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ABSTRACT

The problem investigated here is the minimizing of the ratio
of peak power to average power of a bandlimited radio frequency sig-
nal by proper selection of the phase spectrum. This signal which has
a prescribed power spectrum, is composed of a multiplex of N equally
spaced frequency components, so that its envelope is periodic. Since
incoherent phasing of the signal components may result in severe
peaking, minimizing the peak-to-average power ratio of the signal
permits increased efficiency of systems whose capacity is peak-power
limited.

The problem is formulated in terms of the variations from a
constant value of the envelope squared of the signal. An error function
is specified and used as the basis for evaluating the merits of any spec-
tral phase distribution.

Some earlier studies are reviewed and analyzed. Principally,
it is found that useful results for some values of N have previously
been obtained from the theory of frequency modulated signals and from
the theory of aperiodic binary codes.

A mean-squared error criterion is used in evaluating the
departures of the instantaneous power envelope from a constant value;
the mean-squared error is equivalent to the variational power in the
envelope squared. An approximate relation between the minimum
mean-squared error and the peak-to-average power ratio is established.

Xvii



For a uniform amplitude spectrum, upper and lower bounds are
established on the variation of the instantaneous power envelope and on
its corresponding mean-squared error relative to a constant value.
Certain invariant transformations of the spectral phase distribution
are shown not to alter the form of the envelope squared. On the basis
of the mean-squared error criterion, the optimality of phase sequences
for three- and four-component signals is proved analytically.

Extensive investigations utilizing the digital computer are re-
ported. Phase sequences suggested by other authors, and other se-
quences corresponding to polyphase codes, are evaluated by a specific
error criterion. The method of steepest descent is employed in a com-
puter program to determine optimal or near-optimal spectral phase
distributions for any value of N. Resulting phase sequences are evalu-
ated by the mean-squared error criterion and in terms of plots of the -
instantaneous power envelope as a function of time. A number of other
related results from the computer studies are also included.

Several analytical approaches, which provide additional insight
into the nature of the problem, are undertaken. Three areas of appli-
cation for the results of the research are explored in some detail:
discrete frequency synthesis, frequency division multiplexing, and
the determination of polyphase codes of any length having desirable
non-periodic correlation properties.

Overall, the thesis establishes a direct technique of obtaining
optimal or near optimal phase sequences of any length. Although the

Xviii



ultimate in optimal phase sequences may not be obtained in every
case, the results do provide useful engineering answers both for a
signal having minimum amplitude variations and for the selection of

good aperiodic polyphase codes.

Xix






CHAPTER 1

INTRODUCTION

The peak-to-average power ratio of a bandlimited radio fre-
quency signal may havé an important effect on the performance of a
syStem. For electrical engineering systems whose capacity is peak-
power limited, minimization of this ratio increases efficiency. There-
fore, one is fréquently interested in controlling the time waveform so
as to minimize the ""peaking' factor of the signal.

The basic problem of this thesis is to develop a method for
selecting certain parameters of the signal nof previously prescribed
S0 as to utilize the total available energy in a frequency band of interest
with minimum peaking. Specifically, emphasis will be directed to the
following problem: given a bandlimited signal with a prescribed ampli-
tude spectrum, determine an appropriate phase spectrum for this sig-
nal so as to minimize amplitude variations in the time domain.

Interest in this problem arose out of Butler's dissertation on
frequency synthesis (Ref. 1). In the design of a frequency synthesizer,
a stable set of harmonically spaced frequency components is required
as a discrete-frequency reference. The members of this set of uni-
formly spaced frequency components should be of approximately equal

amplitude and lie in a specified frequency range. 1 The problem treated

1Usua,lly the center of this frequency range will be quite large compared
to its width, so that the signal can be considered to be "narrowband'.
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in this thesis is the selection of the time function which will have the
maximum amount of total available spectral energy in the band of interest
and at the same time have a minimum ratio of peak-to-average power or
peak-to-rms voltage. One possibility is to select the phases of the signal
components so as to achieve this aim. |

The problem of how to adjust the phases of a multicomponent
signal having a specified power spectrum, and thus to minimize its
peak factor, is a long-standing one (Ref. 17). Its solution would have
numerous applications: frequency-division multiplexing, frequency
synthesis, radar, signal coding, and speech synthesis.

This thesis is organized in the following manner. The problem
is formulated in detail in Chapter II, which considers the class of sig-
nals amenable to optimization by spectral phase adjustment. Related
studies in the literature are reviewed in Chapter III. Some basic con-
siderations and analyses are detailed in Chapter IV, including bounds
on the signal and optimal solutions for simpler cases. Chapter V des-
cribes a digital computer investigation and an optimal solution by the
method of steepest descent. A study of analytical techniques and
related results is presented in Chapter VI. Chapter VII discusses
areas of application as well as some practical methods of generation
of a coherent, multicomponent signal. Chapter VIII gives a summary

and recommendations.



CHAPTER II

FORMULATION OF THE PROBLEM

The coherent phasing of a multicomponent signal applies most im-
portantly to the radio frequency spectrum for which the bandwidth of the
signal of interest is much smaller than its center frequency, so that
narrowband notions usually apply. A narrow-bandwidth signal s(t) can

be expressed in the form
s(t) = r(t) cos [wot + ¢(t)] (2. 1)

where r(t) and ¢(t) are the time envelope and the time phase, respectively.
A realistic approach to minimizing the peak-to-average voltage or power
ratio is to minimize variations in the time envelope r(t). Ideally, r(t)
could have a constant value, but then the signal s(t) would not be band-
limited. Therefore, the principal problem investigated is that of choos-
ing the phase spectrum which will cause r(t) to approximate a constant
value according to some criterion, such as a minimum mean-squared
error. For this narrowband case, the instantaneous peaks of the actual

signal waveform will come arbitrarily close to the peaks of the envelope.

2.1 Analytic Signal Representation

It is convenient and precise to deal with the analytic signal repre-

sentation of the waveform under consideration. This concept was
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introduced by Gabor (Ref. 2) and Ville (Ref. .3) and has been extended
and used by several others (Refs. 4-10). For present purposes, we
will consider a real signal x(t) which is limited to a base-bandwidth of
B cycles per second, although this bandwidth constraint is not neces-

sary. Consider x(t) the real part of complex signal z(t).
z(t) = x(t) + jy(t) | (2.2)

where both x(t) and y(t) are real-valued functions. If x(t) is of finite

energy, that is, if

+0C
[ [x(®)]? dt exists |,
-w -

then x(t) and y(t) are related by Hilbert transforms, as follows:

yty = L7 ff? dr
=QC
(2. 3)
{ e (1)
x(t) = - 3 J ior a7
=00

for which the principal value of the integrals is ‘used. For the complex
variable p =t + j¢, the function z(u) is analytic in the upper half of the
i plane (¢ > 0); in the rest of the u plane, including the real axis
(¢ = 0), z(u) is defined but may have poles.

If x(t) is not of finite energy, but is of finite power and periodic

of period 27, then x(t) and y(t) can be related by Poisson integrals
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(Ref. 11, pp. 331-333; Ref. 9, pp. 135-136):

1 27 T-1
y(t) = o f x(T) cot (T) dr
(2. 4)
2m
x(t) = - 511—{ [ y() cot (I—é—ff—) dr
o)

Equations 2. 4 are valid only for x(t) and y(t) having zero average value
or dc component.
In any case, the transform of cos w Ot is sin wot and that of sin w Ot
is =cos wot. Hence
jw ot
e = Ccos wot +j sin wot (2. 5)
is an analytic signa]; the analytic signal concept is a generalization of

the conventional use of the complex exponential function. z(t) can also

be expressed in polar form:
2(t) = r(t) M 2.6)!

where r(t) is the envelope or magnitude of z(t), and @(t) is the time

phase of z(t); i.e.,

1FI"Om Eq. 2.6,
x(t)
z(t)

r(t) cos ¢(t)
r(t) sin ¢(t)
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r(t) = lz@®)l = Vx3(t) + y3(t)
(2.7)
@¢(t) = arg z(t) = arc tany}é%

In fact, Dugundji (Ref. 5) terms z(t) the pre-envelope of x(t), and
lz(t)| = r(t) the envelope of x(t). With the above definition of the analy-
tic signal, the notion of the instantaneous frequency of a signal can be

generalized. In terms of instantaneous radian frequency, it is
d dg(t
6'(t) = 3 [argz(®)] = LW (2.9

The spectral properties of x(t), y(t), and z(t) are very useful. If
X(w) is the Fourier spectrum of x(t), then Y(w), the Fourier spectrum

of y(t), is given by

-j X(w) for w>0
Y(w) = 0 w= 0 (2.9)

j X(w) for w <O

This indicates that the signals x(t) and y(t) are in quadrature. As a con-
sequence of these relationships, the Fourier spectrum Z(w) of the analy-

tic signal z(t) is

2X(w) for w >0
Z(w) = X(w) for w= 0

0 for w <0
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The property is an essential feature of the analytic signal concept, per-
mitting only positive frequencies to be considered.
Since we will also be concerned with the spectral magnitude and

phase, it is worthwhile to define the notation for the quantities. If

X(w) = R(w) e-j@(w) -2tB = w £ 27B
then . (2. 11)

Z(w) = 2R() ¢ 16(@) 0<ws 21B

Because of the original, though not necessary, constraint on the
signal x(t) to a base-bandwidth of B, the analytic signal z(t) is also a
lowpass signal of bandwidth B Since we are interested primarily in
narrow-bandwidth radio frequency signals, the 'signal z(t) can be readily

shifted in frequency by w, radians, thus:

jo b j[wot + o(t) ]
w(t) = z(t)e = r(t) e (2. 12a)
-j@(w-wo)
W(w) = Z(w- wo) = 2R(w - wo) e (2. 12b)
The originally specified signal of Eq. 2. 1 can be expressed as
s(t) = Re {w(t)} = r(t) cos [wot + d(t)] (2. 13)

A noteworthy aspect of these analytic signal representations is

that the square of the envelope, defined as k(t), is independent of W
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k() = r3(@t) = z(t) z*@t) = wt) w i) = x3(t) + y2(t) = Is(t)l?  (2.14)

Both Dugundji (Ref. 5) and Powers (Ref. 7) have demonstrated that k(t)
must be limited to a bandwidth.B as long as the original signal s(t) is
limited to the safne bandwidth B. In general, however, nothing can be
said about the bandwidth limitation of r(t), the actual envelope. There-
fore it seerﬁs sensible, and is mathematically and physically more real-
istic, to deal with k(t), the square of the envelope or what might be
termed the "instantaneous power envelope' (Ref. .1‘7), rathér than with
the envelope itself r(t).

To summarize, the basic problem of interest, given a speci-

2 choose. a

fied spectral magnitude R(w) or a power spectrum |R(w)|
phase spectrum 6(w) that will cause the instantaneous power envelope

k(t) to approximate a constant value according to some criterion.

2.2 Class of Signals

2.2.1 General. Obviously, not all types of signals are amenable

to the analysis proposed for this problem. Signals of the form of

Eq. 2.1, i.e.,
s(t) = r(t) cos [wot + o(t)] (2. 1)

which are limited to a bandwidth of B cps, must have a time envelope
which has some regular features or particular characteristics to allow
its control by adjustment of the spectral phase. For example, signals

having any stochastic properties would be immediately ruled out of
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consideration. The class of signals to be considered in this thesis is
that which has periodic time envelopes. Some signals with envelopes
which are aperiodic, but are defined for all time (- < t < +«), are
suitable for the proposed analysis. Key, Fowle, and Haggarty (Refs.
12-15) have considered the design of such signals having large time-
bandwidth products; these are useful in pulsed radar or pulsed com-
munications. Their studies are very useful and will be described in
greater detail in the next chapter.

The class of signals of interest, then, is a set of N uniformly
spaced (but not necessarily harmonically related) spectral components.
The complex analytic signalv z(t) (Dugundji's "pre-envelope' - Ref. 5)
will be taken to have a period of 21r/w1, where w4 is the fundamental
radian freduency of z(t). Thus, z(t) can be written as

c_e ¢~ 10(n) (2. 15)

z(t) = n

1

VN n=0
where cn(cnz 0) and 6(n) are the amplitude and phase of the n-th spec-
tral component. Two symbols for the spectral phase, 9n and 6(n),

will be used interchangeably to signify that 6(n) is a function of dis~-
crete radian frequency W =nw,. The Ch will also be suitably nor-

malized so that the sum

c“ =1 (2. 16)
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This normalization is convenient in assuring that the total average -
power of z(t) (into a one-ohm resistor) is unity and that, for the par-
ticular uniform-amplitude case in which all cn's = 1, the sum (2. 16)
is unity.

Of course, the usual integral relation for the value of the n-th
spectral component holds; i.e.,

_JQ
c e M +1r/w1

i ol e Ma (2.17)
VN T -1r/co1

The complex narrowband RF signal is given by

jwt ; Net | |
w(t) = z(t) e = % n§0 C expj [(wo + wn) t - G(n‘?] (2. 18)

where w = nw,. The real signal s(t) is readily expressed, from Eq.

2. 13, as
(t) = {(w(t)) = L n‘ ‘( + n) ( )l (2. 19)
t) = Re{w(t)) = — E, t-96 - 19
S } c, cos| (wy+w n

This bandlimited signal s(t), then, is composed of a set of N spectral
components uniformly spaced (unless some c 's are zero) by radian
frequency W1 with lowest frequency w o and highest frequency W+

(N=-1) wq, a8 shown in Fig. 2. 1. 2 The radian bandwidth of this signal

2The phase spectrum 6(n) is not shown.



2-9

can be taken as Nw ,; because of the normalization of Eq. 2. 16, its
total average power is one-half. Since r2(t) = z(t) z_*(t), the power in

the envelope r(t) of the signal is always twice the power in the signal

s(t) itself. 3
VWNec 4
n

21B = Nw; —>]

//1~ \‘/ C(n)

7 ]\
7 ~ ~
[ \[
oﬂHv—lv—i - v
3 3 3 3 3 3
R Sl
& Z
¥

Fig. 2.1. Amplitude spectrum of signal s(t).
The value of k(t), the square of the time envelope, is given by

N-1 jnw. .t . N-1 -jmw ,t
k(t) = z(t) z*(t) —I%I_ 2 c_e 1 e j6(n) Z C, 1
m=0

i6(m)

o S Silom) - 6(m)]

(2. 20)

This expression can be rearranged in several ways, and will be shown

in later sections; but at present it is worthwhile to write out a few

The power in r(t) is the same as the power in z(t), the pre-envelope,
i. e.

z(t) z*(t) dt = Pz(t) =1

eY
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terms of k(t). Without loss of generality 8 . can be taken as zero, and

0
it will be so taken henceforth, so that

i(wt-0,) (2wt - 6,)
k(t)=% Co+cq€ 1 1+c2e 1 2+...

3 {(N— Do, t- 9N—§
+ CN_ 1 _

Sjlwt- 6,) e-j{(N—l)wlt-GN_§
CO+Cle +...+CN_1

Grouping into terms of the same frequency gives

K(t) =[% Co  + it ey .+ clz\I-;] + TZ\I' [cocl cos (wt-6,)

+ €4Cq COS (wlt- O+ 91) + CoCq COS (wlt- Og + 92) ¥ . ]

2
+ [cocq cos (2w t-6,) + c cq cOS (2w t- 03+61) —
+2ﬁ [COCS cos (3w1t- 93) +€qC, COS (3w1t— 6,+ 91) —
2
i~ [COCN-I cos [(N-1) wlt - GN- 1]} , (2. 21)

As expected, k(t) is bandlimited with highest frequency (N- 1) W

Eq. 2.21 is a finite Fourier series for k(t), with the amplitude and
phase of each term dependent on the values of both Ch and Gn. By the
power normalization of Eq. 2. 16, the first term on the right of Eq.

2. 21 is unity. Hence, k(t) can be written as
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k(t) = 1+ €(b) (2. 22)

where €(t) is all the remaining terms on the right side of Eq. 2.21 and
is a term representing the variation of k(t) from a constant value,
namely unity. Mathematically, then, the problem of this ﬁhesis is to
minimize this error term ¢(t) according to some criterion, such as

in a minimum mean-squared sense.

2.2.2 Uniform Amplitude Spectrum. The subclass of signals

having a uniform amplitude or power spectrum (Eq. 2.9) is of parti-
cular interest in that it has the most practical applications and is
more suited to analysis; setting all cn's equal to unity permits much
more detailed mathematical treatment and will yield many specific
results. This thesis will therefore be devoted mainly to the treat-
ment of this subclass of signals. Further, a solution of the problem
for the uniform spectrum case may lead to solutions for signals hav-
ing a nonuniform amplitude spectrum.

All the equations in Section 2. 3. 1, with C,= 1, will hold for
the uniform amplitude spectrum subclass. In particular, Eq. 2. 21

becomes
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k(u) = 1 +T\I2f- [cos (u- 91) + cos (u- 92+91) +... +cos(u- 6N—1+9N-2)]
+T\I% [cos (2u- 92) + cos (2u- 93+91) +... +cos(2u- 9N—1+ BN_3)]
+—I% [cos (Bu- 93) + cos (3u- 64+91) +... +cos(3u- On-1+ GN_4)]
+
. (2. 23)

2
R {cos[(N- V) u- 9N—2] + cos [(N-2) u- 9N—1 + 91]}
+—?- cos[(N-1) u- 6, ]
N N-1
where the substitution u = wlt has been made. Again
k(u) = 1+ €e(u) (2. 24)

Each bracketed term on the right of Eq. 2.23 can be written as

a single phasor with amplitude ap and argument Bp, so that the equa-

tion has the explicit form of a Fourier series, i.e.,

9 N-1

k(u) = 1+% 21 o, cos (pu- B) (2. 25)
pP=

where ap and Bp are functions of the distribution of 6(n). With appli-

cation of trigonometric identities,
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N-1-p |
Ap = ap cos Bp = nzo cos [8(p+n) - 8(n)]
(0=ps=N-1) (2. 26)
N-1-p -
Bp = ap sin 'Bp = nZ::O sin [6(p+n) - 6(n)]
where
A
a = JAZ?+B? B = arc tan == (2. 27)
p p p Bp
Equivalently,
9 N-1
k(u) = 1'+ﬁ Z (A_ cos pu + B_ sin pu) (2. 28)
p=1 P D

The Fourier spectrum of k(u) is of interest and readily avail-

able from the above relations. Equation 2. 26 suggests that the com-

plex quantity K(p, 6), * abbreviated to K(p), be defined as

oo L TP i) e

K(p,6) = K(p) D 0 = % )
n=

I
o>
1
E
1
Q

N-l oy |
Yool 6D g N-) (2.29)
n=p

4The notation K(p, 0) denotes that this quantity is dependent upon the
functional form of 6(n) as well as upon the frequency variable p.



Then, the complex spectrum of the instantaneous power envelope

2-14

is given by
1 K(p) for pz2 0
Spectrum N -

of = ( (2. 30)

k(u) —Nl- K*(-p) for p=0

In terms of K(p), k(u) can be expressed as
2 N-1 ipu
k(w) = 1+5 Re( ), K@) e (2.31)
p=1

Note that each K(p) has the form of a complex autocorrelation

function.

It is useful to write Eq. 2.29 in vector-matrix form

A, 0

or to write them out as

—

1
K(N-1)

K(N-2)

H

— -i0
e

_]9

N-1

N-2

) = EXP (-j 9p+n) EXP (j0 ) (2.32)

nlE )
1

-jGN_l Q ]91

e e

Si0y i6

o UN-2 2

-j6 S i6

2 ! oJON-2

=T -i8 S [N |- j0y.

o1 T2 P2 PNt N-1

(2.33)
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The matrix EXP (-j@ - n) is a subdiagonal N x N matrix; the vectors

EXP (j en) and K(p,0) each have N components.






CHAPTER III

REVIEW AND ANALYSIS OF LITERATURE

This chapter reviews and analyses earlier findings pertinent
to the topic of this thesis. Where possible, the original symbols have

been replaced with notation consistent with that used in Chapter II.

3.1 Minimization of the Maximum Amplitude of N Harmonically Re-

lated Sinewaﬁres (Ref. 16)

Anderson's note (Ref. 16) deals with the problem of finding a

sequence of phases 90, 6 ORRE 9N-1 which minimize
) N-1
max Ix(u)l = max _ Z cos [ (n+1) u + 9n] (3.1)
0<u< 27w 0<u<27 [ YN n=0

He considers a practical approximation to this minimum by proving a
universal lower bound of Eq. 3.1 independent of the choices of the Gn's

and then exhibiting two sequences of sums having the form

N_
x(u) = «/'_II\I;— nz=0 cos [ (n+1) u + Bn] (3. 2)

such that

max Ix(u)l = 0(1)
0<u<2m

3-1



The lower bound is shown to be

max Ix(w)i 2 1
0<u<2w

The first sequence is given as

€, cos (n+1)u - (3.3)
where the {en} is a well determined sequence of 1's and -1's generated
from subsequent relations, and has a bound

max le(u)l < 5
0<u< 27

The second sequence offered, which Anderson says is more useful in the

case of large N, is (with index n replaced by n-1)

N v
xz(u) - L Z cos (nu + n log n) (3.4)
VYN n=1
It has the bound
max lxz(u)l < 50
0<u<2m

for any N. Note that for the all-zero phase, Gn =0 for all n, the
max Jx(u)l = VN .
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Anderson gives an example of each sequence, for N=5. For the first

sequence he gives

5 ‘
Xl(u) = L Z en cos nu = —1—— [ cos u + cos 2u +cos-3u
V5 n=1 V5
- cos 4u + cos 5u] (3. 5)

and a plot shows d maﬁimum absolute va.lﬁe of the order of 1.4.

The second sequénce x2(u), when plotted, is said to give a maxi-
mum absolute value of about 1. 5; however, our plot of the same equa-
tion (3. 4) (see Appendix A) gives a vastly different curve and a maximum
absolute value of the order of 2.03.

In any case, Anderson's results are not applicable to radio fre-

quency signals, for which the analogous quantity of interest, as shown

in the previous chapter, is max {z(u)l, not max Ix(u)l,
0<u< 27w 0<u< 2w
where
1
bz(u)l = [ x%(u) + y2(u)]? (8. 6)

Anderson's results, then, illustrate the point that the magnitude of a
baseband signal is not the same as the envelope of that signal obtained
when the baseband signal is frequency translated to a considerably
higher frequency. Intuitively speaking, the envelope of a radio fre-

duency signal has spectral components which are very low as compared



to the actual signal frequencies, whereas for a baseband signal, the
frequency components in the apparent envelope and the signal itself are -
of the same order, and it is difficult to determine what portion of the

plot is associated with each.

3.2 Control of Over-Modulation with Coherent or Noncoherent Frequen-

cies (Ref. 17)
Anderson, Lutz, and Zeilenga (Ref. 17) are concerned with over-

modulation of na multiplex of frequencies of the form

jw t N-1 ](nwlt-en)

N
e © Z e (3.7)

s(t) = Re A
VN n=0

They note that in case all components add in phase, the peak power is "N
times the sum of the channel peak powers, each being derated to 1/ Nth

its share of the total. nl Using the envelope function of s(t),

N-1 j(nw1 t- Gn)
e

r(t) = Is(t)l = (3.8)

1
VN | n=0
they consider both incoherent and coherent frequencies, mainly the
latter.
The incoherent case, in which the nw1 and Gn originate from
independent, free-running sources, is equivalent to the random walk

problem of N steps on a plane. Since statistically the peak voltage of
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Is(t)! (Eq. 3.8) can add up to VN and the peak power to N, a practical
frequency multiplexing system would be very inefficient in power hand-
‘ling capability, unless some overmodulation is permitted. Thus, the
only result that can be given for this incoherent frequency case, for a
specified percentage probability of over-modulation, say 1%, 5%, or
15%, is the reduction permitted (below N) in the peak-power handling
capability of the system power amplifier as a function of the number of
frequencies N.

In treating the case of N coherent frequencies, the authors
attempt to formulate the problem in order to use some results from
the study of optimum, non-periodic, binary code groups. Consider

the envelope-squared

N-1

k(u) = 1 +—2— E (A_ cos pu + B_ sin pu) (3.9)
N g1 P p
where
N-1-p
A = : cos (6 -6 ) (3. 10)
P =0 p+h n
(0= p= N-1)
N-1-p
Bp - nz;’o sin (0p+n - Gn) (3.11)

Some intuitive arguments can lead to very useful phase sequences for

various N. As will be shown in Section 4. 3, 6 1 (in addition to 60') can
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be set equal to zero without loss of generality. Then, in an interesting
approach, it is required that k(u) of Eq. 3.9 be symmetrical about the

origin. Symmetry about u = 0 means Bp = 0. Beginning with BN-l

sin 6,;_4 » it is concluded that 6, , =0 or 7. The authors then "simi-

larly conclude' that all en =0 or 7. However, the assumptions they state

make this conclusion seem erroneous. Starting with BN-l

By = Sin 0y 4
BN-Z = sin GN g * 8in (BN_1 91)
BN-3 = sin 9N-3 + sin (GN—Z - 91) + sin (GN 1" 92)

and letting each Bp =0 with 6, = 0, yields

1
9N-1 =0 or 7w
GN—Z =7 or O
but
sin 9N-3 + sin 92 =0

Certainly 9N-3 and 92 = 0 or m will satisfy the last relation, but it is in

general not necessary. 2 Additional Bp terms lead to the same conclusion.

2For N = 4, 04 must be 0 or = for the given conditions: However, for

Nz 5 only 0 , and 9 must be Oor n. It is readﬂy shown,
for example, t?\at for NN ?6 both 6 2 and 6 5 can be arbitrary and only have
to satisfy the relation
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However, it may be still worthwhile to set all Gn =0 or 7,

which still has all Bp = (0, Then

2 N-1

k(u) = 1 + N Z A _cos pu (3.12)
p
p=1
for which
N-1-p N-1-p
A = ) cosb qmcosf = & .n 2 (3.13)
p n=0 P , n=0 p

wherea_ == 1,

n = |

A10 of Eq. 3.13 is now the equation for the p-th autocorrelation
coefficient of the non-repeating binary sequence 8y ays az, ooy AN g
and is the sum of a sequence N - p plus and minus ones. The treatment
of the theory of aperiodic binary codes is somewhat scattered (Refs.
20-25). Interms of signal coding, attractive autocorrelation behavior

is given by

lal s 1 0<p<N-1 | (3. 14)

Sequences which satisfy this autocorrelation pattern are called '""Barker
codes'" (Ref. 20) or "perfect words.'" The only known perfect words are
for N=2, 3, 4, 5, 7, 11, 13, Storer and Turyn (Refs. 22-25) have

shown, however, that if N is odd and
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1A =1 0<p<N-1 (3. 14)

then

(3. 15)

a_ a = a (3. 16)

n n+l 2n+1 a‘2n+2

That is, the "symmetry" relation (3. 15) and the ""doubling’' relation (3. 16)
must hold for odd-order binary sequences if a desirable autocorrelation
function (Eq. 3. 14) is to be obtained. Since, from Eq. 3. 12, keeping
iApB small (p # 0) will result in k(u) being fairly constant in value, Ander-
son et al. (Ref. 17) have attempted to "extend' this theory of binary codes
to other values of N by employing the relations (3. 15) and (3. 16) as gen-
erating functions. For other values of N these generating sequences do
not produce optimum codes (!Ap! = 1); yet they often generate useful
codes, even though EApi > 1 for many p. Thus, by this technique and
with the aid of a programmed computer for additional searching, useful
codes have been obtained for N = 2 through 13 and N = 16 and 64, giving
low channel dera’cings3 of the order of 3 decibels or less in specific

cases. Results are also given for N =19, 23, and 31, with larger chan-

SAs indicated on page 23, the authors (Ref. 17) are concerned with a
multiplex of frequencies and the power in each channel may have to be
derated below 1/ N-th its share of the total to avoid having the composite
waveform exceed a system peak power limitation.
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nel deratings but considerably better than purely random phasings. Of
course, all these code sequences permit use only of phase angles @n =0
or m, which may offen be advantageous from practical considerations;

but improved results may be available without this constraint.

3.3 Use of the Principle of Stationary Phase for Design of Signals of

Large Time-Bandwidth Product (Refs. 12-15)

Key, Fowle, and Haggarty (Refs. 12-15) have used the stationary
phase method of approximate integration (see Refs. 19 and 26) to specify
independently both the time envelope r(t) and the spectral magnitude
R(w) of a signal, for a dispersive phase characteristic and for a large
product of the signal’'s "'time duration" and "frequency extent, nd Their
approach is applicable chiefly to aperiodic signals for which Fourier
integral representations are valid. However, the results can be
extended intuitively to signals with periodic envelopes.

Of course, in general it is not possible to specify r(t) and R(w)
independently and exactly, but the authors show under what conditions
these two moduli can be related approximately. A principal condition
is that the time-bandwidth product of the signal must be large, i.e.,
considerably greater than unity°

The method proceeds as follows. The inverse Fourier trans-

form of Z(w) = 2R(w) e-;'@(w) is given by

4
Apparently, the above authors' original interest in this problem arose
from the design of a matched-filter radar for which they wished to
specify both the signal shape and its autocorrelation function.
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2t) = — | R e dw (3. 17)
o

The "principle of stationary phase,' as stated by Kelvin, is that the

major contribution of an integral, such as (3. 17), of a rapidly oscillating

function is obtained in the immediate vicinity of the point w = A, where

the phase is stationary; that is,

aiw [wt - 6(@)] _, =0 (3.18)
which yields
_ de(x) _ | :
t = a = T(A) (3.19)

where T(w) is the signal group time delay. Under the assumptions that
for each value of time t there is only one stationary point, and that only
over a 2¢ region has the integral significant value with R(w) constant and

equal to R(1), Eq. 3. 17 becomes

A

" ej[wt - 6(w)] dw (3.20)
-€

)

z(t) = RQ) f
A

For a particular time t, the argument of the exponential is expanded in

a Taylor series about the corresponding ''stationary' point, w =A:
y' b s

do(n)
da

1 d?6(r)
2 dr2

wt - 8(w) = [’At- o)) +[t - ] (w-x)--

(w-))% + ...
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The second term is zero by Eq. 3. 19; neglecting all terms higher than

second order, and setting £ = w - A, the authors write

.1 d20(n) .2
R(A) j[rt-o()] (°F 72 )2 :
a(t) =~ B2l b A a (3. 21)
-€

The integrand in Eq. 3,21 is a Gaussian function with variance

P S
j d? 6(1)
da?
d2e(n) 2 . :
If -, is large enough, so that 0“ is small, it can be assumed that
dx

the entire area under the Gaussian function to be obtained within the limits

+ €, even though e be small. This results in

| [ at-6()+ 7]
z(t) = v/%- R(r) e 1 (3.22)°
/1d2 6 (x )I
dr?
2 2
where + is used for S0A) > 0, and - for a7 6(r) < 0. Since
dxr? dx 2

z(t) = r(t) ej¢(t) ,

5Ha.gga.rty (Ref. 14) provides a more general treatment and solution by
employing the saddle point method of integration.
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r(t) z/%_ R() ' (3.232)
| /d%26(n)
dr?
ot) ~ At-06()x 7 (3. 23b)
The instantaneous frequency as a function of time is given as
¢'(t) =~ X+t g_tx_ 9—%-%1» %,i—‘ = X (3. 24)
Summarizing,
40 = 1y = (3. 19)
g'(t) = A (3.24)

Now that the integral of Eq. 3.17 has been evaluated, the problem
of finding the spectral phase characteristic 9(w) as a function of r(t) and

R(w) can be attacked. This involves solution of Eq. 3.23a in conjunction

2
with Eq. 3.19. Differentiating Eq. 3.19 gives an expression for Q__Q_(_?g)_,
dx 2
thus:
2
o) _ dt (3. 25)

A2 dx
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Squaring both sides-of Eq. 3.23a gives

() dt = 2 R2(r) dx (3. 26)

Fowle (Refs. ‘13 and 15), by integrating Eq. 3.26 and employing
some of the other relations, has ""derived expressions for the phase
functions necessary to the constrﬁction of an approximate Fourier pair
given arbitrarily specified moduli for the function and its transform.
The approximate pairs are shown to be most aécurate when both moduli
are smooth, continuous functions and when the product of the 'extents’
(the T-B product) is large. When both moduli are Gaussian, the approxi-
mate pair is accurate for T-B products of the order of less than 10.
When one modulus is smooth and continuous and the other modulus is
rectangular, for good accuracy in the approximate pair T-B products
of the order of 10 appear to be required. Finally, when both moduli are
required to be rectangular, it appears that T-B products of the order
of 100 or larger are required for good accuracy ..."

In their first paper (Ref. 12), Key et al. consider the case in
which the envelope r(t) is required to be rectangular. With r(t) constant,

Eq. 3.23a becomes

dZo(r) _ %Rz()\) (3.27)
dr?

6F0W1e, Ref. 15
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Conversely, if Eq. 3.27 is satisfied for all A, then r(t) will be a constant.

Consequently, the group delay is

w
T(w) = 2 %f R (1) dA + T (3.28)
o

where T0 is a constant = T(0). The spectral phase characteristic is

w
f(w) = f T(w) dw
)

(3.29)

Equations 3. 28 and 3. 29 give the spectral phase for an FM-like signal.

In particular, if the spectral magnitude is a constant value, i.e.,

R(w)=—1— 0< w< 27B
2VB

then

(3. 30)

From Egs. 3.23b and 3. 19, the instantaneous frequency and time phase

are

¢'(t) = 27 B(t- T )
(3. 31)

e

é(t) = 7 B(t - To)z +
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This case of a rectangular time envelope yields a linear group delay
and a quadratic spectral phase; this is the familiar linear FM signal,
as shown by Eds. 3.31. Of course an FM signal has a very desirable
time envelope, but is not strictly a bandlimited signal. The results of
Eqs. 3.30 and 3. 31 are valuable for the intuitive insight they give, and also
as a first approximation to a solution of the problem of this thesis.

The problem considered by Key et al., however, is somewhat
different from that being considered here. Key et al. specify both the
time and the spectral envelopes for an aperiodic function and derive a
spectral phase function §(w) which, in conjunction with say R(w), yields
a function whose inverse Fourier transform is an approximation to the
desired time function. The nature of this approximation or the error
involved is not prescribed. It can be evaluated, and reduced if neces-
sary, as is indicated by Haggarty (Ref. 14); but the method is cumber-
some rather than straightforward, and makes it difficult to control the
error. We are endeavoring to determine a phase function 9(w) for a
specified spectral magnitude R(w) which yields a periodic time envelope
whose approximation to the desired time function is known and whose

error criterion is prescribed.

3.4 Spectrum of Low Peak Factor FM Signals (Ref. 18)

In studying signals with a low peak factor, natural starting
points are phase or frequency modulated signals, whose time envelopes

are constant. Schroeder, in an unpublished memorandum (Ref. 18),
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computes the relation between the power spectrum |} 2R(w) {? and the
phase spectrum 6(w) for a certain class of FM signals.

Although he does not state it explicitly, Schroeder also employs
the principle of stationary phase though only in discrete form. He com-

putes the amplitude and phase spectrum of

s(t) = cos| wot + o(t)] (3. 32)

or rather
2(t) = e9t) (3. 33)

where ¢(t) is periodic of period T and the instantaneous frequency is‘
greater than zero and monotonic for t # 0, i.e.,
g'(t) > 0 (3. 34a)
¢"'t) > 0, t#0 (3. 34D)
Att =T, ¢'(t) resets instantaneously to ¢'(0). Thus, s(t) may be termed

a unidirectional-sawtooth frequency modulated signal. The spectrum of

z(t) is computed under the following assumptions:

lg"t) ] >> 27 (3. 35)
T2
and
16™1) ] << —B _ gnt) for mz 3 (3. 36)

2Tm-2



3-117

Equation 3. 35 means that there is a restriction to FM signals with a
large modulation index, and Eq. 3. 36 means that the second and higher
derivatives of the instantaneous frequency are small. (Key et al. imposed
analogous conditions for their stationary phase solution of the Fourier
integral. )

If a‘)l = -le is the fundamental radian frequency of ¢(t) and

W =nw,, then let tn be the time when the instantaneous frequency of

x(t) equals w i.e.,

(zs’(tn) =W, (3. 37)
By evaluating
1 T -jwnt
Zw) = fo z(t) e dt (3. 38)

in a manner analogous to that used by Key et al., described in the pre-

ceding section, the approximate power spectrum Pnl7 of z(t) is found to be

w 2

1
_ 2 _ 2~ =
Pn = | Z(wn) [ = |2R(wn) | 27T¢"(tn) (3. 39a)
and the corresponding phase spectrum to be
2
7 n
In terms of the notation of Chapter II, Pn =N
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Gn =W tn - ¢(tn) + (3. 39b)

=

By manipulating Egs. 3. 37 and 3. 39 and using some stated approximations,

the phase expressed in terms of the power spectrum is derived as

nil l‘il -
6 = 2w P, + = (3. 40)
n m=0 ¢=0 ¢ *

=T

9 = 17
If the power spectrum is uniform, so that each Pn = 1—\11— , then
_ m(n® +n) T
9n S =t 3 (3.41)

It can be readily shown (see Section 4. 3) that the linear term in n, which
represents a simple delay, and the constant term of % have no effect on

the shape of the signal power envelope, so that the relation

m

(3.42)

is adequate for a flat spectrum. Although Eq. 3. 42 is only an approxi-
mate solution, it provides a good starting point for further investigation.
Of course, since a linear FM with the spectral phase of Eq. 3. 42 is not

a truly bandlimited signal, a bandwidth truncation will introduce further
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error into the time envelope.
Schroeder has also considered time-symmetric waveforms

having the phase angles of the components restricted to 0 or 7. 8

-j6 |

When a =e N --that is, when a =+ 1 corresponds to Gn =0 and

a_ = -1 corresponds to Gn = . --- Schroeder obtains the following
results:

1_ n-1 m '
a =sign |cos |7 ) ), P, +bn+6 (3.43)
n . [ o]
m=0 £=0

where b is a constant; and for Pn =1/N, a flat spectrum,

. 7n?
a = sign [cos 2?] | (‘3. 44)

with constant and linear terms in n omitted. Admittedly, the derivation

7n?

of these results is questionable, and if cos N or the corresponding

term in Eq. 3. 43 falls very close to 7/ 2 or 37/2, both a =+ 1 and a =" 1

should be tried. Schroeder, however, reports that the formula (Eq. 3. 44)

has been found effective in reducing the peak factor of all cases studied.
The restriction of phase angles to 0 or 7 and the derivation of

Ed. 3.44 suggests correlation with the studies of Anderson et al. (Ref. 17),

described in Section 3. 2, in which the theory of optimum non-repeating

binary sequences is used. It might be suspected that Eq. 3. 44 is the

8See comments on page 3-6.and in Footnote 2.
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relation for "perfect word" codes. It does generate "perfect words"

for N=2, 3, 4, 5, and 7, but fails for N=11 and 13. The relation

e 7(n® +n)
a = sign [cos N jl (3.45)

produces "'perfect words' for N =2, 3, 4, 7, and 11, but fails for

N = 5 and 13. (When the cosine is zero, the relations were considered

not incorrect.) No relation for N = 13 has been found. Equations 3. 44

and 3. 45 also produce two phase sequences for N =9, given by Anderson

et al., but generate different sequences for N = 6, 8, 10, and 12,
Schroeder, then, has derived an approximate relation for the

spectral phase of a large modulation index FM signal. If only N frequency

components are used, good results in terms of peak factor may be obtained,

but the error is not known or controlled.

3. 5 Efficient Production of High-Order Harmonics (Ref. 1)

In his dissertation on frequency synthesis, Butler (Ref. 1) con-
siders various possible means of generating a set of high-order har-
monics having a minimal peak-to-average voltage. A brief summary
of the methods discussed by Butler:follows.

(a) Repetitive Pulse Method. The output of a clocked oscillator

can be used as a trigger signal for a blocking oscillator or diode harmonic
generator with an output waveform very rich in harmonics. The desired

harmonics can be selected by an appropriate filter. ' The clock oscillator
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frequency is equal to the required separation of the harmonics. The
relationship among the peak factor, the pulse width, and the number of
spectral components is given.

(b) Shift-Register Generator Method. A linear maximal se-

quence generated from a shift register (Ref. 27) will produce a line

sinw

spectrum which has a envelope and is spaced by the reciprocal
of the sequence period. By using only a portion of the spectrum of a
sequence with a high clock frequency, a reasonably uniform amplitude

spectrum is obtained.

(c) Parametric Method. Although not strictly applicable to

the problem of this thesis, a technique using a parametric amplifier
and capable of presenting a uniform amplitude spectrum, one component
at a time, is discussed by Butler. A single-resonance lower-sideband
up-converter with an untuned input is suggested for this use.

(d) Modulation Methods. Butler includes both amplitude and

frequency modulation techniques for generating a set of spectral com-
ponents in a desired band of interest. He also draws attention to the

linear FM waveform.






CHAPTER 1V

BASIC ANALYSIS

This chapter will deal with basic analysis of and limitations on
the signal of interest. Principally, the envelope of the signal with

uniform amplitude spectrum will be considered.

4.1 Criterion of Approximation

As was demonstrated in Section 2. 2. 2, the power envelope of

the multicomponent signal can be written as

9 N-1
k(u) = L+ pél @, cos (pu - Bp) (2. 25)

where both ap and 8 b in general are functions of all the phase angles
6(n). Since the basic problem is to have k(u) approximate unity in

some sense, the equivalent problem is to have the error term e(u),

where

N-1
e(u) = Tzf Zl @, cos (pu - Bp) (4. 1)
p::

approximate zero according to some criterion; since both k(u) and
e(u) are periodic, it is adequate to determine the approximation over

any fundamental interval, e.g., -7 < u = +m. A great variety of
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approximations can be sought. Rice (Ref. 28) discusses the best ap-
proximation in the Lq- norm, where the Lq— norm of a function f(t) is

defined as

i_- 1 - 1/q
- q
LD = U) 1£(t) 1% at q>1 42

For our purposes, the best anpproximation is obtained by minimiz-

ing the Lq-distance function
ed = [ |fe(w-0])|* au (4.3)
-7

An approximation can be sought for any value 1< q < . 1 The most
celebrated case is for q = 2, the minimum-mean or least-squared
error; as q gets very large, the Lo{;' norm is sometimes called the
Tchebycheff norm (Ref. 28).

A Tchebycheff error criterion would be the most applicable to
the original problem statement, namely minimization of the peak-to-
average-power ratio of the signal. However, in general, the mathe-
matics are more tractable for a minimum mean-squared error
criterion (q = 2), so that principally, we shall use this latter cri-
terion. Actually, though, since k(u) and thus €(u) are limited to a

bandwidth B (see Section 2. 1 as well as Eq. 4. 1), the minimum error

1Equation 4.4 can also be used for 0 < q < 1, but for this case
Eq. 4.3 defines not a norm but rather a distance function.
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function must be reasonably well behaved (not exhibiting sharp peaks),
the use of a minimum mean-squared error criterion should yield
very satisfactory results.

With Egs. 4.1and 4.3, the mean-squared error becomes

— f 4 T | N-1
€? = f e?(u) du = = E a_cos(pu-pB) du (4.4)
-1 N? -1 | p=1 P P
which, evaluated, gives
_— 5 N-1
€2 =2 )Y ab (4. 5)
N2 p=1 P

As expected, the mean-squared error is the ac or variational power
in the envelope-squared. It was shown in Section 2. 2. 1 that the dc
component of k(u), the envelope-squared (which is the power in r(u),
the envelope itself), is fixed at twice the power of the original signal.
Thus, the problem resolves itself into selecting 6(n) so as to mini-
mize the variational power in the envelope-squared. Recall that

ap was related to the phase spectrum 6(n) by Eq. 2.29:

-iB , N-1- .
ae - = K(p) = K(p,0) = Zop e—3[9(p+n) - 6(n)] (2.29)
_ n=
so that
a? = |K(p)l? (4. 6)
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As implied in Chapter TII (Section 3. 2), there is a relation be-
tween minimizing amplitude variations and selecting code sequences
with certain desirable properties. Whereas in Chapter III the special
case of binary codes sequence was considered, note that K(p) of Eq.
2. 29 has the form of a'general correlation coefficient; specifically,
it is the p-tl} autocc?rrelati.on coefficier}t of the aperiodic complex
sequence e-wo, e-wl, enlez, ceny e-JGN_ 1. Thus, the problem of
this thesis is related to determination of aperiodic polyphase codes
with desirable correlation properties (described in Ref. 32 princi-

pally, as well as Refs. 29-31). The desirable correlation property

for a polyphase code is usually

Q
1

IK(0)! = N

a = IKEI <1 0<p<N-1

The application of optimal phase sequences to polyphase codes is
discussed at greater length in Chapter VII, Section 7. 3.

The mean-squared error approximation can be more elegantly
stated in terms of the vector-matrix set of Eqs. 2.32 and 2. 33.
Rewriting the set (2. 33), but dropping the last equation for K(0),

gives



_ _ =0y -
K(N-1) e N1 77 1
=10 =30 jé
K(N-2)| e N2 TN Q e 1
: - : : : (4.7)
-j6 -6 [ 10
K(2) e 2 e 3 ... € N-1 e N-3
-jo ~jo j0y o =i0p 6y
K(1) e 1 e 2 ... € N-2 e N 1 e N-2
L — — 1 L_ |
J_Y_-_e_(p, 0) = EXPO(-39p+n) EXPC(]'Gn)‘ (4. 8)

whererJig (p, ) refers to the vector whose components contribute to
the error term. The mean-squared error can then be written in

terms of the norm ofJ(e ,

— . .
€? =_;I—2= n.yg(p, o) (4.9)

Thus, Eqs. 4.7 through 4.9 give a compact formulation of the mean-
squared error and related parameters, Which is independent of the
time variable and dependent only upon pertinent parameters.

A crude relation between the minimum mean-squared error e
and the peak-to-average-power ratio of the original signal can be

obtained by a rough approximation. Since

k(u) = 1+ €e(u) (2. 24)
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then

peak power
average power

= 1+e€ (4. 10)
max

where € max is the ma.ximum value achieved by the error during the
interval -7 < u < 7. Since the error function €(u) is bandlimited, it
is fairly well behaved and the minimized error function will be nearly
uniformly varying in this interval; thus, for purposes of this calcula-
tion it may be assumed sinusoidal in nature so that its peak value is

V2 times its root-mean squared value, namely

€ ~ V22 (4. 11)

max

Thus, the peak-to-average-power ratio is given by

peak power =
average power 1+ v2e (4. 12)

In actuality, relation 4. 12 is a lower bound on that ratio.

4.2 Bounds on the Envelope-Squared

Some bounds can be established on the envelope and on the re-
lated mean-squarederror, as a function of N and 8(n), most readily
by considering k(u) expanded and grouped into common frequency

(p) terms, as in Eq. 2. 23:
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2 N
k(u) = 1 R [cos (u- 8,) + cos(u- 92+91) +... +cos(u- -1+ 9Nj_2)]
+—1?I— [cps(Zu- 92) + cos (2u- 93+91) +... +cos(2u- On-1" HN_3)]

- (2.23)

+% {cos [(N-2) u- 0y o] + cos [(N-2) u-6 ; + 91]>

+-N2-<cos [(N;- 1) u- 0y 1]}

Note that the p = 1 frequency component has N-1 terms, but the p =
N-1 frequency component has one term.

4.2.1 Bounds on the Mean-Squared Error. When the mean-

squared error is viewed as the variational power in k(u), it is appar-

ent that the maximum error will occur when 6(n) = 0. 1In this case,

_ (N-1) (2N-1) ‘
Z m? & (4. 13)

For large values of N, this maximum error increases linearly with N,
i.e., és %—N.

- From Eq. 2.23 it is apparent that regardless of the values of
en, the AN 1 will always be unity. It is conceivable, though rarely
possible,‘ that the On's could be chqsen vsb that all other valués of ap

would be zero. Then an absolute lower bound on the error (usually

not realizable) would be

—2 _ 2
€ nin = 2/N (4. 14)
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These maximum and minimum mean-squared error bounds are plotted
in Fig. 4.1 as a function of the number of signal components N for
values from 2 to 100. The great disparity between these two bounds
indicates the drastic influence that the selection of the phase spectrum
can have.

As the lower bound is generally not achievable, a third error
curve is plotted in Fig. 4. 1 to serve as a practical guide between the
two extremes. For this curve, it was assumed that the amplitude of
each frequency component other than zero in the squared-envelope is

the same, namely

(Letting ap = 1 corresponds to the "limiting worst case' for desir-
able correlation properties of a polyphase code--see page .) Then

the mean-squared error is

€1 = ——— (4. 15)

4.2.2 Bounds on the Power Envelope Itself. When Eq. 2. 23

is reviewed again, it is apparent that the k(u) would have minimum
peak-to-peak amplitude swing if the Gn's could be adjusted so that

all

a =0 for 1< p<N-1
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Fig. 4. 1. Mean-squared error bounds for
the power envelope k(u).
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In that case,

k(u)max

1+2/N

k(u)

min 1-2/N

As before, this behavior is usually not realizable.

When 6(n) = 0, for all n, i.e., when
k(u) = 1 +% [(N-1) cosu+ (N-2) cos 2u+... + 2 cos (N-2) u
+ cos (N-1) u]

then k(u) would have its maximum peak-to-peak amplitude swing at

u = 0, and the peak value would be

N-1
_ 2 _ 2 N(N-1) _
k(u)max = 1+N ngln = 1+N —5— =N

It can be shown that in this case

k(u)min =0

For the above two extreme cases, these bounds on k(u) itself

are as shown in Fig. 4. 2.

4.3 Invariant Transformations of 4(n)

It is the purpose here to demonstrate that certain transforma-

tions of 6(n) do not alter the form of the power envelope or the
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Fig. 4.2. Bounds on the magnitude of k(u).
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mean-squared error.

One such transformation is
Bl(n) = 6(n) +bn+d (4. 16)
where b and d are constants. Recall Eq. 2. 29:

K(p, ) = N-i-p o-i0(p+n)-6(n)] _ Nil o-il6(n) - 6(n-p)]
n=p

n=0 (2. 29)

Substituting Eq. 4. 16 into Eq. 2. 29 yields

K(p, 8,) - N- 1;10 ~i[6(p+n) + blp+) + d- 6(n) - bn - d]
n=

L N-1- y _ .
_ o-ibp zop o ~i6+m) - 6] -jbp g o)
n=

Thus, the transformation of Eq. 4. 16 merely introduces a delay in
the power envelope but does not change its form. Since IK(p, 6,)! 2 =
IK(p, 6) 1% = apz, the mean-squared error, as given by Eq. 4.5, also
remains unchanged. Thus, not surprisingly, a constant or linear
variation with n of the phase spectrum cannot alter the error in the
approximation. It is readily seen that any other nonlinear variation
in n will affect the error.

It is further readily evident that a change in sign of all 6(n)

will not affect the mean-squared error. That is, replacing 6(n) by
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-0(n) gives, from Eq. 2. 29,

K(p,-6) = K*(p,0); K*(p,-6) = Klp,6) (4. 17)

there can be no change in €2,

Because in the transformation of Eq. 4. 16 any two constants b and
d can be selected without affecting the error, it is evident that two of
the 6 _'s may be chosen arbitrarily without any loss of generé,lity. 6,
has already been set equal to zero. In addition, we shall henceforth
usually select 9N— 1 to be zero also. Thus, if a particular 6(n) dis-
tribution is found to yield a certain mean-squared error, any number
of different 9(n) distributions different by bn + d can be found which
will yield the same mean-squared error.

Another transformation which does not affect the error is
62(n) = §(N-1-n)

that is, a reversal of the order of the phase sequence @n‘ From

Eq. 2.29,



4-14

N-1-p _; -1-p-1) - -1-
K(p,6,) = Zo o, [6(N-1-p-n) - 6(N-1-n)]
‘ n=

When m = N-1-p,

% -il6(m-p) - 6(m)]

K(p, 6,)
‘ m=N-1

N-1

o-il6(-p) - 6(n)] _ K(p,-6) = K*(p, 6)
n=p

from the second part of Eq. 2.29. Thus, again

s N
= = K*(p, 6) K(p, 6)
N° p=1

-2
€ =

g4

2 .k

p

4.4 Solutions for Simple Cases

It is worthwhile to obtain solutions for some small values of N
to indicate the nature and complexities of the problem.

4.4.1 Solution for N = 2. The most straightforward method

of obtaining a solution for these simple cases is to write out the
power envelope in the form of Eq. 2.23. For N = 2 (with both 90

and 6, equal to ZEero),
kz(u) = 1+cosu (4. 18)

Thus, for a two-component signal, the mean-squared error is always

1/4. This result was obtained in Section 4. 2 and graphed in Fig. 4. 1.
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4. 4.2 Solution for N = 3.  The error term is

63(u) = % [cos (u- 61) + cqs(u+ 9_1) + cos 2u] (4. 19)

Obviously, % 1; @, can be made zero by setting
., 2
) 1~ * p) (4. 20)
By this equation the minimum mean-squared error is

—2
€ .
3min

2
=3 (4. 21)
which is the lower bound of Fig. 4. 1. The power envelope is simply

kye) = 1+§ cos 2u (4. 22)

4.4.3 Solution for N = 4. For four components the error

term is
64(11) = -12 [cos (u.- 91) + cos (u- 02+91) + cos (u+ 92)]
+ 12 [cos (2u- 92) + cos (2u+ 91)] (4. 23)
+ 12 cos 3u
2

For N = 3, relation 4. 20 is valid even for the nonuniform amplitude
case (see Section 5. 3. 5. 1); however, only for N=2 and 3 are the
choices of phase spectra for minimum error independent of the
(non-zero) power spectra.
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Again, it would be desirable if ay and aq could both be made zero by
appropriate choice of the Gn's.

For Qg = 0, it is required that

1
D
]

1 Gziw
or
-92 = 91 T

Substituting this into Eq. 4. 23 gives

64(11) = -12 [cos (u- 01) + cos (u+ 291¢1r) + cos (u- 91+1r)]

+ % cos 3u = -12 [-cos (u+ 291) + cos 3u] . (4. 24)

Therefore, ay cannot be made zero; it is unity regardless of the

choice of Gn's. The mean-squared error of € 4(u) of Eq. 4.24 is

1

Similarly, if ay is set equal to zero by choosing

B 21

Og- 0y = Oy +3
2T

"0y = 0 -3

which gives
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lz cos (2u - %) +—12- cos 3u

then aq cannot be made zero, but again is unity for any choice of 91;

and the mean-squared error is still 1/4.

An optimal solution can be obtained, however, by minimizing

both o, and a, simultaneously, but not setting either one equal to

Zero.

For g, let

-92 = 91:1:1r-6 (4. 26)

Then the error term can be written as

% [cos (u- 91) + cos (u+ 291 + 7-0) + cos(u- 91?714-6)]

€ 4(u)

1 [cos(2u+6, + 7-06) + cos (2u+6,)]
2 1 1

1
+ 3 COS 3u

which can be combined as

64(u) = %2- vV 2-2cosd cos(u-'@l-
+ %]:/2-»-2 cos 0 cos(2u+91+-125-%1]

)
+§) - cos (u+ 291— 6{|

(CE]

(4. 27)

1
+ 5 €08 3u
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The object now is to choose & optimally so as to minimize € 42. Since

the choice of 91 cannot affect Ia2|, one way to choose 91 so as to

minimize Iall is to set

2. -6 = -0 --%+-g:|:2m1r m=0,1,2, ...

1 1
or
o) 2
91=—2--%:I:—I;m— m=0,12, ... (4. 28)
so that
a1=‘ 2-2cos6-1'
Qg = V2-2cosd
a3=1

The mean-squared error is

2 2 2 2y _ 1 - - -
€4 ——I:I;(al + 0, +a3)_—8(5 4cosb-2 2-2cosb+1)

This error can be minimized with respect to 6.

9€ 2 .
4 _ 1 <4sin6- 2 sin 6 > -0

a0 8 2-2cos d

If 5 £0, then
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cosd = %',' 5 = + 0. 161 7 radians 3 | (4. 29a)
and
1 2m
91 = (i0.0805- B :l:—3—)7T
6. = (+0.0805-27F 2my . (4. 29b)
2 : 6 3 :

As can be seen by Eq. 4. 29, there are several values of 6, and 6,
which will minimize the mean-squared error. From the results of

Eq. 4. 29a,

€,2 = 3/16

m
=8
1

1/2

Q
I

(4. 30a)
1/2

Q
il

and, for 6 = + 0. 1617 and m = +1 in Eq. 4. 29, the 6 values are

6, = 0.5805 7

(4. 30b)
6, = 0.58056 7

3Angles will always be expressed as fractions of 7 radians.
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From Eq. 4. 24, the instantaneous power envelope becomes

1 1 1
k4(u) = 1+Zcosu- 7 ¢os 2u+§cos 3u (4.31)



CHAPTER V

INVESTIGATIONS WITH A DIGITAL COMPUTER

Since the problem of minimization of amplitude variations of a
multi-component bandlimited signal involves the determination of a
considerable number of interrelated parameters, namely the ‘Gn's,
the digital computer is useful for obtaining empirical results. Such
results: can provide further insight into the problem and can suggest
guidelines for additional theoretical effort, as well as providing, in
many cases, practical engineering 'answers. This chapter describes
some of the more significant studies conducted with the aid of The

University of Michigan's IBM 7090 digital computing facility.

5.1, Formulation

For all these studies, a mean-squared error criterion (on the
envelope squared) was used; and, principally, a uniform amplitude
spectrum was prescribed for the signal, although a few experiments
with a nonueiform 'amp_litude spectrum Were conducted.

Equations 4.5, 4.6, and 2. 29 relate the mean-squared error to

the phase spectrum 6(n), independent of time. Consequently, € can be
considered a function of all the Hn‘s, thus:
e? = t((6,) = 164, 65 «vv, 6 n-9) = [ 6(n)] (5. 1)

5-1



with

as stipulated in Section 4. 3. 1

Thus the computer can determine € 2 by relatively straight-
forward means, given a 6(n) distribution. Initial experiments proceeded
along the elementary lines of trying various 6(n) distributions; in subse-
quent investigations a more elaborate program, involving the method of

steepest descent, was implemented.

5. 2, Initial Experiments

In preliminary investigations, we simply calculated the mean-
squared error €2 for a number of prescribed (input) spectral phase
distributions 6(n). The computer was programmed2 to determine € 2
for a given set of Gn's from Egs. 2.29, 4.5 and 4.6. A number of

phase distributions, suggested in the literature, were tested.

5. 2.1, Linear FM Signal. The results of the analysis of Key

et al. (Refs. 12—15), who used the principle of stationary phase, as
described in Section 3. 3, and the work of Schroeder (Ref. 18),
described in Section 3. 4, suggest fhe use of a quadratic spectral phase

function

1Usua.lly, 6 -1 will be taken to be zero, although some experiments were
conducted for other fixed values of 6,;_;, such as ONn-1=7-

2Although in many cases the mean-squared error was determined on the
computer, hand computation was also used when expeditious.



6(n) = (3.42)

This is the phase of the linear FM signal, which does have a fairly low
peak factor for large modulation indices. However, to satisfy the condi-

tion that

6(0) = 6(N-1) = 0

Equation 3. 42 can be modified so that 6(n) can also be expressed as

7nf n - (N-1)]

6(n) = N

(5. 2)

As demonstrated in Section 4. 3, both Eq. 3.42 and Eq. 5.2 will yield the
same mean-squared error. This meém—squared error was calculated on
the computer for values of N up to 50 and is plotted in Fig. 5.1 along with
portions of the previously determined "'theoretical bounds' from Section
4.2, Although this quadratic phase is quite good compared to the all zero
phase (E_zm ax curve), it can be noted that the optimal solutions obtained for
N = 3 and 4 (Sections 4. 4. 2 and 4. 4. 3) yield even lower mean-squared
error.

Schroeder also suggested restricting Gn to 0 or 7 by having

where a, = +1 or -1. Then, from Eq. 3. 44,
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o wnz— '
a = sign ]:cos EN_J (3.., 44).

and

en,_ = jloga,

The mean-squared error for this phase function is also plotted in Fig. 5.1
for values of N up to 13.
The error curve is very erratic in behavior, with smaller error

than the quadratic phase function (Eq. - 3. 42) only for N = 3, 5, and 7,

5. 2.2, Phase Sequences Extracted from Theory of Binary and

Polyphase Codes. As discussed in Section 3.2, Anderson et al. (Ref. 17)

endeavored to use results from thé study of optimum, aperiodic binary
codes to obtain useful phase sequences. Using those binary phase se-.
quences, as well as some polyphase sequences suggested from studies of
optimal non-binary codes (Refs. 29-32), we have determined their - mean-
squared error in order to compare them with other phase sequences..
The best binary sequences listed by Anderson give the error
plotted in Fig. 5.1. For those sequences corresponding to perfect words,
i.e., N=3, 4, 5, 7, 11, and 13, and also for N = 12, they are as good -
as the phase of the linear FM signal or better. For values.of N of 3, 4,
5, 6, 7, 9, and 10, Anderson's sequences result in the same mean-
squared error as Schroeder's (Ref. 18) suggested binary sequences.

Frank (Ref. 32) presents a method of generation of some poly-

phase codes with good non-periodic correlation properties. However,



his sequences, as well as similar sequences with good periodic corre-
lation properties (Refs. 29 and 30), are only for values of N which are

perfect squares, i.e., N =4, 9, 16, 25, etc. The N =4 code is iden-

tical to Anderson's and Schroeder's. The mean-squared error was
computed for Frank's sequences of N =9, 16, and 25, with the

following results:

N ¢
9 0. 148
16 0.125
25 0. 0884
36 0.07716
49 0.0618

These values are noted by crosses on Fig. 5. 1.

DeLong (Ref. 31) offers a few three-phase cocles3 (representing
the cube roots of unity) whose autocorrelation is said to have magnitude
less than or equal to one everywhere except at the origin., Calculation
of the mean-squared error, however, for some of his phase sequences
gave values equal to or greater than other previously offered sequences.
For example, a mean-squared error of 0. 148 was obtained for one of

his sequences of length 9.

3DeLong gives three-phase codes for N =3, 4, 5, 7Tand9 only.



5. 2. 3. Other Miscellaneous Trials. The mean-squared error

was calculated for numerous other assumed functional forms of 9(n).
These included variations (both in powers: of n and logarithmic) from the
quadratic phase function. No fruitful results or interesting trends resulted

from these efforts; a more efficient investigative technique is required, |

5. 3. Method of Steepest Descent

Since the mean-squared error € , as expressed by Eq. 5.1, is
a functio_r;:of the Gn's, f(@n) can be considered an N-2 dimensional sur-
face and a minimum value of € 2 can be approached by some form of
descent rpa,pping (Rice, Ref. 28, Section 6-7). A method Qf steepest
descent can be appli_ed to the problem under consideration and implemented

for solution on the computer.

5. 3. 1. Basic Concept of Steepest Descent as Applied to the

Present Problem. A descent method can be viewed in a number of ways

such as some form of elegant geometrical or functional space approach.
However, for our purposes it is simpler to consider the procedure as
an itera,tive-conVergent technique for arriving at the minimal value of
Eq. 5.1 or at the lbwest point on the N - 2 dimensional error surface.
Some of the basic elements of the description that follows are extracted
from Rice (Ref. 28, Chapter 6-5).

The basic philosophy of the method is to start with some esti-
mate 6 1(n) of a phase distribution, which should be as close as possible

to - the lowest point [ € 2, 6(n)] on the surface, and then to determine the



mean-squared error for this estimate, namely

e, =fo,m =16, 6

1 1 21,...,9

N-2, 1 (5. 3)

Now, from the p.oint [ ?12 , 6 1(n)] on the error-surface, the object
is to determine which direction is ""down' and to go a little way in that
direction to obtain a second estimate [ 6_22 , Gz(n)] for which 6—22 <
6_12 . The process is then repeated until, ideally, no estimate [ e—j2+1’
9].+ 1(n)] gives an error less than the errorEj2 due to the proceding
estimate [ E_].z , Bj(n)] .

A usual means of performing this operation involves considera-
tion of the normals of the planes of support4 of f(Gn). If f(9n) has
continuous partial derivatives with respect to the Gn's, and it does for -
the (bandlimited) function considered here, then f(Gn) has a unique plane

of support at every point on its boundary; and the normal to this plane

is the gradient vector of the function f(@n), namely

af(en) of(6 ) af(en)

g(@) = - s 9 ooy T
n 30, 30, L

Given an estimate [ 6_12 , 6,()], one method of obtaining a second and
usually better estimate makes use of the negative gradient g (inward-

pointing normal) evaluated at [ 6 1(n)] and denoted by gl(en). So,'

4Planes of support are quite analogous to tangent planes. See Rice
(Ref. 28, Chapter IV).



0,n) = 6, +(A0)g,(0,) (5. 5)

where (Af))1 is a small constant (increment) applied uniformly to each Qn"

but weighted by gl(Bn)., Then

e, 7 = f[0,m] < €° (5. 6)

provided A6 1 is not too large. More specifically, when Gni is denoted as
the value of the n-th phase angle for the i-th estimate, the i + 1 value of

the mean-squared error is found to be

3f
’ezi'Aeia'bT;

c2 _ ap AL
€. = f Gli ABia .

6 i(n) 6 .(n)

1

(5.7)

o af
ooy Oyig i T A8 s

6.(n)

The interpretation of Eq. 5.7 is that the sign of each partial derivative,
- a—g—t , evaluated at [ Hi(n)] , determines the direction (positive or
negatr.ilve) in which the next increment in that particular 6 n should be
taken; further, % | specifies the weighting given to the uni,forvm
incremien.t A@i, applied to all Gn’ 1< n §_ N-2. This procedure

is readily visualized for a one- or two-dimensional problem.
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One key to this technique is the judicious selection of the quantity
Aei. In a computer program this is done in an adaptive fashion. That
is, if e_iz+ ; turns out to be greater than E—i2 , the value of A6, is known
to have been too large and a new value of e_iz+ 1 is computed using a
smaller value of A9i+ 't if e_‘ig+ 1 turns out to be only slightly smaller
than e_i2 , the value of Aei is most likely too small and a larger value
is employed for the next (i+2) estimate so as to speed up the convergence
process.

One additional detail is that in a computer program the evalua-

tion of any derivative must be done, of course, by utilizing finite differ-

ences, i.e.,
af _ . f(el, 02, L) ,@n + 5’ oci. ’_V_‘WQVN‘JZ)CT"i(;el',delz’j.‘.__,-en,.‘ 9 BN—Z)
20 - b

6 (n)

(5.8)

where § is a very small increment.

In summary, the method of steepest descent outlined here will
usually produce convergence. (Convergence can generally be estab-
lished by noting when e_iz+ ;> e_iz for increasing values of A, since
each (%—f— would be near zero.) However, there is no guarantee that
[€2, G?n)] is the lowest point on the entire N-2 dimensional surface.
It may be a relative low point or a local minimum. However, the

occurrence of local minima is peculiar to the nature of the problem

itself, rather than only to the method of steepest descent, as can be
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seen from the following.

Let us consider how a direct, analytical approach to the problem
might be taken. The basic procedure would be to minimize the mean-
squared error with respect to each of the phases 9n° This would result

in a set of N-2 equations with N-2 unknowns (with § =6, _, =0):

oe 2
: _ o
36 4
o€ 2

= 0
%6,

(5. 9)

€ 2 = 0
LI

where the Bn's, are related to e_“" via Eqs. 4.5 and 2.29, These equa-
tions would be nonlinear and transcendental and would involve the common
trigonometric functions. Like many other trigonometric equations, these
would have no single, unique solution, but can be satisfied for many values
of en, This was indeed seen to be true in the solution of simple cases

(N = 3 and 4) in Section 4. 4. Hence even a direct analytic approach can
result in a local minimum, and many different combinations of @n may
need to be tried to find an absolute minimum. Further, the solution of

the set of equations (5.9) is far from trivial and would have to be done
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on the computer by a technique such as the Newton-Raphson method
(Ref. 34, pp. 203-206). This method itself is an iterative one and
performs operations similar to those employed in the steepest-descent
method, including the requiring of a first estimate of the solution. In
effect, the steepest-déscent method can be regarded as one way of
obtaining solutions to the set of equations (5.9).

5.3.2. Computer Programs. This section briefly describes the

computer programs used to implement the steepest-descent method, and
discusses certain of their features more fully. Detailed descriptions can
be found in Appendix B. Actually, two separate programs were used in
this study. One program, the efror minimization program performed
the error minimization'described in Section 5. 3.1} the other

the function evaluation program, determined the time function (for plots)
of related quantities (e.g., the power envelope, the instantaneous time
phase and frequency, etc.) in the interval -1 < u < + 7,

5.3.2.1. Error Minimization Program. The error minimi-

zation program essentially implements the iterative steepest-descent
technique described in Section 5. 3. 1 ---in particular, Egs. 5.4 through
5.9. It is organized as a main program with two subroutines. One
subroutine determines the mean-squared error, via Eqs. 4.5, 4.6, and
2. 29, for specified values of N, 6(n), and spectral amplitude distribu-

tion c(n), if nonuniform. ° It is used frequently in the course of running

5See Section 5. 3. 5 for more specific details of a nonuniform amplitude
spectrum,
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through the main program. The other subroutine, whose use is optional,
allows specification of the initial phase distribution 8 1(n)---the first

estimate---from a functional equation for 6(n); e.g.,

m?

9(1‘1) = —N’—— (3. 42)

The main program, using the subroutines, performs all the other opera-
tions and iterations necessary. The simplest way to explain its operation
is to list and explain the various inputs required for the program:

(a) Initial 6(n) distribution. This may be specified as a func-
tional form, or specific numerical values may be read in directly
on cards. Also, any specific Bn'?s can be held fixed during the
optimization process. '

(b)  Initial spectral amplitude distribution, c,---usually set as
uniform, c, =1, but any nonuniform distribution, if specified, can
be read in.

(¢) The values' of N for which the program is to be run.

(d) Maximum number of iterations---the maximum number of
iteration steps or estimates [ €;%, 9(n)] (Eq. 5.8) that can be per-
formed. For smaller values of N (N< 20), 30 iterations have
usually been permitted. For larger values of N, however, the

process becomes more costly and the number of iterations has
been considerably restricted.

(e) A6 4 (see Egs. 5.6 and 5.8). The initial value of A9 must
be specified, but can be modified (see f and g below) at each subse-
quent step. After some experimentation, an initial A§ 1 value of 2
was found the most satisfactory.

(f) A€?---an error reduction criterion. Typically,

Ae? = 0.95

(g) &---afractional change in A§. Typically,

¢ = 0.50
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The following operations may be invoked, using both Ae 2 and £.

E €2, > €2

i+l i
then A91+1 =£AGi
-2 - 2 -2 ~ —2\ 7 2
If €1 < e ande ;> (Ae )ei ,
then A9i+1 = (1+§)A0i

(ol

=

()

=]

>

D
puado
+

1

Af,
i

Thus, ife®; > €,%, Af is reduced; if €% 1 is only slightly less
than'e.?, A6 is increased in an effort to speed up convergence;
only it €71 has decreased sufficiently from e_iz is A9 maintained
at the same value.

(h) y---a criterion of convergence. 7Y, in addition to the specifi-
cation of the maximum number of iterations (d), can terminate the
program by a test for convergence on two successive error estimates.

-2 - 2

If '€1+1 €, | < v
-2 _ e

and ‘Gi+2 ei+1| < vy

then, stop program
¥y = 0.0001 has usually been employed.

(i) 6---the increment in Eq. 5.9 for obtaining approximate val-
ues of the partial derivatives of/ aen. Typically, 6 = 0. 001 has been
used.

(j) In specifying the data, one can choose any of several means of
holding specific 6 n values fixed during the optimization process.

The output of the error minimization program consists

primarily of the mean-squared error Eiz at each step and the initial and
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final phase distributions, G'I(n) and 6,(n) respectively.

5. 3.2.2. Function Evaluation Program. The chief purpose

of the function evaluation program is to obtaih the time functions of the
signal that result when an optimal phase distribution 6 ,(n) has been
determined by the error minimization program. Several time func-
tions associated with t»he signal, including its power envelope, time
phase, and‘instantaneous frequency, are obtained with the thought that
these functions‘ may be useful if generation of such a minimal amplitude
signal, perhaps by some modulation techniques, is desired. The pro-
gram implements some of the following equations in a straightforward

manner for time increments < 01\1277 in the interval -7 < u < +m.

Recall that

N-1 .
_ 1 j[ nu - 8(n)] (5. 10
z(u) == n; c e )
Then
(u) Gw) - T @ 61
= R Z = — -0 °
x(u e u = & c cos [ nu n)]
and
@ -t (2@} - T e smlm-o@] (512
u) = Im ¢ z(u = c_sin| nu - 6(n 5.12
y YN n=0 " ) |
" Thus

k(u) = x%(@) +y? () (5. 13)
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The instantaneous time phase of the signal is given by

N

(u
u

<t

|

¢(u) = arc tan (5. 14)

Pane
N

X

However, with the signal as now specified (i. e., starting at the lowest
frequency term, n=0, and counting up to the highest frequency term,
n= N-1),a linear time;phase term is present in ¢(u); so, neither g(u)
nor ¢'(u), the instantaneous frequency, has zero average value. For
a practical modulation scheme it may be desirable to have the carrier
frequency in the center of the signal band and, in particular, to have
no dc compon.ent in ¢'(u). Consequently, ¢'(u) can be considered to be
composed of |

o) = 2 -y

(5. 15)

1 is the frequency offset

where y¥'(u) has zero average value and Nz-

from the band center of the n=0 component, where the carrier is at

present specified (see Eq. 2.18). ¢(u) is composed of

6(u) = () + —=u (5. 16)

Therefore, in obtaining curves of instantaneous frequency in the interval

-1 < u < + 7, the quantity g—g—g—l—) is plotted.

Another set of outputs from this function evaluation program is

the values of K(p, ) of Eq. 2.29 for 0 < p < N-1, namely
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N-1-p .
Kp) =a_e P = Zop eIl O(p+n) - 6(n)] (2. 29)
n=

5.3.3. Results. The steepest-descent method used in the error
minimization program yields a phase sequence (or sequences) of a signal
whose instantaneous power envelope deviations from a constant value are
minim-um in a mean-squared sense. In order finally to ascertain whether
these ""optimal' sequences yield a minimal peak power, plots of the power
envelope k(u) vs. u, as obtained from the function evaluation program,
are examined. Then, optimal phase sequences can be specified for each
value of N. These matters are considered in successive order in’the next
three subsections.

5. 3.3.1. Minimum Mean-Squared Error Results. The error

minimization program, using the method of steepest descent, was run
for many values of N in the range from 3 to 50, with all values of N up
to 20. Normally, but not always,. the phase distribution corresponding
to that for the linear FM signal (see curve of Fig. 5. 1), namely

an[ n - (N-1)]

N (5. 2)

64(n) =

| was employed as the ihitial spectral phase distribution; this "first esti-
mate' [ 6 1(n)] ‘was generated as input data for the computer program.

Note again, from Eq. 5. 2, that

6,00 = 9 (N-1) =0
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These were usually held fixed during the optimization process. Although
the error program, using the 6(n) distribution of Eq. 5.2, always did
converge to some minimum mean-squared error value, it was found
that for some values of N a lower mean-squared error was obtained by
either using some of the known binary phase sequences (see F1g 5.1) or
starting with a soméwhat modified initial distribution. Thus, in these
cases (to be enumerated below), the steepest-déscent metho'd, starting
with 6(n) of Ed. 5.2, achieved only a local minimum, and there is no
positive guarantee that ahy of the minimum error values obtained (for
N > 4) are absolute minima. Further, as will be seen in a few isolated
cases, minimization of the mean-squared error does not always corres-
pond to minimizing the peak power of the signal. In most cases any
difference between the resulting peak power and that obtained with
other good phase sequénces is very small. However, the final mérit
of any phase sequence can ultimately be evaluated from plots of the
signal power or its envelope k(u), as is done in the next subsection.
Figure 5.2 gives an overall picture of the mean-squared error
achieved as a function of N. The same upper, lower, and ''middle"
bounds as in Figs. 4.1 and 5. 1 are plotted. Also shown is an error
curve for binary "perfect words.'" Although perfect words are known
to exist only for N =2, 3, 4, 5, 7, 11 and 13, the dotted portion of the
curve shows what the error would be if perfect words did exist for
other values of N. This "hypothetical" curve is readily deducted

from the fact that even-length perfect binary sequences have N/ 2
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off-peak autocorrelation magnitude values |K(p)! (atp=1,2, ... N-1)

of unity and (N/ 2) - 1 off-peak values of zero, whereas the similar off-

peak values for odd-length perfect sequences are unit values and

2
-:I\lé—-l zero values. Thus
— 2 N 1
: even = N2 (7) "N (5. 32)
-2 2 (N-1 =i 1
ot W ET) TN TR (5. 3)

In addition to the mean-squared error obtained from the quadra-
tic phase function (Eq. 5.2), Fig. 5.2 plots the smallest error achieved
for each N investigated, as a result of extensive use of the error minimi-
zation computer program. (The curve is composed of broken lines be- -
tween values of N for which results have been obtained.) As was stated
above, the initial #(n) distribution given in Eq. 5.2 was used in running
the error minimization procedure, except when other available informa-
tion warranted the use of other initial phase distributions.

We'shall now consider in further detail some of the specific
values of N and the mean-squared error results obtained in the computer
experiments. Unless otherwise noted, no initial 8(n) distribution other

than the quadratié-phase one of ’Eq. 5. 2 led to any fruitful results.

N=3

The computer gave the same i‘esults as derived in Section 4. 4. 2.
The three-long binary perfect word (which is the phase sequence 0, 0, 7,
as compared to our 0, 7/2,0--one derivable from the other via the trans-
formation of Eq. 4. 16) gives the same mean-squared error.
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N =4

The computer gave the same results (except for a sign change)
as derived in Section 4. 4. 3. . Here, the error is better than that obtained
from the four-long perfect word.

N=5

In this case the minimization process, starting with the sequence
of Eq. 5.2, converged to a phase sequence having the same error as the
five-long perfect word sequence and being a linear phase transformation
of it.

N=26

The initial 6 y(n) distribution was found to be the minimum error
one. [ &4 (n)] Would not budge, and starting with other initial distri-
butions of 9(n]) always led to the same € ? values or greater ones.

N=T"

For this case the initial 6 1(n) distribution d1d not lead to an
absolute minimum, but caused convergence withe 2 = 0.186. The per-
fect word sequence gives ¢ e = 0, 1225; using that sequence as an initial
one led no further, for [ e *, 6(n)] wo_uld not budge. However, using a
sequence with double the phase of Eq. 5.2, i.e., '

2mn[ n - (N-1)]

0, = 2T

(5. 4)

produced an improved result, € 2 = 0.0874.

N=38

No other initial distribution tried gave a lower final error than
the quadratic phase distribution.

N=9

This value of N resulted in an unusually low error value, almost
as low as the lower bound. No obvious reason for this was found, and
no other value of N, except N = 3, came as close to the lower bound.
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N =10

This was another case in which a different initial distribution
produced a lower error value. Ance 2 of 0. 106 was obtained with 6 1(n) 6
of Eq. 5.2; an € ? of 0. 0899 was obtained with an initial distribution
of

2

: mn
O30 = TT-ON-2(0Z-D) (5. 9)

(with 6, _, "free running.")

N -
N

=11

_This case was closely similar to that for N = 7. The initial 6 (n)
ledtoe 2 =0.1510. The perfect word sequence gave € ° = 0, 082645,
which could not be decreased when that perfect word sequence was used
as a starting one. However, using the 6 9(n) initial distribution of Eq.

5. 4 led to the minimum achieved, € ? = 0. 0754.

N =12

The initial 6 {(n) distribution led to an € = 0, 1483; this was im-
proved upon by taking as an initial distribution a modified form of Eq.
5.5, sothat 6, _; was held fixed at zero:

an[n - (N-1)]
(V2-1)N-2(2-1)

0 4(n) = (5. 6)

An € 2 of 0.0989 was achieved.

N =13

The initial 6 1(n) distribution yielded an € ? =0.09424. The
thirteen-long perfect word gives an € 2 = 0.0710, which could not be
improved upon by any other trials.

6This distribution was "'chosen'" and tried as a result of some mathemati-
cal manipulations with the stationary phase concept (similar to, but not
the same as, those described in Section 6. 3).



5-23

N=14

Ane 2 =0.1210 was obtained with the initial 8(n) distribution of
Eq. 5.1; no improvement was obtained with other trial distributions.

N =15

Other trial initial 6(n) distributions failed to improve upon the
9 (n) distribution. In passing, the phase (0 or 7) corresponding to one
per1od of a fifteen-long periodic linear maximal sequence, as obtained
from a four-stage shift register generator (Ref. 27 ), was tried. This
phase apparently yields a local minimum with e 2 =0.3111,

N =16 - 20

Only the quadratic phase function, either Eq. 5.1 or Eq. 5.2,
led to best final phase distributions.

This discussion of results leads to some general observations.
First, in examining the mean-squared error obtained at each iteration,
it was noted that usually the error reduction resulting from the first
step was the largest, and that in general the error reductions were
smaller at each succeeding step. An implication of vthis is that in em-
ploying the optimization procedure for large N values, one can be
assured of reasonably good results with a very few iterations.

Some experiments were conducted with only 6 o held fixed (at zero),
and with all the other Bn's, including QN— 1 permitted to run free. (An

: 2
initial phase distribution of Bn =12 was frequently used.) It was found

N
that eyssentially"t'he same final mean-squared error resulted, though
of course a different final phase sequence was obtained. Holding BN- 1

fixed, though at 7 rather than at zero, made absolutely no difference

in the mean-squared error'; the error at each iteration step was identical
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to that achieved when 6 = 60 = 0. Again, the final phase sequence

N-1
was different.

A final, and important observation is that, for values of N in
which both 90 and QN 1 were held fixed at zero, the initial and final

phase sequences were found to be symmetrical, i.e.,

6, (N-1-n) = 6,(n) (5.7)

5. 3. 3.2. Results Obtained by the Function Evaluation

Program. As was mentioned in Section 5. 3. 2. 2, the function evalua-
tion program, via a straightforward implementation of appropriate for-
mulae, determines data for plots of several time functions related to
the signal. Probably, the most important plot is that of the power enve-
lope k(u) over a period illustrating the effect of the error minimization
procedure on the peak power. Figures 5.3 through 5. 14 are plots of |
k(u) vs. u/mfor -1. 0< u/7 s 1.0, for values of N from 3 through

13 plus N = 18 and with some or all of the following 6(n) spectral dis-

tributions:
(1) Go(n) = 0, the all-zero phase (3& N < 9)
: [ n? - (N-1)n
(2) 6 l(n) = [ N | , the linear FM signal phase

(3) 6,(n), an'optimal" phase sequence, as obtained from the
error minimization program.
(4) for N =4, 5, 7, 11, and 13 the perfect word sequences; for

N =9, DeLong's Code (Ref. 31).
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For the optimal or near optimal phase distributions, k(u) hasa
relatively small, fairly uniform variation about unity. : However, be-
cause a mean-squared error criterion has been used instead of a Tcheby-
sheff one, the variation for the optimal phase sequence (except for N = 3)
is not equal-ripple, as would be ideal for minimum peak-to-average power
ratio. Although, the mean-squared error minimization technique is
usually successful in producing multicomponent signals with low peaking,
especially for N =9, 7 we shall examine some specific values of N which
are exceptional cases.

N<5

The effect of the non-ideal mean-squared error criterion is seen
in Fig. 5.5. The linear FM signal phase has a peak value about 3. 8 per-
cent lower than the "optimal” one, which, in this case, is equivalent to
the perfect word phase sequence.

N=T7
Although an "optimal' phase sequence was found which had a
lower mean-squared error than the perfect word phase sequence, the

latter has a peak value about 7.8 percent lower.

N=11

This case was similar to N =7 in that the perfect word phase
sequence gave a peak value about 6. 8 percent lower, although a phase
sequence was found which yielded a lower mean-squared error,

N =13

In this case, in contrast to N =T7T-and N = 11, the perfect word phase
sequence yielded the lowest mean-squared error, but the peak’ value was
about 25, 3 percent higher than that from an "optlmal” phase sequence
determined from the error minimization program.

7Thus» if in a specific application one could choose the number of coherent
signal frequencies to be used, operation would be made most efficient by
selecting nine components.
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Although plots were not obtained for all values of N investigated with the
error minimization program, it appears that, except for some of those
cases for which special sequences are known a priori, a near minimal
peak power is achieved for most other values of N.

In addition to envelope information, other quantities of interest
are obtained from the function evaluation program. Figures 5. 5 through

ay(u)
du

5.21 are plots of the modified instantaneous frequency of Eq.

5. 15 for the values of N through 9 and for the same 6(n) distributions.

It is seen that when 6(n) = 0, _d_xg_éu)_

is also identically zero. This is
to be expected, for then the signal has only amplitude modulation plus
phase jumps of multiples of 7 radians whenever the actual envelope has
a zero value, as in double sidéband modulation. For optimal phase
distributions, there is considerably mdrevfrequency modulatio.n and
less amplitude modulation -- that is, more or less of a tradeoff between
frequency and é.mplitude modulation, Also, the peak instantaneous fre-
quency deviation is of the order of .:}: N_2-_1_ , which are the (normalized
radian) signal frequencies farthest from band center. The time phase
Y(u), as a function of u, can be obtained, to within an arbitrary constant,
by integrating the d—:;i—u) function.

5. 3. 3.3. Final Optimal Phase Sequences. The information

in the two proceding subsections enables us to specify optimal sets of
phase sequences for various values of N. The first group, consisting
of the more exhaustively investigated phase sequences, is listed in

Table 5. 1 for values of N from 3 to 20, along with the mean-squared error.
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It was found that about the same mean-squared error was obtained

whether or not 6 was held fixed. Only the resulting final phase

N-1
sequences were different; presumably they are related by a transfor-
mation of the form of Eq. 4. 16. Table 5. 2 gives some phase sequences
for certain values of N between 20 and 50. However, the phase sequences
in this second table generally do not represent a minimum achievable
error, as the computer program was usually terminated after a very

few iterations and before convergence of the process; the computer cost
of running this error minimization program grows very rapidly with

large N.

5. 3.4. Nonuniform Amplitude Spectrum. As mentioned pre-

viously, the computer programs can be run with an arbitrary, prescribed
amplitude spectrum. By the formulation in Section 2. 2.1, in which the

signal is suitably normalized so that

~ c =1 (2. 16)

k(u) can be written in the usual manner:

N-1
_ - 2 -
k(u) = 1+€e(u) = 1+ N p2=1 ozpcos(pu Bp) (2.25)
where, in this case,
N-1-p s _
a = c c_e il 6(p+n) - 6(n)}] (5. 8)

P n=0 ptn n
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N-1-p
A = co = c c_cos| 6(p+tn) - 6(n 5.9
0 a, sBp L p+n °n [ 6(p+n) (n)]  (5.9)
N-1-p
Bp = ap sin Bp = 2 cp+n c, sin [ 6(p+n) - 6(n)] (5. 10)
Again,
_, 9 N-1 \ 9 N-1 \ \
€ = = a = = (A ° +B °) (4. 5)
N 21 P N =1 P P

As illustrative éxamples, a nonuniform spectrum was investigated for two
values of N.

5. 3.4.1. Nonuniform Amplitude Spectrum for N = 3. The

following conditions were prescribed:

c0 = 1,155
= 0.57750 e cy
¢y = U (Note that — = —2% =2
Cc (¢
1 1
¢, = 1.155

-2
andcoc1 = 3)

In this elementary case, the object is to choose 6 1 optimally so as to
minimize e—'32 . Although the optimization can be readily done analytically,
the 'éofnphter was also used to check on the application of the steepest de-
scent method to a nonuniform spect'ral amplitude. First, consider the

basic trigonometric analysis. From Eq. 5.8,
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@, = c.C e-j(91-00) + c-c} e-j(92-91)
17 %1% | 2°1
o - e .Ac: . -J(ez_eo) _ o

2 T %%°¢ T %%

Since, for the given values of € coc1 = C4Cy

-2 _ Z , ' 2 2
€s” =3 [ (2 c,C, COS 91) + (COCZ) ] (5. 11)
Obviously, to minimize 532 , 64 should be chosen equal to + % . Then,
e = (2 (1.155% = 0.3952
min

The error minimization program, starting with the quadratic phase of

Eq. 5.2 having a mean-squared error of 0.4943, yielded

D
I

=0.501571

€2 0. 395481
min

From Eq. 5.11, the mean-squared error for the all-zero phase (6 = 0) is
0.7902. Comparing the mean-squared error for the uniform and the non-

uniform amplitude spectrums in Table 5. 3 shows
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Uniform Nonuniform
6 (n) Spectrum Spectrum
0 : 1.1111 0.7902
7[ n® - (N-1)n]
0. 4444 0.4943
N
Optimal 0. 2222 0. 3955

Table 5.3. Comparison of mean-squared error, for N=3, of
uniform and nonuniform amplitude spectra.

that for the better phase sequences a nonuniform spectrum increases
the error, whereas for the poor, all-zero phase sequence the nonuniform
spectrum decreases the error. Plots of the power envelope k(u) for each

of these three phases are given in Fig. 5. 22.

5. 3.4.2. Nonuniform Amplitude Spectrum for N=8, Asan
example of a nonuniform amplitude spectrurh with a more complex signal,

an amplitude spectrum of

0. 1In

c, = 0. 6698 e (5. 12)

was used for an N =8 component signal. The spectrum of Eq. 5. 12 is
exponential, with the amplitude of the highest frequency term Cr approxi-

mately twice that of the lowest frequency term c The constant 0. 6698

00
was introduced to adjust the average power of the envelope to unity, ac-
cording to Eq. 2. 16, The error minimization program was run both for

an initial phase distribution of Eq. 5.2 and for the all-zero phase. With
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the former, sixteen iterations gave an € 2 of 0.1147; with the latter,
thirty iterations, the maximum allowed, gave an € 2 of 0.1163. Although
the two final error values are close, the actual final phase sequences are
considerably different, and neither exhibits any symmetry. The results

are summarized and compared in Table 5. 4.

o) | e =1 |c, =668 el 1n
All-zero 4, 375 3. 9717
Quadratic 0. 1982 0. 2891
Optimal 0. 0857 0. 1147

Table 5.4. Mean-squared error for N=8, with
uniform and nonuniform amplitude spectra.

Optimal Phase: . 0000 -, 4798 . 1508 . 4340
(in fractions of
7 radians) . 4331 . 4813 -.9012 . 0000

The same trend as for N =3 is apparent in these results. The approxi-
mate peak-to-average power ratio, as given by Eq. 4. 12, might be noted
for the optimal phase sequences, The ratios calculated were 1. 413 for
the uniform spectrum, and 1. 478 for the nonuniform one. .From Fig.
5.8, the peak-to-average ratio for the N =8 uniform amplitude spectrum
with optimal phase is 1.44. Figure 5. 23 gives plots of k(u) with nonuni-

form prescribed amplitude spectrum for each of the three phase sequences
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of Table 5.4. The peak-to-average ratio for the optimal phase is 1.70.
Thus, Eq. 4. 12 turned out, in this case, to be about 2 percent accurate
for the uniform spectrum, but only 20 percent accurate for the nonuni-

form spectrum,






CHAPTER VI

ANALYTICAL METHODS

This chapter deals with various analytical approaches to the
problem. Several interesting aspects are explor_ed and, although only
limited results are obtained, additional insight into the nature of the
problem is acquired. Also, use is made of the vast information
gathered in the digital computer investigations. The studies in this
chapter are entirely restricted to signals with a uniform amplitude

distribution.

6.1 Use of Symmetry Property

It is natural t6 explore further the symmetry property present
in the optimal computer solutions when 90 and GN- 1 are held fixed at
zero, namely

B(N-1-n) = 6(n) 0< n< N-1 | (6. 1)
with
6(0) = 6(N-1) = 0
If we assume that Eq. 6. 1 is valid for an optimal phase distribution,

some additional results can be derived.

Recall Eqgs. 2. 26 and 2. 28:
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N-1-p
A(p,0) = Ap = ap cos Bp = n\éo cos [8(p+n) - 6(n)]
N-1-p
B(p,d) = B_ =a_sinB_ = ) sin [6(p+n)-6(n)]  (2.26)
P P n=0
g N1 .
#(u) = 1+A-N- pz:l (Ap cos pu+Bp sin pu) (2. 28)

By writing out a few of the Bp's (1< p < N-1), starting with p = N-1,
and using Eq. 6.1,
BN" 1 = Sin(eN_ 1- 60) = 0

= sin 92+sin(91- 91)+sin 6y = 0

B, = sin(@z- 60) + sin(93- 61) + ...+ sin(GN_z- eN-l)
+ sin(GN_l-GN_3) = sin 92 + sin(93- 61) ..+ sin(91-93)
+ Sin(—62) =0

B1 = sin(@l- 90) + sin(ez- 91) + ool + sin(@N_z— 9N—3)
+ sin(GN_l- N-2) = sin 91 + sin(ez- 91) + + sin(@l- 92)

+ sin(-@l) =0
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it is readily seen that all Bp = 0. Thus, k(u) is an even function of

u, symmetrical about the origin. Conversely, if symmetry about

the origin is assumed, ‘which would not appear to be a severe restric-
tion, then Bp = 0, and, with 60 = 9N—1 = 0, the result of Eq. 6.1
would follow. | | |

In a similar way, the pattern of the Ap's becomes clear:

Anoq = cos(Oy_1-0p) = 1

Ao = €080y 9=0;) + cos(6yy_4-64) = 2cos 6y
AN—3 = COS 92 + cos(0) + cos (-92) = 1+ 2 cos 02
AN—4 = coS 93 + cos(@z- 91) + cos(el- 62) + cos(-@é)
= 2 cos(62— 91) + 2 cos 03
AN—5 = CoSs 94 + cos(93- 91) + cos(92- 62) + cos(é)1 - 93)
+ f‘cos(-'94) =142 cos (6~ 64) + 2 cos 6,
A1 = coSs 91 + COS (9_2- 91) + cos(93- 62) +o.. + cos(@l- 92)

+ cosfy = 2 cos 6y + 2 c‘os(ez- 91) +

Then, the mean-squared error is

N- | 1
2 == 3 Ap2 (6.2)
-1 N-1
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With the above simplificat_ions, it is feasible to investigate analyti-
cally the optimal phase sequences for valués of N beyond those
obtained in Chapter IV, Section 4.4. As a start, let us repeat the
solution for N=4.

6.1.1 Optimal Symmetrical Solution for N=4. By the sym-

metry of Eq. 6.1, for N=4

90 = 93 = 0
01 = 9
- 2 1 3 2 1 2 2
€4 = 3 pZ,lAp = —8[(1+2cos91) +(2cos@1) + 1]
1
= 7 (1+2cos 61+4cos?‘ 6 (6. 3)
o€ ,2

4 1 . . _
8_91" = 3 (-2S1n91-8s1n6100s61) =0

For sin 81 #£0,

NN

cos 61

D
]

+ 0. 5807

and
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which agreés with the’comp'uter results and the solution of Section 4. 4. 3.

6.1.2 Optimal Symmetrical Solution for N=5. For N=5,

90 = 94 =0
61 = 03
Oy = b9
—2 _ 2 2 2 2 2
€5 = 3E (A1;+A2 +A3 +A4) (6. 4)
where A1 = 2 '(’:osi(ez- 91) + COS 61‘
A2 = 1+ 2 cos 62
A4 =1

By observation, if 6; = £ n/2, then IA3| is minimized and

Ay = i2sin92
A2 = 1+2cos,92
N
A4 =1
?52 = -2—2-5-(tlsin2 0, + 1+4=cos€2‘+4cos2 6g + 1)

(6 + 4 cos 92)

™o
cnIN
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- 2

For 92 = £, €p is minimized and equal to ;5— Thus, the selection

of 91 = +7/2 and -»92 = T appears reasonable, particularly since

A1=0
A2=1
A3=0
A4=1

These solutions agree with the computer results.

6. 1.3 Investigation of Optimal Symmetrical Solution for N=6.

For N=6,
60 = 65 =0
91 = 94
Oy = O3
-2 _ 1 2 2 2 2 2
€6 = T8 (A1 +A2 +A3 +A4 +A5) (6. 5)
where A1 = 1+Zcos(92-91)+cos 91
A2 = 2cos(92-61)+cos 02
A4 = 2 cos 91
A5 =1

As a first try, let 6, = /2. Then
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1 1+Zsin62

= 2(sin 09 + cOS 92)

A
A, =
A, =0
Ag =1
Now, if 6, = 3r/4,
Ay = 1442 = 2. 414
Ay = 0 |
Ay = 1-2/42 = 0.414
Ay =0
Ag =1

which gives a mean-squared error of

G = £ (5.825404 017240+ 1) = 0.3888
The best result from any computer run is EGZ, = 0.2778. Thus, these
choices of Gn's are not optimal. Other trials at making some of the
Ap values zero proved fruitless in minimizing 'e—62. Obviously, the
best procedure would be to make each Ap small, but not necessarily
zero. If each Ap = 1, then results the same as those obtained from
the computer runs are achieved. Ideally, one should form the follow-

ing equations:



- 2
866 o
307 |
(6.7)
- 2
% _
892

However, as discussed in Section 5. 3. 1, the issues are essentially the
same as those involved in solution by the method of steepest descent.

6. 1.4 Investigation of Symmetrical Solution for N=9. Since the

computer results for N=9 gave a mean-squared error very close to

the absolute lower bound, a more careful examination of this case is

warranted.
For N=9,
0y = 05 = O
61 = O
9y = %
O3 = 95
0, = 6,

The Ap's are given by
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A8 =1

A7 = 2 cos 91

A6 = 1+ 2 cos 09

A5 = 2 cos 93+2cos(92-01)

A4 = 1+ZCOS(93-01)+2cos 94 (6. 8)
A3 = 2 cos 03+ 2 cos(04-:01)+ 2 cos(‘93-_ 92)

A2 = 1+ 2 cos 92+2cos(93-91)+2cos(94-92)

A1 = 2cos£’91+'2cos(92-9-1)+2cos(93-92)+2cos(94-93)

For the lower error bound to be reached it is necessary for Ap =0

for 1 < p < 7. Thus, starting with A,7 and setting A7 = A6 =A.=A,=0

5- 947

permits determination of the four unknown angles. One set of results is

0 = -m/2
0y = 2m/3
0y = -1/6
94 = T

Actually, an ambiguity arises, owing to the sign of the angles. We
have selected a typical set. It Can be readily verified that similar re-
sults are obtained by an alternative assignment of sign. For the above

set of phases, then next examine A3, ‘Az, and A,. With the above

1
phases,



A3=0
A2=2
A1=—3\f3

With A 4 through A7 equal to zero,

-2 _ 2 _ 62
69__8-1(4+27)—§—

This is very much higher than the best computer results. Therefore,
and as verified by the results of the function evaluation program, for
the optimal phase sequence the Ap's are not all zero (1< p < 8) but
have small, though non-zero values. Consequently, for N=9, the

lower error bound is approached but not reached.

6.2 Variational Approach to the Problem

Recall the basic formulation of Chapter V:

€? = f[6(n)] (5. 1)
with
6(0) = 6(N-1) = 0
The basic problem is to select a spectral phase function 6(n), having
fixed end points 6(0) and 6(N-1), which minimizes €. This is of the

general type of problem treated in calculus of variations (Ref. 33):

determine a function (or arc) between two fixed end points which
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minimizes a criterion or cost function. Thus, in our problem, we

wish to pick the 6(n) function which minimizes the cost function €2,
Therefore, assume that f(n) is the extremal curﬁe, i.e., the

curve that minimizes €. Then construct a family of 8(n) in the neigh-

borhood of 3(n):
(n) = B(n) + 8 n(n) 0<n< N-1 (6.9)

with & sufficiently small and 7(0) = n(N-1) = 0.

For a minimum to exist,

N

£[0m) + 5 n(w] > £[8n)] (6. 10)

and the differential

aq‘-s- {f[a(n) +0 n(n)]} ‘6:0 =0 (6. 11)

The mean-squared error is related to 6(n) by Egs. 4.5 and 4. 6:

_ 5 Nl o N1
€2 = = Y a? == ) K06 Kp,0) (4.5)
N? p=1 P N% p=1 (4. 6)
where
K(p, 0) = N-i-p o0+ n) - 6(n)] (2. 29)

n=0
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Substitute Eq. 6.9 into Egs. 2.29, 4.5, and 4. 6:

K(p, 6) = N-i—p efj[e“(p+n) - g’\(n)] o 8[n(p+n) - n(n)]
n=0

Ko = N e iBEen) - B o olntoen) -]
n=0

(6. 12)

Taking the differential of €2 of Eqs. 4.5 and 4.6 according to Eq. 6. 11

gives

€ N-1
dez _ d _ 2 . dK*(p, 9)
a3 W pzl [.K(p’ ) —&

K*(p, 6) 9u5gﬁf§}| =0
' -9 Jle0

From Eq. 6. 12,

dKé‘é’ ) -] N‘i‘P [n(p+n) - n(n)j o-i[6(p+n) - o(n)]
n=0
&ti%ﬁl =] N-Zl:-p [n(p+n) - n(n)] e j[6(p+n) - 6(n)]
K(p, 0)| 50 = K(p, )
K*(p’ 0)15=0 = K*(p, 6)

(6. 13)

(6. 14a)

(6. 14Db)

(6. 15a)

(6. 15b)
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N1 A A
- ) o) - ()] @700+ - S g 15
6=0 n=0 ’ ' ‘
a0 TP pan - ) e 0@ - B] g gy
B |50 n=0

Combining these into Eq. 6. 13, using Eq. 2.29, yields

2 N-1 } N-1-p e-j[g(p+ n) - ’9\(11)] N-Zl‘/-p [n(p+m) - n(m)] -

N° p=1 n=0 m=0
ej[é‘(p+m) - Bm)] _ N-lz-p eJ'[é\(p+'n) - )] |
n=0
N- 1- | . A |
Z P [n(p+ m)‘- n(m)] e'][a(p'{' m) - 9(m)] -0
m=0

This can be written more simply as

N-1 N-1-p N-1-p
Y [n(p+m) - n(n)] sin {6(p+n) - bn)
p=1 n=0 m=0

- é‘(p+ m) + @(m)} =0 (6. 16)

Since Eq. 6. 16 is zero for any 7(n) function in the neighborhood of
é\(n), a solution would result in an optimal phase function 8(n). How-
ever, because of the complexity of the equation, no "'apparent’ solu-
tion is available. The formulation in terms of the mean-squared

error cost function yields nonlinear, transcendental type equations.
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For analytical analysis purposes, therefore, a more linear type of
problem formulation is sought; some of these are explored in the rest

of this chapter.

6.3 Application of Method of Stationary Phase

The application of the principle of stationary phase for the design
of aperiodic signals of large time-bandwidth product by Key, Fowle,
and Haggarty (Refs. 12-15) was described in Section 3. 3 of Chapter III.
Here we apply and extend this approximate method to the class of band-
limited signals having periodic envelopes, which is considered in this
paper.

The first part of the procedure is similar to that employed by
Key et. al., except that we shall deal with the direct transform to the

frequency domain of the signal (time normalized) of Eq. 2.6,

z2(0) = r(u) W (6. 17)

rather than with the transform to the time domain from the frequency
domain as in Eq. 3.17. From Eq. 2. 17,
e-jG(n) 1 T

Ko [ rw e gmint gy (6. 18)
N -T

Expand the é.rgument of the exponential of the above equation in a Tay-

lor series about the point u = o where
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S pw)-m),_, =0 (6. 19)
(o) _ “
or
dg(u, )
n = —g— = ¢'(uo) (6. 20)
0

Thus, u is a function of both time u ahd frequency n. Then

$"(w) (u-u)?

¢(u)-nuk = s7i(u0)-nuo + 02! 0 ... (6.21)

When it is assumed that r(u) = r(uo) in the neighborhood of u = u,

j[#(u) - nu_] ¢"(u ) (u-u )
o-16(n) r(u ) e Yo ° T %o 5 1,10
= = o [ e du (6.22)
-7
Let
vV = u-uo
o* = j/¢"(u))
j[é(u ) - nu_]
-j6(n)  r(u)e ° 7on |
77 L T 5 f eV G (6.29)
N -(1T+u0)

If 02 is small enough (or $"'(u ) large enough) that the entire area
under the Gaussian function is contained within the limits of integration,

then
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ARLIC /_N_— ) ej[¢(u°)-nu°ﬂ/4] (6. 24)

AV FICN]

Equating moduli and the exponential arguments on both sides of

Eq. 6. 24 yields the two relations

k() = ru) =~ F o) (6.25)
and

-9(n) = ¢(uo) - nuoi'n/4 (6. 26)
From Eq. 6. 26, | |

¢(u0) = nu_ - 6(n) = 7/4

dé(u )
_ o _ dn _ df(n)
¢'(uo) ~  du = n+Uy Gy du
) o) 0
But, since
¢'(uo) = n (6. 20)
then
" dn dé(n)
o) duo du0

or
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g_g%n__) - u, (6. 27)

Differentiating Eqs. 6. 20 and 6. 27 with respect to u and n, respec-

tively, gives

- dn
) (uo) ol (6. 28a)
o ‘ o
o duw
d®o(n) _
T = (6. 28b)
n
Consequently,
2
¢n(uo) = 1/1._9(_13.). (6. 29)
dn?
Substituting Eq. 6. 29 into Eq. 6. 25 gives
d® o(n) 27
k(u ) ——~ = = (6. 30)
0" 4p2 N

By the relation 6. 27,

dé(n) d?6(n) _ 27
[{k dn } dn? - N (6.31)

Hence Eq. 6.31 is in approximate relation (under appropriate assump-

tions) between the instantaneous power envelope k(u) and the phase

distribution function 8(n). Since

k(u) = 1+ e(u) (2. 24)
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it is readily seen that, if e(u) = 0,

by two integrations of Eq. 6. 31 (neglecting constants of integratibn).

However, from the analysis and expe_riments of previous chapters, it
is known that €(u) cannot be identically zero, particularly since e(u),
k(u), and z(u) are all bandlimited functions.

However, the general form of k(u) is known from preceding
analysis. For simplicity's sake, although it is not essential, assume
that the symmetry property of Section 6. 1, Eq. 6. 1, holds. Then
N-1

Y, A_cos pu (6.32)
p=1 P

2

k(U) = 1+-N.-

Define the signal group time delay T(n):

T(n) = gg%a) (6.33)

Then, from Eqgs. 6.31 and 6. 32,

N-1
{1 ¥ 21 Ap cos [pT(n)]} d_'(Ii‘;_n_) = -2N1I (6. 34)
p_.

Equation 6. 34 can be integrated thus:

T(n) +% 2 —Fpsm [pT(n)] = -;\TT [2n - (N-1)] (6. 35)
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:lT__(l‘TN'_ll has been added.

Of course, Eq. 6.35 cannot be solved directly; further, some con-

where an arbitrary constant of integration

straint is required in order to minimize e€(u). Therefore, we will
proceed to employ Eq. 6.35 with some rather crude approximations
and under some special assumptions and conditions. The aim is to
obtain a phase distribution 6(n) which is an improved estimate of an
optimal distribution over that of the linear FM signal phase. We shall
illustrate the method with two special cases.

6.3.1 Approximate Solution for N=8. Consider an eight-com-

ponent signal. To obtain an improved estimate of 6(n), we must se-
lect some appropriate, non-zero €(u) function. For example,

consider an e(u) of

2_'N@ cos (N-1) u (6. 36)

e(u) =
This leads to a mean-squared error of 4/N?, which is twice that of
the usually unrealizable lower bound of Figs. 4.1, 5.1, and 5. 2.
(Equation 6. 36 is sort of a compromise between setting all Ap"s
(1< p < N-2) equal to zero or retaining a small, non-zero value

for each Ap.) Then, from Eq. 6. 35,

) + gy Sin{(N-1) T) - t2n- (V-] (6.37)

1Since 6(n) can be altered by some function bn+d without essentially
changing the properties of k(u), T(n) can be selected to within any
arbitrary constant without significant effect.
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Now, T(n) as a function of n (0 < n < N-1) can be determined
from Eq. 6. 37 only for specific N; 6(n) is obtained from integration of
T(n).

Now let us examine the procedure further for N=8. Equation
6. 37 becomes

7(2n-T)

3 (6.38)

T(n). + -2-\% sin [T T(n)] =

This transcendental equation can be solved for each value of n (0 < n
<. ’i‘his has been done,\ and the resulting T(n) versus n is plotted
in Fig. 6. 1. LBy graphical integration of this T(n) curve, the 6(n)
curve (right bfdinate scale) curve was obtained.

This phase sequence was then inserted into the computer pro-
grams as an initial [el(n)] distribution. An initial mean-squared
error of 0. 237 was obtained, which is larger than the corresponding
error of 0. 198 from the linear FM signal phaée. However, its initial
peak power, 1.74 was just slightly less than that for the linear FM
signal phase, 1.78. See Fig. 6.2. The error minimization program
did converge to an optimal phase sequence essentially the same as
that previously obtained,which has a peak power of 1. 44 and a mean-

squared error of 0. 0857.

6.3.2 Approximate Solution for Lower Error Bound. In solv-

ing Eq. 6.38, the second term on the left-hand side (the sine term)

contributed only a small part to the value of T(n). Consequently, if



T(n)
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Note: T(n) and 6(n) ordinates are in fractions of 7

6(n)

Fig. 6. 1. Plot of T(n) and 6(n) vs. n.
Stationary phase approximate solution for N = 8
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T(n) is not known, it can be estimated in the outset, and the final value
can then be determined in the course of the calculations. This tech-
nique can be employed to obtain (in functional form) a rough approxi-
mation of what the phase distribution should be, for any value of N, to
achieve the previously discussed lower error bound.

For this lower error bound,

A, =0 1<p< N-2

=1 = N-1
Ap )

Equation 6. 35 becomes
T(n) + ~oe—ry sin {(N-1) T(n)} = = [2n- (N-1)] (6. 39)
NZN-15 o\ _ _ N )
As a first estimate, neglect the sinusoidal term. Then

Tl(n? ~ -1%- [2n - (N-l)]

Then, a better estimate of the optimal T(n) is

Q

Z|=

T, (n) [2n- (N-1)] - Wﬁz-—ﬁ sin [(N-1) Tl(n)]

1l

Z|=

[2n- (N-1)] - T\Rﬁ sin {ﬂﬁﬁ [2n-(N-1)]} (6. 40)

Equation 6. 40 can be integrated to yield

O4(n) = —;\TT [n®-(N-1) n] + ;(Ei—l;; cos {f—(-l\%l—) [Zn-(N-l)]} (6.41)
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This equation appears to indicate how the linear FM signal phase
should be modified to obtain a lower error. However, for moderate
or large N the second term on the right of Eq. 6.41 tends to become
very small. Thus, the principal result achievable from this approxi-
mate theory is that a phase distribution close to that of the linear FM

signal appears to be a good choice.

6.4 Linear Polynomial Representation

In this section a slightly different formulation of the problem is
considered. The objective is to lay the groundwork for possible
further analytical study.

Rather than deal with the power envelope, which is a nonlinear

function of the Gn's, consider the analytic signal itself.

p N1o-igy jnu
z(u) = — Z e e (6. 42)
VN n=0
If we make the substitutions
s = eju (6. 43a)
-j0
n
a = e (6. 43b)
n
we obtain
1 N-1 n
z(s) = — a s (6. 44)
VN n=0 :
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which is a polynomial in s. Such a representation is a familiar one
and similar to those used in synthesis of networks and of linear an-
tenna arrays. However, there is an important difference. Equation
6. 44 is a polynomial with complex coefficients whose magnitudes are
all unity (except for the common factor of 1/ VN). The problem of this
paper, expressed in terms of Eq. 6. 44, is to select the coefficients

a_ so that 1z(s)| will be as close as possible to a constant value as s
traverses the unit circle in the complex s-plane. Thus, the current
problem is more closely akin to the synthesis of linear antenna arrays,
and that will be considered next.

6.4.1 Analogy to Synthesis of Linear Antenna Arrays. Study

of the synthesis of antenna arrays has been very extensive. We shall
touch upon only a portion of this effort to indicate the similarities
and dissimilarities.

6.4.1.1 Classical Array Synthesis. The earlier, classi-

cal synthesis methods dealt with a uniform, progressively phased
array (Refs. 40-42) in which the currents in corresponding elements
on either side of the center element (for N odd) are equal in magni-
tude, but the phase of the left-side element lags that of the center
element by the same amount that the phase of the right-side element
leads the center element (or vice versa). Thus, if n= 2m+1, Eq.

6. 44 can be divided by s™ without changing 1z(s)!, to give
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lz(s)! = 1 a'o smm+a,1 s_m+1+--a -1

VN

s +a
m+1 m

miy
+a S+...+a9 S (6. 45)

m+1

Consequently, the coefficients of the corresponding elements are com-
plex conjugates, so that the resulting expression for |z(s)! is actually
real and expressible as a Fourier series (Ref. 41). Then, in one
approach the desired antenna pattern can be approximated by a Fourier
series and matched to the expression obtained from Eq. 6. 46 (Ref. 41);
or, in Dolph's method (Ref. 40), the zeroes of the real polynomial

(Eq. 6.45) can be chosen according to those of the Tchebyshceff poly-
nomials to optimize the relatibnship between the beamwidth and the
sidelobe level. In any case, this work does not directly apply to our
problem, as we are constrained to non-real coefficients of unit mag-
nitude.

6.4.1.2 More Recent Antenna Array Synthesis Theory.

In later works Cheng and Ma (Refs. 43 and 44) and Ma (Refs. 45 and
46) have re-examined classical array synthesis and reformulated the
synthesis problem in terms more analogous to the problem formula-
tion of this thesis. Their formulation, which examines |z(s)!?, also
includes nonuniform progressively phased arrays (Ref. 45). |z(s)| 2
is analogous to the instantaneous power envelope k(u). Following Ma
(Refs. 45 and 46), for a nonuniform phased array, k(s) can be ex-

pressed in the following manner. From Eq. 6. 44,



/N-1 \ /N-1
k(s) = lz(s)I? = —1\%—( Y a. sn> <EO an* s-;ﬁ (6. 46)

which can be expressed as

N-1
Ks) = 1+ ), (K sP+K*sP) (6. 47)
p=1 p p
where, as usual,
N-1-p N-1-p -jb j6
_ _ * _ p+n n
Kp = K(p) = nZO a, ap+n = nzl e e (2. 29)

Equation 6. 47 is still a polynomial with complex coefficients. How-

ever, with the substitution

v=s+s1l=2cosu -2<v< 2 (6. 48)
k(s) is converted into an expression with real coefficients, namely

; Nl o , N=2 o
k(v) = 1+ m;1 A_v +Vi-v ;1 BV (6. 49)

where the irrational factor V- v? is now present. With a further sub-

stitution,

2
v=-W__ g - 3(-1—1-"-";—) (6. 50)
w2+l 1+W
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the irrational polynomial inv of Eq. 6.49 becomes a rational function
in W with real coefficients. In terms of s, the transformation of Eq.

6. 50 can be interpreted as a special bilinear tra.nsformation2

_ i(s-) _ -i(W-))
s+j "’ S W+j (6.51)

Equation 6. 50 transforms Eq. 6. 49 into a rational function QW),

Qw) = —IW) (6. 52)

where (W) is a polynomial of degree 2(N-1). Thus, the problem can
be reduced to that of dealing with a rational function of W with real
coefficients. For synthesis of arrays, null factors and sidelobe direc-
tions can be first determined in terms of W and then re-expressed in

s or v. Since there is no cdnstraint on Iaﬁl , however, our problem
cannot yet be handled directly via these transformations. Yet the
types of problem are similar, and it is hoped that the material intro-
duced in this section might provide a basis for further analysis.

6.4.2 Circuit Synthesis Ana.logymLocatiori of the Zeroes of

the Polynomial. There is a certain analogy, though perhaps looser,

between network circuit synthesis problems and the polynomial repre-

sentation of Eq. 6.44. With 0 = 0, Eqgs. 6.44 and 6. 43b can

0~ ON-1
be written as

2Ma (Refs. 45 and 46) describes these mappings in greater detail.



_je- _
z(s)=—1- 1+e S+ e 262, . 4e stN2+

sN-1} (6. 53)
VN

This is a polynomial of degree N-1, and therefore has N-1 zeroes.

1
z(s) = ?E (s-s,) (s-sg) ... (s-8y_9) (8= 8y ¢
1 N-1
= — I (s-8,) (6. 54)
VN i=1 !

From the theory of equations, certain relations exist between the sums
and products of the zeroes and the coefficients. Usually, the two most

useful ones are

N-1

Y, s, = -e N-2 (6. 55a)
. i

i=0

N-1

mos, - -1 (6. 55b)
i=1

Since we are interested in the behavior of |z(s)| on the unit circle, it
is desirable to avoid zeroes on the unit circle. Such zeroes cause
nulls in k(s), which do not aid in minimizing its departures from a
constant value of unity. Of course, if desirable behavior of 1z(s)| on
the unit circle is to be produced, not all the zeroes can be real or
complex conjugate pairs.

To examine |z(s)!| further, write
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2(s) = r(s) &?® (6. 56)

and
log z(s) = log r(s) + j ¢(s) (6.57)
Now, one can consider how log |z(s)! behaves on the unit circle

log 1z(s)| = log r(s) = - lzlog N + Nill log Is-s,! (6. 58)
i=

From Eq. 6.58, it can be shown that a zero located at 1/ Si*’ the image
point of S produces the same relative variation of log |z(s)| on the
unit circle; the actual value of log |z(s)! differs only by a constant.
Thus, this relation between a zero and an image point zero should be
noted. Although no additional relations or constraints are now avail-
able, the above formulation may provide a basis for further develop-

ment.



CHAPTER VII

AREAS OF APPLICATION

This chapter considers some of the practical applications of the
results of this ‘st‘udy. In particular, applications to frequency synthe-
sis, frequency-division multiplexing, and aperiodic polyphase codes
are explored. The results of additional investigations of the last two
of these are given herein. A uniform arﬁplitude spectrum will be

assumed.

7.1 Frequency Synthesis

"Frequency synthesis is the generation of sinusoidal RF signals
of precisely-controlled and accurately known arbitrary frequencies. nl
The heart of a discrete frequency synthesizer is a discrete frequency
reference (DFR); The usual output of this DFR is a limited set of
harmonics (rather, equally spaced signal components) of approxima-
tely equal amplitude (Ref. 1). Because of limitations imposed by
noise and dynamic range, it is desired to maximize the total available
spectral energy in the band of interest, while keeping the peak signal
energy to a tolefa,ble or specified level. Thus, minimizing the peak
power or time envelope variations is equivalent to maximizing the

total power for a fixed peak power (or voltage) limitatidn. We wish

lButler (Ref. 1, p. . 1).
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to examine some methods of generating a discrete frequency refer-
ence signal having this desired time envelope property.

7.1.1 Modulation Methods. Perhaps the most straightforward

generation method is to use a hybrid modulation technique. As has
been demonstrated in Chapter V and elsewhere, the optimal time
waveform has both amplitude and angle modulation combined.

Recall that the actual time signal is given by

s(t) = r(t) cos [wot + o(t)] (2.1)
or
t) = - y f)..?@ _ 2. 19)
s = L cos [ (w +nw )t -6 | (

The rf signal could conceivably be generated by a single-sideband
modulation process, which is equivalent to a frequency translation of

the baseband signal

x(t) = r(t) cos o(t) (2. 6)

This would require considerable care, however, for most practical
single-sideband modulation techniques introduce considerable disper-
sive (nonlinear) phase shift. Therefore, it is probably more feasible
to modulate simultaneously, in both amplitude and angle, a single
carrier located at the center of the frequency band of interest. In

Chapter V, Section 5. 3. 3. 2, the instantaneous power envelope k(u)
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dy(u)

and the modified instantaneous frequency —gq are plotted as a func-
tion of a normalized time variable u = wlt for values of N through 9;
results for other values of N could be obtained from additional com-
puter runs. Although k(u) gives the general form of the required
amplitude modulation, the actual modulating waveform should be pro-

portional to r(t), the voltage time envelope:

r(t) = vk = [1+e(t)]
- 1

(7.1)

ojr

|
IN
IN
€|

Thus, the required amplitude modulation is given by the square root of

k(t) and will have a dc term plus a variational term. Since e(t) << 1,
o 1 1 =2
r(t) = [1+e(t)] ~ 1+*2*e(t)-§ e“(t) +... (7. 2)

by the binomial expansion. Note that the average value of e(t) is zero,
whereas the average value of €2(t) is the already determined mean-

squared error. Hence

M = 1-%?2 (7.3)

represents the dc value of the envelope and the required proportion of
carrier power. Of course, for an optimal waveform €2 is usually

quite small and r(t) is very close to unity. Likewise,

r(t L (7. )

Nac =
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is probably quite satisfactory for the amount of (sideband) modulation.
As explained in Section 5. 3. 2. 2, Y/(u) represents the amount of
normalized instantaneous frequency required relative to a carrier at

the center of the band of the signal. However, the normalization of the

time variable does affect the magnitude of Q%t(_tl , as follows:
' d d d
S 70} IERACIE S OISR < (R

Therefore, the amount of frequency modulation required is w 1:.p(u),
where w4 is the radian frequency spacing of the N equal amplitude
signal components. In the plots of —g—% vs. u, it was noted that the

maximum peak is always of the order of Nz (since normalization of

the time variable results in a normalized radian frequency variable
with unit spacing between signal components). Consequently, the
maximum frequency deviation would be %'—}- W, If phase modulation
is used, however, ¥(u) can be taken directly from the integral of %(1-92

and is not affected by the time normalization; i.e.,
d
v = [ By (7.6)

One possible difficulty in using frequency modulation directly in
generating a discrete frequency reference is that FM lacks inherent
frequency stability. However, there are techniques for generating an
angle modulation with a carrier frequency tied to a crystal-controlled

frequency standard (Black, Ref. 35; Armstrong, Ref. 36).
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7.1,2. Use of Phase Correction Network, One method suggested

for minimizing envelope variations of the DFR is the use of an all-pass
phase correction, in conjunction with a harmonic generator, as illus-
trated in Fig. 7. 1. The bandpass filter would select the desired fre-

quéncy components in the band of interest from the wider-band output

Clock All-Pass Minimum

Multiply Harmonic Bandpass .
Crystal L — : = Phase |—= Amplitude
Osc (or Divide) Generator Filter Network DFR

Fig. 7. 1. Possible method of generation of discrete frequency
reference (DFR) with minimal envelope variations.

of the harmonic generator. Possibly some spectral amplitude equali-
zation in the bandpass filter may be necessary, if the output of the
harmonic generator is not uniform. Of course, some nonlinear (in
frequency) phase shift may be introduced by the bandpass filter; how-
ever, the all-pass network can presumably correct this, as well as
adding the desired phase shift to minimize the envelope variations.

A drawback to this technique may be that the desired optimal
phase shift 6,(n) as a function of frequency is very erratic rather than
being rezisonably well-behaved, say monotonic. Hence it may be ex-
tremely difficult to design an appropriate all-pass network.

As a partial illustration, consider the optimal phase sequence
for N = 8 component signal (expressed again in fractions of 7 radi»ans)
| .0000 -.5468 .5417 ,2931 .2931 .5417 -.5468 .0000
The design of an all-pass network with this erratic phase characteris-
tic might be a formidable task. However, the situation can be improved

by considering a phase correction network to be comprised of an all- pass
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network in cascade with a delay line, as in Fig, 7.2, By choosing the

appropriate delay (or advance), a more realizable phase characteristic

All-Pass
Input — Delay |—e Network Output

Fig. 7.2. Components of a phase correction network.

can be specified. Then the delay line can be discarded. For example,

in the N = 8 case above, if we add the delay

mn(N-1) _ 7 -
N 8

which was subtracted from the initial quadratic phase function

_n® _ (N-1) n!
N N _
to set ¢ = 0 for the steepest descent method, we obtain the sequence

N-1
.0000 .3282 2.2917 2.9181 3.7931 4,917 4.705 6.125
This is probably a somewhat '"better behaved'" sequence. Also, if de-
sirable, multiples of 27 radians can be added or subtracted from each

angle, For the above, we could use the phase distribution

.0000 .3282 .2917 .9181 11,7931 2.917 2.705 4.125

Whether or not this phase function, perhaps modified by an nonlinear
phase introduced by other components in Fig. 7.1, can be success-

fully synthesized would determine the full merit of this technique.

7.2. Frequency Division Multiplexing (FDM)

In certain applications of frequency division multiplexing, op-
timal phasing of the subcarriers can considerably improve the

performance of the system. Consider the situation in which a single
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peak-power limited transmitter or repeater must handle N uniformly
spaced subcarriers of equal amplitude. If a coherent phase relation-
ship among the subcarriers can be maintained, then the maximum
average power can be obtained from the system. Unfortunately, no
practical system operates as simply as this; some form of modulation
is usually imposed upon each of the subcarriers, and this may alter
the total peak-to-average power ratio, perhaps drastically. We shall
consider further two modulation forms: a continuous-type analog mod-
ulating waveform fairly briefly, and a binary keying type of modulation
in greater detail.

7.2.1 Continuous Analog Modulation. Strictly speaking, the

results of this paper cannot be applied when a continuous modulation
is present on some or all of the subcarriers. Certainly further study
is needed for this application, and any further remarks at this point
are really educated conjecture. However, one might expect to do
better than in the case of random phasing of incoherent subcarriers,
as investigated by Anderson et al. (Ref. 17) and described briefly in
Section 3. 2. It would seem that if the subcarriers are phased for
minimum peaking in the absence of modulation, the peaking in the
presence of modullation would, on the average, be less than if the
subcarriers were incoherent or had random phase relationships.

On the average the phase relationship among the subcarriers would

be correct, and often the degree (or percentage) of modulation might
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be very low. And, as is frequently true in a system such as a two-
way voice communication system, modulation is absent a good per-
centage of the time. Thus, it would appear that an advantage can
accrue by coherent subcarrier operation.

7.2.2 Binary Keyed Modulation. The modulation here is binary

on-off, so that in the most probable situation half the channels (sub-
carriers) are "on'" and half are "off. " If all N channels are "on, "
we will assume that optimal or near optimal phasing is employed so
that the peaking is minimized. If fewer than N channels are ''on,"
say q channels, then we wish to investigate the peak value of the q
channels relative to the peak value when all N channels are 'on. "
As g becomes less than N, there are clearly two offsetting factors.
Certainly the peak power for q = N-1 could be greater than for q=N,
because the one "off'" channel could be needed to depress a peak.
But, as q becomes small, the total average signal power is reduced
and thus also is the potential peak power. Therefore, in regard to
this particular application, the average signal power is not fixed but
is equal to % % The power in the envelope r(u), as well as the dc
value of the square of the envelope k(u), is g/N (as explained in
Section 2. 2. 1). Since we will restrict consideration to phase se-
quences which have the symmetry property of Eq. 6. 1, we can

write



q. 2 N-1
k(u) = Nt N Z Ap cos p, (7.7
p=1
where
N-1-p
Ap = nzo Coin ¢ Cos [6(p+n) - 6(n)] (7.8)

Thus, in effect, we are dealing with a nonuniform amplitude spectrum
in which ch is either zero or unity.

The straightforward way of studying the effect of having N-q
channels off is to plot the instantaneous power envelope k(u) for various
values of g and N. This has been done for several values of N and will
be reported below, First, however, consider the mean-squared error
€ 2 for q "on" channels; this quantity is determined in each case and it
requires proper interpretation. This mean-squared error is still the

variational power in k(u):
A2 (7.9)

but with respect to a mean value of ¢/N. With all N channels "on, "
and optimal phasing, the peak power is given approximately, from
Eq. 4. 12, by

[Peak Power’]N ~ 1+ ZENZ (7. 10)
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For q < N channels "on, " however, the phasing is no longer optimum,
and in general the error €(u) in the interval -7 < u < 7 is no longer

approximately uniform. Therefore Eq. 4. 12 does not hold, and
4 z 2y
[ Peak Power]q<N > N (1+ \/2 €q ) (7. 11)

7.2.2.1 Four-Channel Binary FDM. For N=4 and all

channels "on, " the peak power, taken from k(u) of Fig. 5.4 and re-
plotted with an enlarged ordinate in Fig. 7.3, is 1. 53 for optimal phas-
ing. The other two plots of k(u) as a function of u in Fig. 7.3 illustrate
what occurs with the same phasing when either channel Ccq Or channel
Cq is "off" and the other three remain "on." If <, is’ "off, " and the
other three 'on, " the power envelope is the mirror image of the case
for cq "off"; i.e., kc (u) = kc3(-u). The same is true of channels c,
and Cg- When either 0c0 Oor cq = 0, the peak value is 1. 86; with either
¢, Or €y = 0, it is 2.20. Thus, the peak power increases about 44
percent or 1.6 db. Figure 7.4 shows similar results for Cqy = 0 and
for Cqg = 0 with the linear FM signal phase. With all N channels on,

the peak power is 2. 0; with Cy = 0, the peak power is 2. 11--an in-
crease of 5.5 percent or 0.23 db. Yet the peak power is less than

the 2. 20 value obtained above for all four channels optimally phased.
With Cg = 0, a smaller peak power of 1. 96 is obtained. These results

suggest that there may be yet another optimal phasing which has the

lowest peak power when only three of the four channels are "on' and
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yet does not exceed that peak power when allb four channels are '"on. "

This has not been investigated further.

When only two of the four channels are on, the situation is just

that of a two-frequency component signal, but with an envelope power

of 1/2. Since the peak power for two components is 2, and cannot be -

changed by any choice of phases, the peak power in the present case

(with q = 1/2) would be unity. And, of course, with only one channel

"on, " the peak power and average power are the same, 1/4. The

results for the N =4 channel binary FDM are summarized in Table

7.1, which also includes the results of using all-zero phase, and gives

the respective mean-squared errors.

This table indicates that for

this application the quadratic phase of the linear FM signal (Eq. 5. 2)

is less sensitive to additional peaking when not all the channels are

1" 1

on.
. Linear
Optimal 6(n) FM Phase All Zero Phase
Peak | _ Peak | Peak _

q Power 2 Power | €2 | Power 2
q=4 1. 53 .1875} 2.0 .25 4 1.75
q=3 1. 86 . 312 1.96 375 2.5 . 625
(c0 or cg = 0) || -
q=3 2.20 . 375 2. 11 375 2.5 .375
(c1 or ¢, = 0)
q=2 1.0 . 250 1.0 .250| 1.0 . 250
q=1 0. 250 0 0. 250 0 0. 250 0
Table 7. 1. Peak power and mean-squared error for four-channel

binary FDM with different phasings.
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7.2.2.2 Eight-Channel Binary FDM. A similar study was

conducted for an eight-channel binary keyed FM system, except that
only the effect on the optimal phase sequence for N=8 was investigated.
For this signal, there are a large number of combinations of "on' and
""off'"' channels; the peak power has been obtained for only a few of them.
The peak power and mean-squared error are tabulated in Table 7. 2,
and four of the corresponding instantaneous power envelopes k(u) are
plotted in Fig. 7.5, for values of ¢ > 5. The curves show marked
departure from a uniform variation about unity. With optimal phasing
for all channels "on'" (q=8), an additional peaking of about 1.5 decibels
is obtained for the combination studied. Thus, a transmitter or
repeater for eight-channel FDM would have to be capable of handling
this additional peak power or be able to tolerate short-term overloads

of this amount.

q | Channels "off" | Peak Power €?

8 none 1. 44 . 1147
7 Cg 2.06 . 2453
7 cg 1.98 . 2808
6 cg, Cx 1.99 . 1889
5 Cyr Cgs Cg 1. 89 . 2000
4 Cy» Cg, Cg, Cn 1.04 . 0750
2 any six .50 . 125
1 any seven . 125 0

Table 7.2. Peak power and mean-squared error for eight-channel
binary FDM with optimal phasing for q= 8.
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7.2.2.3 Sensitivity of a Nine-Channel System. Because of

the uniquely low error obtainable with a signal having nine frequency
components, it was deemed of interest, at least, to conduct a brief
investigation into the sensitivity of this low error (and associated low
peak power) to the removal of one freque‘ncy component. The middle
component (n=4) was eliminated (c 4= 0) for both the optimal phase
and the linear FM signal phase, with the results plotfed in Fig. 7.6

and listed in Table 7. 3.

Optimal 4(n) Linear FM Phase
q Peak Power €2 Peak Power €’
9 1.31 . 0262 1.95 . 1863
8 1.78 . 2152 2.21 L3173
(c,=0)

Table 7.3. Peak power and mean-squared error for
N=9 and q=8 and 9.
The peak power for the optimal phasing goes up by 1. 33 decibels when
one component is removed. However, this is still less than the ori-
ginal peak value with the linear FM signal phasing, which itself in-
creases only about 0. 5 db. Undoubtedly, additional data are required
to determine the ultimate increase in peak power with removal of

other components.
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7.3. Polyphase Codes

The relation between aperiodic polyphase codes and optimal
phase sequences for minimum amplitude variations has been men-
tioned in Chapters III (Section 3. 2), IV (Section 4. 1), and V (Section
5. 2. 2). In this section we shall apply the results of this thesis to the
synthesis of polypHase codes with desirable nonperiodic correlation
properties.

Polyphase coding is an extension of the use of binary codes for
modulating pulse trains at a carrier frequehcy for application in ra-
dar (e.g., pulse compression--Refs. 38 and 39) and in communica-
tion systems (e.g., synchronizing a pulse code communication
system--Ref. 20). Binary sequences of +1 and -1, corresponding
to 0° or 180° phase shift, are used as modulating waveforms for a
carrier, as shown in Fig. 7.7. The pulses can be contiguous or
adjacent and may occur in single or repeated code groups. Turin

(Ref. 37) gives some example of generation and processing.

0° 0° 180° ---

00 0© | [1800

Fig. 7.7. Binary modulation pulses for an RF carrier.
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By permitting successive pulses of the rf carrier to take on
phase values other than 0° or 1800, one is led to a consideration of
polyphase codes. Thus, the sequence of rf pulses in time might take

the form of

s(t) - cos w,t, cos (wot - 61), cos (wot- 62),, eo, COS (wot - 0N-1)

0
(7.12)
Each pulse with a single phase 9n(0 < n< N-1) is of duration 7 and
at the same carrier frequency W e The polyphase coded signal can
be decoded in a matched filter technique using a delay line (or delay
units) with taps at spacings of 7 seconds and phase shifts equal to
minus the phase of the corresponding code element (note that phases
in Eq. 7.12 are taken as negative), taken in reverse order, as shown
in Fig. 7.8. With s(t) as a single, nonrepetitive input to the matched
filter, it is readily observed that the output correlation function p(t,p)

from the summer in Fig. 7.8 is

p(t,p) = @, cos (wot-Bp) (7.13)

where o D and 8 D are the same as given by Eq. 2.29:

o e-ij = K(p) = N'Zl'p o~i[6(p +n) - 8(n)] (2. 29)

P n=0
and where p represents the number of integral shifts out of perfect

alignment or correlation, Thus, ifp =0,

p(t,0) = a o €08 (wot-B o) = N cos wot (7. 14)
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Delay Unit

Detector

s(t) ’ > ’-__ 'l> >_
TE T
)

Fig. 7. 8. Matched filter reception of a polyphase coded signal with
tapped delay line and phase shifters.

The receiver itself can perform the detection in either a coher-
ent or an incoherent manner, according to the form of detector used.
A coherent detector, as shown in Fig. 7.9, can consist of coherent

multiplication followed by integration. The output is a dc value of

N7

t,p) = t-
p(t,p ap cos (wo Bp) f — ap cos Bp = Re {K(p»
)

2cosw t
0

Fig. 7.9. Coherent detector for polyphase coded signal.



7-21

ap cos Bp having positive or negative polarity. For p = 0, o cos Bo = N,
so that the principal issue in the design of a polyphase coded signal

is to have minimal correlation side peak levels so that the detector
output will be small (< 1) when p # 0. An incoherent detector would

be simply an envelope detector, and its output would be ap = |K(p) !,

for which

IK(p) |

v
o

(7. 15)

= l
a IK(p)| > @, cos Bp

Thus, a coherent detector can, in general, yield lower correlation
side peak levels, of either positive or negative polarity, than an in-
coherent one. However, the coherent detector is frequevntly more
difficult to implement and must have excellent phase and frequency
stability. If good phase stability is lacking (in either the oscillators
or the propagation medium) a quadrature detection channel must be
employed to avoid fades.

Although results could be improved by using coherent detection,
we shall restrict further consideration to incoherent detection for

which a desirable non-periodic correlation behavior is

a = K(0) = N

and
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j< !
a = |K(p)! is or 0<p<N-1 (7. 16)
\small

Frank (Ref. 32) gives polyphase codes (based upon Heimiller's
codes (Refs. 29 and 30) for good periodic correlation properties)
having good non-periodic correlation properties for those values of N
which are perfect squares. Here we have not attempted to make each
ap small, but in minimizing the mean-squared error

‘E‘a

2 N- 1

= Y a? (4. 5)
N® p=1 P

by necessity each ap must be kept relatively small (not much greater

than unity, since we are dealing with ap?‘) in order to keep €? small.

Thus, the error minimization procedure employed herein provides a

direct method of obtaining polyphase codes for any value of N. Such

a procedure has not heretofore been available and should be one of the
important contributions of this research.

In synthesizing polyphase codes for optimal detection capability,
one criterion is the ratio of the main correlation peak to the largest
residual or side peak level. Since do = N is the main or center peak,
and since N1 is unity regardless of choice of the phase sequence
or code 6(n), the maximum obtainable center-to-side-peak level is N.

This bound is indicated by the upper dashed line on Fig. 7. 10, which
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Code Length N

Fig. 7.10. Evaluation of polyphase codes. Ratio of main correlation
peak to largest side peak for incoherent receiver.
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plots the ratio of center peak to side peak as a function of N for var-
ious codes1 investigated. In passing it can be noted that, for the all-

zero phase,

K@) = @ = N-p for 6n) = 0 (7.17)

Hence the autocorrelation function is a broad, triangular one with

center-peak-to-side-peak ratio of

KO _ N _ 1
KD - N-1~ -~ T N-1

(7.18)

The lower dashed curve on Fig. 7. 10 represents this lower bound.
Since the quantity ozp = |K(p)! is available as an output from the
function evaluation program (Section 5. 3. 2. 2), a number of polyphase
codes (for the same N values previously considered in Chapter V)
have been evaluated in terms of both their center-to-side-peak ratio
and their actual autocorrelation function. The following classes of
polyphase codes were considered:
(1) The best previously known polyphase codes. These
include the binary perfect words for N=3, 4, 5, 7,
11, and 13 and Frank's codes (Ref. 32) for N=9, 16,
25, and 49. (DeLong's codes--Ref. 31--have been
examined but offer no improvement over any of
these others.)
(2) The optimal codes (phase sequences) resulting from

the error minimization method employed in this
paper.

1The terms '"'codes' and "'phases'' are used interchangeably in this
section. Both refer to the phase sequence en.
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(3) The codes corresponding to the (quadratic) phase of
the linear FM signal. '
Figure 7;. 10 plots the ratio of center peak to side peak for the
linear FM signal phase. It can be readily shown, we might note, that
the magnitude of the autocorrelation function for this linear FM signal

phase is

Kp)| = o = O (7.19)

The other curve in Fig. 7. 10 represents the best polyphase codes now
available; it was obtained by sorting the information on optimal phase
sequences collected in Chapter V. Some of the codes for specific N
values represent previously known good codes, e.g., perfect words,
Frank's codes, etc. Of course, the curve is drawn only between val-
ues of N investigated in this paper, but a technique is available for
obtaining codes of any desired length. Figure 7.11, taken directly
from Frank's paper, represents his comparison of codes. He men-
tions other known codes, as well as his polyphase codes. No bounds
are shown in his curve.

The autocorrelation functions for codes (1), (2), and (3) above
have been plotted in Figs. 7. 12 through 7. 23 for the values of N in-
vestigated. These plots enable one to evaluate the various codes

from a different viewpoint (e.g., overall ""hash' level) from center-
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to-side-peak ratio if desired. The "optimal 6(n)' designation on
these curves corresponds to the similar one used in Chapter V; that
sequence has either the lowest mean-squared error or the lowest
peak power found.

In Fig. 7. 14, for N= 15, the autocorrelation function of one
period of a fifteen-long linear maximal sequence (as generated from
a four-stage shift register--Ref. 27) is plotted. It is seen to be ra-
ther poor, in contrast to the other codes, and this has been found to

be true in general for such sequences (Ref. 37).
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=—=-~— Linear FM Phase
———— Optimal 6(n)
------ Binary Perfect Word or Frank's Code (N=9)
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Fig. 7.12. Autocorrelation functions for polyphase codes
for 3< N< 9.
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Fig. 7.13. Autocorrelation functions for polyphase codes for N=10, 11, 12, and 13.
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Fig. 7.14. Autocorrelation functions for polyphase codes
for N= 14 and 15.
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Fig. T7.15. Autocorrelation functinn for length N = 16
polyphase codes.
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Fig. 7.16. Autocorrelation functions for length N=17
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Fig. 7.17. Autocorrelation functions for length N=18
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Fig. 7.18. Autocorrelation functions for length N=25 polyphase codes.
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Fig. 7.19. Autocorrelation functions for length N=27 polyphase codes.
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CHAPTER VIII

CONCLUSIONS AND RECOMME NDATIONS

This chapter summarizes the content and the principal results
of this dissertation, and in doing so, indicates where noteworthy
progress has been made. Some suggestions for further research are

given.

8.1 Summary and Conclusions

The central problem of the research described here has be’en vto
choose the phase spectrum of bandlimited radio frequency signal with
a prescribed power spectrum so as to minimize its peak-to-average-
power ratio. In dealing with a signal consisting of a multiplex of N |
equally spaced frequency components, it has been known that, with
incoherent phasing of the components, considerable peaking can occur,
and that, for the case in which all components happen to add in phase,
the peak power is N times the tot_al average signal power.

Before the present work, partial solutions to the problem had |
been developed along two different tacks. One approach has been fo
draw upon the theory of freque‘ncy modulated signals, which are sig-
nals having a very low peak‘ factor. In particular, for a uniform _
amplitude spectrum the quadratic spectral phase function correspond-
ing to that of the linear frequency modulated signal has been proposed.

However, since a constant-amplitude FM signal cannot, strictly speaking,
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have a finite bandwidth, the phase corresponding to that of an FM
signal is more applicable to large bandwidth signals and was the only
known previous solution for that case. For smaller bandwidth signals,
however, the linear FM signal phase provided a first-order approxi-
mate solution, and, at least, a starting point for determining more
optimal spectral phases. The other approach to the solution of the
problem has been to employ phases corresponding to, or suggested
by, those of the binary perfect words. However, the binary perfect
words exist only for a very small number of values of N.

For an analytic signal representation of the N-component wave-
form, the problem is precisely formulated in terms of the variations
in the instantaneous power envelope of the signal relative to a constant
value. In particular, an error function representing the deviations
from this constant value is specified; the specification is the crux of
the mathematical formulation and permits a definitive evaluation of
how well a given spectral phase minimizes the degree of peaking.

In addition, it is concluded that a solution to the problem is meaning-
ful only for the class of bandlimited signals having periodic envelopes.

Although not quite ideal, a mean-squared error criterion is used
to evaluate how well a particular spectral phase distribution minimizes
the departures of the envelope squared from a constant value. This
mean-squared error is equivalent to the variational power in the

envelope squared; an approximate relation, or in reality a lower
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bound, between the minimum mean-squared error and the peak-to-
average-power ratio is derived.

For a uniform amplitude spectrum, several important bounds
are established on the variation of the instantaneous power envelope
and on its corresponding mean-squared error relative to a constant
value. The upper bound, which corresponds to the greatest amount
of peaking possible, is reached by the all-zero phase. The lower
bound, although usually not achievable, does correspond to a non-
zero mean-squared error value and does provide a limit on the mini-
mum amount of peaking that could ever by achieved. A practical -
"middle' bound is also suggested.

Certain invariant transformations of the spectral phase distribu-
tion are shown not to alter the form of the instantaneous power envelope.
As a result of one of these transformations, it has been shown that the
phase of any two components of an N component signal can be speci-
fied arbitrarily. Optimal phase sequences, based on the mean-squared
- error criterion, are derived for three- and four-component signals, with
the solution for N=4 better than any previously published one by about
16 percent in peak power. |

Extensive investigations utilizing the digital computer have shown
that formulating the problem in terms of a specific error criterion
makes possible fuller evaluation of phase sequences offered by other

researchers.” Mainly, these included the phase of the linear FM signal
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and phase sequences corresponding to binary perfect words. In addi-
tion, the use of phase sequences corresponding to polyphase codes,
which have not been previously suggested for this purpose, are also
evaluated.

The formulation of the problem in terms of a mean-squared
error criterion permits implementing a computer program using the
method of steepest descent to determine optimal or near optimal spec-
tral phase distributions for any value of N. Although for a few values
previously known phase sequences have given better results in terms
of minimum peak power, this steepest-descent technique in general
proves to be a rather successful direct means of determining suitable
phase sequences. In fact, for values of N=4, 8, 9, 10, 12, and 13,
as well as for most larger values of N investigated, phase sequences
are obtained which give a lower peak power than any previously sug-
gested. A noteworthy feature of the optimal computer solutions for

a uniform amplitude spectrum is that, when 60 and 6 are held

N-1
fixed at 0, and when the initial phase distribution employed is sym-
metrical relative to the center of the signal band, symmetry is main-

tained in the final optimal phase solutions:

0,(N-1-n) = 6,(n) 0<n< N-1 (6.1)

In Chapter VI various analytical approaches to the problem are

undertaken. Although only limited results are obtained, additional
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insight into the nature of the problem is acquired. An approach using
the calculus of variations proved formidable; extension of the station-
ary phase method led to a few approximate additional theoretical
results. A linear polynomial representation of the problem appears
to have useful analogies in linear antenna array synthesis and circuit

theory.-

Three areas of application for the results of this thesis are con-
sidered in Chapter VII. In an application to discrete frequency synthe-
sis application, the desirability of having a discrete frequency refer-
ence (DFR) with minimal amplitude peaking is described, as are two -
methods of generating such a DFR. A hybrid modulation technique
employing the combination of amplitude and angle modulation is found
to be probably the most practical. The possibility of using a phase
correction network following a harmonic generator is considered.

Minimizing fhe peak envelope power can be very beneficial in
some applications of frequency division multiplexing (FDM). | The pos-
sible use of this form of signal processing with continuous analog mod-
ulation of the subcarriers is considered briefly, and binary keyed
modulation is discussed in more detail. When some of the subcarriers
(or frequency components) are absent, the peaking that can occur is
greater than when all of the subcarriers are present.

An important consequence of the steepest-descent computer-
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oriented technique used to obtain optimal phase sequences is that such
a technique is also a direct means of deriving polyphase codes having
good non-periodic correlation properties. These codes apply in both
radar and communication systems. A direct means of deriving these
codes for any length N was not heretofore available. For this appli-
cation, the results of the optimal phase sequences already determined
are interpreted in terms of their autocorrelation function properties.
Although the ultimate in optimal phase sequences may not have
been obtained in every case, the results of this research provide
useful engineering answers both for the problem of a signal having
minimum amplitude variations and for the selection of good ape-
riodic polyphase codes. Further, a direct technique of obtaining near-

optimal sequences of any length is now available.

8.2 Suggestions for Further Research

During the course of this study several areas for further study
have suggested themselves:

a) A mean-squared error criterion, although leading to reason-
ably good results, may possibly be improved upon. Ideally, for min-
imizing the amplitude variations of a multicomponent signal a Tcheby-
sheff criterion is desirable; additional analysis might make it possible
to use this criterion. In any event, use of an Lq— norm (as described
in Section 4. 1) with q considerably greater than 2 might lead to im-

proved results.
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In deriving polyphase codes, the side peak level of the correla-
tion function might be further reduced by employing a modified error

criterion in which each ap is raised to a power q greater than 2, i.e.,

.2 5 (8. 1)
N? p=1 P

Thus, values of ap greater than unity would be given even greater
weight. Very likely, existing computer programs could be modified
to implement the above suggestions.

b) Further effort may be warranted to determine the feasibility
of the generation of a multicomponent signal having minimum ampli-
tude variations by some of the methods suggested in Section 7. 1 of
Chapter VII. For a hybrid modulation technique, the availability,
suitability, and stability of modulators in the desired frequency range
would require evaluation.

c) For application in a binary keyed frequency division multi-
plexing system, other phase sequences may be sought which are less
sensitive to additional peaking as various channels are turned "on"

or "'off. "






APPENDIX A

APPLICATION OF CERTAIN PHASE SEQUENCES
TO A BASEBAND SIGNAL

Although the problem of this thesis deals with the minimization
of amplitude variations of rf signals, this appendix describes the ap-
plication of certain phase sequences to a baseband signal. This pre-
sentation is motivated by Anderson's work (Ref. 16), described in
Section 3. 1.

The baseband signal is given by1

x(u) = cos (nu + Gn) (A. 1)

2 |~
s

1

Results for different en sequences will be given with the objective of

minimizing

max |x(u) |
0< u<2r

Anderson's first suggested sequence restricts Gn to 0 or 7, so

that

1In this appendix, since we are dealing with a baseband signal, the

index on the sums will be taken from 1 to N; a zero-order component
is not sensible here.



1 N
xl(u) = — Z €  cosnu (A.2)

where the {e n} is a well-determined sequence of 1's and -1's. Since
Anderson gives plots for N=5, we shall make a comparison for that
case. The {en> of Eq. A.2 used by Anderson are those correspond-

ing to the binary perfect word (see Section 3. 2) for N=5, namely

xl(u) -4 (cos u + cos 2u + cos 3u - cos 4u + cos bu) (A.3)

V5

Figure A. 1 is a plot of V5 xl(u) as a function of u in the interval 0 <
—2-111-7— < 1.0. The max I\/5‘X1(u)l = 3.0 or max le(u)l = 1. 4.

The second phase sequence offered by Anderson for Gn inEq. A. 1
is

6 = nlogn (A.4)

This gives, for xz(u),

N

Z cos (nu + n loge n) (A.D)

Xz(u) = -
V5 n=1

This equation is plotted in Fig. A.2, in the same manner as for Eq.
A.2. The resulting curve is quite different from that of Anderson

(Fig. 1 of Ref. 16), with a max |w/°5—x2(u)l ~ 4.55 or max |xy(u)l =
2.03, which is not much below the maximum value of V5 ~ 2. 236 for

the all-zero phase. Anderson claims to have achieved a max lxz(u)l =

1.4
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Fig. A. 1. Plot of V5 xl(u) = coS u + cos 2u + cos 3u - cos 4u + cos 5u.
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with the phase sequence of Eq. A.4. To check further on Anderson's
study, we tried using base 10 logarithms in Eq. A. 4, but the maximum
amplitude was almost as great. Therefore, for N=5 the phase se-
quence of equation is not useful for the baseband signal. It may be of
more value for very large N.

A third phase tested is the quadratic phase, as used in the linear

FM signal described in Sections 3.3 and 3. 4, namely

0, = 17—(-‘-’-‘1%19—2- (A. 6)
and
N 2
x3 = 71—_ Z [nu + _ﬁ_r_l_-N__!_)__] (A.7)

The plot in Fig. A. 3 gives
max ‘x/B-XS(uH ~ 2.8 or max Ixg(u)l ~ 1.25

This is reasonably good, since a single sine wave with the same
energy would have unit amplitude.

Any number of other phase sequences could be tested, including
those sequences which are optimum for the bandpass signal case. In
fact, from the computer results of Chapter V, an optimum phase se-
quence for N=5 (Section 5. 3. 3) is the five-long "perfect word." This

is precisely the sequence suggested by Anderson (Eq. A. 2) and plotted
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in Fig. A.1. However, the baseband signal does not have the same
invariant properties with transformation in Gn as does the rf signal
(Section 4. 3). Specifically, a shift in the phase of each component by
a constant amount does, in this baseband case, alter the peak value.
Recall, from Chapter IV (Section 4. 2), that for two (bandpass) com-
ponents (N=2) no phase adjustment could alter the error or form of
the power envelope. This is not true for the baseband signal. Figure
A. 4 is a plot of the composite time waveform of two components (N=2)

for two phase-shifted versions, namely

V2 x(u)

cos u + cos 2u (A. 8)

and

V2 x(u)

cos u + sin 2u (A.9)

for which the peak values are 2.0 and 1. 761, respectively. Other
phase shifts will yield different waveshapes, although the peak value
will not be appreciably less than that obtained with Eq. A.9.

To illustrate further the differences between a baseband and a
high-frequency signal, Fig. A.5 shows a plot of a five- component base-
band signal using a phase sequence different than the five-long perfect
word but still optimal for bandpass signal. (As determined from a
computer run, it has the same mean-squared error.) The equation

plotted in Fig. A.5 is
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w/'5'x4(u) = cos u+ cos (2u + 0.297) + cos (2u + 0. 627)

+ cos (4u - 0. 117) + cos (5u - 0. 807) (A. 10)

It has
max Iw/_5'x4(u)| = 2.77 or max |x4(u)| =~ 1.24

which is at least as good as any of the other sequences presented.
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cos u + sin 2u

Fig

. A. 4. Plot of baseband signal for N=2,
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Fig. A.5. Plot of baseband signal for N= 5.
61 =0, bg = . 297, 93 = . 627, 94 ==, 117, 65 = -, 807



APPENDIX B

COMPUTER PROGRAMS

This appendix gives details, principally in the form of flow charts,

of the two main computer programs employed in this study.

B.1 Error Minimization Program

The error minimization program implements the method of
steepest descent (Section 5. 3) to determine a phase sequence which
minimizes the mean-squared error between the power envelope k(u)
and unity. The main program, in addition to setting up a table of
sines and cosines (for reason of economy), has two subroutines,
shown in Fig. B.1. The S.[N, 6(n)] subroutine permits the generation,
for a given value of N, of an initial or starting phase distribution Gl(n)
according to some functional equation. In many cases the functional
equation corresponds to that for the linear FM phase, namely

7 n[n - (N-1)]

6(n) = N

(B. 1)

A flow chart for generation of this distribution is shown in Fig. B. 4.
The other subroutine EPS. [N, c(n), 8(n)] calculates the mean-.squared
error for any specified 6(n) distribution and a given value of N and
amplitude distribution c(n). This subroutine ié called repeatedly in

the iterative process of error minimization. A flow chart of the main

B-1
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portion of this program is given in Fig. B.2. Figure B.3 is the flow
chart for the table of sine and cosine values. The flow charts in Figs.
B. 4 and B. 5 are for the S. [N, 6(n)] and the EPS, [N, c(n), 8(n)] subrou-
tines, respectively. The notation employed in the flow chart of the
main program is summarized below. The notation used in the sub-
routine flow charts is self-explanatory.

6(n) = spectral phase distribution1

c(n) = spectral amplitude distribution

€? = mean-squared error!

N = number of frequency components in the signal

M, = maximum number of iterations (steps)

Af = increment in each Gn

A€? = an error reduction criterion

& = a fractional change in A0

Y = criterion of convergence

o = increment in Gn for calculating partial derivatives

F = a constant value enabling all 6 n < GF to be kept fixed
at their initial values

NSTEP = number of iterations (or steps) accomplished

MAXINC = maximum number of times Af can be increased

1Subscripts are used to denote different or revised values of quanti-
ties at various stages in the minimization process; i.e.,
Eoz = present mean-squared error (at the i-th step)

El?‘ = new mean-squared error (at the (i+ 1)-th step).
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INC = count on number of times Ela > ?02 (see Footnote 1,

previous page)

STAR

1l

count on number of consecutive steps that le 12 -Eozl <y
AF() = index on status of A6

OOUT

"switch'' function enabling program to be terminated

after a few necessary calculations
FIX(i) = a "fix" enabling 91 to be kept fixed at its initial value

XAMP "switch' function permitting alternative methods of

establishing initial amplitude distribution

XTHETA = "switch" function permitting alternative methods of

establishing initial phase distribution

S.[N, 6(n)] = external function (subroutine) for generating initial

phase distribution according to a functional equation

EPS. [N, c(n), 8(n)] = external function (subroutine) for calculat-

ing the mean-squared error as required at any stage.

B.2 Function Evaluation Program

The function evaluation program generates data for plotting the
time functions associated with specified phase 6(n) and amplitude c(n)
distributions, as per Section 5.3.2.2. This program is organized
much like the error minimization program in that, besides the sine-
cosine table, it has a main program and two subroutines, as shown in
Fig. B.6. The main program is flow-charted in Fig. B.7. The flow
chart of the EPSQ. [N, c(n), 8(n), A, B,8 ] subroutine is given in Fig. B. 8.

This subroutine is similar to the EPS.[N, c(n), 8(n)] subroutine of Fig. B. 5,
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except that several more quantities are calculated. The
KU. [y, N, c(n), 6(n), X, XN, Y, YN] subroutine flow chart comprises

Fig. B.9.



Table of ‘ .
Sine and Cosine |g-— - le-\gar;m

Values , g
' I
|
| ;
Ib--—-- S. [N, 6(n)] EPS. [N, c(n), 8(n)]
|
| i
e e e e e e e J

Fig. B. 1. Organization of errbr minimization program.
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T = 2. EPS. [N.c(mo INCINC+1
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=.0001 A2 F=1
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=0
E (pp)#1003 ®
SN-1
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FIX(pp) = 1
e fotep) =6 (o) po—
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FIX(N-1)=1
PRINT i NSTEP =0
CHECK N, My, 7,40, ¢ b STAR=0 = NS Nl
%,A%°, F,XTHETA INC=0
00UT=0 _—
n=F
NSTEP - ECKXTHETA E oot SHIFT
LR NSTEP +1 =2
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o(n) =0, (n) +5

€5-EPS. [N, gln), 4(n]
=2 2 F1
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Fig. B.2. Main portion of error minimization program.
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=0

i=i+1

i= 6400
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6=.0011

COSINE({)
=COS. (8)

SINE(i)
=SIN. (6)

Fig. B.3. Table for sine and cosine values.




ENTRY
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n=0

n=n+1

n > N-1

9(n) =

mn[n- (N-1)]

RETURN

Fig. B.4. Set-up subroutine for linear FM signal.

S.[N, 6(n)]
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Table of .
Main
Sine and Cosine [e-m———- >
Values Program

Fig. B.6. Organization of function evaluation program.
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ERRATA

Page 2-5, line 1: Replace word ""The" by the word "This. "
Page 4-8, line 13: Should read "... (see page 4-4.)"

Page 5-19, Fig. 5.2: Abscissa values 15, 20, 30, 40, 50 should be
replaced by the values 20, 30, 40, 50, 60,respectively.

Pages 5-29 and 5-30, Figs. 5.7 and 5. 8: Delete the "u/ 7'" designation
at the right of the dashed line of ordinate value 1. 0.

Page 8-7, line 4: Equation 8.1 should read
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