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ABSTRACT

The purpose of this research is to propose and evaluate an algorithm for con-
current simulations of symmetric absorbing boundary random walks on highly

parallel computers.

The algorithm to be studied is presented and compared with the conventional
nonconcurrent algorithm and with other concurrent algorithms. There follows a
definition of G, which is a measure of effectiveness of the new algorithm as com-
pared to the conventional one, and definition of several other parameters which

describe simulations according to the new algorithm.

A two-part theoretical discussion is then presented. In the first part, the
algorithm is analyzed for one-dimensional spaces with the source in the center.
Then a lower bound is established for the general case. Whereas, G > 1 for the
one-dimensional spaces, the proof in the second part of this theoretical study
shows that G > %, in general, and that G > 1 subject to two intuitively reasonable
but unproven constraints.

An experimental study of G for simulation of symmetric random walks in
two-dimensional spaces is then presented. First considered are random walks
in spaces with square absorbing boundaries of various sizes and with centrally
located sources, This is followed by a study of random walk simulations in spaces
with irregular boundaries. The results of these experiments demonstrate that
(a) G > 1 for any two-dimensional space, (b) when the objective is to determine the
absorption probability for a very small set of boundary points, G increases linearly
with the number of nonabsorbing points near the source, (c) based on the preceding
results, a prediction formula for G as a function of the geometry of the space is

verified.

The main conclusions to be drawn from this work are (a) the proposed
algorithm is at least as effective as the conventional algorithm for simulating
absorbing boundary random walks on highly parallel computers for one- and two-
dimensional spaces, (b) in many cases (e.g., small target sets), the algorithm is
much more effective than the conventional one and this effectiveness can be pre-

dicted without random walk simulation.

xiii






CHAPTER I
INTRODUCTION

The study of digital computer organization can be subdivided readily into three areas:

a) The distribution of structure between fixed (hardware) and variable (program) sub-
structures of a computer system.
b} The distribution of structure among the hardware substructures.

¢) The distribution of structure among the program substructures.

In addition, there has been a recent increase of interest in the relationship between the
problem to which a computing system is applied and the organization of the system itself. Ex-

amples of contemporary computers organized with a class of applications in mind are:

Burroughs B-5000 Compiler language translation and execution
Control Data Corp. 6600 Multiple access

Westinghouse Corp. ‘ Iterative computations in two or more dimensions
SOLOMON

It is, therefore, appropriate to add the following item to the list of areas defining computer

organization:

d) The relationship between computer structures and the problems to which they are

applied.

This dissertation presents an investigation of a particular problem in this fourth aspect of
computer organization. The problem is to define and evaluate an algorithm for simulation of
absorbing boundary random walks in any two-dimensional space on a computer organized for
efficient execution of highly iterative algorithms in parallel. To this end several subtopics

are presented:

1. Definition of the algorithm studied and reasons underlying its choice.

2. Selection of a measure suitable for evaluation of the effectiveness of the algorithm.
3. Determination of various other parameters describing the behavior of the algorithm.
4. Determination of a method for estimating this effectiveness measure directly from

the geometry of the space without recourse to computer simulation.

The remainder of this chapter is devoted to brief surveys of parallel computer systems
and random walk simulation. In Chapter II the algorith"m to be studied is defined and compared
to some alternative choices. In the third chapter the measure of effectiveness G and several
other parameters for describing the algorithm are defined. Chapter IV contains a discussion
of theoretical investigations of the effectiveness of the algorithm, and a proposed method for

estimating G.



Chapter V consists of a description of the experimental plan used to determine G for sym-
metric random walks in two-dimensional spaces and includes a summary of the results of the
experiments performed. Conclusions as to the overall effectiveness of the algorithm are pre-
sented in Chapter VI along with suggestions for further research in this area. This is followed

by several appendices and a list of references.

1.1 Survey of Parallel Computation

The evolution of the contemporary computer has been marked repeatedly by the concept of
parallel or concurrent computation. In the 19th century, Babbage (Ref. 1), being well aware of
the iterative nature of certain processes, provided for the repeated use of a fixed set of oper-
ation cards with changing address cards for his analytical engine. He also suggested that coun-
ters, similar to today's index registers, should be provided on this machine. These ideas were

not realized until the mid-20th century.

The early relay-tube machines of the 1940's allowed for several control units to operate
more-or-less in parallel. The IBM Selective Sequence Electronic Calculator (1948) is an ex-
ample of an implementation of this form of concurrent computation. The IBM 650 and UNIVAC I
computers provided for an overlapping of input-output processing and calculation, and more
recent developments have led to the use of subsidiary input-output hardware systems. This
technique has been refined further into some of today's systems in which input-output process-
ing is accomplished by separate, sophisticated computers. The sophistication of these systems
has led to the development of correspondingly complicated sets of programs to take full advan-

tage of the compute/input-output overlap.

In the realm of parallelism in computation, as distinguished from compute/input-output
processing overlap, the first major development was the Williams Computer at Manchester
University in the late 1940's. Although often singled out primarily for being the first machine
to use the cathode ray tube for central storage, its pioneering use of the B-box or B-line was
probably its most important contribution to the current technology. This special device was an
embodiment of the realization that the nature of the arithmetic performed on computer ad-
dresses is much simpler and less powerful than general computation. By building a simple,
fast store and processor, address modification could be realized at the same time as initial

instruction decoding in this machine.

More recently, computers such as the IBM 7030 (Stretch), CDC 6600 and Bull Gamma 60
have exploited very much the same concept in allowing the simultaneous processing of several
forms of arithmetic (e.g., floating point and integer, addition and multiplication, calculation
and memory search). Several systems, such as the CDC 3600, Univac LARC and Burroughs
B-5000, allow more than one central processor to time-share the same set of storage modules,
permitting, in general, completely concurrent processing (subject to conflicting demands for

storage access).



Most recent developments (also involving software) have led to multi-access time sharing
systems such as the MIT CTSS (Ref. 2). Users of these systems address the computer and its
associated software systems through consoles (usually of a teletype nature, but sometimes
more elaborate) which can be remote from the computer itself. A dialogue between the user
and the system takes place with what appears to be immediate response by the machine to the
man at the console. However, the sheer speed of contemporary equipment allows the computer
actually to accept, process, and respond sequentially to commands received from several con-
soles, with the delay involved remaining generally less than that detectable by the human users.
Often, batch processing '"background” jobs share central processor time. However, since there
is at present only one central computer involved in these systems, these are not examples of

truly general concurrent processing.

Developments of a yet unrealized nature have tended toward the concurrent processing of
algorithms normally executed in a serial manner. von Neumann (Ref. 3) proposed a modular
computer capable of carrying out a very large number of simultaneous computations of a very
primitive nature as well as being able to reproduce itself. Holland (Ref. 4) proposed the con-
cept of the iterative circuit computer consisting of a large array of identical processors each
with one word of storage and each capable of relatively powerful computation. As in von Neu-
mann's machine, each module can communicate with any of its immediate neighbors, and activity
is transmitted from module to module rather than staying in one fixed location as in a conven-
tional computer where the central processor retains activity as information is transmitted to
and from it. Parallel computation is effected when a module transmits its activity to two or
more modules instead of along a single path. Developments in this direction have been offered

by Squire and Palais, Gonzalez, and Comfort (Refs. 5-7).

Slotnick (Ref. 8) has proposed a form of iterative circuit computer called SOLOMON lying
somewhere between the contemporary general-purpose machine and the iterative circuit organi-
zations described above. In this computer a limited two-dimensional array of identical proc-
essing elements, each with a limited amount of storage, is capable of receiving commands from
a more classical memory and obeying these commands in parallel. As in the earlier iterative
circuit computers, modules may address the stores of adjacent modules; however, activity is
controlled by a set of states which are assigned to both modules and instructions. A version of
this machine with a 32 by 32 array of processing elements has been under development for

manufacture by Westinghouse Corporation.

A large class of applications of an iterative multidimensional nature (one dimension of
time and two or more of space) appears to have influenced the parallel organization of other
proposed computers as well as SOLOMON (e.g., Ref. 10). The work reported in this dissertation
was motivated by the desire to determine the effectiveness of a computer of this class, which was

invented independently by the author, for simulatingrandom walks (Appendix A).



For the purposes of this research, a parallel computer is defined to be one which, in one
unit of time, can simulate either one time-step of the proposed algorithm (Chapter II), or one
time-step of the conventional algorithm, but one in which the individual modules do not contain
enough storage for each one to simulate a conventional random walk. The SOLOMON computer
fits this definition for all cases such that each grid point in the space in which random walks
are to be simulated can be matched by a distinct processing element of the computer. Thus,

for some geometries and some numbers of modules, SOLOMON will not fit this definition.

1.2 Survey of the Random Walk

In 1658, Huygensl proposed a variation to the classical problem of points; namely, to de-

termine the duration of the game. James Bernoulli solved this problem in 1801 and it was treated
further by DeMoire, Lagrange and Laplace. Feller (Ref. 12) demonstrates the equivalence be-

tween this problem, the gamblers' ruin problem, and the one-dimensional random walk.

The concept of a random walk per se has been in existence for several years; at least since
1928 when Courant et al. (Ref. 13) stated the problem of determining the expected termination
point of a particle wandering in random steps of uniform length in a two-dimensional lattice.
McCrea and Whipple (Ref. 14) in 1940 appear to have solved this problem subject to two con-
straints. The first is the uniform distribution of values of the random variable determining the
direction to be taken at the next time step; i.e., P(North) = P(South) = P(East) = P(West) = 1/4.
We shall call a simulation subject to this constraint a "symmetric random walk." The second
constraint applied was that the absorbing boundaries must describe a rectangle, semi-infinite

strip, infinite strip, infinite half-plane or infinite plane 2

Examination of the modern literature reveals a moderate amount of material on general ap-
plication of random walk techniques which will be briefly examined in later paragraphs. How-
ever, published accounts of the computer implementation or analysis of these models are very
scarce. Perhaps this is due to the governmental and commercial secrecy surrounding some
areas in which random walk models appear to be useful. One example of a report of this sort of
investigation is a pair of papers (Refs. 15, 16) which discuss random walk simulation with spon-
taneous particle emission. As in the majority of papers on the analytic aspects of random walks,
the McCrea and Whipple paper is cited, serving to point up the fundamental applicability of these

earlier results.

With the advent of atomic and particle physics, the applicability of the random walk simula-
tion was emphasized. Brown (Ref. 17) discusses the relationship between the random walk sim-

ulation and classical diffusion processes. He develops the analogy between the simple random

"This and the following historical citations are found in Ref. 11.

®This paper is discussed more completely in Section 3.2.4.



walk and the solutions to Laplace's equation, and then discusses generalizations of the method,
particularly the changing of transition probabilities as a function of grid point which leads to

the solution of more general partial differential equations.

The random walk model, hence its simulation, has applicability in many areas. Scientists
and engineers who are concerned with diffusion processes find the random walk to be a valuable
concept. Notable problems to which the concept of random walk may be applied are heat trans-
fer and propagation, diffusion of petroleum in porous media, and gaseous diffusion, as well as
the applications in atomic physics. For example, Berger (Ref. 18) discusses the diffusion and
penetration of fast charged particles and shows that the random walk concept has played a part

in the development of the associated theory.

The random walk is also found in other areas of application. For example, Wall, Windwer
and Gans (Ref. 19) show how a highly refined random walk model is used in the study of the
structure of polymers (long complex molecular chains). They are careful to point out that there
exists an occupancy problem, i.e., no two particles (molecules) can ever occupy the same node.
In the various application areas in which the random walk has been used, there are many prob-

lems which cannot be solved today in any other way. This partially accounts for the widespread

use of this tool.

CHAPTER II

THE CONCURRENT RANDOM WALK ALGORITHM A1

In this chapter three algorithms for random walk simulation will be presented and dis-
cussed. The conventional algorithm will be called AO; the concurrent algorithm to be studied
in this thesis will be called A1 , and an alternate concurrent algorithm to be evaluated here
along with A1 will be called A2. Each of these can be presented in two forms: as a set of
commands defining the total simulation, and as a set of rules defining the simulation of the
activity at one grid point by a single module or processor of a highly parallel iterative com-
puter. R will suffice here to present A1 in both forms, A

of Al'

9 in the latter, and AO as modification

2.1 Definition of the Algorithm and Comparison with Alternatives

The algorithms to be studied in this dissertation are defined to simulate concurrent ran-
dom walks in a geometry or space consisting of a simply connected absorbing boundary and an
enclosed particle source. The paths which a particle may follow are defined as being unit-

length segments of a uniform rectangular grid overlaying the space.



The algorithm assumes the existence of a random variable which, when evaluated for a
two-dimensional space, takes on the values "left,” "right," "up," or "down' (or, "North,"
"South,'" "East,' or "West'). The random variable is said to be symmetric if it assumes its

values with equal probabilities.

To simulate the random walks of N particles (i.e., an N trial simulation) by the proposed

algorithm A1:

1. Void the grid of particles.

2. Inject a particle at the source.

3. Evaluate the random variable once and move all particles in the grid one grid
unit in the direction indicated by this value of the random variable.

4. Particles which alight on grid points defining the boundary are noted, along with
the coordinates of these boundary points, and are said to have terminated or to have been ab-
sorbed. They are then removed from the grid.

5. If N particles have been injected into the space, go to step 7.

6. If the grid point defined as the source is not occupied by a particle, go to step 2;
otherwise, go to step 3.

7. If N particles have not yet been absorbed, go to step 3; otherwise, stop.

Algorithm A_, the conventional algorithm, differs from A1 only in step 6 which, in this case,

0,
should be changed to:

60. If all previously emitted particles have been absorbed, go to step 2; otherwise,

go to step 3.

Thus, since in Al’ step 2 can be reached any time the source point is not occupied, it allows
the simulation of several particles in one time step, whereas, AO allows no more than one

active particle in the grid at one time.

A1 appears to contain a restriction which might be eliminated to allow the simulation of
even more particles in every time step. Let us call the algorithm with this restriction re-

moved A2. In this algorithm, step 6 becomes:

62. Go to step 2.

Note that this allows the insertion of a particle at every time-step, and also allows more
than one particle to occupy a single grid point at one time. Many revisions to A1 can be sug-
gested to allow processing of these multiple occupancies. In the one chosen for study here,

step 3 becomes:

32. For each particle in the grid which has not been moved in this time-step, perform
a separate evaluation of the random variable and move the particle one grid unit in the direction

indicated by the random variable.



To allow more complete evaluation of the two algorithms, A1 and Az, they are presented below,

reinterpreted so as to specify the activity of a single module or processor of a highly parallel

computer. In these definitions, if a module is simulating the source node, it is said to be in
"source state'" and is assumed to contain a counter, initially set to N, which is called "the in-
sertion counter." Similarly, a module which is simulating a boundary point is said to be in
"absorption state' and to contain a counter, initially set to 0, which is called "the absorption

counter." The algorithms are:

A*
1 1. X this module is not in source state, go to step 3.

2. If this module is not occupied by a particle and the insertion counter is greater
than zero, insert a particle and decrease the particle insertion counter by 1.

3. If this module is in absorption state, go to step 6.

4. T this module is occupied, transmit the particle to a neighboring module in the
direction determined by the random variable value obtained from master control.

5. Go to step 1.

6. If this module is occupied, remove the particle, add 1 to the absorption counter in
this module and transmit the new total to master control.

7. Gotostep 1.
Ay

1. If this module is not in source state, go to step 3.

2. If the particle insertion counter contents is greater than zero, insert a particle
(another particle) and subtract 1 from the counter.

3. I this module is in absorption state, go to step 7.

4. ¥ this module is not occupied, go to step 1. (Newly arrived particles are not con-
sidered as occupants for this time step.)

5. Evaluate the random variable and move one particle to the neighbor determined
by that value.

6. Go to step 4.

7. K this module is occupied, remove one particle and increase the absorption counter
by 1 and go to step 7.

8. Transmit the new total of absorptions to master control.

9. Go to step 1.

Comparison of these two algorithms leads to the following conclusions with respect to the
*

relative complexity of A1

versus A;: beyond the requirements of A¥, AX requires:

2
1. The processing of more than one particle per time-step of simulation.

2. More than one evaluation of the random variable per time-step for all grid points.
3. Storage of more than one particle in a module.
4

Provision of a separate store for incoming particles in each module.

7



*

1

A; . This alternative choice to the solution of the multiple occupancy problem would result in

allowing more than one particle per module but processing them all in the same manner and

Items numbered 1 and 2 might be eliminated by using step 4 of A7, in place of steps 4 and 5 in

at the same time. It is not reasonable to expect that the advantage gained from using this
method for increasing the number of active particles in one time-step outweighs the facts that
additional particle storage is required in each module, and that the two or more particles at
the same grid point at the same time will follow identically the same paths for major portions
of their active lives. Also, for any version of A, more time will be required to simulate one

*

time-step (given comparable hardware components) than will be required for A1

Since AI representé the simplest and potentially least expensive module to construct, it

will be the one considered in this dissertation.

2.2 Discussion of the Concurrent Algorithm

An often useful intuitive picture of the behavior of a group of particles under Al’ the new
algorithm, can be given as follows. A cloud of particles, similar to a loosely packed ball of
fuzz, drifts around in space. The cloud displays no rotation; only translation. At one point in
the space, the source, a new particle of fuzz arises whenever the point is not covered. Mean-
while, the boundaries of the space are coated with an absorbent material which retains any

fuzz in contact with it.

Note that with this model, as in the random walks, the fuzz can never cover the entire
space. Generally, if enough of the fuzz lies to one side of the source so that it touches a bound-
ary, there will be little or none on the other side. The actual behavior is determined by the
geometry of the space, that is, the relative spatial locations of the boundary and the source

points.

Consider the history of any single particle following the new (concurrent) algorithm Al'
Clearly, it follows exactly the same rules (algorithm) as does a particle in the conventional
random walk; that is, at each time-step it moves one path segment in a direction determined
by a random variable, until it is absorbed. Thus, the expectation of its absorption at any
boundary point is the same as that for a particle under the conventional scheme, and, if x is
the number of particles absorbed at boundary point i in an N trial simulation, then, as in the
conventional random walk, x/N is an estimate of P, the probability of absorption of a particle
at i. If some expected number, E of particles can be said to exist in the grid at one time, then
A, can be said to simulate random walks at a rate E times faster than the conventional method,

1

A0 and to yield the same unbiased estimates of the absorption probabilities at the boundary

points.

However, consider two particles initiated one time-step apart; the paths of these two par-

ticles will be identical (but shifted one grid unit from each other in same direction) until



one or the other is absorbed, whereupon the second can be viewed as initiating a path dependent
on the first only in that the starting point of this new path is a point one unit from the termi-
nation point of the absorbedparticle. Thus, the path histories of the two particles are more

highly correlated than in the case where the particles are independent.

Particles separated by more than one time-step will, in general, be less highly correlated,
and the particles initiated P or more time-steps apart, where P is the expected path length of

a partic:le,3 will in some average sense be uncorrelated.

Thus, there is, for any simulation, a correlation in time between the position of any particle
and the positions of those which precede and follow it. The effect of the correlation is to cause
the experimental estimates of the termination probabilities to be less precise than if they were

determined by an equal number of independent particles.

Equivalently, a larger number of particles must be simulated using A1 than are necessary

using A0 to obtain equally precise results.

If one is interested in using A1 instead of AO for simulating random walks, it is desirable
to know whether the concurrency achieved by running an average of E particles in every time-
step outweighs the additional simulations necessary to obtain results of a given precision. In
the next chapter, a measure of effectiveness of A1 relative to A0 will be defined which is based
on the two factors discussed here. In the fourth and fifth chapters, theoretical and experimental

analyses of this measure are carried out for various spatial geometries.

CHAPTER III
PARAMETERS WHICH DESCRIBE SIMULATION ACCORDING TO THE ALGORITHM A1

Included in this chapter is a definition of G, a measure of the effectiveness of A1 compared
to A0 on a parallel computer of the type defined at the end of Section 1.1. If G> 1 for any
geometry, then A1 is at least as effective as A0 for simulating random walks in that space.
This discussion is followed by the definition of several other parameters which also describe
a simulation according to Al' Relationships between several of these parameters are then
derived, and results are obtained for determining these parameters directly from the geometry

of any rectangular two-dimensional space in which random walks are simulated.

3.1 Definition of G

As suggested earlier, A1 can be compared to A0 by the following two characteristics which

must be understood before this new algorithm can be used:

3P is a measure of time-steps as well as spatial unit since the algorithm moves a particle
one path segment in one time-step.



a) The expected relative number of particles which will be active (i.e., emitted but as
yet unabsorbed) in any one time-step for a given spatial geometry. Clearly this is a meas-
0 the

number of active particles is 1, this characteristic can be represented by E, the expected

ure in a multiplicative sense of the positive attributes of the algorithm. Since for A

number of active particles in A

1
b) The expected relative precision of the results of the simulation. Using A1 will re-
quire a larger number of simulations than would be required using A to obtain results of

the same precision, so this is a measure of the negative attributes ofo Al'

Through the use of random walk techniques one expects to obtain an estimate of the prob-
ability of particle absorption at any point or set of points, called the target set, on the boundary
of the space. In actual random walk simulation, this probability is estimated by dividing x, the
number of particles absorbed in the target set T, by N, the total number of particles emitted
in the simulation. One measure normally applied to determine the precision of an estimate is
the variance, and this will be used as a partial measure of the effectiveness of the random

walk results.

Consider a conventional random walk simulation carried out according to A0 which involves
simulation of N independent particles. If x is the number of particles absorbed in the target
set T, then x/N is an estimate of p, the absorption probability in that set. Letting q = 1-p, then

the variance of x is
o, =Npq (3.1)

The estimates of the variance of x as determined by using the concurrent algorithm A1
are not readily available, and more will be said about how to determine them in the next sec-

tions. In general, they shall be denoted by ¢ 2 Clearly, 012 will depend upon the correlation

K
between simulated particles. A measure of relative effectiveness of the new to the old methods

is defined to be
= __1_ (3‘2)

This ratio of variances has the property that, if the new variance is proportional to N, (which
it might well be), then D will be independent of N and will reflect the correlation effects of the
new algorithm as induced by the particular geometry under question. It will also serve to in-
dicate the factor by which N must be multiplied to obtain the number of particles which will
yield a variance (imprecision) using A1 which is at least as good as that for AO ; that is, such
that D < 1.

10



Having obtained two measures, one of effectiveness, E, and one of ineffectiveness, D, for
comparing the total effects of using the new algorithm, let us combine them into a single meas-

ure of gain of A, as compared to AO' This definition has been chosen to be the ratio

1

E
G =D (3.3)

It compares the number of particles which can be run at one time using the new algorithm
(compared to 1 using the old) to the number of particles which must be run using the new al-

gorithm in order to have as precise results as obtained by running one particle under the old.

For example, if E = 14 and D = 7, then, although the results per particle run are only 1/1
as precise using the new algorithm, in any time period 14 times as many particles can be run.
In other words, equally precise results can be achieved in half the time resulting in a gain, G,

equal to two.

Since E and D can be expected to be dependent only onthe geometry of the space in which
the random walks are simulated and the target set, G also is a function of the geometry and

the target set chosen.

In Section 4.3 a method is proposed for estimating G for any two-dimensional space and a

target set of one point. This estimate is based only on the geometry of the space.

3.2 Other Parameters

In the discussion which follows, several parameters other than G are presented which will
be useful later for describing the behavior of random walks simulated by algorithm Al' Several
relationships among these parameters are then derived, and a method is presented for their

evaluation as a function of the geometry for some two-dimensional spaces.
The parameters are:

N the number of random walks simulated.

P the expected path length of a particle.

t the expected number of time-steps required to simulate N random walks.

k the expected fraction of time-steps during which the source is occupied by an unab-
sorbed particle.

E the expected number of unabsorbed particles in the grid in any time-step.

e the expected number of times a particle will return to the source before absorption.

In order to estimate an absorption probability with a high degree of precision using ran-
dom walk simulation, N must be very large. This, in turn, yields the relationship N >> P which
will be used in the following derivations. The relationships derived in Sections 3.2.1, 3.2.2,
and 3.2.3 are independent of the dimensionality of the space in which random walks are simu-
lated.

11



Although it is not generally valid that

a\ _Ex(a)
EX(B) _EJ:(%) (3-4)

where Ex denotes expected value; this approximation is used in many of the derivations which
follow. The results obtained from evaluations using these derivations indicate that this ap-

proximation is a reasonable one in these cases.

3.2.1 t as a Function of N and k. Conventional random walks require an average of N - P

steps to simulate N random walks each with expected path length P. The advantage of the con-
current method is that fewer than N - P time-steps are required for this simulation. Since a
number of particles can be simulated at once, what is required in order to simulate concurrent
walks is to initiate N particles in N' separate time-steps and then consider that it will require
P* time-steps to absorb all remaining particles. P* is similar to P since the time required to

absorb a set of emitted particles is closely related to the path length of a single particle. Thus,
t=N'+ P*, (3.5)

N' is greater than N by a factor of ﬁ where k is the fraction of time that the source cannot

initiate a new particle because it is occupied by a previously active particle. Hence,

t =i+ ¥, (3.6)
Since, in general, N >> P*, the approximation

tr —— (3.7)

will be used in much of what follows, although derivations using (3.6) will be provided also.

3.2.2 E as a Function of P and k. Let the total particle activity, T*, for N trials in the

grid be expressed as
T™*=N.P, (3.8)

the prdduct of the number of particles and the expected active life of a single particle. T* can

also be expressed as
T*=E - t. (3-9)

Equating (3.8) and (3.9), the two expressions for T*, and using (3.6), one obtains

N-P=E( N

5t P*) , (3.10)

which yields

12



N-P(1-kK

(3.11)

As N >> p*,

E=~ P(1l - k). (3.12)

3.2.3 k as a Function of e. Let f be the expected fraction of its active life which a particle

spends at the source (after birth). This can be expressed as

f= (3.13)

e
R
The expected fraction of time during which the source is covered is given by the following
equation

k=1f-E, (3.14)
that is, the expected amount of time a single particle covers the source multiplied by the ex-

pected number of active particles. Substituting for f in (3.14) yields

k=2E. (3.15)

€
P
Substituting for E as derived in (3.11) of the previous section yields
_eN-(1-Kk
k_N+P(1-k)’ (3.16)
Using the approximation that N >> P* yields

k=e(l-k. (3.17)

Solving for k, one obtains

(3.18)

3.2.4 Obtaining k, E and P for Symmetric Random Walks in Rectangular Two-Dimensional

Spaces from the Results of McCrea and Whipple. Long before random walks were ever simu-

lated by computers, McCrea and Whipple (Ref. 14) offered a paper in 1940 discussing two- and
three-dimensional random walks and their explicit solutions. Their results have been very

fruitful in evaluating the method under discussion here.

Using difference equations as their primary tool, they produced an expression ¥ for ''the
expectation that (the particle) will visit the point (p, q) before finally emerging at a boundary
point," or, in the terminology used in this report, the expected number of time-steps the par-

ticle will occupy a point (p, q) before absorption. F is expressed as two functions:

13



m
8 Z . arm . prm sinh(q - Br) sinh ((n +1 - b) - Br)
Fl(p’ Q) = m+1Mm+i sinh (Br) sinh ((n + 1) Br) (3.192)

=
+

and

m
8 Z sin ALT_ g PrT sinh (n +1 -q) - Br) sinh (b - Br)
m+1

m+1 m+1 sinh (Br) sinh ((n + 1) Br) (3.19b)

Folp, @) =
where p and g are the coordinates of the point at which F is to be evaluated, a and b are the
coordinates of the source, and m and n, the dimensions of the rectangular space. F1 applies

whenever q < b, F_ when q > b. An auxiliary relationship is provided for Br:

2

Br = cosh_1<2 - cos -—ri) . (3.20)
m+1

McCrea and Whipple also state the probability of absorption at any boundary point (x, y) is 1/4
times the expected number of occupations of the adjacent interior grid point. In (3.19), as n
gets large, the various hyperbolic sine computations yield very large numbers resulting in

computer overflow. Using the approximation that e ~0asn~w yields the following equations

for large n:
- (14g-b)Br _ _(1-q-b)B
F. (0, Q) =— Z sin 22T gin PET (€ bl e T (3.21a)
1 m +1 = m +1 m+1 e(2Br-1) ’
m (14b-g)Br (1-b-q)Br
8 . arm . prm [e -e
Fole @) = 5 1;1 S 1 1 < _@Br-1) > ' (3-210)

For the purposes of the experimental work in Chapter V, the equations were modified
slightly to account for the differences in labeling systems used to identify the grid points, and

the results were used as the basis for two computer programs.

Appendix C contains a listing of the program "PROBS' which computes the theoretically
expected absorption probabilities for an m X n space with source at (a, b) using the relation-
ship given by McCrea and Whipple. This program is based on a simplification of (3.20). The

program also takes some advantage of symmetry conditions.

Appendix C also contains a listing of the program "ECOMP" which computes E, P, and k.
From (3.18) and the definition of e, it is seen that k is dependent only on e, (i.e., the expected
number of occupations of the source (a, b) by particle in the grid). Since the McCrea and
Whipple equations include the occupation of (a, b) at birth,

_F(, b)-l.

k F@ 0 (3.22)

14



The expected path length for any particle is the sum over all grid points of the expected
numbers of occupations of those points by that particle. Since the last path segment to an ab-

sorbing state is not included in the program "ECOMP," it is not necessary to subtract out the

occupation of the source at birth. This yields

n
Z F(r, c). (3.23)
1 c=1

m
P=

r
Given P and k for some rectangular geometry, and using (3.11), then the formula
E= P(1 -k (3.24)

provides the expected number of particles active in the space. Thus, the use of ECOMP, which

employs these results, allows one to evaluate E, k, and P for general rectangular spaces.

CHAPTER IV
THEORETICAL ANALYSIS

A measure G having been defined for the relative effectiveness of A1 compared to AO in
Section 3.1, this chapter will present theoretical analyses of G for two cases. From the defi-
nition of G it is seen that if G = 1, then it is equally advisable to use A1 or A0 for random walk
simulation. If G > 1, then using A1 allows results of any given precision to be obtained in fewer

time-steps than would be required by using AO'

The first section of this chapter contains an analysis of G for one-dimensional spaces with
the source centrally located, and shows that G > 1 for all cases. The second section contains
a proof that, subject to the existence of a particular partition which is intuitively valid though

not proven here, G > %for any space of any dimension, and that G > 1 for many spaces.

In the third section of this chapter a prediction formula for G, based only on the geometry
of the space, is proposed for any single point target set in any two-dimensional space. Since
this estimate is based on several approximations, its verification rests on the results of the
following chapter. Such a prediction formula allows one to evaluate the performance of A1 for

any problem without requiring simulation.

4.1 Analysis of the One-Dimensional Random Walk with Central Source Location

Consider a random walk along a line containing 2K - 1 nonabsorbing points with the source
located K units from both the left- and right-hand absorbing points, 1 and 2K + 1, respectively,
as in Fig. 1. Let us treat first the symmetric case, i.e., that in which the random variable takes

on the values "left" and "right" with equal probabilities, Py =p, = —;— .
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Source at Center—\
3 4. 1 3 2

1 1 i 1 1 I 1 i
L4

1 o
1 2 32 2 K-1KZK+1K+2 2 2 2K 2K +1

FIGURE 1. ONE-DIMENSIONAL SPACE WITH CENTRAL SOURCE
LOCATION
Dickey (Appendix B) treats a one-dimensional simulation according to A1 as a Markov

Chain (Ref. 20) with two states:

£ a particle has been absorbed at 1 and there are K particles extending from 2 to K + 1;
and

r a particle has been absorbed at 2K + 1 and there are K particles extending from K + 1

to 2K.

This approximation is appropriate for large N since it neglects only the very early and very
late time-steps of the simulation. Dickey then shows that the variances of the obtained esti-

mates of the termination probabilities at either absorbing point are each equal to

2 1
7 _ZNK' 4.1)

Using the gambler's ruin analogy (Ref. 12), one obtains the corresponding value

2 1
O'O = -4'N (4'2)
< 1 2
for AO’ yielding 7y
D = —2 = K. (4'3)
%0

Again for large N, there is for any time-step a number of particles as yet unabsorbed, E.
From the definitions of the two states £ and r there are always K unabsorbed particles in the

space. Thus, E = K, and for the symmetric one-dimensional case
G=—=—=1. (4'4)

In the asymmetric case, p # q, Dickey presents a result which reduces to

To- )
3 1 [ r (4.5)
", -p)lTT K, K ’
0 r P, + P,
As Kbecomes larger this takes on its maximum value
D 1 (4.6)

“Tp, -p.|"
pﬁ_pr
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Thus, for any K

. K, K
Kip, - prl(p,Z +p, ),

o - 2,
Py - P

(4.7)

E_
G=f=

and for large K the approximation

G>K-|p, -p (4.8)

N
can be used.

Thus, for the one-dimensional case, G =1 for P, =P, and 1 < G £ Kfor P, # pr. G in-
creases with K and grows as ‘pﬂ - pr. increases. Figure 2 shows plots of G versus p!Z and

1- P, for values of K between 1 and 6.

4.2 A Lower Bound on G for Spaces of Dimension Two and Higher

G having been determined for one-dimensional spaces with the source in the center, this
section carries the discussion to spaces of higher dimension. A proof establishing a lower

bound on G is followed by discussion of this proof and the conditions assuring its validity.

4.2.1 A Lower Bound on G. An analytic result establishing that G > 1 for any space is

presented here and is subject to the following two constraints:

1. Given a random walk simulation according to Al’ in an intuitive sense it is true that
no more than an expected number E - 1 of previously emitted particles can be correlated with
any newly emitted particle. For purposes of the following proof, this condition becomes: for
all N there exists a partition such that those previously emitted particles correlated with the
Nth particle can be distinguished from those uncorrelated with the Nth, and that there is an ex-

pected number E-1 of particles in the former set.

2. Given Xi’ the random variable which has the value 1 when particle i is absorbed in the
target set and 0 otherwise, and that P(Xi = 1) = p, then a strong result is obtained if it can be
shown that P(Xi =1 IXJ. =1) < % Although this may not in general be true, it is shown in dis-
cussion following the proof that for at least one case of practical interest this inequality is

valid. For cases where this is not true, it is proven that G > %

Theorem
Given that in a simulation according to A1 a partition exists such that particles in the set
S are uncorrelated with the Nth particle for any N and there are E-1 particles in S, then for
1

any set of target points T and for any geometry, G > 5 and when P(Xi =1 |Xj =1) < %, G>1.

Proof

Consider an N-trial simulation using algorithm Al' It is clear that
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N N i-1
2 2
9y (X1 ...t XN) = ; 9 (Xi) +2 - ; cov (Xi’ Xj)' (4.9)

Since the second term has the value 0 for i = 1, and from the definition of the sum of covari-

ances, it follows that

N
2 + + = + Z v + +
X).
o (X1 XN) Npq Zizco (X1 Xi—l’ 1) (4.10)

34 ]

24 1

FIGURE 2. G AS A FUNCTION OF p FCR VALUESOFK =1, 2, ..., 6.
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From the partition in the statement of the theorem one obtains

cov (X1 Fa. .+ XN-l’ XN) =Zcov (Xi’ XN) +Z cov (Xi’ XN). (4.11)
i€S ieS
According to the definition of the partition, the first sum has the value 0 since the random var-
iables Xi lieS are uncorrelated with XN.
To evaluate the second sum, consider that according to the definition of the partition there
are E-1 particles in S for N > E and fewer thanE -1 particles in S for N < E. Thus, the second

sum consists of at mostE - 1 terms of the form PPy ¢ - Let
i'N

A
p = Max p . (4.12)
P PX X

Then, from the preceding argument, for all N

N
< (E-
cov(X1 +.o. +XN-1’ XN) <(E-)pyp. (4.13)
From Eqs. (4.10) and (4.13) it follows that
0, 2%, +. .. +X) < Npa + 2(N-1)(E-1) pa . (4.14)

Since /ﬁ < 1, for any geometry

oy (X1 +a.. +XN) < Npq + 2(N-1)(E-1) pq, (4.15)
hence
o 2
p-—t; < NPACED o, (4.16)
Npq
1)
0
Thus,
_E, E
G _Bz 55" (4.17)
hence
G>1/2. (4.18)

However, when P(Xi =1 |Xj = 1) < 1/2, a stronger result can be obtained as follows:
By definition

cov(Xi, Xj) = 0y Ex[(Xi - p)(Xj -p], - (4.19)

IxPxx =
i i
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where X, is the expected value of X

K and is equal to p for all k. It follows that

k

_ 2
pQDxiXJ = EX(Xin - pX]. - pXiL +p) (4.20)

=p- P(X =11 =) - P2, (4.21)

Applying the above constraint one obtains

p(l/2-p) 1-2p
Pxx S ol-p 2oz (4.22)

Thus, for this case

AN |
p <. (4.23)
2
Applying this in the earlier result, one obtains
02, ... +X\) < Npq +2(N-1)(E-1) pa 1/2 < NEpq (4.24)
Therefore,
2
9 NE pq
D=-—2—5 Noq =E, (4.25)
o
1
and
E_E
-=> =
G D>E’ (4.26)
G>1
for any space which obeys the conditions outlined above.
QED
Corollary
If, for the new algorithm,
02(X + +X ) < NE pq (4.27)
1Y e N — ’
then G>1.
Proof

The proof follows immediately from Eq. (4.24) in the previous proof.

A
In the theorem the value chosen for p in Eq. (4.12) is that of the maximum of all particle

correlations. In the same intuitive sense that the partition exists, so does each of the E - 1
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terms Py x (reflecting the dependence of particle N on particle i) actually take on value from
i'N
8 to some value much less than 6 depending on the portions if their path histories which over-

lap. If one can show that the average of the Px x for any N is less than or equal to 1/2, then,
i"N
by the following corollary, G > 1.

Corollary

If the partition defined previously exists and

< = (4.28)

then G > 1.

Proof

This follows from substituting p = % for ;’o\ in (4.14), yielding
012(X1 +u +XN) <N pq + (N-1)(E-1) pq. (4.29)
Clearly, now
0.2(X, +...+X.) <NE pq (4.30)
171 N~

which satisfies the condition of the previous corollary.

4.2.2 Comments on the Theorem of 4.2.1. The condition that P(Xi =1 |Xj =1) < % stipulated

for the proof that G > 1 can be shown to exist for many cases. For example consider symmetric
random walks in two-dimensional spaces where the set T consists of a single point on a con-
vex curve such that the boundary lies inside the curve. Figure 3 illustrates such a case. In
such a case, one grid line on which this point lies may be continued to infinity in either direction

without partitioning the space.

Let IS be the event that particle i is at any arbitrary grid point s when particle j has been
absorbed at T. Then

P(X, = 1|xj = 1) =; P(X, = 1lxj =land1) - P() (4.31)
and clearly
P(X.=1/X.=1) < Max P(X, = 11X, =1 and I). (4.32)
i j s i j s

After particle j is absorbed at T, the remainder of the path of particle i is independent of the

path of particle i except for the fact that it starts at s. Therefore
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P(X.=1/X. =1) < Max P(X, = 111). (4.33)
1 J S i s

This maximum is attained when s is W, the grid point adjacent to T, yielding

P(X, = 1IXj =)< PX =1 IIW) . (4.34)

FIGURE 3. EXAMPLE OF A BOUNDARY POINT FOR
WHICH THE PROBABILITY OF PARTICLE ABSORPTION
18 <1/2

For T as defined in the first paragraph, the upper limit on P(Xi = 1) for a random walk
initiated at W occurs when the absorbing boundary is the infinite line defined earlier and the
space is the resulting infinite half-plane. From a result of McCrea and Whipple (14), in this

case

1
P(X, = 1|XJ. =1) < P(X; = 1IIW) < .31<Z, (4.35)

which is the necessary condition.

Offering strong support for the validity and generality of the hypothesis that G > 1, subject

to no constraints whatsoever, is the following argument.

Consider the conventional random walk simulation of N independent particles in a period of
time t. Consider further the addition of N more particles whose path histories are determined
by the same values of the random variable which direct the motion of the original particles and

whose life times all occur within the period t. The expected absorption probabilities of these
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particles around the boundary are the same as the first N particles by the argument presented

in the second chapter.

Let us define the absorption of an independent particle to yield an expected I bits of infor-
mation. Then N particles will yield a total of NI bits of information in t units of time. If each
of the additional particles is totally dependent upon one of the original particles, then its ter-
mination yields no information. Thus, in t units of time the information yield is exactly the
same as in the original N particle simulation; G = 1. I, however, only a portion of the history
of every added particle is dependent on any one original particle, then they are each only par-
tially correlated with any one particle and are partially independent in some sense—yielding

some information upon absorption. Thus, G > 1 for this system of particles.

4.3 An Estimate of G Based on Geometry of Two-Dimensional Spaces

The results of the previous section, while offering support for the hypothesis that G > 1

for any geometry, do not offer any means for estimating how much more efficient A, might be

1

than A0 for a particular space. The following proposed estimate for G is based on a target set

of one point in a two-dimensional space.
As defined earlier,
G =E/D. (4.36)

An estimate for E is available for some cases (Section 3.2.2), but since it is not generally ap-
plicable to all two-dimensional spaces, a desire for a more general result has led to the de-
velopment of a direct method for predicting the value of this parameter for any two-dimensional

geometry. This will be presented below.

Obtaining an estimate for D is also necessary to estimate G. As a measure of the impre-

cision of A_, D is related to the number of particles active in the space E. This follows from

1’
the following facts.
1. When E =1, D=1;i.e., in a conventional random walk there is no imprecision result-
ing from the correlation of any particle with any other.
2. When E > 1, then D > 1. Since there is more than one particle in the space at one time,

they will be correlated with one another.

However, it is hypothesized that D will not increase as rapidly as E since the average physical
proximity of particles, hence the probability of their absorption in the same target set, will de-
crease as E increases. Based on data from experiments performed (see Section 5.3.3), it is

hypothesized that

D} =

D~E (4.37)
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yielding

1
2
G~E . (4.38)
This hypothesis is later supported using the experimental results of Chapter V which also pre-

sents a related technique for estimating a lower bound on G.

To obtain a simple estimate for the parameter E, the following method is offered. E is re-
lated to the amount of non-absorbing space in the geometry and also to the relationship of the
location of the source point to the absorbing boundary. Consider a partition of the space into
four subspaces by extending horizontal and vertical lines through the source (see Fig. 4). Since
particles do not tend to reach isolated parts of the space, it is hypothesized that Ee’ an esti-
mate for El’ is proportional to the geometric mean of the areas a of the four largest rectangles

each containing the source and each lying entirely within one of the four subspaces:

PN

E ~(a, -a

R 1 (4.39)

g 232y
This hypothesis is supported by experimental data in Chapter V, thus suggesting its use in

(4.38), resulting in the relationship

1
G~ (a1 gy - ag a4)8 . (4.40)
//
N
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2 x 3
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N //—
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G2 '\ \\\ N \
1 ¢/ 4 4
LGS |
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FIGURE 4. PARTITION OF A SPACE FOR
PURPOSE OF ESTIMATING G. (The num-
bers identify the four shaded subspaces.)
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4.4 Summary of Theoretical Results

The research reported shows that for a symmetric random walk according to A1 in a one-
dimensional space with centrally located source, G = 1. For the cases where the random vari-
able governing particle motion is asymmetrically distributed G > 1, and in this case, the value

of G increases as the number of non-absorbing points on the line is increased.

It has also been shown that for any space, subject to the existence of an intuitively plausible
partition, G > %— Furthermore, given that X is the random varlable associated with the ab-
sorption of particle i in the target set, then 1f P(X =1 IX =1) < 5, G> 1; or if the average
correlation of one particle with all those prev1ously emltted but unabsorbed can be shown to be
< %, then G > 1. On the basis of this work, it is conjectured that G > 1 for all spaces. The
next chapter describes a set of experiments designed to support this hypothesis for symmetric

random walks and to demonstrate the validity of the prediction method of the preceding section.

CHAPTER V
EXPERIMENTAL ANALYSIS OF TWO-DIMENSIONAL SPACES

Having obtained a lower bound on G which strongly suggested that G > 1 for all cases, it
was decided to determine G for two-dimensional spaces by simulating symmetric random walks

using algorithm A_, and in this way to obtain both estimates of G and the precision of these

1’
estimates. Analysis of a single space would yield results which were applicable to only that
case; however, a series of experiments would allow inference leading to more general con-

clusions.

Two particular objectives were set forth, each leading to a separate set of experiments.
The first was to determine the behavior of G as a function of the size of the space only, and to
this end experiments were performed on various sized square spaces with the source in the
center. This work is reported in Section 5.1. The second objective was to establish that A1
can be used to advantage in a space consisting of a simply connected but irregular boundary.
To this end experiments were performed on a particular subset of spaces chosen at random
from all spaces which can be contained in a 17 by 17 envelope. The random selection assures
no bias is acting when inference is drawn to all spaces. These experiments are reported in
Section 5.2. Since G is a function of the particular set of points for which the absorption prob-
ability is desired (called the target set), analyses were carried out for target sets of various
kinds.

It was also important to estimate the variance of the value of each G obtained so that a

level of confidence could be determined for any experimental G as an estimate of the true G
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for that case. This was done by obtaining the variance of all values of G which represents an
average across target sets. Since G is made up, in part, of D which is itself a variance, the

variance of G is a variance of a variance.
The resulfs of these experiments are summarized and discussed in Section 5.3.

The particular computer programs employed in this work are included in Appendix C.
Section 3.2 and Appendix D contain discussions of their contents and what might be considered

novel techniques employed.

5.1 Experiments on L by L Square Spaces with Central Source Location

5.1.1 Experimental Design. In order to estimate

G =E/D (5.1)

for some target set, it is necessary to obtain values for the two factors E and D which consti-
tute it. As discussed earlier in Section 3.2, it is possible to obtain the expected values E, D
and k for a rectangular space using the results of McCrea and Whipple (Ref. 14). To this end
a computer program ECOMP has been developed.

To obtain values for

(5.2)

for some target set, one needs to evaluate its components %

also noted that the true absorption probability for any boundary point in any rectangular space

2 and 012. In Section 3.2.4 it is

can be obtained without simulation, and the program PROBS has been written to do this. Given

p, the probability of absorption in a particular target set and using Eq. 3.1,

2
00 = Npq,

(where N is the number of particles simulated and q = 1 - p) one can then compute the denomi-

nator of D.

This leaves only 012 to be determined in order to estimate G. By generating sonzxe number
R of replications of N-trial simulations of random walks in L by L square spaces, o, can be
calculated directly from the number of terminations in the target set chosen. The program
NDEP and its associated subroutines were used to obtain the data necessary in the form of the

number of absorptions xi at point i. The probability p; is then estimated by X /N.

Results for target sets of more than one point are obtained by combining results for indi-

vidual points.
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Figure 5 outlines the flow of information from the specification of the results desired to
obtain an estimate for G for some target set. The program COVAN is constructed to accept
the specification of target sets, and inputs from NDEP and PROBS on punched cards. This re-
sults in estimates of D for the specified target sets. A desk calculator is then used to compute
G from the results of COVAN and ECOMP. Separation of NDEP and COVAN allows the compu-
tation of G based on an alternate target set without repeating a simulation by maintaining the

simulation results on punched cards.

Geometry N R

NDEP
Xi's from Simulations
Geometry Raw Data
l Specification of Target Sets
True Pi's I
PROBS COVAN

Geometry

ECOMP E o/ Desk

Calculator

G's and orz(G)'s

= a Computer Program

FIGURE 5. FLOW OF INFORMATION IN THE EXPERI-
MENTS ON SQUARE SPACES

Taking advantage of the fact that a square with the source at the center has four axes of

symmetry, one can divide the points on the boundary of an L by L square (including absorbing
-1
2 1
the next closest, . . ., and CL* those points closest to the center of the sides. Then n(ci),

points) into L* = L symmetry classes. Let ¢, contain those points closest to the corners,

Cy
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the number of points in each class will be 8, except that n(cL*) = 4 because the requirement
that the source be at the center demands L be odd. This provides a built-in set of replications

since the absorption probabilities are the same for all points in any equivalence class.

It was decided that a single measure for D should be defined which in some sense would

represent every individual point on the boundary. For this purpose let us define

Yo,

Jee;
= (5.3)
¢ n(ci)
which is the average of the Di for one symmetry class, and
L*
Lo
— =1 G
D = —LT— (5-4)

the single measure to represent all of the Di'

The following derivation supplied the estimate of the variance of G as based on E and D.

By expanding E/D about E/D and retaining terms through fourth order one obtains

2 2 2 —4 =3
A0 = Z AT O] . ) + x EB_;_.ZD)] - 2 Ex [(—D;—D)} (5.5)
D D D D

where Ex indicates expected value. Assuming that the variance of Di is the same for every point

i, one can use the following approximation of the variance of D

L*
2
iZ=1: I;Z: (Dj - Dci) . [n(ci) - lﬂ

j€c,
2 = i

D) = . (5.6)

i (c)-1
s [n(c,) - 1]

An estimate of oz(G) called Gz(G) was calculated for the results obtained by substituting 32(5)
for oz(D) in Eq. (5.5).

A
[

5.1.2 Preliminary Experiments. Based on the estimate GZ(G) and the desire to present re-

sults for as large a number of spaces as possible consistent with the use of a reasonable amount
of computer time, it was decided to choose the number of replications R large enough to allow

/0\2(G) < 0.2 G. The number of random walks run in one simulation need only be large enough to
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overshadow the earliest and latest periods in which there are fewer than E particles in the

grid.

To choose standard values for N and R, random walks were simulated in a 13 by 13 square
for various combinations of these values. The data for D and 32(_D) for these trials are pre-
sented in Tables Ia and Ib, respectively. From the data of Table Ia, D was assumed to be inde-
pendent of N for N > 1500. The dependence for N < 1500 can be explained by the greater im-
portance of the early and late periods in the simulation when these account for a large part of the
the total simulation time. From Table Ib it was assumed that 92(5) is approximately inversely
proportional to the square root of R. By extrapolating these data and based on Egs. (5.5) and
(5.6) it was determined that R > 200 to meet the criterion set forth above for GZ(G). Thus the

values N = 1500 and R = 200 were chosen for this work.

TABLE Ia. D as a Function of N and R for a 13 by 13
Square Space

N (in hundreds)
R 1 5 10 15 25 50 100 250 Ave,

10 2.20 2.79 2.31 2.51 2.53 2.43 2.83 2.51 2.51
15 2.76 2.60 2.27 2.24 2.34 1.90 2,76 2.22 2.39
25 2.42 2.62 2.05 2.58 2.98 2.78 2.54 2.69 2.58
35 2.46 2.67 2.14 2.58 2.81 2.67 2.66 2.63 2.60
50 2.53 2.66 2.18 2.45 2.68 2.43 2.67 2.49 2.51
Ave. 2.48 2.67 2.19 2.47 2.66 2.44 2.69 2.56 2.52

2
TABLE Ib. o (D) as a Functionof N and R for a 13 by 13
Square Space

N (in hundreds)
R 1 5 10 15 25 50 100 250

10 2.33 1.59 0.838 1.61 1.52 0.924 2.25 0.840
15 1.99 1.16 0.382 0.618 0.514 0.472 0.846 0.256
25 0.567 0.590 0.470 0.610 1.02 1.16 0.349 0.380
35 0.276 0.295 0.313 0.537 0.417 0.574 0.360 0.256
50 0.285 0.163 0.201 0.287 0.337 0.266 0.288 0.220

Table II shows the results of using the program ECOMP to obtain E, and also the expected
source covering factor k and the expected path length D, each as a function of L. These data
are shown plotted in Fig. 6. By plotting 1/1-k versus IOgIOL as in Fig. 7 it is shown that, al-
though k approaches 1 as L becomes large, indicating an eventual inability of the source to

emit new particles, for all cases of practical use (L < 106) k< .9.
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TABLE II. k, P, and E as a Function of L

L k P E
3 0.0 1.0 1.0
7 0.435 10.38 5.87
9 0.489 18.63 9.53
11 0.524 29.24 13.93
13 0.549 42.20 19.04
15 0.568 57.53 24.85
25 0.624 169.51 63.75
51 0.680 736.5 235.5
75 0.704 1613.4 477.9
101 0.720 2946.6 825.8

5.1.3 Experimental Results. Experiments were performed for L equal to 7, 9, 11, 13, 15

and 25. Table III presents

E from Table II

D

G=E/D

Dmax’ the maximum of the Di

G . =E/D
min max

6°[D)
Gz(G) based on Eq. 5.5 and 32(5).
These results, except for the last two items, are shown plotted versus L in Fig. 4. These data

represent G for a target set consisting of a single point.

TABLE III. G and Gmin as a Function of L

2 — N2

—_ A

L E D G D_.. G . o°(D) o°(G)
3 1.0 1.0 1.0 1.0 1.0

7 5.87 1.67 3.51 1.77 3.31 0.031 0.172
9 9.53 1.90 5.02 1.95 4.89 0.024 0.217
11 13.93 2.14 6.52 2.19 6.37 0.026 0.312
13 19.04 2.45 7.7 2.65 7.19 0.057 0.785
15 24.85 2.68 9.28 2.84 8.75 0.061 1.02

25 63.75 4.14 15.41 4.70 13.55 0.170 2.91

Two new target sets were defined, one consisting of the points along two adjacent sides
(one-half the total points) and the other consisting of two adjacent half sides including the cen-
ter points (see Figs. 9a and b). There are four sets of each type for any square. Table IV con-
tains data for each of these avéraged over the four symmetry replications; D for the first

and G

1/2

target set and D were computed from D

and D and E.

for the smaller, second one. G

1/4 1/2 1/4 1/2

1/4
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FIGURE 8. RESULTS FOR SINGLE POINT TARGET SETS IN
SQUARE SPACES
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Set Including 1/2 of Points
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FIGURE 9. VARIOUS TARGET SETS USED

TABLE IV. G and G

1/4 1/2 as a Function of L
L E Dyi/4 /4 Dy/2 G2
7 5.87 4.05 1.45 4.73 1.24
9 9.53 6.29 1.51 7.5 1.26
11 13.93 8.74 1.60 10.91 1.28
13 19.04 12.70 1.50 16.07 1.19
15 24.85 16.62 1.50 19.36 1.28
25 63.75 44.62 1.43 56.48 1.13
Average 1.50 1.27

For the 13 by 13 square several target sets were defined in order to determine how G is
related to the number of points in the set and their relative proximity. The sets were specified
as either "corner" sets or ''side' sets; the former consisting of an even number of points half
on either side of a corner, and the latter of an odd number of points including one in the center
of a side [see Figs. 9(c) and (d)]. Two further distinctions were made; "closed' sets consisted
of contiguous points and "'alternate' sets consisted of points separated from one another by a
single gap. Table V and Fig. 10 present G for these sets with the number of points included in
any set (including gaps) varying from 1 to 27 for "sides" data and from 2 to 28 for "corners"
data.
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TABLE V. G as a Function of the Number
of Points in "Corners' and "Sides' Target

Sets
Number of
Points in
Set Sides Corners
Closed Open Closed Open
1 5.12
2 3.44
3 2.00 3.29
4 2.13
5 1.48 13.04
6 1.72 3.04
7 1.33 2.84
8 1.52
9 1.31 2.96
10 1.37 3.13
11 1.34 3.29
12 1.28
13 1.37 3.64
14 1.26 3.34
15 1.37 4.35
16 1.28
17 1.34 4,82
18 1.37 4.51
19 1.31 5.61
20 1.52
21 1.33 5.88
22 1.72 10.01
23 1.48 7.82
24 2.13
25 2.00 14.9
26 3.44 22.6
27 5.12 33.9
28

5.2 Experiments on Spaces with Irregular Boundaries

5.2.1 Experimental Design. Since the spaces usedin this part of the research were to be

representative of all possible spaces of a certain size, they had to be selected at random from
the total population. In this way the results could be used in drawing inference to the entire
population of spaces without fear that some bias used in selecting the spaces would affect the

results. The selection of spaces is discussed in detail in Section 5.2.2.

Since the spaces studied in this investigation were not rectangles, the parameter E and the
true absorption probabilities p which were obtained theoretically in the previous experiments
had to be determined experimentally. The values used for the p's were the estimates x/N,
where x is the number of particles absorbed in the selected target sets in an N-trial simulation.
In each replication it was necessary to measure E directly and to include it as output along with
the data that were obtained in the previous experiments. The covering factor k was recorded in
a similar manner.
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FIGURE 10. G AS A FUNCTION OF THE NUMBER OF POINTS IN""CORNERS" AND
"SIDES'" TARGET SETS
In order to obtain 02((}) it was decided to divide the total set of replications, each of N
simulations, into R sets of r replications each. As is indicated in Fig. 11, a value of G can be

obtained for each of the R X r replications by using the set of equations

ot -s(E)-3)

012 = az(x) , (5.8)
2

9 oz(x) *N

D 5 = xN - 0 (5.9)

0
and

E Ex(N - x)

G=2= 2t T (5.10)
D oz(x) - N
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FIGURE 11, DESIGN FOR EXPERIMENTS ON IRREGULAR SPACES

To this end an information flow, similar to that shown in Fig. 5, was defined for these ex-
periments (Fig. 12). A program RDEP was written to perform the simulations, the program
COVAN was changed to allow the use of Xx/N as an estimate for p, and a new program DANAL
was written to yield a value of Gi for each boundary point, a value G computed from the average

of the Di's, and a value G, corresponding to the set of points to be defined at the end of the

z
next section. RDEP and DANAL are included in Appendix C.

5.2.2 Specification of the Spaces. Along with the requirement that the spaces be a random

sample of all spaces, the following additional criteria were established for the reasons stated

below:

1. In order to have data which would be comparable to the results of the previous sections,
the number of non-absorbing points in the space should be between 100 and 200 and the points

should lie within a 15 by 15 envelope.

2. In order to assure that most of the boundary points would have an absorption probability
reasonably greater than 0, at least one-half of the grid points in the 15 by 15 square containing

the space should be non-absorbing points in the irregular space defined.

3. For the same reason as above, no branch or arm of the space should be fewer than

three grid units wide.

To this end, the following approach was formulated and used. A table consisting of 5 by 5
arrays of random digits was selected (Ref. 22). On a piece of squared paper, a 5 by 5 grid was
marked off and an X was placed in each square of the grid which corresponded to a location

for which the digit value was 5 or greater in a selected one of the 5 by 5 random digit arrays.
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Figure 13 shows the result of such an operation with the digits recorded in their corresponding
array locations. The largest possible envelope, so as to include every grid square, completely
enclosed (horizontally and vertically) by marked squares was then constructed. Unmarked
squares along the border of the array were not included. Figure 14 shows the results of the
application of this rule to the array in Fig. 13. If the number of enclosed squares was greater
than 12 (i.e., greater than half the possible number), then the result was reserved. If not, then

a new envelope was constructed by applying the same rule, but with respect to unmarked squares.

Geometry N Rxr

RDEP

R

xi's and E's from simulations.
Raw Data
Data broken down into R sets
E l l l of r replications each.

COVAN [+ Specification of target sets.

DANAL

G's and 02(G)'s
FIGURE 12. INFORMATION FLOW FOR EXPERI-

MENTS ON SPACES WITH IRREGULAR BOUND-
ARIES
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FIGURE 13. FIRST STAGE IN THE DEFINITION
OF AN IRREGULAR SPACE
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FIGURE 14. SECOND STAGE IN THE DEFINI-
TION OF AN IRREGULAR SPACE
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The result was a reserved set of fifteen 5 by 5 sub-arrays. Each grid point was then ex-
panded into a 3 by 3 array resulting in new sub-arrays of size 15 by 15. The arrays thus de-
rived were defined to be the non-absorbing points of the grid, with the nodes external to these
the absorbing ones. Further use of the table of random digits resulted in a random placement
of the source in each space by selecting two two-digit integers and using these as coordinates
in an overlayed 100 by 100 space. The end result of these operations based on space shown in
Figures 13 and 14 is shown in Fig, 15. The 14 other arrays are shown in smaller scale in

Fig. 16. In each case ''S" or a heavy dot indicates the source location.

BN
u (5]
ALY,
% 7
7 7
QU AU AU LUUULLAYN Y.

FIGURE 15. FINAL STAGE IN DEFINITION OF IR-

REGULAR SPACE NO. 1. (S indicates the source

location, x corresponds to the location for which

Gmin was attained and the shaded area indicates the
target set for GE')

In each of these figures it will be noted that some of the absorbing points are shaded.
Each shaded area represents a subset of 25 points which defines a target set for which GE was
determined in the experiments. These groups of points were selected as follows. Consider
an ordering applied to the absorbing points such that those in the lower rows precede those in
upper rows, and, within rows, those on the left precede those on the right. Then the points in-
dicated as belonging to the marked target sets are the first 25. The absorbing point for which

G was found to be least (i.e., corresponding to Gmin) is marked with an X.
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5.2.3 Experimental Results. From a preliminary investigation similar to that noted in

Section 5.1.2, it was decided that the following parameters would provide suitable precision

for this work:

N (number of simulations per replication) = 1500,
r (number of replications to determine G) = 20,

R (number of sets of replications to determine an average G and UZ(G)) =10,

Since it was desirable to have data for as many spaces as possible consistent with reasonable
use of computer time, it was decided not to obtain oz(G) for some of the spaces but to perform
a total of 2r = 40 replications in these cases. Thus, O’Z(G) is reported for only 5 of the 15

spaces used.

Table VI contains the results of the experiments on spaces with irregular boundaries. In

this table:

E is the average of the values of E obtained experimentally across all replications.

D is the average of the Di for each point obtained across either 10 sets of 20 replica-
tions, or 40 replications.

k is the average of the values of k obtained experimentally.

Gis E/D

Gmin is min (Gi = E/Di) across boundary points i.

Pin is the probability estimate Xi/ N at point i defined above.

GE is the ratio of E to the value of D based on the set of 25 points defined in the
previous section,

R X r is the number of replications performed.

5.3 Interpretation of Results

This section contains a discussion of the results of the experiments described in Sections
5.1 and 5.2. Section 5.3.1 contains a general discussion of the parameter G. Sections 5.3.2-
5.3.4 amplify the results as they affect the relationships between the geometry of the space in

which the random walks were simulated and the parameters E, D, and G, respectively.

5.3.1. General Comments on G. In the experiments conducted, G > 1 for target sets of

individual points (G in Tables III and VI, and Gmin in Table VI). For target sets of more than

one point in square spaces 1 < G < 2, except when the number of points in the set is close to
the minimum or maximum possible, or there are gaps in the set (G1 /2’ G1 /4 in Table IV and
G in Table V). In the spaces with irregular boundaries the results for target sets of 25 points
(GZ) in Table VI) show that 1 < G < 4 within one standard deviation (based on the assumption

that variances for spaces 6-15 are similar to those obtained for spaces 1-5).
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TABLE VI. Results of Experiments on Irregular Spaces

Space G Gmin GE E D k Patmin RX r

1 | 6.206,14.212 1.362 10.100 | 1.625 0.456 0.0357 200
(0.209)"|(4.446) | (0.102) | (0.161) | (0.0137) | (0.000202)

2 |7.008 [3.190 1.052 13.971 | 2.005 0.492 0.0130 200
(0.350) [(0.933) | (0.114) | (1.148) | (0.0257) | (0.000233)

3 |6.270 |4.099 1.140 8.918 1.434 0.470 0.0031 200
(0.353) |(0.1573) | (0.123) | (0.0308) | (0.0155) | (0.00840)

4 |3.716 |1.426 0.878 4.146 1.117 0.180 0.0057 200
(0.0246)((0.114) | (0.0308) | (0.159) | (0.00204) | (0.000451)

5 |7.127 |4.531 1.131 15.213 | 2.149 0.499 0.0130 200
(0.438) |(7.754) | (0.197) | (0.828) | (0.0289) | (0.000289)

6 |6.630 [3.551 0.921 12.133 [ 1.830 0.466 0.0632 40

7 |17.800 [3.458 0.924 17.022 | 2.160 0.510 0.0184 40

8 |3.723 [1.862 1.357 5.008 1.345 0.292 0.0009 40

9 |5.743 |[1.997 0.818 9.797 1.706 0.4417 0.0306 40

10 | 4.878 |1.684 3.641 7.488 1.535 0.404 0.0394 40

11 | 4.392 [1.991 2.189 5.745 1.308 0.390 0.0199 40

12 |5.478 |2.203 1.104 9.499 1.734 0.473 0.0028 40

13 |5.351 |2.652 2.295 9.423 1.761 0.442 0.0136 40

14 |6.924 [2.958 1.573 11.023 | 1.592 0.430 0.0426 40

15 |5.362 [2.309 1.715 9.507 1.773 0.324 0.0058 40

“Numbers in ( ) are variances of the data above.

The data in Table V (plotted in Fig. 10) show that, for closed sets of points in square
spaces, G is distributed symmetrically with respect to the number of points in the set. This
is because G varies only with D in these cases and, as shown in Section 3.1, D is dependent on
the product pg. That the product is symmetric about p=q = % offers an explanation of these

results.

The data for open sets in Table V show that, after the set spans about one-fourth of the
points (including only alternate points in the actual target set), G increases quite rapidly. This
can be explained in the following way. Since adjacent pairs of points are not included, maximum
correlational effects are not present; but as the set expands and includes more remote points,

the amount of negative correlational effect increases greatly.

In summary, within one standard deviation, G > 1 for all experiments conducted, and for

many cases G >> 1.

5.3.2 E as a Function of Geometry. In Section 4.3 a simple method for estimating E di-

rectly from the geometry of the space is hypothesized. The estimate Ee is proposed to be
proportional to the geometric mean of the area of the largest interior rectangles (including the
source) included in each of the four subspaces defined by drawing lines through the source

point. (See Section 4.3 and Fig. 3.) Figure 17 is a plot of the experimentally obtained E as a
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function of the estimate Ee. The line in the figure connects the points from the data in Table II
while the other points depict the data in Table VI. The computed correlation coefficient for the
values of E and Ee for irregular spaces in Fig. 17 is

pp g =979 (5.11)
e

with standard deviation

o = .005, (5.12)

Pg,E
e

Thus, the hypothesis that E ~ Ee as originally defined in Section 3.3 is supported for these

spaces.

However, from evaluations of E and Ee in long, narrow rectangles (see Section 3.2.2 and
Fig. 18), it is clear that the hypothesized prediction method is not valid for these spaces as
the rectangle lengthens. In Fig. 19 it is noted that the prediction approximates the data ade-
quately for rectangles up to at least 5 by 11. (The prediction line is that for the square spaces,
Fig. 17.) Thus, it can be stated that the prediction method is valid in cases where the length
of the rectangle is greater than at most 3 times the width, measured across non-absorbing
points. The upper limit 3 of this ratio is conservatively low, especially since it was established
for a space only 3 non-absorbing grid units wide. The data for the irregular spaces further

support the conclusion that Ee is a useful estimate of E for the vast majority of spaces.

5.3.3 D as a Function of Geometry. In Section 3.3 it was also hypothesized that

D~E1/2. (5.13)

Figure 20 is a plot of D versus El/2 for the experiments performed. These data for irregular

spaces correlate with coefficient

o = .999 (5.14)
p,Y/?

and standard deviation

o = .0008 . (5.15)
P 172

D,E
Thus, these data support this hypothesis.
The data for square spaces (the line in the figure) form an upper bound on D as a function
of El/z. This is reasonable since it is expected that an irregular boundary will tend to absorb
a single one of a pair of particles more often than will be regular boundary due to the convex

corners which arise in these spaces, thus decreasing correlation.
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L

FIGURE 18, E AS A FUNCTION OF L FOR 5 BY L. RECTANGLES WITH
SOURCE AT POINT (3, 3)

5.3.4 G as a Function of Geometry. In Section 3.3 it was further hypothesized that

G~E1/2, (5.16)

and that Ee could be substituted for E in Eq. (5.13) to yield

G~E 1/2.
e

(5.17)
1/2

data from irregular spaces, one can correlate these parameters with coefficient

Figure 21 is a plot of G versus Ee for the experiments discussed previously. Using the

P = .996, (5.18)
G’Eel/z

and standard deviation

o = .0019. (5.19)

[
G,E 1/2
e

Thus, for the spaces used in all experiments the hypothesis is confirmed.
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FIGURE 19. E AS A FUNCTION OF Ee FOR SQUARES AND 5 BY L. RECTANGLES

From the figure it can be further hypothesized that Eel/ 2 for the square spaces establishes
a lower bound on G. This can be justified by considering the argument of the previous section

that D for square spaces should be an upper bound on all D's and that G is inversely propor-
tional to D.

Therefore, by establishing the coefficients of the line in Fig. 21, a lower bound on G is

1/2

g=(1.3-E'"-.3)<G. (5.20)

This is applicable in all cases where Ee is a suitable estimate for E.
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B 1/2
e

1/2

FIGURE 21. G AS A FUNCTION OF Ee . (Points connected by the line represent

data from square spaces.)

CHAPTER VI
CONCLUSIONS

6.1 The Use of the Algorithm A on Highly Parallel Computers

1
The following conclusions are based on the results reported in the sections cited in each

case. The conclusions concern the relative effectiveness of G (Section 3.1) of algorithms A0
and A1 (Section 2.1) when used to simulate absorbing boundary random walks on highly parallel
computers (Section 1.1). They pertain to random walks simulated in spaces of dimension two,
unless stated otherwise. The first six conclusions result from experimental work on symmetric

random walks while the last two are based upon general theoretical investigation.

a) Within one standard deviation, the experimental results show G > 1 for any target set

(Section 5.3.1).
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b) For target sets consisting of single points, G increases as the size of the non-absorb-

ing space surrounding the source increases (Sections 5.1.3 and 5.3.3).

¢) For target sets consisting of unbroken chains of points whose total absorption prob-

ability lies between 1/4 and 3/4, G > 1 and, generally G < 4 (Section 5.3.1).
d) For target sets consisting of alternate points along the boundary G >> 1 (Section 5.1.3).

e) For all but very long thin rectangles it is possible to predict G directly from the ge-
ometry of any two-dimensional space such that the prediction correlates 0.99 with the values of

G obtained experimentally (Section 5.3.3).

f) Based on the prediction cited above, for all but very long thin rectangles, there exists

a lower bound on G based only onthe spatial geometry;

1/8

G> 1.3(a -a .3 (6.1)

g 232y
where the ai's are measures of area more precisely defined in Section 4.3 (Section 5.3.3).

g) For symmetric random walks in one-dimensional spaces, G = 1 (Section 4.1). For

asymmetric walks, G > 1.

h) Subject to one condition, which is intuitively plausible, for any space of any dimen-

1
sionality G > 5 and subject to one of two other conditions G > 1 (Section 4.2).

In summary, these conclusions indicate that it would be generally advantageous to use A1
instead of A0 for simulating random walks on a highly parallel computer. Even for target sets
of least advantage, G ~ 1.25 which represents a 20-percent saving in computer time for a set
of simulations. Considering that the use of random Walk techniques often requires a very large
number of particle simulations, hence a large amount of computer time, this 20-percent saving
can be important. In the cases where the target set is a single point and the space large, much
greater savings can be expected. For example, using the prediction formula (6.1), for a ge-
ometry of the same shape as that in Fig. 15 but 5 times larger in each dimension, by using A1
one can expect to obtain results in 1/30th the time required for similar results using AO'

Personal communication with staff members at the Westinghouse Corporation indicates
that these results may be of immediate use when applied to the SOLOMON computer (Section

1.1). In their investigations they have concluded that:

a) Simulation of an independent random walk by each processing element (module) of

SOLOMON would require more storage per element than available.

b) Simulation of a single grid point by a single processing element would result in more
than one particle occupying some grid points, which in turn demands a processing element of

too high a level of sophistication.
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As discussed in Section 2.1, the algorithm A1 studied here avoids each of these drawbacks,
yet, as shown in this research, it does show a distinct advantage over AO in most cases. In
Section 1.1 it was mentioned that for certain combinations of spatial geometries and sizes of
arrays of processing elements, SOLOMON is not so effective as the more general highly par-
allel computer. However, this drawback in many cases of practical interest would not be so
severe as to discourage the use of A1 on this computer.

6.2 The Use of the Algorithm A, on Contemporary Computers

1
From the experiments performed the following conclusions can be drawn. One time-step

of a random walk simulation on a contemporary computer using A0 can be accomplished by up-
dating a pair of registers containing the coordinates of the particle being simulated and com-
paring this to a table of coordinates of absorbing points. The necessary search can be accom-

plished in as few as two indirect addressing cycles and is very fast.

The techniques developed for simulating A1 in this research have resulted in some com-
putational concurrency on a conventional computer by using the contents of each of the n bit
positions of the computer word to represent the absence or presence of a particle. The use of

shifting and masking techniques allows rapid processing of these data.

However, to be able to use this technique it is required that the space be partitioned into
units which can be represented by one machine word, and there must be a program to link
these words as defined by the geometry. As the size of the space increases, the number of
words and complexity of linking increase. The lack of true parallelism and the added drawback
for large spaces leads to the conclusion that the use of A1 on contemporary computers will not
result in any advantage over the use of AO.

6.3 Suggestions for Further Research

The investigation reported here leads to the following suggestions for further research:
a) The assumptions upon which the theorem in Section 4.2 is based should be substantiated.

b) Variations on the random walk defined in Section 2.1 should be investigated. Suggested
variations are:
1. asymmetrical distribution of the values of the random variable used to determine
direction of particle motion,
2. random walk with spontaneous particle emission,
3. spaces with isolated absorbing points, and

4. spaces of dimension 3 and higher.

The results of Section 4.1 indicate that research on Item bl above will lead to the conclusion
that algorithm A1 is at least as advantageous when the transition probabilities are asymmetric

as it is in the symmetric case.
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The results of Section 4.2 indicate that G > -;— and probably G > 1 for spaces of dimension
3 and higher. In these cases the fraction of time that the source is covered k will be less than
in the two-dimensional case. Since there is no reason to believe that D will increase to offset
the resultant increase in E, research under item b4 should prove A1 to be of even greater ad-

vantage in these cases than in the two-dimensional case.

c) Since it is likely that highly parallel computers will become available in the near future
and, as shown in this research, solving some problems by using conventional algorithms does
not always take full advantage of such systems, there is a large number of applications for

which novel algorithms based on these new organizations should be developed and verified.
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Appendix A-1

A SPECIAL PURPOSE COMPUTER FOR PARTIAL DIFFERENTIAL
EQUATION SOLUTION AND OTHER ITERATIVE ALGORITHMS

A.1.1 Introduction

The computer organization described below is an extension of a concept of Leondes and
Rubinoff (Ref. 10), although it was invented independently by this author ten years later. The
original machine consisted of a drum store and a single processor capable of sequencing its
access from one drum track (array column) to another at the end of each revolution. In this
way it could process one iteration of a Laplace equation in n drum revolutions where n is the

number of columns of the array.

The present author has extended this idea by allowing one processor per drum track. It
will be shown in this paper that a computer of this type can be produced and used in a very
economical way without extension of current technology. Other possible applications of such a

device will also be discussed.

A.1.2 The Computer

Partial differential equation solutions usually require a large number of identical itera-
tions over a large array of data. There are computer organizations proposed which tend to be
highly suitable for the algorithms (Refs. 4, 5, 8). However, it is often the case that the parallel
nature of the computer results in its being costly. The chief reason for this appears to be the

generality of the individual processing units and the expense of their associated stores.

The approach to this problem which is considered here involves a slow, thus inexpensive,
store and a set of processors whose power and flexibility are well below that of any general
purpose computer. As is done in many parallel machine organizations, the store is to be con-
sidered as a two-dimensional array. Unlike many such designs, there is not one processor for
each element of store, but merely a one-dimensional line of processors. Thus, we should
achieve a design for a computer which is less flexible and slower in executing basic operations

over the plane than would be a system of more general character.

It is appropriate to ask how a _liﬁ_ of processors can operate on a Mg of storage modules.
One solution is to move the processors about. But, at electronic operating speeds, mechanical
movement seems impractical. However, considering moving mass storage devices brings to
mind the magnetic disc and the magnetic drum which have the characteristic that the store is
constantly in motion. To simplify problems of design, the drum was chosen as the basic store

of this machine.
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The processors themselves are considered to be small computers, one per drum track,
fed by read heads from the tracks on the drum and putting out information through write heads.
As the drum turns through one revolution every word of data (stored serially) comes into the

reach, hence within processing power, of one or more processors (Fig. 22).

TRACK i

WORDS, STORED SERIALLY

i ™S

i

\
PROCESSOR i je——— QTHER INPUTS

FIGURE 22. GENERAL ORGANIZATION OF THE COMPUTER

A.1.3 A Primary Application

Consider the solution of partial differential equations; using finite difference methods, a
solution to the Laplace equation with Dirichlet boundary conditions can be formulated in the

following way:
A% =%(Vt+vt+Vt+V t) (A.1)
n s e w
where th+1 is the value of the point p at time t +1 and Vnt, Vst, Vet, and th are the values

of the four neighboring points in the north, south, east, and west directions, respectively, at

time t (Refs. 22, 23). If this computation is executed for all points under consideration in the
t+1 t

v -V

p p

solution to the finite difference problem within the error described by €. The classical

space until = € for all p, then the resultant values at each point describe the

diffusion problem is solved in this manner.

In our new organization, each track on the drum represents a column of the array; the line
of processors works on one row at a time with one processor per column. The appropriate
values for processor input are read from its own and immediately adjacent tracks and delayed
appropriately by delay line (Fig. 23). A comparison for termination criteria is also made.

In each revolution of the drum one new value for each point is computed; thus, one revolution

is equivalent to one iteration over the plane.
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FIGURE 23. INDIVIDUAL PROCESSOR FOR LAPLACE EQUATION

Three-dimensional diffusion problems can also be carried out using a modified version of
this algorithm, hence using this organization. This application would involve the weighted sum
of six inputs, with layers being represented by sets of tracks. The solution of equations in
greater than two dimensions appear to be very important to some areas of study. Such solu-

tions are currently extremely expensive to obtain.

From communications with numerical analysts® it appears that the power of this form of
organization could be enhanced if the algorithm executed were of a more general nature. First
of all, the method of optimum over-relaxation allows solutions to Laplace's equation in a fraction
of the number of iterations required by the algorithm of Eq. (A.1). This over-relaxation al-

gorithm for any point, p, takes on the form

th+1 = th +w [1/4 (Vnt + Vst + Vet + th> - th] )
At first the multiplication by the constant, w, appears to be particularly formidable in a serial
machine of this type. However, 0 < w < 2, and further investigation indicated that approxima-
tion of w to within one-eighth of its optimum value for any set of equations yields solution in

at most 110 percent of the optimum number of iterations. A number of this form can be rep-

resented as a 4-bit integer. Multiplication of a number by a 4-bit constant is no more difficult

Sparticularly, Prof. Jim Douglas, Jr., of Rice Institute, Prof. Richard Varga of Case Insti-
tute, and A. Downing of Oak Ridge National Laboratory.
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than building a 4-input adder with appropriate unit delays. This is accomplished using a set of
gates controlled by the value of w and applying the sum (in parentheses above) at each of the

adder inputs. (See Fig. 24.)

w - ONE BIT APPLIED TO EACH LINE

X %X X X

SUM IN SERIAL L
FORM []] ) /L - >
N ? 4

&
i Je

Y [ = 1-8iT TIME DELAY

FIGURE 24. FOUR-BIT MULTIPLIER FOR OPTIMUM OVER-RELAXATION MODULE

A second improvement can be made if equations more general than the Laplace form could
be solved. This would be accomplished if, in the computation of a new value for any grid point,
the values representing the neighboring points can be multiplied, each by a particular, and
generally different, weighting constant. For example:

t+1 _ t t t t
Vp —VNWN+VSWS+VEWE+VWWW

If the four w's for one point can be stored in a single machine word, then this result can be
achieved by halving the effective amount of storage to 375 x 500. However, four fast multi-
pliers per module are necessary and this could be an excessive expense. On the other hand,
if the w's can be kept to as few as 6 or 8 bits, then the technique employed earlier might be

applied.

A.1.4 Evaluation

A large drum spinning at 1500 rpm can carry out 1500 iterations on this problem per

minute. Drums are currently available which are large enough to carry 375 by 1000, 40-bit
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word arrays and can revolve at these speeds.® On arrays of this size the organization would
allow a 2000-iteration solution of Laplace's equation in approximately two minutes including
loading and unloading the drum. If storage limitations are neglected, this computation would
require approximately ten hours on a conventional computer such as the IBM 7090. Smaller
arrays would involve the use of smaller drums capable of angular velocities at least 10 times
greater than the 1500 rpm quoted. There would also be commensurate savings in overall time

due to the fewer iterations required to solve such problems.

It is naive to consider such a machine being useful by itself. Our current thought leads us
to believe that this device should be considered functioning as a special purpose input-output
device on a fast general purpose machine whose purpose would be to load and unload the drum
store and to perform desired computations necessary for preparing input and analyzing output.

Costs for the 3.75 x 106 word device break down as follows;

2 Drums $ 30,000

Read/write heads and amplifiers 300,000

at $300 per track

Processors at $1000 per track 1,000,000

General purpose computer 3,000,000
$4,330,000

The estimate for track processor cost is very generous and the other estimates are
based on available equipment! The total price of the system is such that it appears to be well
within range of eclipsing the effectiveness of any available or proposed system when measured
in computations per dollar. But, so far in this presentation, this is true for only one problem,

and this drawback is serious.

A.1.5 Other Applications

In general, to be truly useful any computer system must be operating for several hours a
day or its great expense may be wasted since a less expensive, slower system should suffice
for the available workload. In the case of the system under discussion, it has an immediate
advantage in that over 50 percent of its cost is represented by a general purpose computer, the
operation of which is in no way impaired by the attachment of the drum device and which may
be used in a conventional way at times when the drum is inactive due to lack of need, disrepair,

etc.

6 Current solutions involve only about 30,000 points, due mainly to the size of the stores
of the machines.

"These figures arise from personal communication with the Bryant Division, Ex-Cell-O
Corporation, and ""Computor Characteristics Quarterly,'" Charles Adams Associates (1962).
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On the other hand, seeing that a new application involves no more than a change of the in-
dividual processors, we asked ourselves for what other applications might this organization be
useful. One which came immediately to mind through its use in solution of partial differential
equations is the random walk. To this end, a new, highly parallel method for simulation random
walks is currently under active investigation. It has been suggested that implicit methods for
solution of partial differential equations could also be developed to take advantage of this or-

ganization.

Another application involves parallel-search memories (associative memories)(Ref. 24).
Both ordered-multiple-occurrence and single-occurrence memories can be simulated with
fixed word length required in the former case. The search and access time would be relatively
high (on the order of 50 usec to 1 msec) depending on the size of the store, but the relative low
cost of this device makes it worth consideration for this application. The uses to which search
memories can be put include information retrieval applications, bubble chamber photo-analysis,

etc.

Many other applications can be considered. A most interesting example is the pattern rec-
ognition computer of McCormick and Divilbiss (Ref. 9) which apparently can be simulated in

this organization. The advantage here again appears to be low cost.

A.1.6 Conclusion

The opinion held by some that special purpose computers can be organized to be more
efficient and economical for certain applications than more general purpose computers prompt-
ed the investigation reported here. Our results are quite favorable in supporting this opinion

and comment from other sources has been generally favorable.
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Appendix A-2
IMPLEMENTATION OF THE ALGORITHM Ay ON THE
COMPUTER OF APPENDIX A-1

Hardware or program implementation of the algorithm A1 on some machine capable of a
large degree of concurrent processing is relatively simple. For example, Figs. 25 and 26 show
a detailed logical design for a processor of such capability for the drum machine described in
Appendix A-1. (These figures do not include the additional circuitry to load and unload the drum
between simulations.) Briefly, the drum contains, stored serially in one word, the information
describing the state of the grid point simulated by that word (i.e., is this a boundary point, is
this a source point, was this point occupied at previous time step) and the contents of a counter
to be used to count absorptions or insertions at that point. With many words stored on each
drum track and many tracks and processors across the drum, as the drum revolves each proc-
essor simulates the activity of each grid point in a particular column for one time-step. Con-
sidering a space of maximum size 200 by 200 grid points and less than 1010 random total walks
desired per simulation, a 200-track drum holding two hundred 40-bit words per track would be

suitable for this simulation.

The processor itself consists of a counter and some simple circuitry to distribute particles
(i.e., to set appropriate "occupied' bits). Using delay line storage, it is possible to develop a
new storage configuration representing some module and delay its output so as to have simul-
taneous serial reading and writing as the drum revolves with no danger of premature erasure.
A central control device capable of counting total absorptions and issuing random variable
values must also be provided. The module as depicted here contains fewer than 30 active ele-
ments (gates) and 16 delay lines of various lengths, including the hardware necessary for the

flip-flops depicted.

The counter module is used for forming the unit increment or unit decrement of the pre-
vious count depending on whether the module is simulating a boundary point or source point.
Again, due to the bit-wise serial operation of the system, the circuitry for such devices can be
rather elementary. Flip-flop No. 1 in the counter is used for retaining information defining a
source simulation; No. 2 is used to detect simulation of an occupied boundary point or a non-
zero source count, and the third to complement the low-order bits of the counter in performing

the unit change.
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FIGURE 25. CONCURRENT RANDOM WALK PROCESSOR FOR DRUM MACHINE
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Appendix B

CONCURRENT RANDOM WALKS IN A ONE-DIMENSIONAL SPACE
WITH THE SOURCE AT THE CENTER

by James Dickey
The cells are ordered from left to right, 1, 2, . .., 2K +1; cells 1 and 2K + 1 are ab-
sorbing, and cell K + 1 is the particle source. At each step in the process either all unabsorbed
particles move to the right by one cell with probability p, or all unabsorbed particles move to
the left by one with probabilityq =1 - p. A new particle is born at cell K + 1 whenever a step
leaves it unoccupied (concurrent random walks). (For non-concurrent random walks, a new

particle is born whenever a step leaves all the cells unoccupied.)

The process is observed untilN particles have been absorbed. We wish to describe the
random variables Nﬁ and Nr’ the number of particles absorbed at cells 1 and 2K + 1, re-

spectively.

To that end we treat the process as a Markov chain with two states, £ and r, corresponding
to ""most recent absorption was on the left"" and "most recent absorption was on the right."

The matrix of transition probabilities is either

[} (to) r
¢ K 1
K +1 K+1
(from)
r 1 K
K+1 K+1

with stationary probabilities @, %) ifp=q-= —;—, or

1-4 1-4
1- D __P_l_
K
1-(9._)K+1 l-g +
p p
1-P 1-2
9 1-—9
K+1 K+1

quK _ qZK p2K _ quK
with stationary probabilities p2K - qZK ’ p2K - qzﬁ—- if p # q. (The transition probabilities

are solutions to the classical gamblers' ruin problem.)

(N 0 Nr) is the frequency count of a partial realization of length N of an ergodic Markov
chain. Hence, as N increases, the random vector (N I Nr) has asymptotically a normal dis-

tribution with mean either (%, %) ifp=qg-= %, or
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if p # g, and covariance matrix either

1 1
7NK - 7NK
1 1
- 7NK 7NK
. 1
1fp=q=§,or
A -A
-A A
where A equals
KK 2K,2K KK |K+1 K K K+1|
(g -9 )P -pa)yla +pg -gp - p
9K _2K2 R K K K+l
" -a) q -pg +gp -p l

if p#q. (See Eq. (9) of Ref. 25.) The mean of (Nﬁ, Nr) is, in fact, exact.

In the nonconcurrent case, the matrix of transition probabilities is either

11
2 2
11
2 2
ifp=q= 1 or
2’ 1-B B
1-B B
where B equals
()
p

which is equal to

KK 2 2K KK
paqa -49 p -p4d
2K 2K 2K 2K

-q p -q
KK 2K 2K K K
p -4 -pPq
2K 2K 2K 2K
p -q -q

if p# q. The stationary probabilities are found to be the same as in the concurrent case; hence
the mean of (Nﬁ, Nr) is the same. As N increases, the approach of (N I Nr) to normality is
that of (X, N - X)where X is binomially distributed with parameters N and pl . and the exact

’

covariance matrix is
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1 1
ZN _ZN
1 1
-ZN ZN
ifp=q =%, or
C -C
-C C

where C equals

KK 2K 2K KK
(P -a" ) -pa), g
2K _ _2K?2

(" -a7)

if p#q.

If one used Monte Carlo methods to estimate the stationary probabilities by the random
vector (NQ/N, Nr /N), in the no-drift case (p=q = %) one's estimates using concurrent random
walks would have K times the variances as when using non-concurrent walks, for the same large
number N of particles, Since with the concurrent method K times as many particles can be
absorbed than with the non-concurrent method for the same large amount of random numbers,
and, since the variances of the estimates are linear in 1/N, the two methods are equally com-
mendable if p = q, and the only desideratum is economy of random numbers. In the drift case
(p # q), the variances of the estimates with the concurrent method differ from the variances

with the non-concurrent method, by a factor of

IK+1 K K K+1|
q +pg -qp - p
I K+1 K K K+1| ’
q -pg +qp -p

As K increases, this factor approaches
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Appendix C

COMPUTER PROGRAMS USED IN THIS RESEARCH
Sections 5.1.1 and 5.2.1 contain descriptions of the use of the programs included in this
appendix. The programs appear as they stood at the last time they were translated. They
were written in the MAD and UMAP languages and processed in The University of Michigan

Executive System. Unless otherwise noted, all variables are of integer mode,

C.1 RDEP

for random walk simulation in spaces with irregular boundaries

$COMPILE MADs PRINT OBJECT +PUNCH OBJECT RDEP0O0OO
MORMAL MODE IS INTEGER
FEOOLEAN SET» Qy SAV
FLOATING POINT K
FLOATING POINT KT s KS sESsESET
DIMENSION A(30)sTX(S00}4sTAB(1NEN)4B(9NN)9MASK(30)
TOHSTIZe (3)
MuM=0

START QA=0
COUNT =0
=08
SAV=08B
AV=0
ES=0.
ET=0e
KT=0
KS =0
PRINT COMMENT $18%
PEAD AND PRINT DATA XMAXsYMAX4NUMsTIMES4REPsCOUNT QA
FORMAT VARIABLE F1sF2,F3
F1=YMAX~-ORGY+1
F2=XMAX
F3=0RGX~-1
VHENEVER NUMeNE«OsRANDSe (NUM)
MUM=0
SETe(AsXMAX 9 YMAXsMASK s TABs TXs TOT)
INSERS« (ORGXsORGY sAs XMAX s YMAX )
WHENEVER COUNT oNEWO
SAV=18
AV=TIMES/COUNT
END OF CONDITIONAL
WHENEVER QA«NE+0sQ=18B
ZERO4 (TAB(1)eeeTAB(900))
MSK=1eL Se XMAX

L=1
J=0
THROUGH B1sFOR I=1914s1eGeYMAX
MASK(I)=0
THROUGH B24FOR L=Ls1sB(L)aFe99
J=J+1
TAB{(TeLSe5)+B(L))I=J
X=B(L)
B2 MASK(I)=MASK(I)eVe({MSKeRSsX)
B1 L=L+1
GT=J
THROUGH B3y FOR I=YMAXs=1slelel
B3 PRINT RESULTS TAB(IeLSe5+1)seeTAB(leLSe5+XMAX)
PRINT FORMAT OUTs(I=YMAX9=19T4LelsMASK(I)eVelK1l)
TT=1
TRANSFER TO UMP
LOOPA TT=TT+1
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JMP

LooP

S(0)
S(1)
S(2)

5(3)

RCD

VHENEVER TTeGeREPSsTRANSFER TO START
ZEROe (Ao oo ALYMAX) 3 TX{1)eaeTX(900))

COUNT =AYV

BR=0
TIMESS=TIMES
INSERP+ (TIMESS)
¥.X=0
TOT=0
T=0
INSERTW(0)

VVHENEVER Q
BR=BR+1
WHENEVER BReEQA
BR=0
LINE=LINE+3+YMAX
WHENEVER LINE«Ge60
PRINT COMMENT $1%
LINE=YMAX+2
END OF CONDITIONAL
PRINT FORMAT OUTos(I=YMAX s=1slelolsA(I)eVelK1ll)
VECTOR VALUES OUT=$1H~/'F1*(1H +2BI'F29/)91H+4S*F34,1HS/(1H
1 +2BItF20 %8
END OF CONDITIONAL
END OF CONDITIONAL

T=T+1
KX=KX+TIMES-TIMESS-TOT
TRANSFER TO S(RAND«(0))
MVPXe

TRANSFER TO RCD

MVMX e

TRANSFER TO RCD

MVPY,

TRANSFER TO RCD

MVMY .

TRANSFER TO RCD

WHENEVER oNOTeSAV
WHENEVER TOTeLeTIMES, TRANSFER TO LOOP
PRINT COMMENT $2%

PR

TRANSFER TO LOOPA

OTHERWISE

WHENEVER TOTeLeCOUNTs TRANSFER TO LOOP
PRINT COMMENT $28%

COUNT = COUNT+AV

PR

PRINT COMMENT $1GRAND TOTALSS
TOT=COUNT

PR

TRANSFER TO LOOPA

END OF CONDITIONAL

INTERNAL FUNCTION
ENTRY TO PR
ExKX/(T+0e)
ET=ET+E
ES=ES+E*E
Kzle=(TOT+0e) /T
r.T=KT+K
¥.S=KS+K#K
PRINT RESULTS TOTsTsE sK 9TX(1)eeseTXI(GT)
PRINT RESULTS KTsKS oESHET
BPUNCHe {TX(1)eeeTX(GT))
FUNCTION RETURN
END OF FUNCTION
END OF PROGRAM
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Input parameters:

XMAX maximum dimension along x-axis, XMAX < 36.
YMAX maximum dimension along y-axis, YMAX < 30.
NUM odd, 12-digit octal number to prime random number generator. If not

supplied, the random numbers continue from the previous simulation.

TIMES corresponds to N in the text.
REPS corresponds to Rxr in the text.
B(1). .. the x coordinates of the absorbing points in row 1 of the array, followed

by 99, followed by the x coordinates of the absorbing points in row 2, etc.,
followed by 99.

QA When used, the program will print an image of the simulation space once
in every QA time steps.

ORGX x location of source.

ORGY y location of source.

Output parameters:
TX()- . - the total number of absorptions at boundary point i; the ordering on the

boundary points as defined in 4.2 (also punched in BPUNCH format).

KT sum of covering factors for all replications.

KS sum of squares of covering factors for all replications.

ET sum of average number of active particles for all replications.

ES sum of squares of average number of particles for all replications.
TOT total number of particles replicated.

T total number of time-steps required for all replications.

RDEP also prints an image of the absorption mask and a list of the indices of the absorbing

points.

C.2 MOVE
Subroutine for use with RDEP

$SASSEMBLEPUNCH OBJECT MOVEO0OOO
ENTRY SET
ENTRY MVMX
ENTRY MVP X
ENTRY MVMY
ENTRY MVPY

SET CLA 194
STA LOOP
STA LOOPA
STA A
STA AA
STA AAA
STA 8
STA LOOPS
STA MB
STA MC
STA ME
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MVMX
LOOP

AA

MVP X
LOOPA

AAA

MVPY
MC
MD

MF
73T
LOOPS
MSK

XMA X
LOOP3

SuUB
STA
STA
STA
CLA*
ALS
STD
ARS
STA
CLA
ALS
STO
CLA*
STA
STA
STA
susB

T4

Bs4

*%41

[ 2 X9

1

*%9]
LOOPs 141

TST
*¥q]

*%y]

1

EZTY!
LOOPA» 191
TST

1s1
*Hy]

L 2 X
#4191
MAg 1y %%
#¥y1
TST
*%e]

L 3 X9}

L 2 XD
MCselsl
*%

L2 TP
*y]

L XD
LOOP4
T™MP
CON

TL

162

TL

1

TL

T™MP
LOOP2
#4491
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B SLw *#,]

SXD SV 2
PXA Osl
ALS 5
PAX 092
YY) X1 #4192 g ¥
T8 CLA k2
PAX 0s2
T1 CLA *%g2
ADD =1
T2 sTO ity 2
T3 CLA *¥
ADD =]
T4 STO * %
LXD SV 2
LoorP2 TXI *#¥+149291
XTRA TXL LOOP3 42 %%
LOOP4 TIX LOOPS5 9191
TRA 1e4
TL PZE
T™MP PZE
CON PZE
END
C.3 ISRR
Subroutine for use with RDEP
$ASSEMBLEs PUNCH OBJECT ISRR0OOOC

ENTRY INSERS
ENTRY INSERP
ENTRY INSERT

INSERP CLA 194
STA 10
STA 1C
CLA CLA
STO INSERT
TRA 244
INSERS CLA* Y
suB#* 1+4
STA *+2
CAL =1
ALS *
SLW CON
CLA 394
SUB#* 294
STA CLA
STA 18
TRA 64
INSERT CLA L2
ANA CON
TNZ 2+4
CAL CON
10 ORS L 2
1C CLA *
susB =]
1D sSTO *¥
TNZ 294
CLA *+2
sSYO INSERT
TRA 204
CON PZE
CLA CLA
END
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C.4 NDEP
for random walk simulation in square spaces

$COMPILE MADs PRINT OBJECTs PUNCH OBJECT NDEPOOOO
MORMAL MODE IS INTEGER
POOLEAN SETs Qs SAV
FLOATING POINT K
FLOATING POINT KT » KS
DIMENSION A(30)sSXM(30)9SXX{30)sSYMI30)sSYX(30)sTYMIN(30))
1 TYMAX(030)sTXMIN(30)+sTXMAX(30)
TOHS1Ze(3)
MuM=0

START QA=0
COUNT =0
0=08
SAV=08B
AV=0
VIR TTeGeREPS s PRINT RESULTS KTsKS
KT=0
KS =0
PRINT COMMENT $1%
READ AND PRINT DATA XMAXsYMAXsNUM,TIMESsREPyCOUNT QA
MAX=YNMAX
WHENEVER XMAXeGeYMAX ¢MAX=XMAX
FORMAT VARIABLE F1sF2,F3
F1=YMAX-ORGY-1
F2=XMAX~2
F3=0RGX~-2
WHENEVER NUMJNE+OsRANDS s (NUM)
MUM=0
MVXSe (AsXMAX s YMAX)
MVYSe (AsXMAX s YMAX)
INSERSe (ORGX9sORGY s A s XMAX s YMAX )
VHENFVER COUNT oNEeO
SAv=18
AV=TIMES/COUNT
END OF CONDITIONAL
WHENEVER QAeNE+0+»Q=1B

TT=1
TRANSFER TO JMP
LOOPA TT=TT+1
JMP WHENEVER TTeGeREPSsTRANSFER TO START

ZERO. (Ao e ALYMAX))

2EROe {SYMe e s SYM{MAX) 3 SXMe oo SXM(MAX) 95X X 00 e SXX{MAX) s SYXeseSYX
1 (MAX)9sTYMINe oo TYMIN(MAX) s TXMINe oo TXMINIMAX) s TYMAX g oo TYMAX(MA
2 X)sTXMAXeoe TXMAX(MAX) sRMX 9RMY sRPXsRPY s TOTHLINEST)

COUNT =AYV

BR=0

TIMESS=TIMES

INSERP4 (TIMESS)

T0T=0
LOOP INSERT«(0)

VIHENFVER Q
BR=BR+1
WHENEVER BRJE+QA
BR=0
LINE=LINE+1+YMAX
WHENEVER LINE«Ge60
PRINT COIMMENT $1$%
LINE=YMAX+2
END OF CONDITIONAL
PRINT FORMAT OUTs(I=YMAX=29=19T0LelsA(l),VelK1l)
VECTOR VALUFS OUT=$1H=/tF1t(1H 42BI'F21/)131H+9S1F31,1HS/(1H
1 92BI'F21)»$
END OF CONDITIONAL
END OF CONDITIONAL
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S{0)

S(1)

S(2)

S(3)

RECORD

RS

T=T+1

TRANSFER TO S(RAND.(0))

Y=MVPXe(0)

VHENEVER YoNE SO
TXMAX(Y)=TXMAX(Y)+1
TOT=TOT+1
SET=18
TRANSFER TO S(0)

OTHERWISE
RPX=RPX+1
WHENEVER SETsTRANSFER TO RECORD
TRANSFER TO LOOP

END OF CONDITIONAL

V=MVMXe (0)

WHENEVER YeoNF O

TXMINCY)=TXMIN(Y)+1
SET=18

TOT=TOT+1

TRANSFER TO S(1)

OTHERWISE
RMX=RMX+1
WHENEVER SETs TRANSFER TO RECORD
TRANSFER TO LOOP

END OF COIDITIONAL

Y=MVPYe(O0)

WHENEVER YoNE O
TYMAX(Y)=TYMAX(Y)+1
TOT=TOT+1
SET=18
TRANSFER TO 5(2)

OTHER WISE
RPY=RPY+1
WHENEVER SFTs TRANSFER TO RECORD
TRANSFER TO LOOP

fIND OF CONDITIONAL

V=MVMYe (O)

WHENEVER YoNFeO
TYMIN(Y)=TYMIN(Y)+1
TOT=TOT+1
SET=1B
TRANSFER TO S(3)

CTHERWISE
RMY=RMY+1
WHENEVER SETs TRANSFER TO RECORD
TRANSFER TO LOOP

END OF CONDITIONAL

SET=0B
VVHENEVER oNOTeSAV
WHENEVER TOTeLeTIMESs TRANSFER TO LOOP
PRINT COMMENT $2%
PR
TRANSFER TO LOOPA

OTHERWISE

VHENEVER TOTeLeCOUNT, TRANSFER TO LOOP

PRINT CCMMENT $2%

COUNT = COUNT+AV

PR

THROUGH RSs FOR I=1s1s1eGeMAX

SYM(1)=SYM(I)+TYMIN(T)

SYX(1)=SYX(1)+TYMAX(I)

SXMITIYI=SXM(I)I+TXMIN(T)

SXX(T)=SXX(I)+TXMAX(])

2EROe (TYMINo oo TYMIN(MAX) s TYMAX oo e TYMAX(MAX) g TXMING s ¢ TXMIN (MAX
1 ) eTXMAXeee TXMAX(MAX))

VVHENEVER TOTeLeTIMESsTRANSFER TO LOOP

MOVER e {SYMo e e SYM(MAX) s TYMINe o e TYMIN(MAX) 9 SYXe e e SYX{MAX) s TYMAX
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1 eee TYMAX(MAX) 3SXMo e e SXMIMAX) s TXMINe o e TXMIN(MAX) s SXXe 0o SXX(MA
2 X)sTXMAXeee TXMAX{MAXY))

PRINT COMMENT $1GRAND TOTALSS

TOT=COUNT

PR

TRANSFER TO LOOPA

FND OF CONDITIONAL

INTERNAL FUNCTION
ENTRY TO PR
K=21e=(TOT+0e)/T
KT = KT + K
S = KS + K¥*(
PRINT RESULTS TOTsToeKeTXMIN(1)eee TXMIN{YMAX) s TYMAX(1)eeoeTYMAX
1 (XMAX) s TXMAX(YMAX) 00 e TXMAX (1) s TYMIN{XMAX) 0o e TYMIN(1)
2  sRMXsRPXsRMY,RPY
PPUNCH o TXMINCG2) e oo TXMINC(YMAX=~1) s TYMAX(2) e a0 TYMA
1 X{XMAX=1) s TXMAX(YMAX=1)0eeeTXMAX(2) s TYMIN(XMAX—1)ee e TYMIN(2))
FUNCTION RETURN
END OF FUNCTION
END OF PROGRAM

Input parameters

XMAX as in RDEP
YMAX as in RDEP
NUM as in RDEP
TIMES as in RDEP
REPS as in RDEP
QA as in RDEP
ORGX as in RDEP
ORGY as in RDEP
Output parameters:
TXMIN(i) number of absorptions at point i on left-hand border
TXMAX(i) number of absorptions at point i on right-hand border
TYMIN() number of absorptions at point i on bottom border
TYMAX() number of absorptions at point i on top border

The above data all also punched according to BPUNCH format.

KT as in RDEP
KS as in RDEP
TOT as in RDEP
T as in RDEP
C.5 MVX
Subroutine called by NDEP
$ASSEMBLE s PUNCHOBJECT MVX00000
ENTRY MVMX
ENTRY MVPX
ENTRY MVXS
MVXS CLA 1ok
STA LOOP
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STA LOOPA

STA AA
STA AAA
STA ouUT+1
CLA* 394
suB =2
STA MVP X
STA MVMX
STA MVA
STA MV
CLA* 294
susB =3
STA *#42
CLA =2
ALS LA
sSTO CON
TRA 4ol
MVYMX AXT *%y]
LOOP CLA *¥y]
ALS 1
AA STO *ky]
ANA CON
TNZ our
TIX LOOPs 1,1
MVA AXT *g]
SXA MVMX s 1
ZAC
TRA 294
ouT COM
ANS *#y]
X1 *#4+1919-1
SXA MVMXs 1
PXA Ol
ADD =2
TRA 294
CON PZ2E
MVP X AXT *Hy]
LOOPA CLA LA X1
LGR 1
AAA STO kg ]
TQP *42
TRA OUTA
TIX LOOPAs1 91
MV AXT %y ]
SXA MVPX»s1
ZAC
TRA 24
OUTA X1 #4+1919-1
SXA MVPXs1
PXA Osl
ADD =2
TRA 294
END
C.6 MVY

Subroutine called by NDEP

$ASSEMBLE,s PUNCH OBJECT MVY00000
ENTRY MVYS
ENTRY MVPY
ENTRY MVMY

MVYS CLA 1e4
STA AA
STA AB
STA ABB
ADD =1
STA AMB
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MVPY
MX
AA

AM

TEST
MXA

MXR

upR

TR
NOP
CON
TST
CONA
MAX
MVMY

AAR

X1

STA
suB
STA
CLA*
STO
suB
STA
STA
CLA
ALS
ARS
sTO
CLA*
suB
STA
ADD
ALS
STD
CLA
STO
STO
TRA
NOP
AXT
CLA
sT0
CLA
STO
TIX
CLA
TZE
CLA
STO

stw
AXT
TRA
AXT
CLA
LDI
TIO
ARS
TIX
CLA
sTO
STO
ZAC
TRA
ARS
TNZ
CLA
STO
PXA
CHS
ADD
TXI

SXA
TRA
TRA
NOP
PZE
PZE
PZE
PZE
NOP
AXT
CLA
STO
TXI

AM
AAB
204
MAX
=2
MXA
*42
=]
1)

CON
394
MX
=]

sTD
NOP
MVPY
MVMY
4ol

*¥%41
[ 2 XD
TST
*%g]
*¥#q1
*#=29191
TST
294
TR
MVPY
CON
CONA
Ryl
*42
xy]
CONA
TST
upP

1
*#=2919y1
NOP
MVPY
MVMY

294

1

*+2
=K1K11
CONA
Ol

MAX
#4191 91
MXBs1
294

MXB

1s1
*¥

TST
*+19101

74



ABB CLA *#y]

AMB STO *#¥y]
STD TXL TXIolgh®
CLA TST
TZE 2+4
CLA TR
STO MVMY
TRA TEST
END
C.7 INSRA
Subroutine called by NDEP
$ASSEMBLEs PUNCH OBJECT INSRAOOO

ENTRY INSERS
ENTRY INSERP
ENTRY INSERT

INSERP CLA 1e4
STA 1D
STA 1C
CLA CLA
STO INSERT
TRA 204

INSERS CLA* 4ol
sSUB#* 1e4
STA *42
CAL =1
ALS »
ARS 1
SLW CON
CLA 394
SUB#* 294
ADD =1
STA CLA
STA 18
TRA 694

INSERT CLA *H
ANA CON
TNZ 294
CAL CON

I8 ORS %

1C CLA * %
suB =1

1D STO ¥
TNZ 294
CLA *+2
STO INSERT
TRA 294

CON PZE

CLA CLA
END

C.8 RNCSA

random number generator called by NDEP and RDEP, returns a random number between

0 and 3 inclusive
SASSEMBLE J+PUNCH OBJECT RNCASO00
ENTRY RAND
ENTRY RANDS
RANDS CLA%* 1,4
STO MUM
SXA SViée4
CALL «PRINT
FMT FORM
ENDIO
Sv4 AXT ¥%44
TRA 2+4
FORM BCI *sH¥* METHOD 7-23-63#%%
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RAND

ZERO
ONE

GR

TWO

NUM
CON

C.9 ECOMP
computes E, k, P for any rectangular space

LDbQ
MPY
sTQ
XCA
CAS
TRA
TRA
CAS
TRA
TRA
ZAC
TRA
CLA
TRA
CAS
TRA
TRA
CLA
TRA
CLA
TRA
PZE
oCT
END

MUM
CON
MUM

=K2K11
GR

GR
=K1K11
ONE
ONE

294

=]

294
=K3K11
TWO
TWO
=3
294

=2

24

243277244615

$COMPILE MADy PRINT OBJECTs PUNCH OBJECT

START

SS

S1

VECTOR VALUES P1=34,14159265
INTEGER M3sNsRsP,Q
DIMENSION SPR(5000)4C1(5000),4C2(5000)48(5000)

INTERNAL FUNCTION SINHe(X)=(EXPe(X)=-EXP4s(=X))/24

FTRAP

FEAD AND PRINT DATA AsBsNsM

M=M=2

M=N=-2

A=A-1

B=8~1

PIM=PI/(M+1le)

MP=N+1.

THROUGH SSy FOR R=z14143ReGeM
T=24=COSe (R¥*PIM)

B(R) =ELOGe(T+SQRT(T*#T=1a})

AR= SING(A®R¥PIM)

WHENEVER +ABSe(NP*B(R)}eGa 87,2
CI(RI=AR/(FXPo(2+*#B(RY))~104)
C2(R)=0,

CTHERWISE
C = SINHe (B(R))®SINHe (NP%B (R} )
C1(R)=AR®#SINHe ( {(NP~B)%B(R)) /C
C2(R)=AR®SINH. (B*B(R)})/C

END OF CONDITIONAL

V=04
THROUGH S+sFOR Px1,314PGeM
THROUGH S1ly FOR R=1,13ReGeM
SPR(R)=SINe (P¥R¥P M)
THROUGH Ss FOR Q=1419QeGeN
SUM=0,
WHENEVER QeLE.B
THROUGH SAs FOR R=1319ReGeM
WHENEVER C2{R)eEeOs
T=1-Q-8
W'R TelLe 8743
SUM= SUM+SPR(RI*C1(R)¥EXP4((1+Q-B)I*B(R))
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O'E
SUM=SUM+SPR(R)Y#C1(R)*(EXPo( (1+40~B)*B(R) })=FXPa (T%R(R)})
E'L
OTHERWISE
SUM=SUM+SPR(R)*#C1(R)*SINHe (Q*B(R))
SA END OF CONDITIONAL
OTHERWISE
THROUGH SBs FOR R=1,14R4GeM
WHENEVER C2(R)eFEe0Os
T=1-Q-B
W'R TelLe 8743
SUM= SUM+SPR(RI*#CI(RI*EXP L ((1+B~-Q)*B(R})
0O'E
SUM=SUM+SPR(R)*#C1(R)*#(EXPe( (1+B-Q)*B(R) ) ~FXPe (TXR({R})))
ErL
OTHERWISE
SUM=SUM+SPR(R)*#C2(R)*SINHe( (NP-Q)%B(R))
S8 END OF CONDITIONAL
END OF CONDITIONAL
SUM =SUM%84/ (M+1,)
VHENEVER PeEeAsANDeQeE«BsWAB= SUM
S V=W+SUM

K ={WAB-1le) /WAB

E = Wr{le/WAR)

PRINT RESULTS W +K»E
TRANSFER TO START

END OF PROGRAM

Input parameters:

M maximum x dimension.
N maximum y dimension.
A x-coordinate of source.
B y-coordinate of source.

Output parameters:

E as in text.

W P in text.

K k in text,
C.10 PROBS

determines absorption probabilities for any rectangular spaces

$COMPILE MADs PUNCH OBJFCTs PRINT OBJECT PROBS000
R PROBABILITY OF BORDER TERMINATION GIVEN DIMENSIONS OF RECT-
R ANGLE AND COORDINATES OF SOURCE
DIMENSION TOP(100)sBOT(100)sLH(100)sRH(100)
DIMENSION CON(100)
INTEGER MsNsA+B+BNBCDe sRoP
INTEGER Y
VECTOR VALUES PI1=3414159265
R
INTERNAL FUNCTION
ENTRY TO SETUP.
MP=M+1,
HP=N+1le
PIM=PI/MP
THROUGH S1s FOR R=1%14ReGeM
T=2e=COSe (R*PIM)
Bl=ELOGe (T+SQRT e (T*#T~1,4))
VHENEVER ¢ABSe (NP*B1)eGe8742
CON(R)=SINe (A%R*PIM) *EXPo (~B*R1)
OTHERWISE
CON(R)=SINe (A¥R¥PIM)%SINHe ( (NP-B) ¥B1)/SINHe (NP¥R1)
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sl END OF CONDITIONAL

FUNCTION RETURN

END OF FUNCTION
R

INTERNAL FUNCTION SINHe(X)=(EXPe (X)—EXPo(-X1)/20e
R

INTERNAL FUNCTION(X)

ENTRY TO COMP.

THROUGH S29 FOR P=1s1sPeGeM

SUM=0,
THROUGH S3y FOR R=1913ReGeM
S3 SUM=SUM+CON(RI*SIN, (P*R*PIM)
WHENFVER SUMeLE4Oe9SUM=04
s2 Y(P)=(SUMt24) /MP

FUNCTION RETURN
END OF FUNCTION
R
FTRAP,
START PRINT COMMENT $1%
READ AND PRINT DATA MsNsAsB
M=M=-2
M=N=-2
A=A-1
B=B-1
EXECUTE SETUP.
EXECUTE COMPo (LH)
VYHENEVER BeEoN+1-B
THROUGH S&4y FOR R=1,19ReGoM
S4 RH(R})=LH(R)
OTHERWISE
B=N+1-8B
EXECUTE SETUP.
EXECUTE COMP¢ (RH)
B=N+1-B
END OF CONDITIONAL
Y=M
M=N
N=Y
V=z=A
=8B
B=Y
EXECUTE SETUPe
EXECUTE COMP4(TOP)
VYHENEVER BeEoN+1-B
THROUGH S5y FOR R=1451sReGeM
$5 BOT(R)=TOP(R)
OTHERWISE
B=N+1~B
EXFCUTE SFEFTUP.
EXECUTE COMP, (ROT)
END OF CONDITIONAL
Y=M
M=N
M=Y
OUTA(2)=BNBCDe { T%N)
WHENEVER NoGel4sOUTA(2)=BNBCD, (98)
PRINT FORMAT OUTsTOP(1)eeeTOP(N)
PRINT FORMAT OUTAs(R=131sReGeMsLH(R)sRH(R))
PRINT FORMAT OUTsBOT(1)eeeBOT(N)
TRANSFER TO START
VECTOR VALUES OUTA=$1HOsF5e49S 952 sF5e4*$
VECTOR VALUES OUT=231HO04+//56916(S2+sF5+4)%8
END OF PROGRAM

Input parameters:
Same as in ECOMP.
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Output parameters:

Graphical printout of absorption probabilities, with the exception that for spaces with
M > 14 the top and bottom rows are printed on more than one line and the right side is

foreshortened.

C.11 COVAN

$COMPILE MADy PRINT OBJFCT s PUNCH OBJECT COVANOOO
DIMENSION FORMAT(20)
DIMENSICN L(200)
DIMENSION COM(3)
VECTOR VALUES QQ0003 = 2515100
DIMENSION COV(10000+sQQ0003)sR(10000+sQQR0003)sD(100)+8(100}
INTEGER B
EXECUTE ZEROos(PeeoP(100))
TRANSFER TO yP
Q@noo2 PEAD FORMAT SETUPsNsIFWTeNFMT4CT9COMI1)eeeCOM(3)
INIT.
SETEOF + (QQ0026)
VECTOR VALUES SETUP=$58+318:F84095693C6%S
VHENEVER NeGe1COs TRANSFER TO QQO006
TRANSFER TO QQ0007

QQ0006 PRINT FORMAT QQO00B89NsCOM(1)eeeCOM(3)

VECTOR VALUES QQN008 = $ 54H4 THIS PROGRAM WILL HANDL
1E A MAXe OF 100 VARIABLES./31H0O YOU ARE ATTEMPTING TO RUN
113,22H VARIABLES ON RUN 3C6%%

EXECUTE SYSTEM ol 0)

QQoo007 M1=N+1
WHENEVER NFMT oNEe Os TRANSFER TO QQ0010
QQ0009 M2 = 0Q0011

STATEMENT LABEL N2
TRANSFER TO QQ0012
QQ0010 N2 = QQ0013
STATEMENT LABEL N2
QQno12 THROUGH QQ0014 +FOR 1 = 1 sls I eGe
1M1
THROUGH QQ0014 +FOR J = 1 21y J eGe
11 '
QQ0014 R{I+J)=040
WT=140
WTSUM=040
MCC=0
D(N1)=140
WtR NFMT oEe Oy T'O QQ2
MFMT=NFMT#*12
READ FORMAT QQO00159FORMAT(1)e¢eFORMAT(NFMT)
VECTOR VALUES QQ0015 = $ 12C6 *$
QQ2 SETERRe (QJ2A)
LLOOK AT FORMAT QQ3s ITYPE
VECTOR VALUES QQ3=$C1%$
WHENEVER ITYPE.E+-$=3,TRANSFER TO QQ0026
QQ2A SETERR. (0}
TRANSFER TO N2
QQ0013 READ FORMAT FORMAT(1)sD(1)eoeD(N)
TRANSFER TO QQ0025

QQo0011 BREADe (B(1l)eseB(N}}
THROUGH QQ11Ay FOR B=z1l,1sBeGeN

QQ11A D(B)=B(B)

QQ0025 HCC=NCC+1
VTSUM=WTSUM+WT
THROUGH QQ0027 sFOR 1 = 1 vls I oG
1M1
THROUGH QQ0027 »FOR J = 1 vl J oG
11

QQ0027 FeIsJ)=RITJI+D(TIIXD(I)*WT

TRANSFER TO QQ2
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QQ0026 MWT=WTSUM
PRINT FORMAT SETOUTsCOM(1)eaeCOM(3) sNoNCCoNWT
VECTORVALUES SETOUT=$1H4+3C6/1H0+ST919HNOs OF VARIABLES = 15/
1 1HO»S4922HNOs OF OBSERVATIONS = I[5/1H09S13913HWEIGHT SUM =
2 15/1H29549H*¥VAR NOe%* 4S8 sH¥SUM¥3S12 9H¥SUM SQUARES*9S11sH¥VAR
3TANCE#9S134HREXP%4S1841HD 9 S99 HX¥PROB TH PROB*%$
FN1=WTSUM-1.

THROUGH QQ0N29 #FOR 1 = 1 o1y I eGe
IN
THROUGH QQ0029 +FOR J = 1 vl J ¢Ge
11

QU0029 COVIIoJ)=(RIT9JI=RINLSII®R(N14J)/WTSUM) /FN1
00530.
SUM=0.
P=0se
WHENEVER P({1)eEe0sSPRAYe{OsP(1)eeeP(N})
THROUGH QQ0030 +FOR 1 = 1 sle I eGe
1M
SS=R(1s1)
AVE=R(N1s1)/WTSUM
D(1)=SQART of «ABS ol SS/WTSUM=AVE*AVE))
THROUGH QQ0031 +FOR J = 1 sl J +Ge
11

QQ0031 PlIsJ)=({R({IsJI=AVERR(N19J))/WTSUM)/Z(D(1)%D(J))
F=D(I}*D(I)*¥WTSUM/ (WTSUM=14)
AV=AVE/CT
P=P+AV

SUM=SUM+R{N1s1)
VIHENEVER P(1)eEeQOesP(I)=AV
PR=P(1)%#(1e=P(1))*CT
D=E/PR
QQSS=SETNe(0)
INTEGER SETN.
STA(QQSS)=STA(QQASS)+D
ST(QRSS)=ST(QQRSS)I+D*D
STN(QQSS)=STN(QQSS)+1
INTEGER QQSS
QQs$=QQS+D
L(I)=D
QQ0030 PRINT FORMAT QQ1sIsR(N1sI)sS3SsEsPReDsAVsP (1)
VECTOR VALUES QQ1=$1HO0sI9+1P5E1947+2F844*$
PRINT FORMAT QQ&4sSUMsQQS/NsP
VECTOR VALUES QQ4=31H-yS4sH¥TOTAL*91PE19e79S5T4s1PF1Q474F8e4%%

INTEGER N ’ N1 ’ IFWT 1
INTEGER J ’ NCC ’ NFMT Qanel7
INTEGER QQ0020, QQ0024, ITYPE » NWT
INTEGER MXOUT » NXOUT
SETEOF. (0)

UDA £S8=0,
MN=0,

uP PEAD FORMAT INsOPsNIsA(1)eeeA(NI)

WHENEVER OPe«E+$PROBS
READ AND PRINT DATA P(llees
OR WHENEVER OPe+FE+3$CORRS
EXECUTE MXOUTe(RsN)
PRINT COMMENT $1%
OR WHENEVER OP+E+$SCOVS
EXECUTE NXOUTe (COVsN)
PRINT COMMENT $1%
OR WHENEVER OP+Ee$SUMS
P=0s
THROUGH S» FOR I=15141eGeNI
S P=P+P(A(T))
EXPzP*(1e~-P)*CT
VHENEVER EXPoeEeQesEXP=1,
SUM=0.
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SDC

SETL(1)

SETL(2)

1

THROUGH S1s FOR
THROUGH S1s FOR J=14519JeGe!
WHENEVER le+EeJ

1215197 eGeNT

SUM=SUM+COV(A(TI)sA(I1))
OR WHENEVER A(I)eLeA(J)
SUM=SUM+ 24#COV(A(J)sA(T))

OTHERWISE

SUM=SUM+2¢*#COVIA(TI) sA(J))

END OF CONDITIONAL

D=SUM/EXP
NN=NN+1.

PRINT RESULTS SUMsEXPsDsA(1)eeeA(NI)

$S=S5UM+SS

ORWHENEVER OP+E«$SDPCHS
BPUNCHe {L(1)eeslL (N))
OR WHENEVER OP+Ee$AVGS

AV=S5S/Ni{
D=AV/EXP
PRINT COMMENT

PRINT RESULTS AVSEXP,4D

PRINT COMMENT

OR WHENEVER OPeE+$ERASES

BORNHIIINREXXERNNNERERS

S RN RN NNNRRS

TRANSFER TO UPA

OR WHENEVER OP+E«3DATAS

TRANSFER TO QQ0002

O'R OP+EeS$DCS
ST=0e
STA=0,

THROUGH SDCs FOR I=14191eGePS
STA(I)=STA(I)/STN(I)

STUI)=(ST(I)=-STACI)*STA(I)*STN(I))}/Z(STN(I)-1)
STA=STA + STA(1)

ST=ST+ST(1)
STA=STA/PS
ST=ST/PS

PRINT COMMENT$~-ST IS D,

POINTS

STA IS

AV eee BOTH AVERAGFD AND BY

PRINT RESULTS STeeeSTIPS)sSTAseeSTA(PS)
END OF CONDITIONAL

TRANSFER TO yP

DIMENSION A{100),P(100)

VECTOR VALUES IN
INTEGER AsNIsOP

INTERNAL FUNCTION

ENTRY TO SETNe
T*O SETL(SM)
SI=S1+1
VI'R S14GEPS
WIR EQoSM=2
WIR SIeEePS+1
SIi=si=-1
SM=2
E'L
£
FUNCTION RETURN
SI=st-1
WIRSIeESO
§1=1
SM=1
Fro
FUNCTION RETURN
ENTRY TO INIT.
&1=0
Q=08
SM=1
Ps=N/8

=% 519C695391591513/(S51+2313)%8

s!

sI
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VI'R PS*#BeNEeN
EQ=18
PsS=PS+1
E'L
ZEROG(STeeeST(20) 3STNeeaSTN(20) sSTAGeeSTA(20))
FUNCTION RETURN
END OF FUNCTION
INTEGER SIsPSsSMySTN
DIMENSION STN(20)sSTA(20)+ST(20)
ROOLEAN EQ

END OF PROGRAM

Control parameters:

$DATA followed by
1. control card
column 16, 1.
columns 17-24, the number of following cards containing format information.
columns 25-32, N for these data.
columns 47-64, a comment to precede the output for these data.
2. format card
none for binary data,
otherwise prepared according to rules for MAD I-O formats.
3. data cards
according to format defined in 2, or punched as column binary using BPUNCH in
the U.of M. system library.
$CORR
prints out the correlation matrix for the last preceding set of data.
$cov
prints out the covariance matrix for the last preceding set of data.
$DC
computes D and o? (D) for square spaces.
$DPCH
punches the D vector in BPUNCH format.

$PROB
followed by one or more cards in MAD "‘Simple I-O'" format containing absorption
probabilities. If P(1) = 0, then the experimentally estimated probabilities are used.
$SUM
followed onthe same card by a number punched columns 13-15, the number of points
to be read in to define one target set; every following set (up to 15) of 3 columns con-
taining the numbers (see RDEP and NDEP) of the points in the set; followed by as many
cards as necessary to contain additional points in the target set punched in 3 column

fields after skipping the first column.
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$AVG
averages the values for the target sets in the preceding $SUM cards following the last
occurrence of an

$ERASE card.

Output parameters:

$DATA produces the number of absorbing points on the boundary, the number of replica-
tions in the data read in, a table of the sum, sum of squares, variance V, expected
variance EXP, D = V/EXP, estimated absorption probability, true absorption proba-
bility for eachpoint, and the average of the D's, and the sum of the sums and estimated
probability.

$CORR and $COV produce the lower triangular correlation and covariance matrices for
the last data read in.

$SUM produces the variance of the set of points in the target set, the expected variance
and the resultant D.

$AVG produces the same output as $SUM for the preceding occurrences of $SUM oc-
curing before $ERASE.

C.12 NXOUT
is used by COVAN to print lower triangular matrices

$COMPILE MADs PRINT OBJECT s PUNCH OBJECT MXOUTO00
R SUBROUTINE TO PRINT COVARIANCE MATRIX IN MATRIX FORM
R
R
R

EXTERNAL FUNCTION (RsN)
ENTRY TO MXOUT.
F1=18
F2=6
F3=2
Fa4=0
K=18
TRANSFER T0 QQ1
ENTRY TO NXOUT
¥r=9
F1=9
F2=12
F3=0
F4=1
Q01 I=N/K

FORMAT VARIABLE FlsF24F34F4
INTEGER F1leF29sF39F4
V'HENEVER (N-1#%K) «Ge0s TRANSFER TO QQ0003
TRANSFER TO QQ0004

QQNnn0o3 I=1+1

QQ0004 ITOTAL=(I*(1+1))/2
TPAGFE=0
I1=1-K

QQAN005 T1=11+4K
T2=11+K-1
VIHENEVER ({I2-N)eGeOy TRANSFER TO QQO006
TRANSFER TO 0Q0007

QQO0006 I12=N

QQ0007 J1=1=~K
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QQo0008 J1=J1+K
J2=J1+K-1
VHENEVER (J2-N)eGeOys TRANSFER TO QQ0009
TRANSFER TO QQCO010
QQ0009 J2=N
QQ0010 TPAGE=TPAGE+1
PRINT FORMAT QQO011,IPAGE s ITOTALs(J=JYs19JeGeJ2sJ)
VECTOR VALUES QQO0011=$¢F4? (TH1426(1H ) 447THC O V A R T AN CE

1 COEFFI1CIENTS +19(1H )s9HPAGE NOes +1294H OF
2 »12//12HOCOLUMN = 99112%)31H1436(1H )9s47THC O R R E L A T I
4 O N COEFF I CTIENTS 919(1H )9s9HPAGE NOs +1254H OF
5 912//12HOCOLUMN = »1816%3
VHENEVER (J2-12) oLeOs TRANSFER TO QQ0014
TRANSFER TO QQ0015

Qan0l4 TSWTCH=2
TRANSFER TO QQ0016

QQ001% 1SWTCH=1

QQO0016 THROUGH QQ0017 +FOR I = 11 s1s 1 G
112
TRANSFER TO QQ0019¢ ISWTCH)

QQR0019(01) TRANSFER TO QQO0018
QQ0019(02) TRANSFER TO QQ0017

QQ0018 J2=1

QQ0017 PRINT FORMAT QQO0020sIsR{TsJl)eesR{T+J2)
VECTOR VALUES QQ0020=$1H /8HO ROW = +I3s1H +'F1V(F'F2'4'F31)
1 *3
TRANSFER TO QQ00251 ISWTCH)

QQ0025(01) TRANSFER TO QQ0024
QQ0025(02) TRANSFER TO QQ0008

QQ0024 VHENEVER (12-N)eLsOs TRANSFER TO QQ0005
QQ0026 FUNCTION RETURN
R PR T H E £ N D P T
R
INTEGER 0Q0002s K ’ 1 ’ N
INTEGER ITOTAL IPAGE 11 ’ 12
INTEGER J1 , J2 , 0Q0013, 1SWTCH
INTEGER QQ0023
INTEG ER J
QQ0001 END OF FUNCTION
C.13 DANAL

computes averages and variances of D and G for irregular spaces

$COMPILE MADs PRINT OBJECT sEXECUTE +DUMP DANALOOO
INTEGER Jsl1sNsR oL
DIMENSION D(200)9S5(200)5SS(200)sV(200) sL{200) sU(200)sW(200)

START READ AND PRINT DATA NsR
ZERO(SeeeS(20N) s SSeeeSS(20N)sleeel (200))
ZFROe(UsesU(200) sWeoeW(200))

THROUGH S1s FOR I=19191eGeR
BREADe(D(1)eeeD(N=-2))
READ AND PRINT DATA FsDI(N)
THROUGH S1y FOR J=1s19JeGeN
VVHENEVER D(J)eNE«Ooe
LtJi=L(J)+]
T=E/D(J)
S(J)I=S(J)+T
SS(J)=SS{J)+T*T
UtJ)=ucJdy+dD 1Y)
WJ)=WIUY4D(J) %D (D)

S1 FND OF CONDITIONAL

THROUGH S2s FOR J=1314sJeGeN
utJdy=utdysetd)
StJY=Sst)y/7L(D)
WJ)=(WIJI=U(IIRULDIRL(I) Y /L tIY-1)
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s2 VI =1SSIJY=SIJIRSEII*L (I Y/ (L(J)-1)
PRINT COMMENT $-S IS GsV IS V(G)s L IS DFsU 1S Dy W IS VID)S
PRINT RESULTS S(1)eeeS{N)sV(1)eeeV(N) sL{1)eeel(N)
PRINT RESULTS U(l)eesU(N)sW(1)eeeW(N)
TRANSFER TO START
END OF PROGRAM

Input parameters

N the number of variables to be processed by replication
R the number of replications

D(1)...D(N - 2) the values of Di for the n(=N - 2) absorbing points (from COVAN)

E the experimental estimate of E
ZDi

D(N - 1) D= -

D(N) DZ

Output parameters:

5 tables, each one value per input variable

S. mean of G,
i i
2
Vi o (Gi)
Li the number of non-zero Di's in Si
U. mean of D,
i i
2
Wi o (Ui)
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Appendix D
PHILOSOPHICAL AND PRACTICAL INSIGHTS INTO THE USE OF A COMPUTER AS A RE-
SEARCH TOOL
This thesis is inspired in many ways by the concept of a computer. The problem concerns
a class of hardware computers, a classical computer application, and the selection and evalua-
tion of a computer algorithm, In addition, a computer is used as a tool in carrying out this re-

search.

It is common to take advantage of many University facilities in performing research. The
library is certainly applicable in almost every case. The experimental physicist may use a
cyclotron, bubble chamber, or reactor. The linguist will often employ a tape recorder or spec-
trum analyzer. Almost every discipline, even if only scientific in a weak sense, appears to

make some use of the digital computer in research.

One of the clearest examples of the advantage of computer use in research occurs in the
factor analysis, a complicated statistical device used by behavioral scientists. Whereas, be-
fore the availability of computers one or two hand calculated factor analyses might constitute a
doctoral dissertation, now such calculations are routine tasks for a computer. The important
result is that the scholar is free to contribute to his discipline in a more creative and en-

lightening way.

The experimental work proposed for this investigation appears to be a case of the dual evil
in use of a computer; that is, the work consisted of using a computer to generate data which

were then analyzed on the same computer.

The use of a computer as a data generator has, however, become quite justifiable as the
art and science of simulation have developed. Truly, any random walk run on a computer is a
simulation, and it results in what may be described as computer generated data. But research-
ers in the various science and engineering disciplines have become quite adept at computer
simulation for a large variety of systems; from those as small as the microcomponents of
living cells, to the fuel tanks of the SATURN I space booster. Thus, this research is not in-
volved with the use of the computer as a data generator, but as a simulator. The data reduction

and analysis function in this work is by no means an unusual computer application.

Random walk simulations have only been fully realizable in the period since the develop-
ment of the contemporary computer. The results of McCrea and Whipple (Ref. 14), which we
can apply now in a matter of fractions of seconds, would have taken hours and days to use by
hand with very little chance of error free computation at the time of their development. This

point is brought out when one realizes that in Eq. 3.21 as N becomes large, sinh ((N + 1)B) be-
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comes very large, and the use of these results in a computer is apparently out of the question
due to overflow problems. However, appropriate approximations can be made, allowing for

general use of the classic results of McCrea and Whipple.

The computer programs involved in this research are included in Appendix C. However,

some techniques and approaches which were used in this work will be discussed here.

With respect to the simulation, the program is of general iterative nature and written in
high level (algebraic) language. When approaching the implementation of a highly iterative
algorithm, decisions must be made as to what type of language touse. A flexible executive
system allows a combination of language forms through the use of general subroutine linkage.
With the advent of refined symbol manipulation operations in the language involved here, it is
conceivable that the entire simulator could well have been written in that language. However,
these new developments followed in time the construction of this program, and this was never

considered.

When making decisions as to which language to use, the enormity of some numbers, es-
pecially the number of iterations required, should not overshadow the expense of using an as-
sembly language. For example; in this problem one must replicate a 1500-particle random
walk 200 times. Each particle replication requires approximately 1.5 basic time-steps. Thus,
one is confronted with a simulation requiring 4.5 X 105 basic operations, and this simulation
will be repeated for several geometries. A first thought might be to use assembly language
and the accompanying ability to use index-registers, if available, in a most effective manner.
However, consider the case in which using these high speed machine features can save only
1/100 of the total time involved in one iteration, which is the case here. The result is a saving
of perhaps 6 seconds in 10 minutes of computation at the cost of many added "debugging'' runs
and an extended period of time for program checkout. It is probable that the total saving in

this case might be negative.

On the other hand, there is required in each time step a spatial displacement of every
particle in the grid and an examination of the boundary points for any possible absorptions.
This also is an iterative process, and we are now confronted with an algorithm which itself
accounts for over 50% of the time required to simulate a single time-step. Routines for simu-
lation of the source node and for simulation of particle motion and absorption in each of the
four directions were written in assembly language with appropriate calls occurring in the main,
compiler language program. The total result is a working program which is efficient to use and

yet efficient to debug.

Results are printed on an output sheet and also punched on densely packed binary cards

for use in the analysis program, thereby reducing greatly the effort in linking the programs.
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The analysis program is so general in scope that it was decided to maintain it and the simula-
tion results separately. In this way the binary cards could be subjected to various analyses,
not all of which could necessarily be determined at the time the simulation was carried out.
The added effort and expense in performing these two tasks independently and maintaining a

file of results on punched cards has proven well worthwhile.

One problem in carrying out the simulations was solved in what might be a novel, though
very simple way. Generation of random values ""North", '"South', "East", and '"West" (0, 1, 2
and 3) can be attempted in several ways using uniformly distributed psuedo-random number
generators. However, some of these can be quite costly or even theoretically uﬁsound. The
problem is really one of obtaining a two-bit integer, but most available methods for generating
random numbers yield a psuedo-random fraction in the range between 0 and 1. Selecting two
bits in some systematic way from numbers of this type does not generally offer numbers which

can be considered psuedo-random.

The method normally employed is to scale the fraction by multiplying, in this case by 4,
and to use the rounded result. However, another scheme can be used which is more nearly
optimum in terms of speed of operation. To obtain a psuedo-random integer between 0 and
n - 1 from a psuedo-random number between 0 and 1, first generate a table of fractions equal
to1/n, 2/n,...,n - 1/n. After obtaining the original number by some well-known technique
such as the power residue method (Ref. 26), perform a tree-like series of transfers based on
"greater-than-or-equal' comparisons, ending up with the loading of the appropriate integer
constant and return to the calling program. In general, when n is small, this will result in an

efficient program.

As an example, consider the case where n = 4. The MAD language code for this operation

is asfollows:

WHENEVER RNUM .LE. 2k10
WHENEVER RNUM .LE. 1K10
R=0
OTHERWISE
R=1
END OF CONDITIONAL
OTHERWISE
WHENEVER RNUM .LE. 3K10
R=2
OTHERWISE
R=4
END OF CONDITIONAL
END OF CONDITIONAL
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In this program RNUM is the original full word value between 0 and 1 and the constants of
the form xK10 are full work fractions representing 1/4, 1/2, and 3/4. Note that this algorithm
requires only two comparisons per number which amounts to a much faster execution than an

integer multiplication.

It is worthwhile to mention the technique used to store the image of the random walk space
for the simulation program. Borrowing an idea from Samuel's Checker Player (Ref. 27), the
space, limited to 36 by 36, is stored in 36 or fewer words of memory, each word representing
one row of the lattice and each bit position across words representing one column. As is
customarily done, a 1 in any position represents the presence of a particle and a 0 represents
an unoccupied grid point. Thus, a move of all particles to the right is accomplished by a cor-
responding shift of each word, and noting and erasing any bits where absorption has taken place.
Motion in a vertical direction is accomplished by a cyclic replacement of words, filling in an
all-zero word at the appropriate end of the chain and examining the last word at the opposite

end for any absorptions.

No estimate has been made of the amount of time saved by using this programming trick,
but it is probably considerable when compared with a more conventional approach. Note that
only n basic operations are necessary for the simulation of one time step in an n by n grid.
Compared to methods which record and update coordinates of all active particles, removing
some, adding others, and performing bookkeeping for these lists, this general scheme appears

to be conservative of both storage and time.

Several alternative methods were available for transmitting to the simulation program
RDEP the information necessary to specify an irregular absorbing boundary. These ranged
from using as data the coordinates of the points on the boundary, to merely reading in the ma-
trix of random digits used to select some space (see Section 5.2.2). The method ultimately
chosen for this purpose is to use as input a vector consisting of successive sets of column co-
ordinates for each boundary in a row followed by ''99", once for each row. The program then
generates a mask for each row and prints out an image representing the absorbing boundary
and the source location. This device necessitates a minimum of keypunching and yet retains
complete generality and, further, allows use of the ""simple' input routine available in the

Michigan Executive System reducing potential format errors.

With respect to the analysis program, rather than have several programs to accomplish
this task, depending on the nuances involved in a particular analysis, this program has been
developed as a small executive system in which control cards, recognized by a ""$" in the first
column, are used to transfer control to appropriate routines. Thus, the user selects the analy-
ses to be performed in what seems to the user to be a very natural way. Possibly the most im-

portant concept discovered here for the author is that, rather than complicating his task, this
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organization makesboth the use and the programming of the routine quite straightforward.

The MAD language and very flexible and powerful executive and input-output systems
available at The University of Michigan Computing Center have allowed the completion of this
project in relatively short time. What might have been added frills in some other environments
were built in as a matter of course in this set of programs. Thus, one can examine periodic
pictoral printouts of the simulation space by setting a programmed data switch, the absorp-
tion probability computation pictorally prints its results, yielding a meaningful display of these
values, and the analysis program reads control cards containing commands punched in English,

not as digits. This research provides one illustration of the value of such a software system.
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