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Abstract. This paper articulates a formal solution to the puzzle of child language
learnability within the Principles and Parameters–based framework. The language
learning (parameter-setting) task requires, in principle, that the selection of syntactic
knowledge be sufficiently constrained for the child to arrive at the appropriate target
grammar, expending a minimum of computational effort and time. Since previous L1
analyses impose very strict requirements on the learner, solutions are achieved only at
a very high cost. Further, not only do the standard accounts frequently contradict
fundamental empirical facts of child linguistic development, such as the degree of
variability observed in the production of early grammatical structures regardless of
input; the accounts also fail to consider a crucial aspect which impacts selection: the
young child’s innate potential to efficiently acquire multiple languages
simultaneously. The primary aim of the current paper is to provide a computational
model that demonstrates a ‘‘bilingual universals’’ (in the spirit of Roeper 1996) stage
of development based on real world data. The proposed model actually reflects a more
precise UG-based representation within early monolingual grammars, as well as
plausibly accounting for variability found in child L1 grammars.

1. Introduction

Genetic evolution as a computational technique was proposed and advanced
by Holland (1975). It has since been refined and elaborated by numerous
researchers, and applied to various domains. Clark (1990, 1992) actually led
the way in the promising direction of facilitating solutions to the language
learning and language change problems with a type of simple Genetic
Algorithm (GA). From this work, it does seem that language acquisition can
at least abstractly be patterned after the behavior of other adaptive
(intelligent) systems in nature.

This paper begins with a brief discussion of GA parameterization
techniques, taking the behavior of the Null Subject Parameter (NSP) across
languages as illustrative of the language acquisition process confronting
different L1 learners. With the formulation of bilingual learnability as a point
of departure, the question of monolingual acquisition is then addressed.
Drawing on compelling evidence which shows the child to be at once
conservative and non-conservative with respect to the selection of particular
hypotheses (Pinker 1984, among others), I advance the idea that, as a
consequence born in part from the capability for multilingualism that is
initially inherent to all children, and in part from frequently ambiguous input
data, a child’s early grammar contains a degree of variation which is
essentially more ‘‘bilingual’’ than monolingual. The paper concludes with
highlights of the GA’s performance on a monolingual L1 parameter-setting
task.
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2. Genetic Algorithms

GAs are computer programs designed to efficiently search a complex
problem space and obtain near-optimal solutions. Since this algorithm is a
search procedure based on the mechanics of Darwin’s natural selection, it
uniformly combines survival-of-the-fittest tactics with randomized, yet
structured, exchanges of information in order to form a search technique
that mirrors some of the creativity reflected in human search operations. In
the current study, research is presented that lends additional support to the
effectiveness of GAs, as based on two syntactic parameter-setting models. By
implementing well understood biological (and mathematical) formulations, it
becomes possible to formalize a theory of language learning which generates
a given parameter’s options on analogy with natural selection.

The basic premise is the following: genetic search can be used to optimize a
function over a discrete parameter space, so that any point in the parameter space
can be represented as an-bit vector. The technique manipulates a set of such
vectors to record information gained about the function. The pool of vectors is
called thepopulation, an individual bit vector in the population is called a
genotype, and bit values at each position of a genotype are calledalleles. The
function value of a genotype is called the genotype’sfitnessor merit score.

Two primary operations apply to the population in a standard GA.
Reproduction changes the contents of the population by adding copies of
genotypes with above-average fitness. No new genotypes are introduced;
however, by changing the distribution in this way, the average fitness of the
population tends to rise to that of the most-fit of the existing genotypes.

Along with ‘‘fitness-based reproduction,’’ it is also necessary to generate
new genotypes and add them to the population. The primary means for
generating plausible new genotypes is with crossover. In a simple GA,
crossover entails the selection of two random genotypes, taking some alleles
from both ‘‘parents,’’ and recombining these to produce a complete genotype.
The offspring are added to the population, where they have the opportunity to
survive or die depending on their own fitness measures.

• n-bit vectors or strings are represented much like DNA chains which
hold genetic information (i.e., 100111101. . .).

• A pool of strings (10011101, 00101110, 11011001, etc.)� the
population.

• Each individual string is a genotype.

• The bit values at each position of the genotype are alleles.
(1_ _ _ _ _ _ _)

• The value of genotype is the genotype’s fitness or merit score.
(1.0�fit)

Figure 1: GA Terminology
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To perform a search, reproduction and crossover operations are iterated.
Eventually a maximally-valued genotype will come to dominate the
population, and convergence is attained. When the population has converged
to a single genotype, reproduction and crossover will no longer change the
makeup of the population. For this reason, most GAs also include a mutation
operator, which provides a chance for any allele to be changed to another
randomly chosen value. Hence, mutation guarantees that every value in every
position of a genotype has a chance of occurring.

3. A Metaphor for Language Learning

As proposed by Clark (1990, 1992), the example of the GA can be
successfully invoked to represent the basic non-deductive and ‘‘automatic’’
nature of parameters as a search method. In this model, the child is abstractly
formalized as a GA to the extent that s/he, like other simple GAs, maintains
and operates on a population. In this case, the GA works on a population of
hypothesis strings which is made up of sequences from a binary alphabet that
expresses truth value expressions where 1 equals true and 0 equals false to
represent features or characteristics of a given parameter of variation. Given a
grammar, a truth value can be assigned to each of the parametric
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Figure 3: Clark’s GA
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OFFSPRING 2: 01110

Figure 2: Schematic of Crossover
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propositions, based on the properties assumed to be held in a particular target
grammar, making up a large string of 0’s and 1’s which represent a
grammar’s entire parametric sequence. These individuals are then mapped
onto parsing devices through a translation function. The output of each parser
is then judged against a linguistic input item. The subsequent ratings are then
mapped back through the translation function to the population, where
genetic operators of the GA component utilize the information to produce a
new generation of strings.

The GA model seems to deal with many of the issues that made language
learning problematic in principle for the earlier accounts: (i) GAs avoid the
costliness of computations because the process of deductive reasoning is
simulated by the evolutionary cycle, so the child is not directly using
knowledge-based reasoning strategies to choose between competing
hypotheses, thus minimizing computational effort over time; (ii) the GA
learner works from a population-based strategy to ensure the arrival at the
correct parameter value when the input data conflicts with the population
hypotheses, since s/he would have access to sets of hypotheses in different
locations of the search space, one of which would be likely to correspond to the
target grammar, at least superficially. Also by implementing a population-based
technique, it is possible to maintain a range of solutions from bad, good, better,
or best, giving the learner more explicit selection information; (iii) whereas the
previous accounts posit certain mechanisms that, in the strictest forms, disallow
too general hypotheses, the GA can guide hypothesis selection in a less rigid
manner, so that it allows for overgeneralization, yet gives preference for more
conservative hypotheses as time goes on. This feature is quite elegant, as it
depicts the typical behavior of child learners, who can and do change from a
current hypothesis even in the absence of errors.

From the current knowledge of real world languages, the main criticism of
the Clark models may be that the author simply stopped too soon. However,
there are limitations that have surfaced in nonlinguistic applications of simple
genetic algorithms that prompt us to also modify and extend the GA with
respect to language learning. For instance, the simple GA is a reliable method
for discovering the defining characteristics of one single grammar, but if the
learner is simultaneously faced with more than one input in the environment,
as is the case for the bilingual child presumably (and perhaps the young child
who is developing two registers within one language such as Standard
American English and African American English), then in these scenarios,
the GA model described thus far requires that a learning system converge to
the one-best solution, giving way to a performance that is not always
desirable. The Clark GA will treat the distinct hypotheses as competing for
one category, thereby producing an average population that may possibly
have good performance in only one of the necessary target languages. This
process is often known asgenetic drift. Due to the averaging effect, it is more
than likely that the resulting solution will be sub-optimal with respect to any
of the linguistic environments.
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4. An Alternative GA Approach

To represent the requirements on language speakers in a more realistic
manner, the concepts ofnicheandspeciationare incorporated into the model
(Goldberg 1989, Forrest 1993). The need for niche development not only
stems from the notion that a distributed formulation can give better results
with less total work; it also allows for the attainment of an optimalset of
solutions. A very natural way to distribute a GA is to partition the population
of hypotheses, since it is not computationally economical to repeatedly
conduct genetic search operations on a population-wide basis.

Along these lines,nichecan be thought of in terms of a string’s specialized
behavior or attribute(s) in a given habitat. For the purposes of this
investigation, it will be claimed that a hypothesis string has a niche to the
extent that it is relevant to one target grammar. For language learning, the
definition of speciescan include a set of strings that share common truth
value sequences or have defining characteristics such as proximity in the
search space. In nature, it is a well-known fact that species typically thrive
under different combinations of environmental factors, or niches, which
would prove relatively unappealing to other species.

For the computational model, the notion of niche is formalized by the
following procedure: when an input datum is received and decoded, the
relevancy of all strings to that specific environment is preliminarily measured
via a simple ‘‘match scoring’’ mechanism (Booker 1985). Genotypes become
relevant only if they reach the minimum match threshold for that particular
iteration as measured against the input text. The niche rate determines how
many strings will be useful during each cycle, by assigning values that allow
only those hypotheses with the best scores to be categorized as relevant for the
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Figure 4: An Alternative GA

GA INPUT
LEARNER STREAM

| |
| |

V V
SUBPOPULATION FITNESS
OF HYPOTHS (SPECIES) EVALUATION

| |
| |

V V
DISTRIBUTED< ÿ > TRANSLATOR< ÿ > RELEVANT
POPS. OF FUNCTION PARSERS
HYPOTHESES (NICHE)

/ \
A B

32 Teresa Satterfield



search. For instance, given input string 1001*, hypothesis string 1110* would
not be activated, whereas strings 1011* and 1001* are closer matches and,
depending on the threshold requirement for that particular generation, could
both be selected. This niche mechanism makes a sound contribution to the GA
approach, not only because as it acts as a ‘‘hardware accelerator’’ by speeding
the learning toward convergence; it also ensures that the input text will be
minimally parseable by enlisting the most relevant hypotheses of that
population for the task. This fairly efficient operation further reduces the
possibility of any type of random walk through the problem space. Since the
goal is ultimately to model a child who actually ‘‘learns,’’ in the sense that s/he
becomes increasingly more accurate at distinguishing and representing
linguistic input over time, the niche application with its gradually rising
threshold does that by making the GA progressively sensitive to the similarities
and differences between certain genotypes in a way that it was not previously.

After the species is determined, each potential solution is mapped to its
corresponding parsing device and measured for fitness relative to the local
population. Drawing largely from Clark (1990, 1992), a string’s merit is
defined by its ability to account for linguistic evidence as a function of the
number of core violations returned by the parse, and a weighted economy
feature which signals the number of syntactic chains covered by each parse.
Within current generative linguistic theory, there should not be a discrepancy
of elegance or economy among successful parses: theoretically, the string is
always covered in the least number of nodes (Chomsky 1995). In the case of a
failed parse, then, it makes no difference if the node count is fifteen or fifty, it is
unacceptable if the string does not represent the minimal structure available to
the learner. Contrary to the stipulation given for the alternate GA model, there
does not appear to be a fitness continuum of bad to best in current linguistic
formulations. Still the issue awaits compelling proof one way or the other;
although data in child language studies appears to attest that for some
constructions such as null arguments, it seems to be the case that certain
structures are simply more economical than their counterparts in other
languages. For this reason, the decision was made to retain the economy feature
in this GA, reflecting the intuition that there may be an acceptable variation in
node counts given two exact sentences in two respective grammars.

For recently evaluated hypotheses, the current fitness of each member is
then stored and the genotypes are mapped from the parsing devices to the
genetic process locale. In an attempt to prevent any distortion to the balanced
search strategy that has been carefully initiated, recombination is limited by a
‘‘likes-mate-likes’’ policy, so that parents are normally chosen from within
the same niche membership. In short, the motivation for this strategy is that
there is little advantage in performing crossover between different sets when
the recombination of distinct members is not likely to assist in the search for
better hypotheses. The best choice seems to be to implement a mating
restriction, since the GA is more likely to combine the bits of genotypes that
are already in a family of proven ‘‘winners,’’ relative to their particular
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environment. Following crossover, the fitness values of the new offspring are
calculated. The stop criteria chosen in this model regulate the resources and
space among the hypotheses in distributed populations, and places an upper
limit on the number of cycles. I assume that the language learner has con-
verged when genotypes directly correspond to the target grammar(s). That is,
about 90% of the hypothesis strings match their respective target at every bit
position. The other 10% should match at almost every bit, but not be
identical. The learner is said to strongly converge only when the sub-
populations are at an equilibrium and the most genotypes of each subgroup
remain identical to the target strings’ sequences.

All in all, these functions were created and organized to embody the
characteristics of language learning in general. As is no doubt obvious, this
current model lacks a mutation operator. Originally, the probability of
mutation was suppressed to 0 in order to more rigorously test the other
operations. Intuitively, it was thought that if stable groups of genotypes could
be maintained without mutation, then performance would be even more
enhanced when the mutation application were present. In the final analysis, it
seemed logical to eliminate mutation in general during the language learning
task, since any such continuous, random alternation goes against the
deterministic bent of a parameter-setting concept (Satterfield 1995).

5. Simulations and Discussion

An application of the alternative GA will be highlighted for Chinese in this
section. Nevertheless, taking the behavior of the Null Subject Parameter
(NSP) across languages the process confronting the very young language
learner can be illustrated through a variety of target genotypes, such as:
1001*, 0110*, 0000*, and 1111* encoded for Spanish, English, Chinese, and
German languages respectively. The five-bit strings abstractly express
features of the target grammars which are found in real child-caregiver
language data, such as ‘‘this grammar projects TP: yes (1) or no (0)’’; ‘‘this
grammar has strong D-features in its functional heads: yes or no.’’ When the
proposition to be specified is not crucial, the bit is listed with ‘‘*,’’ the
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Figure 5: Grammars as Genotypes

• Spanish Target = 1001* [data base includes ambiguous variations:
(1001*)]

• English Target = 0110* [data base includes ambiguous variations:
(0111*)]

• Chinese Target = 0000* [data base includes ambiguous variations:
(0010*)]

• German Target = 1111* [data base includes ambiguous variations:
(1101*)]
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‘‘wildcard’’ marking. In Spanish and Chinese, null subjects are licensed, in
English, they are not. German is a partial case.

The intent is to show how the GA demonstrably fits the child’s linguistic
development process. With respect to a monolingual environment, GA
findings successfully utilize the initial capacity for multilingualism which is
inherent to all very young children. Since it is widely held that every child
has the innate potential to acquire multiple languages simultaneously, it is
reasonable to represent a large pool of hypotheses that the child must sort
through in a quick and efficient manner. As a consequence of not only this
multilingual capability, but also of the effects of ambiguous input data, the L1
learner maintains different species of strings within the total population.
These strings represent the variations that surface concurrently in every
child’s grammar, and which cause developing grammars to be essentially
more ‘‘bilingual’’ than monolingual in nature during the earliest phases. As
the monolingual child locks onto the ‘‘appropriate’’ values for the target
grammar, the seemingly free variation of target structures with
‘‘inappropriate’’ constructions, (i.e., the production of both overt and
thematic null subjects in a very young child’s English) will incrementally
disappear, giving rise to the correct forms for that particular grammar.

Given the nature of this particular GA model, L1 parameterization proceeds
systematically to reduce the hypotheses which are incompatible with the input.
The monolingual child will lose this early access to a range of variations, fully
maintainable only by a child receiving constant bilingual input matching the
dual parameter values. These assumptions have broad implications, not only

Figure 6: Results of a GA Simulation

The ‘Shell Game’: Why Children Never Lose35

ß Blackwell Publishers Ltd, 1999



for a formal GA model, which can be economically extended to other
applications such as L2 acquisition, but it also provides more conceptual force
and adaptability for the Principles and Parameters framework, which now
receives more formal motivation for the ability to constrain acquisition without
inhibiting the child’s capacity to obtain multiple grammars.

6. Conclusion

An assessment of any computational model is incomplete without some cost
comparison or evaluation of performance. It is a very reasonable practice to
evaluate the performance of methods in order to choose the most efficient
strategy for solving the class of problem. As a point of comparison, the
results of Clark’s GA model which also simulates parameter-setting was
checked against the current model. A main point is that while the Clark
version is quite simple, it still requires much memory and time, as it operates
on a global level. Given genotypes of the same length as those implemented
in the alternative GA, the Clark model takes an upper limit of thirty-five
generations for the learner to converge, as opposed to the twenty generations
averaged in the modified GA. Moreover, his application can only model the
purely monolingual speaker, if such an individual indeed exists, since all
hypotheses must be averaged to one single solution.

Several monolingual theories of parameter-setting have been proposed
throughout the years; however, the introduction of bilingualism and
bilectalism into the mix has always presented difficulties for other approaches.
The main advantage with the current formulation is that it is the only model to
date which characterizes a single, universal parametric system that
economically interprets learnability (via parameters) in a wider context to
include many types of speakers. For this reason, a direct comparison between
previous models and this latest alternative is no longer valid, considering the
substantially different approaches which have now evolved.

It is important to understand that as with any model of this nature, this GA
application is only a representation: it is merely a metaphor for the actual
process of L1 language learning. It is not a comment in any form on the
actual cognitive or physical mechanisms that may be involved in language
acquisition. Indeed, the Principles and Parameters framework in and of itself
is an abstraction of learnability; thus, it is impossible to even decide at this
point on the reality of the existence of a successful parameter model, or what
that model would necessarily contain. Given more empirical backing of the
type mentioned in the current investigation, then to the extent that the model
fits additional patterns of child grammatical development, I simply hope to
demonstrate that the representation offered with this particular GA model is
more or less feasible.

It is also important to understand that, for good or for bad, this model will
never allow the learner to reduce the genotypes to one singly optimal
solution. As a consequence, it may sacrifice some flexibility at a certain level.
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Finally, there are those who might reject any computational modeling of
language out of hand; in this case, the GA does not often escape criticism. It
has been noted that genetic algorithms are extremely powerful search tools, to
the degree that they can solve problems in several domains, just so long as the
fitness metric and the operators have been fine-tuned to exactingly specific
settings. Still, it must be emphasized that GA techniques are far from perfect;
they also impose a trade-off of sorts. They sacrifice peak performance in
order to quickly achieve relatively high-quality solutions or levels of
performance. Nevertheless, this ‘‘satisficing’’ strategy might actually be
closer to what occurs in natural language learning. Another criticism leveled
at the GA model is that it is too intricate to represent a child learner. Recall
that the young learner is never conscious of this language acquisition process;
it can be likened in this sense to an involuntary reflex, such as simple
respiration. On parallel with language, if one attempts to model respiratory
mechanisms, the account will be much more complicated than the physical
outcome displays. Just as the youngest of children breathe quite well, with no
conscious effort of the process, they also obtain grammar(s).
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