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ABSTRACT

A statistical inference problem is called singular if the correct in-
ference can be made with probability one. It has been observed by
Grenander, Slepian, and others that the mathematical models used to describe
the detection of radio signals in Gaussian noise sometimes appear to lead to
singular inference problems. A large class of signal detection and extrac-
tion problems are examined here in the light of recent mathematical results,
with the conclusion (which is necessarily a matter of opinion) that natural
constraints prevent singular cases from arising.

The mathematical background is the theory of equivalence or singularity
of (Gaussian) measures on function spaces. A unified treatment of some of
the work in this area is given based largely on work of Kakutani, Grenander,
Baxter, Slepian, Pitcher, and Feldman. In particular, a very slightly modi-
fied version of Pitcher's unpublished proof of the fundamental result (due
to Feldmaen and H&jek) on pairs of Gaussian measures, and a drastically modi-
fied version of Feldman's theorem for the special case of rational spectral

densities are given in detail.






I. INTRODUCTION

In the statistical theory of signal detection one is concerned with prob-
lems occurring in electrical communication engineering involving statistical
inference from stochastic processes. Most of the work in this area has been
concerned with the theory of detecting or characterizing information-bearing
signals immersed in noise with Gaussian statistics. The discussion here is
concerned with (1) singular cases arising in this special class of problems,
and (2) implications that these singular cases carry concerning the suitabili-
ty of the formulation.

We start from the model

where t is a real variable, n(t) is a sample function from a real-valued
Gaussian stochastic process {nt} which represents the noise, s(t) is a real-
valued function representing the signal, and y(t) represents the observed
waveform. We assume that y(t) is known to the observer, that s(t) is not pre-
cisely known, and that n(t) is not known but has certain known statistical
properties. We want to make specified inferences about s(t) from the observa-
tion y(t).

The signal s(t) may be of the form f(t; Ay ovee s an) where the function
f is known to the observer, but the parameters al,.o,,an are not. For ex-
ample, in the simplest detection problem, s(t) = af(t) where & = O or 1; the
problem is then one of testing between two simple hypotheses concerning the
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mean of a Gaussian process. If the parameters al,.,.,an are real valued, the
problem may be one of point or interval estimation. All such problems in
which f is known and the parameters are unknown we say are of the sure-signal-
On the other hand s(t) may itself be a sample function from a stochastic
process, of which only certain statistics are known to the observer. If this

is so we say the problem is of the noise-in-noise type. It is worth noting

that there is also a sort of in-between case which occurs when s(t)

= f(t; al,.o,,an) where f is known and the al are random variables with known
joint distribution. Properly, then, the signal is a sample function from a
stochastic process {st}; however since the structure of {st} is much better
known than that of a process specified in the usual way through its family of
joint distributions, it may be more appropriate to think of the resulting prob-
lem as sure-signal-in-noise than as noise-in-noise.

As in any analysis of a physical problem, the choice of an appropriate
mathematical model is somewhat arbitrary, and in particular there are situa-
tions described usefully by either a sure-signal or noise-in-noise model.
Usually, in fact, such is true if the mechanism whereby the channel distorts
the signal is very complicated (see, for example, the article by R. Price
listed in the Bibliography).

In any event, whatever inferences are to be made from the observed wave-
form must be made after a finite time. If we except sequential testing pro-
cedures, we can usually fix a basic time interval say of duration T, during

which all the data are collected on which one decision or set of inferences



is made. This interval of duration T is called the observation interval; we

shall be concerned here with problems for which there is a fixed observation
interval, so that y(t) in Eq. (1) will be qualified by the statement

Ot =T(orastsa+T). Note that s(t) or n(t) may be defined for other
values of T and we may want to see what happens when T is varied.

In any electrical system whatever there is a background of thermally
generated noise (Johnson noise, shot noise, etc.) which is generally assumed
to be representable by a stationary Gaussian stochastic process, both be-
cause it is a macroscopic manifestation of a great many tiny unrelated mo-
tions, and because of experimental evidence. It is this background noise
which is represented by n(t) in Eq. (1). This noise is always present, al-
though it may not be the chief source of uncertainty about the received wave-
form. Usually one assumes the autocorrelation of the process {nt} to be
known (although it seems almost impossible that it could be known precisely),
and the mean to be zero (which in the model of Eq. (1) is equivalent to as-
suming it known). Thus the entire family of finite-dimensional distributions
for the {nt} process is taken to be available.

For convenience we shall call the class of detection theory problems

characterized somewhat loosely above, the Gaussian model. This term is to

include both sure-signal-in-noise and noise-in-noise cases and is to imply
that [nt], -0 <t <o, is a stationary Gaussian process with known autocor-
relation and that the observation interval is finite.

Various results obtained in the past few years show that there are

classes of decision problems involving a model of the kind described for



which a correct decision, or correct inference, can be made with probability
one. Such problems will here be called singular. Slepian pointed out in
1958 that the problem of testing between the two simple hypotheses: that a
waveform observed for a finite time be a sample function from a Gaussian proc-
ess [Xt} or from a different Gaussian process (i%], both of which are sta-
tionary and have known rational spectral density, is always singular except
in a special case. From this he raised the question whether much of the
noise-in-noise detection theory being developed was based on an adequate mod-
el; for it seems contrary to common sense that perfect detection of signals
can be accomplished in a real-life situation. In 1950 Grenander had shown
that a test between two possible mean-value functions of a Gaussian process
with known statistics could be singular, even when the mean-value functions
have finite "energy" (are of integrable square) and the observation period

is finite. He also showed that the estimation of the "power level" of a
Gaussian process with autocorrelation known except for scale is singular,
agein even with a finite observation interval. These results, which are

quite simple, seem not to have been known or at least appreciated by engineers
working on noise-theory problems for some time after 1950. In an application
of Grenander's work, Davis, however, in 1955 gave a rationalization for exclud-
ing the singular cases in the problem of testing for the mean (a sure-signal-
in-noise problem), and in 1958 Davenport and Root gave a different one (see
Problem 14.6 in their book). Since Slepians's paper of 1958 there has been
considerable interest in the appropriateness of the Gaussian model as it has

been used in detection problems (see in particular the paper by Good ).



I agree with the point of view that a well-posed detection theory problem
should not yield a singular answer. With this as a sort of working principle,
the aptness of the kind of model described above will be discussed in Section
IV, where an argument is given that the Gaussian mcdel is usually acceptable.
The detection problems deal with probability measures on infinite product
spaces or on function spaces. They are singular, as the term is defined here,
when the measures are relatively singular. Thus one is led to the subject of
relatively singular measures on function spaces, and in particular to singular
Gaussian measures. In Section II a few basic results in this areca are collected,
and in Section III some more specialized results applicable to detection theory
are given. Proofs are given for some of the propositions. It is likely that
singular measures on function spaces are of interest to some who have no in-
terest in detection theory; for them the following material will perhaps be

useful as an introductory survey.



IT. EQUIVALENT AND SINGULAR GAUSSIAN MEASURES

Since the eventual interest here is in continuous-parameter random proc-
esses, while many of the techniques involved use representations of these
processes in terms of denumerably many random variables, one sometimes needs
to carry relationships between pairs of measures on a Borel field to their
induced measures on a Borel subfield, and vice versa. What is required usu-
ally turns out to be trivial, or nearly so, but it seems worthwhile to estab-
lish a procedure once and for all. For this purpose two simple lemmas are
stated first.

Let Q be a set, B a Borel field of subsets of Q, and p and v probability

measures on 13 . The probability measures p and v are mutually singular (or

simply singular) if and only if there is a set A € B for which u(A) = 0,
V(AC) = 0. The condition p, v singular is denoted by p_lv.

Consider a collection of Borel fields, each with base space (i, and meas-
ures on these fields related to each other as follows. 13 is a Borel field on
which there are two probability measures u,v. The completion of p, we denote
by u, the completion of v, by v, and the Borel fields of sets measurable with
respect to p and v, we denote by¥§u,%§v, respectively. Ietho be a Borel
field contained in bo‘ch“B_H and —B‘v’ and uo and I be the measures induced on Bo

by ¢ and v, respectively. It follows directly from the definitions that:
1
1. If o=V, then pdv.

let B, u,v,E“, Q,Bv, D,“BO, M, and v, be defined as above. Suppose now,

6



however, that p, is equivalent to Volugve). Let Hos Vo be the completions

of Wy, Vv,, respectively, and denote the Borel field of sets measurable with

respect to either [, or v, bylJ, . Suppose further that B PR o, and write

u', v' for the measures induced onfoby Hos Vo, respectively. Then one can

o)

readily verify that:

2. Under the hypotheses of the preceding paragraph p = pu', v =v', u~v,

and-ﬁo =€u = EVQ

The application of these lemmas is to situations such as the following.
Suppose there are two real-velued random processes [xt(w)}, {yt(w)], te®T
(a linear parameter set), ® € Q (an abstract set), such that the smallest
Borel field containing all sets of the form [w|x(t,m)eA], A a Borel set, is
the same as the corresponding Borel field containing all sets of the form
[w|y(t,w)eA]. The probability measure on B for the x-process is u and for
the y-process is v.

Suppose alsc there is a denumerable collection of random variables
{xk}, each of which is equal almost everywhere with respect to both p and v
to a function measurable with respect to'@, and representations for both
{xt} and {Yf} in terms of the X, such that for every t X, and y, are equal
almost everywhere, duy and dv, respectively, to functions measurable with re-
spect to the Borel fieldeo generated by the X, - Then if it can be shown
that the measures p, and Vs induced onﬁBO are equivalent, one has that the
measures P and v are equivalent by Lemma 2. If the measures Hy and v, are

singular, then u and v are singular by lemma 1.



Singularity and Equivalence of Product Measures

In the development to be sketched here we take as starting point a theo-
rem of Kakutani on the equivalence or singularity of two probability measures
each of which is an infinite direct product of probability measures, pair by
pair equivalent. Suppose p and v are equivalent measures defined on the same

Borel field of sets from O, then we define

[d
p(u,v) = /; 53 dp
JVdp
Q

The function p(u,v) thus defined has the immediately verifiable properties:

0 < plp,v) =1, p(p,v) =1 if and only if u = v, p(u,v) = p(v,u). LetdﬂlCB)
be the class of all probability measures onfB, The definition of p(p,u') may
be extended so that p(u,p') is defined for all u,u'€dhl(6), as follows: let

ve M(B) dominate p and p' (i.e. p<<vand u' << v). Define

| du , }d '
\‘L = —_— B 'Cy": _H.
dv dv

Then '+ and V' belong to the L2 space Lg(v), and

olp,pt) = (b,9") (2)

where the inner product indicated is the inner product for L2(v)c One veri-
fies easily that for arbitrary u and u', (¥,%') has the same value irrespec-
tive of the dominating measure v used in its definition. Hence, Eq. (2) may
be used to define p(u,u') for all p,p'eM(B). With this extended definition
it is clear that p(u,p') = 0 iffplu'.

The basic theorem is then:



Theorem 1. (Kakutani)

Let {mn} and {mé) be two sequences of probability measures, where m and

mﬁ are defined on a Borel fie]jfﬁ of sets from a space Qn, and mg- ﬁ Then

0

% .

and m' = II mﬁ are either equiv-

the infinite direct product measures m = Il
n=1 "n n=1

alent, m~m', or mutually singular, mlm', according as the infinite product

||lp(mn,mﬂ) is greater than zero or equal to zero. Moreover

[o]
—H—p n:m

n=1

The theorem is proved by imbeddingn(8) ir a Hilbert space in which the
ordinary strong convergence is equivalent to some kind of convergence of the
products of the derivatives %%'. The completeness of the Hilbert space guar-
antees the existence of a limit element which corresponds to the derivative

of the infinite product measures, in the case of convergence. The imbedding

is accomplished by defining a metric with the aid of Eq. (2) by:

1/2 2
alg,p') = Y-l = [(b -4, ¢-¢'>]/ = [2(1 - p(u,mnl/

ko [am [am"
It can be then shown that |l d —= converges in Lg(m) to %% if the
product of the p(m n’mn) converges, the case of equivalence. Thus one has as

a subsidiary result that a subsequence of{iw 'lconverges with probability
f

one (dm) to a—— if the latter exists. This last statement can be improved,
m

of course, by application of the martingale convergence theorem which shows

dlnl
that the original sequence of partial products converges to aﬁ—-with proba-

bility one (dm).



Gaussian Process with Shifted Mean

Ilet {xt}, t € I, I an interval in El, be a real separable (with re-
spect to closed sets), measurable Gaussian random process, continuous in
mean square, and with mean zero. We take I = [0,1] for convenience; and we
let"% be the smallest Borel field containing all & sets of the form
(w]x(t,0)eh}, t € I, where A is a Borel set. ‘Then R(t,s) =& x(t)x(s)
is a symmetric, non-negative definite, continuous function in [0,1]

x [0,1]; and the integral operator R on L2 [0,1] defined by
L

Rf(t) =fR(t,s) f(s) ds, t e [0,1]
0

is Hermitian, non-negative definite and Hilbert-Schmidt. We assume in
addition that R is (strictly) positive definite. Then an orthonormalized
sequence of eigenfunctions of R corresponding to all of its non-zero eigen-
values is a c.o.n.s. (complete orthonormal set) in L2 [0,1]. We denote

elgenvalues of R by kn, kn> 0, and corresponding eigenfunctions by ¢n(t), i.e.

The cordition that R be strictly definite is not necessary for what is to
follow, but its presence simplifies the statements a little. It will be sat-
isfied in the case that is of real interest to us, as will be pointed out in
the last section.

We now let a(t) and b(t) be continuous functions defined for t e [0,1]

and consider the random processes
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These processes are measurable, separable and have the same Borel field of
measurable w-sets as x(t). By the well-known representation of Karhunen

and Logve,

x(t) =2 x4 (1), t e [0,1]

where the convergence is in mean-square with respect to the probability

measure for each t, and where the random variables X, are given by

1
X, :fx(t) g{n(t) dt
0

and satisfy

Since x(t) is Gaussian, the X, are jointly Gaussian random variables. If

we let

then the random variables y, = %, t a, are Gaussian and independent, as are
‘ = T UT i

the z, = %X, + bno The measures p, and v, induced on El by y, and z, re-

spectively are equivalent, so the theorem of Kakutani quoted above may be
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applied to yield that the product measures, which we denote by Mo and v, Te-
spectively, are either equivalent or totally singular. The probability
measures p, and v, are the measures induced on the Borel field B, C B gen-
erated by the x . Then by Lemmas 1 and 2 the processes y(t) and z(t) are
either equivalent or mutually singular.

According to the theorem, p, and v, are equivalent if and only if H Pn

converge. One has, since y, and z, are Gaussian

dy (¢ -v)% (L-a)2
I = X -
dv (C) P 2N 2\
n n n
(bn = a‘n)
= exp (ay + Py -28) ,
2N
n

*© ' 2

1 dp (¢ - v,)
o, = [ oo (8 ex» - 2)\“ at
21N . n n
2 0
= exXp ( "n az) fexp §(an _ bn) - (- bn)2 at
‘u’21§>\ xn /o 27\11 2>‘n
n =00 L
~(a, -1 )?
= exp o 0 ,
8\
n

2

an exp -_l_z (an-bn)
8 n T —
" n

Thus one has the result due to Grenander:
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Theorem 2. (Grenander)

The Gaussian random processes y(t) and z(t) defined by Eq. (3) are

either equivalent or mutually singular. They are equivalent if the series

(a, - b,)?
% ——E;———EL—-converges, and singular if the series diverges to + infinity.

n A
n

Two Gaussian Processes with Different Autocorrelations

It has Jjust been noted that two Gaussian processes defined on a finite
interval and identical except for different mean-value functions have the
"zero-one'" property of being either equivalent or singular. The same re-
sult has been demonstrated for arbitrary Gaussian processes on a finite in-
terval independently by HAjek and Feldman (1958 and 1959), who used en-
tirely different methods of proof and obtained different kinds of criteria
for equivalence. Here we shall sketch a third proof given by T. S. Pitcher
in an unpublished memorandum, which yields a criterion for equivalence
which 1s somewhat similar to that first obtained by Feldman.

Suppose two real-valued Gaussian processes are defined on the interval
O£t =1, each with mean zero, and with autocorrelation functions R(t,s)
and S(t,s) continuous in the pair t,s in [0,1] x [0,1] . We shall de-
note sample functions by x(t) and the respective probability measures on the

space of sample functions for the two processes by p. and p_ .* Thus
Y Ho 1

Eix(t) E[X(t) dul(x) =0 , i=0,1

A

*¥Note that same symbol is used for sample functions of both processes.

13



B ox(t) x(s) sfx(t) %(s) dug(x) = R(t,s)

S(t,s)

B x(t) x(e) = [ x(8) x(s) au, ()

The integral operators on L, [0,1] with autocorrelations as kernels are

written:

'_l

Rf(s) R(s,t) f(t) at

Sf(s) S(s,t) £(t) dt

il
O\l—'

where f(t) is any element of L, [0,1].

We proceed with a series of lemmas:

%z, If R and S have different zero spaces, then uO_LEl.
If Rf = 0, then

Elfx(t) f(¢)dt =0 , 1i=0,1
0 1 ]
E, fx(t) f(t) dt = (Rf,f) =0
bl .
E f x(t) £(t) at = (sf,f)
0

Now, since S is a non-negative definite operator, either Sf = O or (sf,f) > 0.

In the latter case the Gaussian random variable

has positive variance with respect to M measure. Hence,

1k



u [x|e(x) #0] = ulxje(x) =0] =1

Henceforth we assume, without any real loss of generality, that both R
and S carry only the zero element in L2 [0,1] into zero. Then R'l, s7t,
(Rl/z)'l, (Sl/‘:")_l are densely defined, symmetric; unbounded operators. In

particular, if R¢n = kn¢n’ (¢n,¢m) = ®_, then for any feLz[O,l] one has

N
2
£ =lad,, Yoy <w. If £y =lagd, then fipf and

-1 gan
R fyy = : = ¢n
n
N
-1 a
(s*/2) e =% B 4
N N

Analogous formulas can be written for S in terms of its spectral decomposition.

We shall write (Rl/g)-l - R_l/2} (81/2)—1 - 8"1/2

L. T1F sY/2R71/2 oy RY/2571/2 44 unbounded, then pyLp .

Suppose there exists a sequence of elements fk in the domain of R-l/2

satisfying || £, || = 1 and ]]Sl/ZR'l/kall z k3. Iet

1
o lx) =[xt &) av
0

Each ek(x) is Gaussian with mean zero, and

E e = L (R(R‘l/2f ), R-2/2¢ )= L
K K
1 A f2 -1 f2
Ee = > (s(R fk>, R fk)

k

.= |[s*/2R"2/25 |2 2 i
2 k

15



Now, by the Tshebysheff inequality

= s
“o[x |ek(x)| 2¢] s
s0 by the Borel-Cantelli lemma

po[x |ek(x)[ 2 ¢, infinitely many k] = O

for every € > 0. Also, since each e (x) is Gaussian,

k

1

B

u[x le (x)] sn] =

1 k

"o lE

and again by the Borel-Cantelli lemms,

pl[x |ek(x)| £ n, infinitely many k] = 0

for every n > 0. That is,

b [x [lim e, (x)| = 0] =0

]

pl[x!lim|ek(x)| w] =1

5. let {ej(x)} be any sequence of real-valued B -measurable functions on
the space of sample functions which are independent Gaussian random variables

with respect to both Mo and pl, and which satisfy

=
®
n
Q
\%
o
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aj and Bj arbitrary positive numbers. Then the measures pé and u' induced by
1

Ho and b, on the Borel field generated by the [ej] are either mutually singu-

lar or equivalent. They are equivalent if and only if

Both statements follow from Kakutani's theorem. The first is immediate.
For the second we need to calculate the product of the pj defined in that

theorem. ILet Zj be the likelihood ratio for ej with respect to-pO and p
1

1
= - _— = T + (04 °
lj eXp 7 \B. " & log B./
J J
Then
p o2
pJ = 1 ]P ‘£J exp - % [‘—i— + log B deJ

1 1 2 1 1 1 1
= ; exp -—0, - 4+ - + = log de.
VEK 4 b Bj o, N ap. J

Now, the convergence of the product

/2 (agp,)/"

aJ + B )1/2

is equivalent to the convergence of the series

17



o = %y
! (@, +8)°) a3
J (l + —\2
B.)
J

o,
Jr\2 . . .
% (1 - ET) < w, since péJ—ul implies uy du, .
J
o,
6. If Z (1 - Eﬂ)2 < «, the Radon-Nikodym derivative of p, with respect to hy
J .
J
on the Borel field generated by the ej(x) is
ap’
o 1 2 11 Bj
-_— = —_ — - — +
dui exp 5 % o (x) 5" log _Y

S %
This formula follows from Kakutani's theorem and the expression ZJ above .
We know that Sl/gR_l/2 is densely defined. If it is also bounded, let X
be its bounded extension to all of L, [0,1]. Rl/ES'l/z is also densely de-

. co os4 s aq s . . -1
fired; if it is bounded, its extension is X ~.

7. If fl, £f,...€ L2 [0,1], there exist random variables ei(x), Gaussian with
2

respect to both p. and u_, satisfying
(0] 1 b

=
[O]
0]
I
P<
H
[N
-
H



Since R'l/2 is densely defined for each i, i = 1,2,... there exists a

sequence {f,.}, such that 1lim f = f and such that h,, = R'l/zf.. is de-
1374 J i3 i ij ij
fined. Let
1
gy = [ny500) x (0) at
0
Then
. _ . _ 2
lim EO¢ij¢ik = lim (Rhij’ hy) = 111
k,j > k’j >
and
lim E ¢ 4. = 1lim (8h, ,h ) = ||Xf,||2.
K,j > o 1713 1k K,j > o ij’ ik 1

The existence of these limits implies that the sequences {dij}j have mean-
square limits 0 and 91 with respect to both p, and Ko and that CH and
®471 are measurable'Bo andfgl, respectively. It also follows that the

(¢

L

ij}j converge in mean-square with respect to Ho + by to elements ®; in

o * pl> and that e, = ei[uo] y 841 = ei[pl] . Since e,  and e;; satisfy

2( i 0
the second moment requirements, the e; do also. The e; are measurable with
respect to Eo andJ_B‘l,

We now state the main result:

Theorem 3. (Modified version of Feldman's theorem)

Either Hg~h, OT “O-L“l° A necessary and sufficient condition that Ho=H,
is that X*X =-ZkiPi, where each P; is the projection on the one-dimensional
subspace of L2[O,l] spanned by some fi from an orthonormal sequence {fi}, and

Z(l - 7\,1)2 < o,

19



If “6““1 and random variables ®; are formed from the fi as in lLemma 7,

then

x(t) = Z(RY/2¢,)(%) oy (x)

1

almost everywhere dt duo and dt dp , and
1

du, 1.2

Eﬂ: (x) =exp 5 ZGJ(X)(Xi - 1) + log NS

We show first that if Mo and b are not totally singular then X*X

= I\ P, P, one-dimensional, and x(1 - ki)g

, < w, For by Lemma 4 X is bounded
iti ?

so X*X has a spectral decomposition, /ﬁdeX- Let I be the identity operator,

and suppose that for some ¢ >0 I - Pl+€ is infinite dimensional. Then there

exists an infinite sequence [kj}, 1 +e= %l <A <..., and normalized fj’s
2

in L2[O,l] such that (P -P, ) f = fk. Hence by Iemma 7 there exist

Kk+1 >\k

Gaussian random variables e satisfying

Eoej(x)ek(x) = B3k
and
A
k+1
s = * o = °
B e;(x)ey(x) = (X¥Xfy, fi) SJk\/ﬂKd(Pxfk, £,)

Mg

2 (1+e

(1+e) b

But then by lLemma 5, Ho and M would have to be totally singular on the Borel

field generated by the ei's, which is a contradiction. Hence I - P N must be
1+e

finite-dimensional for every € > 0. A similar argument shows that P must
1-€

20



be finite-dimensional for every € > 0. Hence X*X has discrete spectrum and
X*X = Z&iPi, where the Pi are proJjections on the one-dimensional subspaces
spanned by the fi. It [ej(x)} is a sequence of Gaussian random variables

corresponding to {f.

as in lLemma 7, then by Lemma 5, p_ and p are equiva-
J ? "o 1

lent when restricted to the Borel fieldf}(ei) generated by the ej's, and
(1 - xj)z <w. Eq. (5) holds for the restriction of u_ and b to é(ei) by
Lemma 6.

It remains to prove the expansion of Eq. (4), for then by Lemmas 1 and

2 the equivalence of the restrictions of p, and My to'}(ei) will imply the

equivalence of Mo and My For the dt dul case 1t is sufficient to show

that
1
1/2 2
E [ at x(t) - Z(R fi)(t)ei(x) (6)
0
converges to zero as N » o, Now
Elx(t)ei(x) = lim Elx(t)dij(x)
J 7o
1
= lim Elx(t)k/\hij(u) x(u) du = . lim Shij(t)
J_>°° J >
0
_ . -1/
= lim SR fij(t)
J—)oo

Hence,
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1im B2, sR7Y/2r. ) = 1lim (RBE,, X, )
i ij i iJ

J > Jr o

. _ 1/2 2
(REy, XMAE;) = Ay RYTL; |

A similar verification shows that

Therefore Expression (6) above can be written
1 N /
1/2 2
\jPRl(t,t) dt - Z N RS 225
0

We now show that this expression converges to zero. In fact, since

Rl/2X*XRl/2,

Y (X*XRl/gfi, RY/25 )
i 1

il
™M

1/2 , rl/2
(%.kj(R £ fj)fj RY/5E,)

]

DHDY M Rl/zf £)2 =0 n, L (R*25., £.)2
i J J J1 i
= % xj|]Rl/2fi||2

An analogous calculation shows that Eq. (4) holds almost everywhere dt du.,
which completes the proof of the theorem.

One will observe that the proof just given is based on an infinite-dimen-

sional analog of the simultaneous diagonalization of two covariance matrices.
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The representation that results, and in terms of which the derivative is
written, is perhaps interesting, but it is of limited usefulness because the
e; are not given explicitly. The restriction to processes with mean zero is
not essential; neither Feldman nor Hajek required it, and it can be removed
in the above.

The proof given here is somewhat similar to Feldman's. HAjek's proof
is different, and is in fact essentially information-theoretic. ILet
xl,o..,xN be measurable functions on { which are Gaussian random variables
with respect to two different measures; and suppose they have probability
densities p(xl,,..,x ) q(xl,...,xN), The J-divergence (see Kullback and

N

lLeibler) of these two densities is defined as

b
= = _F

P
q 108 B (7)

where E Eq denote expectation with respect to p and q measures. The first

p)
term of Eq. (7) can be interpreted as the information in p relative to a;

hence, J can be interpreted as the sum of the information in p relative to

g and the information in q relative to p. Now if (x

£ t € T} is a real-

valued Gaussian process with respect to two different probability measures
on {, the J-divergence of the processes is

JT = sup J
t ,..0.,t €T 7
l} Jne 1
Hijek's theorem states that the processes are singular iff JT is infinite,

intuitively a highly satisfying conclusion.
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In addition to those already mentioned, there are papers by Middleton

and Rozanov containing results similar or related to Theorem 3.%¥

*0Other interesting results, not used here, on the differentiability and de-
rivatives of measures corresponding to random processes are contained in
Prokhorov (Appendix 2), Skorokhod, Pitcher. It should be noted that some
of the material discussed can be regarded as a development of earlier work
of Cameron and Martin, (not included in the Bibliography). Also it would
appear to be closely related to parts of extensive work on functional inte-
gration by, e.g., Segal, Friedrichs, Gelfand (not included in the Bibliog-

raphy) .
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III. SPECIAL RESULTS

An interesting consequence of Theorem % is:

Theorem 4. (Feldman)

If Aj and Bj are polynomials, with degrees respectively aj and bj’
J=1,2, and bj > aj, then the Gaussian processes (restricted to a finite
parameter interval) whose spectral densities are [AJ.(X)/BJ(XH2 have equiva-

lent measures on path space if and only if

(b) the ratio of the leading coefficients of Al and Bl has the same
absolute value as the ratio of the leading coefficients of A2 and Bz'

The necessity of these conditions was first shown by Slepian, using a
theorem of Baxter. Baxter's theorem applied to stationary processes states
that if x(t) is Gaussian, real-valued, with continuous covariance function
possessing a bounded second derivative except at the origin and with mean-

value function possessing a bounded derivative in [0,1] then

2 5_ k - 1 2

converges with probability one to the difference between the right-hand and
left-hand derivatives of the covariance function at the origin. Suppose two
processes have rational densities which violate condition (a) of Theorem 4.

Then if both processes are differentiated k times, k = min (b - a) - 1,
j=1,2

the sum of squared differences will converge to zero for samples drawn from
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ore differentiated process and to a number different from zero for the
other, with probability one. If condition (b) is violated and (a) is
satisfied, the sums will converge to different numbers not equal to zero.
Slepian showed further that by using higher order differences an equivalent
test for singularity can be obtained directly without first differentiating
the processes.

The sufficiency (and a different proof of necessity) of the conditions
of Theorem 4 was demonstrated by Feldman (1960). Feldman stated Theorem L
as a corollary to a somewhat more general theorem in which only one of the
processes involved need have a rational spectral density. This result was
made to follow from his basic theorem referred to earlier, by techniques
depending largely on certain properties of entire functions. Here we shall
give a proof of the sufficiency of the conditions of Theorem 4 using
Pitcher's conditions as stated in Theorem 3. The proof is an adaptation
of Feldman's, modified to fit the different equivalence condition we are
using. In particular we shall use Feldman's lemmas on entire functions with-
cut preof.

We assume to start with that both processes have mean value zero. The
autocorrelation functions R(t,s) and S(t,s) are stationary and (with a slight
abuse of notation) we write them as R(t-s) and S(t-s). They are defined for
all real s,t, are integrable and of integrable square, and have rational
Fourier transforms. The operators R and S on LE[-l,l] are defined as before.

We also nsed now, however, to define operators R, and So on Lg(dw, ©) by

(R,2)(1) = [R(s - s)e(e) a5, - <t<w

A
- 00
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(5,£)(t) = /qs(t - s)f(s) ds, —o <t <o

\,
=00

Inner products and norms on L2[-l,l] will be denoted by (.,.), || - || and on
Lz(aw,w) (which will be written just L2) by (.,.)o, . l[o, respectively.
The Fourier transform 3(f) (in whatever sense it may be defined) of a function

f will be denoted by %. We now proceed with a series of lemmas.
1. If f, g e L2 and are supported on [-1,1] then

(Rf,g) = (RT, &)

(sf,g)

1]

2. Iff, gel,

(R,f, &), =f fR(t - s) f(s) g(t) ds at

=f§(u) Pu) B(0) an

\,

and analogous formulas hold for (Sof, g)o.

5. The operator Ro is Hermitian, positive-definite, and has a positive-def-

inite square root Ré/g which satisfies

®/%s, &) = | RG220 B0 an

\
=00

We now further specialize the autocorrelation function R(t). 1In particu-

lar, let

R(x) = ——, u an integer 2 1

27



let p{x) = (i + x)", then

and

dp
l2

(Rt &) = [ Bu) &(w) o

The operator R, has an inverse Rgl which 1s unbounded but densely defined on

L2, Where defired,
RO'E = 37 |p(w) [PF ()

-1/2
Let us now define operators Rol/ , Q by

Ral/gf =T p(w) 1B ()

Qf “Hp(u)f(u))

for all f for which the expressions in brackets belong to L2. Here,'}'l is
the inverse Fourier transform in the sense of Plancherel theory. One notes
immediately that (Qf, Qg), = (Rglf, g), when either side exists.

By the conditions on S, we can write

Ax)|?

8(x) = ITT

where A(x), B(x) are polynomials, deg (B) - deg (A) 2 1 and there are no poles

on the resl axis.

AN\

L. Tet deg (B) - deg (A) = u. Then |p(x)|® [R(x) - 8(x)] has a 3% - trans-
forms W(t) in L, and
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11

ffnﬂ(t -s)|Pat ds = 8% <

-1 -1

Proof: The inverse transform exists in the Plancherel sense, since

1 _ IA(X) = 1 . P(x)
2 2 2
) [F BT e ()|
P(x) o -
where ———— € L_. The second assertion is a trivial consequence.

|B(X)|2 2

NOW'let<£Vdenote the class of functions belonging to Coo for which the

closure of their supports is contained in (-1,1).
d
5. et fed. Thenp(3p) £fed, and
d
< \er = 4
@ - s 2
Furthermore, p(u) ?(u) 5 L2 and is of exponential type.

6. Ilet {fn] be a complete orthonormal sequence (c.o.n.s.) for Lz[_l’l]’

— [~ — s
£ e 00 et 2 = 3(£), 8, = pf . Then

Proof:

1
= fﬁ‘n{t} £,(s) kb(_t -s) dt ds
1 -1
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But fn(t) £ (s) is a c.o.n.s. in Lz([—l,l]x[-l,l]), hence

11
2=ff|¢(t-s)|2 dt ds = 82

-1 -1

[ee]

Lo ®R,R) - (SE,R),

n,m=1 on m o o n

7. Iet A = sg/zt.;z° Then

2

I
o

)
m

((I - A-*A)fn, fmvo

n,m=1

Proof: This follows from Lemms 6 since

((I-A’*A)f,f> (f, £ ) - (Af_, Af )
n m

n m n m

(e}

0

N\

= (Roéﬁ’ éﬁ)o B (gogn’ gh)o

n

8. The sequence (zp}s 2 = Rl/fon

is an o.n.s. in LZ[-l,l]o

Proof: an is defined and has its support contained in (-l,l). Hence

gt/ 2an is defined. Then

(2., 2.) = (R*/%q,, R*/2qz ) = (Rar,, Q)
- (R@f,, af,), = (£, %)

by Lemmas 1 and 3.

9. If E is the closed subspace of L2[-l,l] spanned by the z , then

L [-1,1] @ E is finite dimensional.

Proof: let Y = 1_[-1,1] (O E. Theny e Y if and only if

(z 5 ¥) = (Rl/ann, y) = (Qf , Rl/zy) =0, n=1,2,...

We know that the orthogonal complement of the closed subspace spanned by
(Qf )} is finite dimensional, say of dimension N—by Feldman (1960)—Lemms 5.

So now suppose that Y is of dimension greater than N. Then there are
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Yy € Y, k =1,2,..., N + 1, such that for any choice of numbers o not all
N+1
zero % Ty # 0. Hence
N+1 N+1
1/2 _ 1/2
R %‘ O Y| = % ak(R yk) #0
by the strict definiteness of R and hence of Rl/z. Since Rl/zyk % 0, this

contradicts the fact just stated that the orthogonal complement of the sub-

space spanned by [an} has dimension N. Hence Y is of dimension N.

10. The operator Sl/2R_l/2 is defined and bounded on a dense subset of
Lz[—l,l] and hence has a bounded extension X with Iy(X) = L2[-l,l]. The

bounded self-adjoint operator I - X*X is Hilbert-Schmidt on L2[-1,1].

Proof: From Lemma 7 it follows routinely that A is bounded. Since
~l/2_- -
(s /25 1/221, g1/2g 1/2Zj) - (Sl/Ein, Sl/Zij)

), = (s¥/2qe,, S;/anj o

(Sin) ij) = (Soni: QfJ o

(Afi, Afj)o

one has |[Xz || = IlAfn|lo < B. Hence X is densely defined and bounded on
the closed linear manifold E spanned by the Z> and can be extended to a
bounded operator on E. Furthermore Sl/gR'l/g is densely defined on the
finite-dimensional subspace L2[-l,l] (:) E. Hence Sl/zR'l/z has a unique
bounded extension X with domain L2[-l,l],

In order to prove the second assertion we augment the o.n. sequence

Z-N+l’ Z_y4p? et t2Zg 8O that

{zn}, n=1,2,..., with elements

{zn}, n=-N, -N+1,... is a c.0.n.s. for L [-1,1].
2

Then
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[o) 2 4]
2, ((1 - X*X)zi,zﬁ) = XL o+ X +
1=-N+1 i,j=1  i=N+1,...,0 J=N+1,...,0
J=-N+1 J=-N+l, ..y i=-N+1,...,0
2
+ X ((T - ¥¥%)z;,2,)
{=-N+1,...,0
j=-N+1,...,0

By the preceding calculation, the first sum on the right is equal to

2
= a2. The second and third sums are finite since

0201 I( (I - A*A)E,,F
i,j=1

3)

2
Y i( (I - ¥*X)z
J

is obviously finite. Thus I - X*X is Hilbert-Schmidt.

= ||(1 - X*X)zk||2 = ||1 - X*X||, and the fourth sum

k)zj)

The sufficiency part of Theorem 4 now follows directly from Theorem 3.

Although there are various criteria for the equivalence of Gaussian
measures, Theorem 4 is particularly apt for noise-in-noise detection theory
problems because it states a criterion for equivalence that is fairly general
and is explicitly in terms of properties of the autocorrelation functions.
Results of this kind for wider classes of processes would be useful.

For discussing singularity and equivalence in sure-signal in noise prob-

lems, the following theorem can be used in connection with Theorem 2.

Theorem 5. (Kelly, Reed, and Root)

Iet R(t) be a stationary, continuous autocorrelation function with the

properties:

00

(1) fIR(t)l at < w

\,

~00

(2) The integral operator defined by
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T
RTf(t) =fR(t -u) f(u) du
-T

is strictly positive definite for every T.

et (4 .}, {xn(T)} be respectively a c.o.n.s. of eigenfunctions and the set

n,T

of associated eigenvalues of R_. Then if s(t) e L, s (T) = (s,¢4_.), S(u)
T 2 n n,T

is an L2 - Fourier transform of s(t), and R(u) is the Fourier transform of
R(t),
> o0
§ liESElL_ T jp |§£Elli duy, as T > «
M@ 1 RG)
in the sense that the left-hand side converges monotonically if the right-
hand side exists and diverges monotonically to +w otherwise.

One can show by example that the sum on the left side above may be
finite for fixed T while the integral on the right diverges, even with the
support of s(t) contained in (-T,T).

A recurring hypothesis in the preceding discussion has been that if
{Xt} is a stationary random process with autocorrelation function R(t),

the integral operator R, as defined above is striectly definite, or what is

T
equivalent, RTf = 0 implies f = O. For a large class of processes this is

true; an essentially well-known sufficient condition, useful for our pur-

poses is the following theorem.

Theorem 6.
Iet the random process {xt, - o <t <w} be defined by the stochastic

integral



where {Qt} is a Brownian motion, and h is a real-valued function in Lgo
Then if R(t) = E XX, .4, the operator Ry, T >0, is strictly positive
definite.

The proof follows easily from inspection of (RTf, f) written in terms

of the Fourier transforms of R(t) and f£(t).
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IV. SUITABILITY OF THE STATIONARY GAUSSTAN MODEL

As remarked earlier, it seems unreasonable to expect that arbitrarily
small error probabilities can be achieved in a radio communication or radio
measurement system, which is what Theorems 2 and 4 might appear to show if
the Gaussian model is to be believed. The two most commonly offered expla-
nations of why these results do not really violate intuition are first, that
the measurements are always inaccurate, and second, that the a priori data
are always imperfect—in particular, autocorrelation functions and spectra
are not completely or precisely known. Both explanations are obviously true
statements, but I feel they do not meet the objection raised. Neilther shows
the existence of an absolute lower bound on error probabilities. With enough
care and elaboration in obtaining a priori data and in making and processing
the measurements, it would seem that arbitrarily good performance could still
be achieved in some instances. So, although these points are important, I
shall try to explain away the paradox of the singular cases in a different
way, in fact in the simplest way possible, by showing the existence of con-
straints that prevent their occurrence. The essence of the explanation is
that in all cases we know about, singularity occurs only if the spectral
densities of the two signal plus noise processes differ at infinity, but a
reasonable model of the problem indicates that the spectral densities at in-
finity are always determined by the residual noise, and hence are the same for

both.*

*This idea appears in Davenport and Root, in Middleton, and is developed at
some length in Wainstein and Zubakov, Appendix III.
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To fix the domain of the argument, consider the class of systems that

/" (t) is generated, processed

may be represented as in Fig. 1. A signal s/
at the transmitter, sent through the channel, received, and processed at the

receiver. Gaussian thermal noise is added everywhere,

s'(t;a) + n'(t)

/N(t) Transmitter | s"(t) Channel Receiver
° ™= Processor [ ¥ B — Processor [®
A C
Thermal

Noise y(t) = s(t;a) + n(t)

Fig. 1

but presumably the most important increment of noise is added at the point
where the signal power level is lowest, at the input to the receiver, as in-
dicated in the figure. The generated signal, s///(t), has finite energy, that
is /qfs(t)lz dt < », and begins and ends in a finite time interval. It is ar-
bitrary, but once chosen is fixed, even though we may let the observation in-
terval, T, change. The processing at the transmitter and at the receiver

- must preserve the finite energy constraint and must be realizable in the usual
sense that the present does not depend on the future. The channel must meet
these same conditions; it may, however, perturb the signal into any one of a
parametrized family of functions. The output of the receiver processor is

the observed waveform, which is available for decision making. In different

contexts the receiver processor might be taken to be a whole radio receiver
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in the usual sense; it might be only the antenna system at the receiver, or
anything between these two extremes. In fact, in a particular instance there
can be a good deal of arbitrariness about the breakdown into transmitter,
channel, and receiver. Always, however, the noise has one property: there
is at least a part, generated by thermal mechanisms, which can be thought of
as entering the system as white noise, or as white up to frequencies at which
gquantum effects become important.

Iet us look first at sure signals in noise. For one of the simplest sit-

uations the observed waveform is

=
ct
I
Q
0
—
ct
+
=}
—
ct
~
-
(@
LY
ct
A
L=

where n(t) is stationary, Gaussian, of mean zero and with a known continuous
autocorrelation function R(t), as prescribed for the Gaussian model; where

s(t) is known and of integrable square on [0,T], and @ is unknown but either
zero or one. A statistical decision is to be made as to whether & is zero or
one. As Grenander observed in 1950 this problem, with no further constraints
imposed, can be singular in two ways. First, the integral operator RT with
noise sutocorrelation as kernel may have a non-zero null space while s(t) has

a non-zero projection in this null space. Then there is an element ¢ € L2[O,T]

such that (¢,¢ =0, n=1,2,..., (.} a complete set of eigenfunctions for R,

n) n
but (Y,s) # 0. Obviously, then, the statistic (y,y) will distinguish between
the two hypotheses with probability one. Second, the series
2
o ol
A

n
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may diverge, so that again, from Theorem 2, there is a test to distinguish be-
tween the two hypotheses with probability one. Suppose now, however, that the
receiver processor C is linear as well as realizable and in fact can be repre-
sented by an integral operator with L2 kernel h(t). Then from Theorem 6 R has
a zero null space, and the first kind of singularity mentioned above cannot
happen. ILet h(p) be the Fourier transform of h(t) (i.e. h(p) is the so-called
transfer function of C), then

/

00

0>

B A ST i IO S (8)

\,

=0 R(w) 7

s0 by Theorem 5 the second kind of singularity mentioned cannot happen either.

2

>

2
()| au
)

q

Indeed, for any observation interval T,

2 [oe]
Y ]Snl < At 2
S _:[l ()2 ap (9)

and for a maximum-likelihood test (non-zero) error probabilities may be cal-
culated depending only on the quantity on the left side of the inequality,
which plays the role of a signal-to-noise ratio.

Now suppose the channel perturbs the signal by delaying it, shifting its
frequency spectrum, changing its amplitude, etc. As long as it does not am-
plify the signal to give it infinite energy, a bound of the kind in Inequality
(8) still exists, and the detection problem is non-singular. The situation
is a little different if a radio measurement is to be made. The signal will
be known to exist and a statistical estimate is to be made of the parameter
o in s(t;a). let a, 02 be any two possible values of o (which may be vector-

valued). Then the two Gaussian processes
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v = s(t;al) +n,, 0=t sT
yt=s(t;a2) *n, 0stsT
are mutually singular if and only if
s (a,) - s_(a.)|?
zll’ll n2| - 4w
n A
n

Again, by an application of the Schwarz inequality, and with the conditions

on the noise imposed above, this series cannot diverge if

as we have gssumed. The conclusion does not depend on whether & is con-
sidered to be an unknown or & random variable.

Two weaknesses in the above argument are the assumptions that the re-
ceiver processing is linear and that the noise enters the system as pure
white noise. Iet us try to patch thése up. First, the point of observation
at which y(t) is available after the noise has been introduced (actually
noise is introduced everywhere, as mentioned) is arbitrary for purposes of
discussion. Thus if it is possible to observe the processed received wave-
form at some point past the point of noise entry where the waveform is a
linear functional of s'(t;a) + n'(t), y(t) can be taken as the waveform at
that point and the above arguments apply. No further processing of the sample
functions can reduce the problem to a singular one.

Second, I suggest that there is no mechanism for generating the signal
s///(t) so that the square of its Fourier transform falls off faster at in-

finity than thermelly generated noise, and that the filtering action of the
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transmitter and channel is such as to attenuate the Fourier transform of the
signal at high frequencies by more than the reciprocal of the frequency (the
effect of a simple R-C filter). If this be true, then obvious modifications
of Eq. (8) will restore the argument for non-singularity.

The discussion for noise in noise is similar to the foregoing, and can

therefore be shortened. Consider the simple detection problem:

where so(t) = 0 and sl(t) is a section of a sample function from a stationary
Gaussian process with mean zero. B 1s a constant. Wevassume {Slt} and {nt]
are mutually indepéndent, 80 that (yf) is again a Gaussian process under
either hypothesis. The only readily applicable criterion available for the
singularity of two stationary Gaussian processes is that of Theorem L; so we
require the processors and channel as shown in Fig. 1 to be linear with ra-
tionsl transfer functions. Then 18 [nt} is white noise and {s’i@}, i=20,1,
has rational spectral density, {yt} has rational spectral density under
either hypothesis. If the transmitter and channel have an over-all transfer
function which vanishes at least as the reciprocal of the frequency at in-
finity, then the behavior of the spectral density of [yt} at infinity is de-

termined entirely by the noise, {nt], under either hypothesis. Thus by

Theorem 4 the non-singular case obtains, for any observation interval T. Ob-

viously, operations on the transmitted signal of translation (time delsy) or
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amplification or linear combinations of these do not affect this conclu-
sion.*

The aim here has not been to try to "prove" the faithfulness to reality
of the Gaussian model, which would be foolish, but merely to try to rescue
it from one rather important apparent difficulty. This seems to me to be
important if the Gaussian model is to be used with confidence as a basis

for more sophisticated analyses.

*The concept of band-limited noise, which is common in engineering literature,
does not appear fiere. Actually, band-iimited noise Is & special case of the
class of analytic Gaussian processes, which has been completely characterized
by Belyaev. It is redundant to our argument, but perhaps of interest, to note
that neither received signal nor noise can be analytic with the constraints
adopted here. See Belyaev, Theorems 2 and 3.
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