT, %T); its ciosure,
ﬁt’ is the closed linear subspace of 5’»( ’L(T, ’%T) generated by “t%'

We define )jo (or J ) to be a linearly predictable class of systems with

respect to T if each mapping ™ is 1:1 from 7/1 onto %t’ teR!, When

,jo is a linearly predictable class a prediction mapping 6(t,s) carrying

Ht into Hs’ t < s can be defined by

9(t,s)=1rsowt“ , -0 <t, s<ow

For each t, s, O(t,s) is obviously a linear transformation with domain

mt and range 7 .

S
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The intuitive meaning of .Jo being a linearly predictable class
is that no two trajectories associated with the F ¢ 77?_ corresponding to
)Jo can cross or touch and be at the common point at the same time,
Two trajectories can cross or touch provided the time of arrival at the
common point is different for the two., A class of systems consisting of
a single system ( ¢ has only one element) is always predictable in the

sense of this definition,

We further define a stationarily predictable class of systems with

respect to T to be a class J with the property that whenever v, F =1 G,
P o property t s

F and Ge /) , then T ra F= Teta G for all real numbers a, Intuitively,

this implies that the systems F and G have trajectories which as geometrical
entities are identical. Furthermore, no individual trajectory can cross
itself, If the definition is weakened to read: th = ns G, Fand Ge 77L ,

implies v, F = Trs+aG for all a 2 0, we call the class z(‘o a future-time

t+a

(f.t.) stationarily predictable class with respect to T.

If either of F or G is not causal with bounded memory (d) it is
obviously possible that L F = L G for all a without F and G being the same.
In this case Jo can be stationarily predictable without being linearly
predictable. A fortiori, Jo can be f,t, stationarily predictable without
being linearly predictable, However, if the /4/ associated with x/o is
a subset of 57'3 ( &, g ), so is 77Z . Then if for some t, vtF = th,
it follows from stationary predictability that T F = T G for all a, and
hence by Proposition 2.17 that F = G. Thus, in this situation stationary

predictability implies linear predictability. Under the same condition that
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K c 9(; (14 ,7% ), if jo is only f.t. stationarily predictable, the
situation is complicated a little, but can be interpreted in much the same
way as will be seen below,

In case ;ozo is linearly and stationarily predictable the prediction
mapping 6(t,s) can be written as a function of the difference s-t only, once
the domain has been defined properly. In fact, suppose to start with that
F'e Mt and also F'e¢ mt+a . Then F' = m F for some F e M ; and also
Flen , C for some Ge m .

t+

Thus, 6(t,s)F' = Mo n't'l(n'tF) = TTSF and O(t+a, s+a)F' =

-1 _ ey . . .
Teta® “t+a (Tl’t+a G) = meta G. By the definition of a stationarily predictable

class, TTSF = "s+aG ; hence 0(t,s)F'=0(t+a, s+a)F' . Now (with a
slight abuse of notation) let O(t)F' = 0(t,s)F', s =t+ 1, for all F' such
that for some t, F' € ?'Ylt.

‘This definition is meaningful, because if more than one pair (t,s)

satisfy the conditions they all yield the same 0(t,s)F'. The domain of

0(t), for any T, will now include U M t; extend this by linearity to

ter!
72. = linear span { U 77’Lt} . The family {8(r)} , TeR', is now a
teR!
one-parameter group of linear transformations on 72 . We note that

e Fi( uT' Z%T)' In fact, the elements of 72 are of the form

N
- - -
F'= ), a (P -P) Ly PRy (Pp-P )
n=1
N
= (P, - P) (Z a Ly F_R, )(PT -P_)
n:1 n n

where {t1 y v, tN} is an arbitrary finite set of real numbers, as is also
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{al"..,a},andFl’ OOC’F

are each elements of 5‘ ( ’LL,’(% ).

N N N
Since E @ L, F_R, is alsoa bounded, continuous mapping, we
1 n tn n tn _
n=

can denote it by F € 7‘( 'L{,, '4% ). Then,
F'=(P -P)F (@ -P e F(UL, T%r).

In case ,40 is a linearly and f.t,. Stationarily.predictable class
we can, similarly, for any 7 = 0, put 6(tr) F;, = 6(t,s) F, for all F; such
that for some pair (t,s) witht > 0, s -t =17, it holdg that F, € mt. The
domain of 6(t), T 2 0, can now be extended by linearity to 72.+ = linear
span { U mt} . The family {6(t)}, T = 0 is now a one-parameter

t20

semigroup of linear transformations on 72 4 which is also contained in
?’( uT H yT)a
If Jo is f.t. stationarily (but not linearly) predictable and
#c ,}c:i (U, '% ), a semigroup can be established in essentially the
. L= = 3 =
same way, Suppose F Ly F L G. Then the fact that LI F LI G,

T 2 0, implies that F and G restricted to (I - Pt) 2 are the same mapping,

We now redefine wt'l as the set function: ‘ITt-l (F') = {F:‘I’TtF = F'} . Then

-1

¢ but only, of course, for t<s. 6f(t,s)

O(t,s) can again be defined as "s o
is again linear on mt’ and the development that follows for the semigroup
case can be repeated exactly. In what follows we restrict attention to the
semigrogps of linear transformations, as being of more immediate interest
than groups in modelling for system identification.

The usual linear operator norm, when it exists, of the linear

transformation 0(t) is given by
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|6(r)| = sup h—-—l— o) F K
F'
F'e7l+ VT 'Z/T

where the symbol | | has been used to provide a reminder that this is a
different kind of norm than has been used for the other mappings that have
appeared. From the definition of 71.4_ it follows that 0(T) is a bounded

operator if and only if there is a number B > 0 such that
N

P.-P L F R P .-P )
useu& ”( T o) <nZ:1 *n ‘tn-l-’r n tn+T> ( T -d u”%
N
<B us€u& I (P, -P) (Z_:l a Ltn F_ Rtn> (P - P_,) u”% (14)

for any positive integer N, any set of points t;, +--, tN all greater than

or equal to zero, any set of scalars oy, *-- and any Fy, +¢+, F

N N

belonging to 77& .

This is a regularity condition on the time behavior of the mappings
F. Note that, unfortunately, it is not sufficient to consider just those
Fe 77/, but rather all finite linear combinations of these and of their
translations., If /27£ is itself a subset of 9'( U ,?/ ) that is invariant
under time shift, then all the mt are the same and the sums in the
condition (14) collapse to single terms,

Using the definitions established, we can now state a basic fact,

which is really a corollary to Proposition 2, 12,

Proposition 2,20 Let ’Jo be such that #C 71% (74, y), let it be f, t.

stationarily predictable with respect to T, and let the 6(t), T 2 0, be

bounded operators. Then {8(r)}, T = 0, is a strongly continuous semigroup

43



of bounded linear operators on the Banach space 77+, the closure of 77+
i 1
in FOUL Y.

Proof: It is supposed of course that the 6(T) are extended by continuity
to 77+. All that has to be shown is that [|[6(r)F' - F! H - 0as T >0,
for any F'¢ 77+. Since 72 N C ?(ﬂT s %T), and since any

- P )F' (P -P_),

Fle 3‘ (_/UT’ ’%T) can be written F! = {PT

it follows that F'' is the image under L of itself, regarded as an element

of 5‘(’&(,771,). We write, F'=1TOF=FO. Then

lo(r) 7' - F1| = ||FT - FO” -0 as T-=0
by Proposition 2, 12...1r

Clearly the hypothesis that )’l/ c (}‘;( U, g ) can be replaced
by the hypothesis that Jo is linearly predictabie, and then with the other
hypotheses in force the conclusion still follows. For convenience we shall
refer to an Jo that satisfies either the conditions of Proposition 2,20 or
the modified conditions just given as a linear dynamical class of systems
with respect to T, This terminology is introduced with some apologir since
dynamical is such a widely used term; however, it seems reasonably

appropriate, There is no inference, of course, that the individual systems

in the linear dynamical class are linear,

Thus far, T, the length of the interval of observation of the output,
has remained fixed. We now look at how the properties of the special
classes of systems introduced in this Section are affected by changes in T,

When T is changed, so is the norm on the input space, which is always
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(p)

(p)
APl M

assumed to be a subset of &C L In fact ”u"

. , wh '< T,
T+d when T T

However, as has been pointed out earlier, the membership of 2 does not
depend on the value of T, nor does the topology on (74 , nor do the properties
of T-compactness and shift invariance. Similar statements can be made for
yif y= j? If 7% = g , then not even the norm on Z% is changed.

In any event, the class of mappings 5” (%, y ) is not affected,

Proposition 2,21 If Jo is a linearly predictable class of systems with

respect to T', then it is also linearly predictable with respect to any T > T*,

Proof: Suppose the linear mapping ‘ITt(T) given by

v (I)F=(P,-P)L FR (P, -P_)

-d

is singular, Then for some F # 0, ™ (TYF=0;and for T'"< T,

(Ppy - P) [P, - P)L FR (P - P_Id)u] =0

T

for all u € 'L(_ Since (PT'-P d)ueu for allueu,

(PT'-PO)LtFRt (Py-P Ju=0

T -d

for allue u . Hence TTt(T') is singular, and the assertion is proved by

T

contradiction.

Proposition 2,22 If ’Jo is a class of systems with the property that

#C 9-‘; (U, ’l% ), and if ’!o is stationarily predictable with respect

to T', then it is stationarily predictable with respect to any T 2 T',
Stationary predictability can be replaced simultaneously in hypothesis and

conclusion by future-time stationary predictability,

Proof: Suppose to start with that T' < T < 2T, We need to show that the
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ras _ ) . .
condition TTt(T)F = (T)G, where F, Ge ML C 3' d({,{ ,gﬁ ) implies

Tta (T)F == a (T)G for all a, We note that the‘condition L (T)F =T (T)G

s+

can be written

(PT - Po) (LtFRt - LSGRS) (P.-P Ju=0

T ™ ©.d
for allue U . Since (P, - P_)ue UL forallue UL, it follows that
(Ppy- P ) (L,FR - L GR) (Pp, - P_j)u =0

for allue U ;i.e., Trt(T')F =T (T')G. By hypothesis, it follows that

1 - '
LA (TYF = (TG, or,

s+a
(PT, - PO) La (LtFRt - LSGRS) Ra (PT, - P_d) u=0 (15)

for all ue U{ , and any real number a.

Now
Pppr - P by (L FRy - L GRIR, Py = Pru_g) v
=L (P~ P)L - (LFR - L GR)R_ . (P - P )R -, u=0

for allue 'L(, , since R (u) e u for allue (L, and we can replace the a

-T!

of equation (15) by a + T'. Since the mappings F and G are causal with

bounded memory (d),

(Pyp - P) L, (L,FR -L GR )R (P,r, - P j)u
= (Pyqe - Pp) Ly (L FR - L GRIR, (Pyp - P _g) @
+(Pp - P )L (LFR -L GR)R (P, -P Ju ,

which equals zero by the calculations above, It follows then by a now

familiar argument that
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Py -P )L (LFR -L GR)R (P -P_Ju=0

T T ~ -d
for allue Z{ , which is what needs to be shown, The extension to arbitrary
T 2 T' follows by induction. The proof for future-time stationary pre-

T

dictability is the same with a restricted to be = 0,

Proposition 2,23 If Jo is a linear dynamical class of systems with respect

to T', and if it further has the property that ,le c }od (74, 9), then ;40

is a dynamical class with respect to any T > T!',

Proof: In view of the preceding Proposition, all that needs to be proved is

that if 8, ,(7) is a bounded operator for all T = 0, then 6

T (tr) is a bounded

T
operator for all T = 0 whenever T = T', The meaning of the subscripts T
and T' on O(t) is obvious. In what follows it is necessary to go back and
forth between norms in %T and in /‘%T' , so a subscript T or T' is used.
The facts that, by an obvious identification of elements, %T' can be
thought of as a subset of 7%,1,, T' < T, and that then ”y”T' = ”Y”T when
vy € %' are used without comment,

Again assume to start with that T < 2T', We have,

N
lop @) Fl = i I®g -2 <Z “n Mt T Rtn+T>

n=1

.+ (P, - P )ul

T -d T

for some Fn e nc '}Z (U, ’é{ ), and some scalars a . Now
N

"eT(T)F"T = sup ” (PT' - 1Do) (E an Lt +T I;‘n Rt +‘r>
w n=1 n n
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N

) (PT ) P-d) v ||T t sup ” (PT ) PT') (Z *n Ltn+1' Fn Rtn+'r>

n=1
FPp- Py ally
= sup ”A(u)”T + sup ”B(u)”T (16)
where the A and B are defined implicitly.
Because the F € 9?.‘1 (’L(,T% ) »
N
A= (PT' B Po) <Zl %n Ltn+1' Fn Rtn+'r>
n=

Since A(u) is different from zero only on [0,T'], and since © (t) is bounded,

TI

sup 14l = swp 417, = g, (0, < log, )] - 7],
N
< leT,(TH . sup ||(PT, -P)) <Z @ L, F_R, ) ull g
( n=1 n n
N
< leT,(T)l + sup ”(PT - P ) <Z a_ Ltn F_ Rtn>u”T
W n=1
=lo, @) - 7l . (17)

Using the fact that T - T' < T', and also using again the fact that

the Fn are causal with bounded memory (d) yields

- N |
1Bl < 1Py - Py ) <Z @y Lt 4r Rtn+1_>
n=1

(P, - P ) ull

T T-T'-d T

- lewll, .
where C is defined implicitly,
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Now, L CR

T-T! T-T!
N

= Pp- ) <Z “n LT-T'+tn+-r P RT-T'+t'n+T> Fr- Py
n=1

so, by the fact that 6_,, (T - T' + 7) is a bounded operator,

Tl

5112) ||LT_T, C R (u)llT, < leT, (T - T +7)|
N
. S&, lPy - P ) (E a Ltn F_ Rtn> Py - P_ ) g
S fog (r-T+m)] - |F],
But, sup || LT-T' C RT-T' (u)nT, = sup [|C(u) "T
w
Thus, sup [|[B)| . < sup [C(w)]
N T U0 T
s leTl (T - T' +T)l . ”F”T'
sleT,(T-T'+T)|- IIFIIT . (18)

Combining the inequalities (16), (17) and (18) yields
1 ' _ Tt .
lepmFll, = (ot ml + o (-1 +m)])- |F|,
for all Fe 7’2_ 4 which establishes the result when T < T7T'. This can be

extended to all T > T' by induction, f

If now ’!o is a class of systems with A c 3’21 (U ,%) and is
dynamical with respect to some T' > 0, one can put T0 equal to the infimum
of all such T' and know that Jo is dynamical with respect to any T > To.
It is to be noted that the hypothesis that }1/ C 9'(; ( U , g_ ) cannot be

dropped in this assertion. In fact, it is not very difficult to give an example
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where Proposition 2,22 is violated if the mappings F are not causal with
bounded memory (d); thus the semigroup property is not preserved.

If J o is a linear dynamical class with respect to T and with
HMHc 9"3 (U, % ), then it is clearly possible to deal with the discrete
parameter semigroup {6"=0@mT)}, n=0,1,2,.-, and still completely
describe the future of the system by virtue of the interpolation formula (9).
Under certain conditions when jo = ( ?, g, ;‘/ ,Z(, ) is a linear dynamical
class, the discrete parameter semigroup {On} can be used to induce a
"corresponding' semigroup {8"} of linear operators on the linear space
spanned by the system parameter space Il of an €-representation of )40.
We describe a situation in which this can be done and construct the §'n.
The construction is not unique, as will be seen, but any {@n} so devised
approximates {6"} in the sense to be indicated.

Let it be assumed that 1% is QZ?I, . Write ;!;1 = (‘9’1"’ g
%nT’ uT), n=0,1, 2, ..., for the classes of truncated systems,

where 'gLnT is the set of all L F, Fe 7/ By the assumption on g )

T
y =L, ., Since ,! is a linear dynamical class, 2)/— = 0(nT) # =
T o nT o
n : 00
0 # o Let it further be required that U ;'LnT is a compact subset
. n=0 '
00
of g'( Z(T ) QT), and for convenience denote nL__{O %T by jT .
Then each ,f is a subclass of xﬁ = ( - ﬁ, s U ). Since
n T T T
ZCT and ﬁT are compact and ?/T = L,, xf has a standard
€-representation ( @, , ¢;), ,jl = ( QT’ f,, )'El ) Z(T) as given by

Proposition 1,7 of Part 1, and ¢; is linear, %1 =9, jT is a subset

of a finite-dimensional Euclidean space; let RK be the Euclidean space
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generated by X,. The representation mapping ¢, as given by Proposition
1.7 is actually defined as a continuous linear map from the closed linear
span of jT onto RK. Obviously the closed linear span of jT is
contained in ﬁ+ , the domain of the 0(t). Let {bl y T, bK} be elements

of .'fl which form a basis for RK, and denote the coordinate functionals

{p*, «¢-, b; }, so that any element x ERK can be written
K
_ *
X = z:l bi (%) bi
1:

The idea of the construction of 8 is that 8 should be the composition
of the mappings {, 6, ¢ in that order. However, this will not quite do,
because y(x), x € fl , is not necessarily contained ip fZT , and hence is
not necessarily in 7’l+ , the domain of 6(t). To correct this, we construct
a linear mapping $which does satisfy the condition y(x) € 3 T X€ f, ,
and which is close to ¢y, Consider the continuous linear functionals on the
closed linear span of '\'ZT given by bi*o ¢ ,i=1, ..., K, Let Ei be the
null space of bi*o ¢ . First choose an element H; belonging to 3T that
does not belong to El ; this is possible by the deﬁnitions of fl and b, .
Then b*o ¢ (H;) = @, # 0. Next, choose H, € éT’ not in Ez , and linearly
independent of H; ., This can be done by virtue of the linear independence
of the bi , and yields b,*0 ¢ (H,) = @, # 0. Continue this procedure to obtain
a linearly independent set {Hl y te e, HK} , Hi € j T satisfying bi* o ¢ (Hi) =

a, # 0. Define another basis for RK with elements in fl by

K

(e]
1

sk .
[b o ¢ H) b,

e
1
fa—
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since each ¢ (Hi) € ¥ ,, it is clear that the Ci do belong to ?.1 . Define
E’, a linear mapping from the linear span of {H,, - -, HK} onto RK by
g(Hi) = ¢y i=1, ««., K, and extending linearly,. gis 1:1, so we can

define E’ = ;"l , @ linear mapping from RK onto the linear span of {H;,:-- ,HK}.

If ﬁ belongs to the linear span of {Hl y e, HK} and also belongs to ﬁT’

then we have

K K
¢(H>=¢(Z YiHi> = vy o X
i=1 i=1

~
thus  carries any element in 3(, into &T' As was already mentioned,
~ . . ﬁ
J is not uniquely defined, except in certain cases of finite-dimensional T

since the choice of H;, ++-, H_ is not unique and the resulting linear space

K
spanned by them is not unique.

It now follows that if H ¢ :(jT , then ||H - E'o ?, (H)H <2€. In fact,
since (Jl y O ). is an e-representation of 3" ) ”H UTICE Y (H)” < €. But
'qj o ¢; (H) is an element of /:ZT and it has the same representing element
as H, i.e., $1o0 § o ¢y (H) = 9y (H). Hence, | T o9y (H) - 4y o ¢y (1)

= [$° ¢y (H)] - Yoo [E o ¢, (H)] || < €, from which the assertion

follows,

Proposition 2,24 The mapping ] from RK into RK given by B = $; 0 60 E;

is well-defined and linear, If H0 € &T , then

n ~~n
16" H - o8 0 (H )|
<2e [1+]0]+.-.+]0|"] (19)

where |6| denotes the norm of 6 = 8(T),
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~

Proof: It has already been ascertained that the range of | is contained

~

in the linear span of ﬁT' which in turn is contained in n__+ . So 8oy

is defined. By definition, \}] is invariant with respect to 6; since 0 is

T
linear, the linear span of &T is carried into itself by 6, Thus the range
of 8o ?b’ is contained in the domain of ¢, , and ¢, o B o E is defined as a linear
transformation from RK into itself,

IfHo G(ZT, H0 =$e¢1 (Ho) € '\!Z , and ||Ho - Ho” < 2¢, as

T
already shown, Then 6 ﬁo € ﬁT ’
ler -oeH || <ol | -H | s2elo| ,

and
loH - Todyo0odop | =2e+2e]0] .
The inequality (19) follows by induction.T
Only linear predictability and associated ideas have been considered
in this Section. However, it probably should be noted, although the fact is

obvious, that a class of systems could be described as predictable in a

wider sense, Indeed, if {Tn}, n=1,2,..., is any sequence of mappings

o 7 . ° 4 .
from 5‘! d( Z(T , ‘%T) into g,d( "{T , Z/T) so that the images under
these mappings satisfy the conditions of Proposition 2.15, then the class

is '""'predictable' in an obvious sense.
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V. REMARKS

It will be noticed that, for what has been labeled a linear
dynamical class of systems, a structure has been described that is
analogous to the usual state-variable formulation of a linear system.

In fact, we can write either

F =0()F
t o
yy = Fpu
or
nt 6(T) F(n-l)T
YnT - nT unT

where u, = (P

¢ b+ pt-d) u,y, = (Pt+T - Pt)y. The first equation in

either case corresponds to the state equation for a linear, time-invariant
unforced system, and the second to a time-varying observation equation--
actually a linear observation equation, since Ft (ut) for fixed u, defines a
linear mapping from g'( Z{T , %) into yT .- It follows that the
identification problem, when there is noise added, is thereby analogous
to the problem of estimating state in a linear system when there is additive
noise. A study of identification of F ¢ g along the lines of this analogy
will be made in a future report, A practical difficulty is, of course, that
in modelling many real problems involving rapid time variation the
transformations 6(T) cannot be known; but this is simply to say that a
rapidly time-varying system is not identifiable if there is no information

about the future time variation.

54



The characterization of system trajectories in terms of strongly
continuous semigroups of linear operators obviously suggests the appli-
cation of some of the elaborate theory of such semigroups to further

study of the structure of these classes of systems, but this is a matter

for future work,
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APPENDIX

PROJECTIONS ON PAST AND FUTURE

The projections Pt used in this paper are defined by

1
h
—_
[}
~
-
wn
1A
(ol

[Pt f] (s)
(A1)

where f is a function on R}, This definition is still meaningful if f is an
element of a space for which the elements are equivalence classes of
functions equal a.e. Lebesgue, for then it is applied to each representative
of the equivalence class, Most of the operations involving these projections
are intuitively clear from the definition. Here and there, however, one |
may want a formal proof of an identity involving these projections. If one
if going to the trouble to provide such proofs, it seems as if the properties
that are used might as well be axiomatized, particularly since this does
not involve much effort., Then generalizations are at least possible, There
is nothing new in thus generalizing the notions of past and future, of course;
see, e.g., [ 3 ] , [ 4] , and [ 5]. However it is not the intent in this
paper really to pursue any notion of generalized time; so we do not build
on theory established in the references cited, but merely develop some
simple results vad hoc. These results are more than sufficient for what is
needed here.

For the remainder of this Appendix, the operators P, are not to be

t

taken as defined in Section I unless such an interpretation is specifically
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indicated, but are to be considered abstractly as operators belonging to

a family according to the following definition,

Definition Al, Let be a linear space. Let {P.}, -0 St<ow, be a
P t

parametrized family of operators on } (that is, mappings from 3, into
3, ) such that the following conditions are satisfied:

1) P_o0 = 0 (the zero operator); P+oo -1

(the identity operator)
2) PP =P P forall t,s
t s s t
3) Iftss, PP =P,
4) Pt'is linear on 5/

5) If (P, - Pa) y = (Pb - Pa) z for arbitrarily large positive

b

numbers b and arbitrarily large negative numbers a where

y and z are elements of 3, , theny = z,

Then {Pt} will be called a family of generalized-time projections on 4.
>

(g.t. projections).

Proposition A1 Let 3 be any ,2_/; space, or any LP (R') space, or

/3 . or any closed linear subspace of one of these. Let {Pt} be the
family of projection operators defined by equation (1), or the extension
of (1) to equivalence classes of functions, Then {Pt} is a family of g.t.

projections on the space in question.

t

Proof: Obvious verifications.

The projection property (P) as defined in Section I is still a meaning-
ful concept when applied to g.t. projections on a subset of ﬁ . Let ;1

and 32 be linear spaces with families of g.t. projections {Pt} and {Qt}'
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respectively, Let ube a subset of 3,1 with property (P), and let F
. . 2 . . . .
be a mapping from 7/( into 2,2. As in the special case, F is said to
be causal if QtF (w) = QtF Pt (u) for allt and all ue Z{ ; F has bounded
memory (d)if (Q -Q)F@u)=0Q -Q)F (P_ -P, ,)(u)foralltand
: 00 t 0 t 0 t-d

allue Z{ .

Proposition A2 (Proposition 2,7) If F is a mapping from U into. j’,z

that is causal and has bounded memory (d), then for every T > 0,

Q- Q) Fla)=Q, -Q)F (P, -P, ) (A4)

t t+
for all t and all ue Z{ .

Conversely, if equation (A4) is satisfied for some T > 0 and all t

and all ue Z(_ , then F is causal and has bounded memory (d).

Proof: We prove first that causality and bounded fnemory (d) imply the

property (A4), For anyue U , any real number t and any T > 0,

Qup-Q)Fu=(Q, 1 -Q)Q Fu

t

=Qur-Q)Qr FP v

t t+T

=Qur Ry - QY F (P )
=R Qp ~QJF P -P g Bpw
=Qp - QJ)F P p- P gu

Only conditions 1), 2), 3) and 4) of definition (Al) and the properties of

causality and bounded memory have been used,
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Now suppose that (A4) is satisfied. We prove causality, Let

b >t be positive and a <t be negative. Then,

K
@, -Q,)QFu=@Q -Q) 1;) Q. r - Q

t-kt1)T) F O

for any K such thatt = (K+1)T <a, By (A4) this is equal to

Q,-9Q) [:Lz S (k+1)T) F Py kT - Pt-(k+1)T-d)] b

=, -Q,) [; Qf k- Qt-(k+1)T) F P wr - Py k)70 Pt] h
-0 [3 08 7] B

=R -Q)Q FP,u

b a’ 't t
Hence, by condition 5) of the definition, Qt Fu-= Qt F Pt

T

The proof that F has bounded memory is completely analogous.

Let {zk} be an arbitrary sequence of elements belonging to ? )

and let {A, =P, - P } be a sequence of differences of g.t. projections
ko The he

PPN - - e e i < =
where the {tk}, , =2, -1, 0,1, 2, s sat1sfy tk tk+1 and kl-l*n-]ootk 0 ,
lim tk = -0 . In Section III infinite sums of the form
k—>-00 f:
Az
= k "k

are used. These sums have no meaning as far as the structure given by
definition Al is concerned, and some further condition is necessary. It is
sufficient to require:

6) Corresponding to every {zk}, z, € 5, , and {z_\.k}, k=1,2,:--,

where the Ak are as defined above, there exists a z ¢ ? with the property
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K (b)

-P)z=( -P) ), A z

(P
b a k=-K, () k k

b

for all b > a, where K, and K, are any integers large enough that the

1.

interval (a,b] is contained in the interval (-tK , tK
1 2

If condition 6) holds, the, for example,

00 0
z = zo.; Ak z and Ptz = kz_% (Pt-kT - Pt- (k+1)T) z

Also, expressions of the kind
o0
E Q) xr - Qt-(k+1)T) Py (Pt-kT } Pt-(k+1)T-d) e

k=-00

7
are defined, where each F. is a mapping from u into }2 , as above,

k
It is clear that if 3, is any Df; space, or g (but not, of course,

LP), and the {Pt} are ordinary time projections then condition 6) holds.
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