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I. Introduction
Scott's theory of Information Systems [S] is intended to provide an easy

way to define partial order structures (domains) for denotational semantics.
This paper illustrates the new method by considering a simple modal logic, due
to Hennessy and Milner [HM], as an example of an information system. The models
of formulas in this logic are the rigid svnchronization trees of Milner [M]. We
characterize the domain defined by the Hennéssy-Milner information system as the

complete partial order of synchronization forests: nonempty closed sets of

synchronization trees. "Closed" means closed with respect to a natural metric
distance on synchronization trees, first defined by de Bakker and Zucker [BaZ]
and characterized by Golson and Rounds [GR].

After notational preliminaries and background results, Section III treats
the Hennessy-Milner information system. ‘The backgfound results [BR], [GR] are
used as lemmas in the characterization of the partial order. The next part
(Section IV) shows how to use metric space methods to extend certain natural
tree operations to forests. These operations become sup-continuous when so
extended, and therefore can be used to provide a denotational semantics for
concurrency which allows the full power of least-fixed point methods for
recursion (Section V).

From the results in this paper, we conclude that the Information System
approach to denotational semantics shows real promise. We began by investigating

the Hennessy-Milner information system as a way to construct complete



partial orders for synchronization trees. The result was a surprisingly natural
construction of a complete partial order which we might not have found without

the tools provided by information systems.

II. Notation and previous work

Definition 2.1. Let I be a finite alphabet. A I-tree
is a tree graph on a nonempty finite or countable set of
nodes, with arc labels from I. No orxrdering on the arcs
leaving a node is presumed, and more than one such érc
may have the same label. Nodes are unlabeled, although

leaf nodes are considered to be the one-node tree NIL.

I-trees are the rigid synchronization trees of Milner [M]. They correspond
to ‘'unfoldings' of state graphs for nondeterministic transition systems. Milner
develops an algebraic system based on these trees and their generalizations,
suitable for a semantics for communicating systems. Our purpose here is to show
a way of associating a Scott order structure (domain) to I-trees. First we need

to recall some definitions.

Notation. Suppose t is the I-tree represented by

(a., € I)

We then write t = Za.t.. The same notation will suffice for a tree with countably
i’i

many arcs from the root. For each a € I we define the binary transition relation

2. on the set TE of all I-trees by

a .
t —> u

iff t = Za.t.,, a = a, for some i, and u = t,.
i’i i i



Definition 2.2 (weak observational equivalence).

Let a series Wk (k>0) of equivalence relations on T. be given as follows:

z

t W0 u always;

tW ., ou<= (Ve t 25 &' = (3u') (u —> u' and u' W, t')]

and vice versa.

The. weak observational equivalence W on T, is given by t W u <=> (¥k>0) (t W_ u).

z k

Examples. Let I={a,b,c}

i)

Hennessy~-Milner logic (HML) first appeared in [HM] as a language for

describing I-trees (or transition systems).

Definition 2.3. HML is the least class of formulas containing the Boolean
constants tt and ff, and closed under Boolean connectives A, 'V, -1 and under

application of .the (unary) modal operators @ for each acl.

Examples. (@ tt A @ tt)
-,@ (Q tt v @ tt)

Definition 2.4. (Semantics of HML). Let P e HML. t ¢ T, satisfies § (t F )
iff one of the following inductive cases holds:

(i) P= tt <= teT,
(1i) P=va0 <=> t =P and t E 8
(iii) §= -y <=> not (t F V)

(iv) P=yve <=> t P or t ¢ 9

@ 9= & e<=> Gut2yunuro.



Examples.
a

=0 = (<1> tt/\<:> tt)
] @

a a
E 8.
b c
Definition 2.5. The modal rank r(%¥) of a formula @ € HML is defined
inductively
r(tt)=r(££)=0;
r (Bv ) =x ($a p) =max{r (P) ,x (y) };
r(19)=x (9
2D PI=14xr®).

Let HML = {J ¢ mML | x(® <k}

Definition 2.6. (Elementary equivalence)
" Define the equivalences Ek and E on TZ by

t E u<=>¥PeML() [t FP<=>uk?], and t Eu <=> (¥K) t E  U.

Finally we have the notion of logical equivalence.

Definition 2.7.8 = ¢ iff ¥t(t F9<=> t k ¥).
The proofs of the following facts can be found in [BR] and [GR]. Note:

] <e.
Lemma 2.1. For all t, u ¢ TZ' and k > 0, t Wk u <=> t Ek u.
Corollary: W = E.

Lemma 2.3. (Master formula theorem for HML.)
For each I-tree t and each k>0 there is a formula P(k,t) € HML, such that
(1) t E Pk,t)

(ii) for all u, if u ¥ P(k,t) thenu Wk t.



Lemma 2.4. (Compactness theorem for HML.)
Let "CHML. If every finite subset of M has a tree model then so does .
Let Mod(l") be the set of tree models of I; that is,
{t ]| weeM (£ =)}
The compactness theorem states ((¥ F finite<P) Mod(F)#0)implies Mod(P)#0 .
We note that 2.4 holds even for infinite EI.

Finally, we recall some facts about the "Golson metric" dw on TZ

Definition 2.8.

Let e (t,u)=max{k | t W, u} with e (t,u)=> if t W u.

€y (t ya)

The pseudo-metric distance dw(t,u) is then given by 2 , Where

-00

2 =0.

dw is actually an ultrametric on T We have

5

dw(t,v) f_max(dw(t,u), dw(u,v)).

Further, dw(t,u)=0<=> t W u, so that dw is a metric on TZ/W’

(k)

Definition 2.9. The k-section t of a tree t is defined to be the set of
nodes at distance k or less from the root, together with the relevant arcs.

The O-section is then just the one-node root.

Lemma 2.5. ¢t Wk u <=> t(k) w u(k)

(k)

Lemma 2.6. dw(t ,£) 0 as k > «,

Lemma 2.7. <TZ/W’ dw> is a compact metric space.
Recall that a compact space is one where every covering by open sets has
a finite subcovering. For a metric space it is equivalent to saying that every

infinite sequence has a convergent subsequence.



III. Information systems and Hennessy-Milner logic

First we recall the general definition of information system from Scott

[sl.

Definition 3.1. An information system is a structure <D, ?b, Con, +— >

where D is a set of ‘propositions’, ?OED is the least informative proposition,

Con is a collection of finite subsets of D (the finite consistent sets), and

 is the entailment relation, a subset of Con x D. The following axioms hold:

(1) Me Con A ASf"=> A € Con;

(ii) {%} ¢ con for all § ¢ D;

(iii) P+ 9 A e con => Y{F} e con;

(iv).F € an => [ P—§b

(v) P eConaQ@el =>"N+—9

(vi) ' 9 for all P e A and A+ 6 => [ 6.

An information system is a way of giving 'facts', expressed in D, about
abstract structures. The more 'facts' we know, the more 'well-defined' the
structure becomes. We can express these notions purely in terms of D itself

using sets of propositions.

Definition 3.2. The ideal elements defined by the information system D

are those subsets I’ of D satisfying
(1) [ is consistent: Every finite A € is a member of Con;

(ii) P is deductively closed: A & rﬂ A e Con, and A+—86 => 0 ¢ I,

An element I is total if it is maximal with respect to the inclusion

ordering on PD, and otherwise partial.

Lemma 3.1l. The ideal elements ID of an information system D form a

complete partial order under ordinary inclusion.




For our purposes, all we need to know about complete partial orders is
that every chain f'i has a supremum Ur'i. In this case the union of the Pi sets
is the obvious supremum. It can be shown that the cpo's defined by information

systemé are exactly the consistently complete, algevbraic cpo's. See [S] for

details.

HML as an information system.

HML provides a natural example of an information system describing sets

of I-trees.

Definition 3.3. The HML system is given by:

D={8eHML | (Ft)(t &= 0)};

Con={A € HML | A finite A Mod(A) # @};

Fo=tt:

Ar 8 <=> (vt) [(Wed) (t & ) => t & 8].

(Aiternatively, if A={Gl,...,6n}, GA...Aen + 8 is valid.)

We want to characterize the abstract cpo <IHML,§> in terms of I-trees.

To do this we need two simple definitions.

A set K€T, is

Definition 3.3. Let E be an equivalence relation in TE' 5

E-closed iff u € K and £t E u imples t € K.

Definition 3.4. K€ TE is metric-closed iff ti € K and dw(ti,t)+0 imply
t Wt for some t e K.
Let Pc(TZ) be the set of all nonempty W-closed, metric-closed subsets of

T (The elements of Pc(TZ) are called I-forests.)

5%°

2. < c> is i i <P (T.),2>.
Theorem 3.2 IHML, somorphic to Pc( 2),

Proof. Consider the map " + Mod (") from I to P(TZ) . We verify that

Mod is the required isomorphism.



(1) PE M <=> Mod(M") 2 Mod ().

The => direction is trivial. Consider the reverse implication. Suppose
Mod(")2Mod (™) and let 6 € . By 3.2, we need only find a finite A€ ™ such
that A 6. Suppose this is not the case: for every finite subset A of ', we
have = (A — 8). Let A’={el,...,en}= we have that AU{~ 6} has a tree model,
because -r(S,A..Aen->6) is satisfiable. So every finite subset of P'Uf8} has
a tree model, and therefore by compactness M'U{-6} has a tree model. But if
t & Mod(P'), ‘t € Mod (") by hypothesis. However, @ e ", so t ¥ 6 and t E—8,

a contradiction.

(ii) Mod(f) is metr;c.ally closed and W-closed.

Cortainly Modfl’) is W-closed kecause of 2.1. Tet dw(":.n,t) >0 whera tn e Mody™").
Suppose that t is not W-equivalent to any u in Mod(["). Then there is some 6 ¢ I"
such that t &=76. Let p be the modal rank of 6. Choose n such that dw(tn,t) <1/ZP.
Then tn 'WP t so by 2.1, tn Ep t. But tn E 6 and t F 0, a contradiction.

(iii) If X is W-closed and metrically closed, then (3" K = mod(l).

Let T = {8] (¥t e K) (£ ¥ 0)}.

It is easy to check that I" is consistent and deductively closed. Certainly
K<€ Mod (") by définition.' We assert Mod(P)gK-. To show this we let t & Mod(l")
and construct a sequence <s‘n> such that dw(sn,t)+0 and sn € K.

Fix n>0. For each s € K let ®(n,s) be the master formula € HMLn satisfied
by s(Lemma 2.3). By lemma 2.2 there are only a finite number of logically
distinct 9¥(n,s) as s ranges over K.

Let ¢ = s‘e"K ®(n,s). This is a finite disjunction, and ¥seKX, s k ‘Pn, so
¥, € U'. since t € Mod("") t E ‘Pn. By definition of <Pn, Bsne K such that
tE <5’(n,sn). The. S, aré the required sequence, since by 2.3 t Wn Sn and by 2.6

and 2.7 d(t,.Sn)->0.



Now (i) shows that the maplﬂ + Mod ([") is one-one and order-preserving, and
(ii) and (iii) show that it is onto. This completes the proof of Theorem 3.2.

As corollary, we have the following proposition.

Corollary 3.3. The maximal elements of <Pc(Tz),2>'are the (equivalence

classes of) singleton I-trees; the bottom element is the set TE itself.

It is an instructive exercise to show this corollary directly from the

definition of <I T E>.

IV. Forests and operations on forests

Definition 4.1. A I-forest is a metrically closed, W-closed subset of T:.

We. recall the notion of Ilaucdoxff distance bkatween clesed subsets of a

metric space.

Definition 4.2. Let <X,d> be a metric space, and ¥,Z closed subsets of X.
dH(Y,Z)=max{sup{d(YrZ)}, sup{d(z,¥)}}

yeY ZeZ

where d(y,2)=inf{d(y,z)}.
zeZ

Intuitively, d(Y,Z) is the maximum distance any point in Y must travel to
enter Z, or vice versa.
We would like to characterize dH when 4 is the Golson metric dw. To do

this we extend the Wk and W relations to forests in the expected way.

Definition 4.3. Let H and H' be forests.
H Wk H' <=> (¥teH) 3t'eH")t Wk t' and conversely.

HWH' <=> (¥teH) Jt'eH')t W t' and conversely.

Lemma 4.1.

HWH' <= (¥k)(H Wk H').
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Proof. (=>) is trivial. TILet H Wk H' for each k. If t £ H, then for each

k there is a t, € H' such that t W t - Thus 4 (t ,£)>0, which implies t e H'
k k w kK

because H' is a forest. Similarly H'C H, completing the proof.

Lemma 4.2. H W H'<=>H‘k) wa %) uhere n™) = {t(k)[t e 1} and t*) is

the k-section of t (Definition 2.9).
Proof. routine.

Definition 4.4. (Golson metric on forests)
1
dw(H,H') = 2_eW(H,H')
where
Ty = '
e (H,H') = maxik | v W H }

with the usual proviso 1/«= 0.
22335'4.3. dw is a metric on forests.
Proof. routine.
Theorem 4.1. dw=dH.

Proof. (d,<d ). Let j=e (H,H'), so & (HH")=1/2".

1
= vt ' =.
> ¥teH 3t' H'ed (t,t')< 33
=> inf 4 (t,H')< 1/2:l for all teH
teH W - )
=> sup 4 _(t,H')< 1/2’
teH VW -
Similarly

sup d (t',H)< 1/2:l
t'eH' W -

and the inequality holds.

Now we want deﬁw. Again let dw(H,H')=l/2J with j as above.

If j== there is nothing to show. Therefore we have j<= and H'ﬂwj+lH'.
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1
=> (BteH)(Vt'eH')dw(t,t‘)> 2j+1
or the same assertion with ﬁhe roles of H,H' reversed.
In the first case, which occurs without loss of generality, we have
@tem) (Ve'er') @ (t,t")21/27
because dw takes only discrete values. Therefore
inf @ (t,t')=d_(t,H')>1/2]

t'eH'
and so
sup d_(t,H')>1/2”
teH
and the inequality follows.

An extension theorem for compact metric spaces.

The space TZ of trees admits & number of operations saitable for Aefining
semantics for concurrency. DeBakker and Zucker, in particular, consider the
operations of "sum" - joining trees at the root;, "shuffle” - interleaving

trees nondeterministically; and "composition" - grafting one tree to terminating

nodes of another. They prove these operations to be continuous in the metric

topology of T We would like to extend these operators to forests in a manner

R
analogous to extending string-valued functions to langquages. We present a
general theorem which allows this in any compact metric space. In what follows,

X is such a compact space, and G, H, and K are closed (hence compact) nonempty

subsets.

Lemma 4.4. If H,KCX, then there is a keK such that d(K,H)=d(k,H). Also,

for any keK, there is an heH such that d(k,H)=d(k,E).

Proof. We show only the second result; the first is proved similarly.
Recall that Ay. d(x,y) is a continuous function of y for fixed X. (So also
is Ax. d(x,H).) Since d(k,H)=inf d(k,h), we can find a sequence hi € H such

heH
that d(k,hi) approaches d(k,H). Since H is compact the hi have a convergent
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subsequence hij such that hij—>h € H as j>>. By continuity of 4, we know

lim d(k,hi ) = d(k,h). But lim d(k,h;,) = lim d(k,h;) = d(k,H).

Lemma 4.5. Let <Ki> be a decreasing chain of nonempty closed subsets of

X and let ki € Ki for each i. Then there is a convergent subsequence kij—;li-

with k ¢ {'k\ Ki.

Proof. By compactness there is a kX and subsequence kij-ﬂ_c- as j¥>>®. We
need k ¢ K, for each i. It is enough to show k ¢ Kij for each j. Pick such a

j; then since kip € Kij for all p>j, we have ke Kij because Kij is closed.

Finally, we need a lemma on Hausdorff distances.

Lemma 4.6. Let Hi be a decreasing sequence of nonempty closed subsets of

X. Let H=()H.. Then d4(H.,H)~>0.
1 1 1

— Proof. We show sup {d(h,H)} - 0 as i+, from which the result follows. By

heH,
Lemma 4.4, choose hi € HJJ'_ such that sup d(h,H) = d(hiH). By 4.5 the sequence <hi>
heH;
has a convergent subsequence hij->h € H. Now let € > 0. Choose ik such that
d(hi ,h)<e. Then for any j>i. , sup d(h,H) < sup d&(h,H)
k -k -
heH hEHi
j k
= d(hile)
<

d(hik,i') < e.

Definition 4.5. TLet £:X*¥. The direct image function is the map £[ ]:PX*PY

given by f[K] = {f(k)| keK}.

Theorem 4.2. Let f be a function from a compact metric space X into a
metric space Y. The following are equivalent:

(1) f is continuous;

(ii) f[fi\ Hi]=Q f[Hi] for all decreasing sequences <Hi> of closed

nonempty subsets of X; and f[H] is closed for all closed H;
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(iii) £([-] is continuous in the Hausdorff metric.

Proof. We show (i)=>(iii)=>(ii)=>(i).
(i)=>(iii). Let € > 0. We will find a § such that
¥H,H': d(H,H')<$ => d(f[H],f[H']) < e.
(i.e. £[ 1 is uniformly continuous.) Since X is compact and (i) holds, we
know f enjoys this property already. Choose § such that
vh,h' (d(h,h')<§ => d(£(h),£(h')) < €).
Suppose d(H,H')<6. Then

sup d(h,H')<¢$
heH

=> ¥heH 4¢{h,B')1<$

=> WheH[ inf d(h,h*') < §]
h'cH'
=> YheH Jh'eH' (d(h,h') < §) by 4.4)

=> ¥heH 3h'eH' (A(£(h),£(h')) < ¢ (by unif. cont.)

=> ¥heH inf d4(f(h),£f(h")) < ¢
hleHl

sup d(£(m),E[H']) < e.

heH

Similarly

sup. d(£(h'),£[H]) < ¢
h'eH' )

and (iii) follows.

(iii) => (ii).

Let <Hi> be a decreasing seqﬁence of closed subsets of X and let H=(Z\Hi.
Then by 4.6 d(Hi,H)+O as i»~, By (iii), d(f[Hi],f[H])*O. But f[Hi] is again
a decreasing sequence of c;osed sets, so d(f[Hi],(D f[Hi])+0 by 4.6. This
proves (ii) because limits are unique.

(ii) => (i). Let d(tn,t)+0; prove using (ii) that d(f(tn),f(t))+0.

Define for k>0

_ 1
s, ={u ‘ d(t,u)ﬁ;:I}
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Then Sk are a decreasing sequence and (;)Sk={t}. By (ii) we have
f[@ s, 1 = fl{t}1 = Q £ls,1.
Again by 4.6, since f[Sk] decrease, d(f[sk], /;\f[sk])*oo
Let € > 0. Choose K such that
< €.
d(f[Sk], (k\f[sk]) €
. N .
Now since tn t, there is an NK such that ¥n Z_NK, tnaSKAand f(tn)eF[SK].

Thus for nZNK,

a(f(t ),£(t)) = a(£(t ), £0{t}])
n n

d(f(tn). (Q f;Sk]) by (ii)

IA

d(£ls. ], MY£lS]) <.

This completes the proof of Theorem 4.2. (Note: (1) => (ii) is well-known;

see [K], p. 414.)

In order to apply the results of Theorem 4.2 we present several tree
operators. These can be used to define the semantics for appropriate
combinations of processes, as in [BaZ]. We call on the lemmas of [BaZ], in
fact, to establish that certain operators are metrically continuous. Theorem

4.2 then applies to show that the extended versions are sup-continuous. We

give the versions for finite trees first.

Definition 4.7.1 (alternative choice.)
Let s and t be trees. Denote by s+t the result of joining s and t at

the root.

4.7.2 A-synchronized shuffle.
Suppose A € I. We want a tree operation which matches two trees (glues
them together) at points A and otherwise interleaves events outside A. The

appropriate definition is inductive.
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Define NIL || s = s|| NIL = s;

A
(Qa;s, IAI ijtj)

z a, (s, || t.)
a.=b.epA = T o 3
i3

+ Z ai(sillib.t.)
a.gZA A 33
i
+ Ib.(aslen.
b.¢A I A 3
J
4.7.3. Sequential Composition
We would like to model two kinds of stopped processes: one which can

continue (successful termination) and one which cannot (failed termination).
In order to do this we introduce a new sort of nullary tree besides NIL, which
we call iND. Technically speaking, we should like wW-equivalence to distinguish
these two trees, and the HML formulas to distinguish them as well. We declare
NIL and END to be-Wb-inequivalent, and we introduce elementary propositional
variables FAILED and DONE into HML, with.the definitions

t & FAILED <=> t=NIL.

t E DONE <=> t=END.
Then one can check that the lemmas of Section II still hold. The base clause
of Definition 4.7.2 should be amended to read_END‘!s = s||END = s. Also in 4.7.1
we put NIL+END = END. We proceed with the definition of teu for finite t,u.

NILot = NIL;

ENDeot

t;

(Zaisi)ot = Zai(siot).

4.7.4. Renaming
We wish to rename events so, for example, they are removed from a

communication alphabet. This is done by considering a function h:I+>I.
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Define
h (End)=End;
h(Nil)=Nil;
h(Zaiti)=Eh(ai)h(ti).
Now we extend the above definitions to infinite trees. There is no problem

with (1). For the others; we take Cauchy limits as in [BaZ].

4.8.2 s||t = lim s(k)”t(k)
ko A
where s(k) is the k-section of s (Definition 2.9).

(k)

4.8.3 sot = lim s ot

k>

4.8.4 h(t) = lim h(t™

k>

).
We need to check that the above limits exist in the metric sense.

Lemma 4.7.
Let s,s',t,t' be finite trees and M = max(d(s,s'),d(t,t')). Then
(1) d(s+t, s'+t') < M;
2) aslle, s'tien <m,
A A
(3) d(sot, s'et') < M;

and

(4) d(h(s), h(s')) < d(s,s').

Proof. deBakker and Zucker show (1) and (3). The also prove (2) when
A=@. We include a proof for arbitrary A £ I. We assume all trees are non
nullary, as these cases are all easy.

Let e(s,s') = max{k I s Wk s'}. We will show (dropping the A subscript)

ew(slit,s"lt') 3_min(ew(s,s'),ew(t,t')).
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iti
s'= Ic,s.'
i"i
t = Ib.t,
33J
t'=Id.t.'.
J3J
Then s u t = u, +u,tu, where
w, = ) a.(s, ||ty
oaspeat 3
i3
u, = z a,(s, || ®
a,fA il
i
u, = Z b.(s l' t.)
b.ga ]
J
Similar equations obtain for s' || t' = ul+u!+u!.

1 2 3

Let ew(s,s')=p and suppose (w.l.o.g.)p = min(ew(s,s'),ew(t,t')).
We prove ew(ui,ui) > p for i=1,2,3. Then by the result for +,

e (u,+u.+u +u
w( 1

: '
Stug, Uy SFL) 3_g1n{ew(ui,ui)} > p.

2
i
We proceed inductively on the maximum height of the trees s,s',t,t'. The
height zero cases are straightfoward.

ai ai
>s,, and t >t
1 ]

a
1 = >, I t;- Then s

. . .
Estimating ew(ul,ul). Let u

for some aieA. Now p=ew(s,S'). If p=0 there is nothing to show. So we may

a,
i . .
] >qt ] = -1.
assume (Ei) s H with ew(si'si) p-1 .
Since a e, and e (t,t') > p, we know @j) t' = >t' with e, (t5rt) > p-l.
Now ui = >si I[ t5 and by induction hypothesis,
e (s I tlrs; M tj) > min(e_(s; JERE ew(tj H» t:'j)) > p-1.
Similarly if
a,
] 1 [} ¥
u >s! || t! we deduce
1 i j

that there are si and t, such that
nai J
u, > s, [ £

and ew(si || t;, s || tj) > p-1.

Therefore by definition of W, ew(ul,Ui) > p-
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We need only consider ew(uz,ué) as the proof for u_,u’ is the same.

L]
3°°3
a; ay a;
Let u2 >si I' t, where ai¢A. Then as before, s >si, and s' >si
for some i, where
.S! = =l e
ew(sl, l) p-1
Now in this case ué = Zai(si ll't'), and ué = >si ll t'. Similarly if
a, A '
u!'—=—>s! || t' we have u i SN || t for some i. By I.H
2 i 2 i : e
S, : ')y > p-1.
e (s; I, s} ] £ > p-1

[} > . :
Therefore ew(uz,uz) > p, as desired.
The proof of (2) is now complete. We leave (4) as an easy exercise, and

now the lemma is finished.

Corollary. The sequences used in Definition 4.8 are convergent (to

an equivalence class in the pseudo-metric).
— Lemma 4.8. The inequalities of 4.7 hold for infinite trees.

Proof. We show only (2) as the proof works the same way for the other
cases. Consider first a special case: dw(s,s')=0. Then we must show
dw(s I[ t, s' !] t') j_dw(t,t'). (Incidentally, this shows that W is a congruence

with respect to ‘l.)

(k)ll t(k)rs'(k)ll g1 (K (k),t‘(k))

We know for each k : d(s

(k) W s'(k) for each k. BAs k»w d(t(k)

) < al(t

(k)

because s ,t! ) - d(t,t"), and the

LHS + d(s ]l t, s' || t'). Therefore the inequality holds.
We can now assume s 2W s', and t =W t'. Let € > 0. Choose k so large that

d(sk,s'(k) (k) (k)

) = d(s,s"), At ,t'"7) = a(t,t"), d(éki[‘t) < g/2, and

a(s'kll t'k, s'l‘ t') < e/2. Then by the triangle inequality

as|| &, s'l] £ <acs]] & ¥ &+ as®] e, s ] e o+ a®]] £, s T e
< g/2 + g/2 + max d(sk,s'k),d(tk,t‘k)) = g + max(d(s,s'), d(t,t"))

But & was arbitrary so the result holds.
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Corollary. The operations of +, ll, o, and h are continuous (jointly).
A

Corollary. The same operations are sup-continuous on forests and Hausdorff-
continuous, when we pass to direct images.

Unfortunately, the sequential composition operator is not quite the right
one to lift to forests. That is,

GoH = {tou | teG, ueH}

requires that the same tree u be 'grafted' wherever END occurs in t. We want
a freer choice than this, which will allow substitution of any tree from H for
END nodes in t.

We give a special definition for the operator GeH. We start with

Definition 4.9. Let G be a forest and t be a finite tree. The forest
toG is given recursively:

NILeG = {NIL};

ENDoG = G;

(Za,t,)oG = {Za,u, | u,ct,oG}.
ii i'i i7i

It is easy to check that teG is closed for each t. Now let

toG = lim t(k)o

k-0

G

for infinite t. Again we need to check that this limit exists.

Lemma 4.9. For finite t,u: ¢t Wk u => toG Wk uoG

where Wk on the right is from Definition 4.3.

Proof.

We use induction on k. By Definition 4.3 we need to check that if t wk+l u,

then for all w € toG there is a z € uoG such that w Wk+l z. Let w=)3aiwi e toG, and
a, a.
= >wi. By definition W, € tiOG where t = Zaiti. Therefore t —=
a,

1 >u, for some u. W t.. If w= Za,w, let z = Ia.z., for each
i ik i ii ii

w

>ti and since

t
Wk+l u, we have u
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such a,, where z, € u,oG. By IH, and the fact that u, W_t,, we have z, W_w..
1 i i ik i ik i

Then clearly z Wk+l w as desired. The reverse inclusion is similar.

Corollary. d(teG, ueG)<d(t,u) where the Hausdorff metric is used on the

left, and t,u are finite.

Proof. Apply Theorem 4.1 and the definitions at the beginning of this

section.

(k)

Corollary. The limit t oG exists as ko,

Definition 4.10. Let G,H ¢ PC(TZ)'
HoG = |J toG
teH

Our objective is to prove that AGH(HoG) is sup-continuous in G and in H. This
will be established via a series of independently interesting lemmas. We begin

with
Lemma 4.10. The map At.toG is metrically continuous in t.

Proof. By the triangle inequality, for any k>0,

d(teG,ucG) f_d(tOG,t(k)°G)

(K, . . (k)

+ d(t G,u 'G)

(k)

+ d(u oG,u°G)

Let £ > 0. Choose k large enough so that

(k)

(1) d(teG,t °G) < €/3

@) a®og,u®

(k)

°G) < ae™ ™) < d(tu) + €/3
(3) d(u oG, u°G} < g/3
Then d(toG,ueG) < d(t,u) + € => d(toG,ueG) < d(t,u). The result follows directly.

Now we would like to establish

Lemma 4.11. The map AG.toG is sup-continuous in G.
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We begin with 4.11 for finite t. We must prove
* =
(*) to Q Gi (—D (toGi) -
This is clear if t = end or t = nil. Also, the left hand side is clearly included
in the right. So let t = Zajtj, and let w be any tree in the right hand set.
Then w = Za.w. where for each i, w, € t.oG,, or w, e{7)t.°G,. By induction,
> J ] J J o1 Jj i3 i

J

. .o ()G, . h \G. .
w] £ tj°QG1 Thus w ¢ tof']}G:L

We would like to extend (*) to every t. This can be done by direct
calculation using the definitions, but the proof can also be given using the

theorems and lemmas of previous sections.

Lemma 4.12. For finite t, arbitrary closed G and n>0

(n) (n) (n)

(toG) = (t 77 °G)

Proof. This will be established by induction on n. First we give an
inductive definition of the n-section of a finite tree t.
Case (1) n=0,
(end)0=end; (nil)ognilg (Zaiti)q=nil.
Case (2) n>0.
n S « n_ n-1
(end) =end; (nil) =nil; (Zaiti) --Zaiti .
When n=0, the lemma is clear. Assume it for all values < n, and consider
the case n.
(endo-G)n=Gn=(endnoG)n
(nileG)*={nil}=(ni1"ec)"
n_ n
((Za,t.)°G) ={(Za,u,) | u, et, oG}
=(za,u,”? | u,et, oG}
i’i i1
={za,u,”"t | a.et™Log) by I.H.
ii i i
n-1

n

={ (Za;u,) | u, et oG}

={3a,u, | u, et Log)?
ii itti

1

3 n-1, .n
—{(Zaiti ) oG}

=((Za;t;)"eG)™ as desired.
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Now to establish 4.12 for infinite t, we state a well-known property of

metrically continuous functions.

Lemma 4.13. Let f and g be continuous functions from a metric space X to
a metric space Y. If f and g agree on a dense subset of X then f and g coincide.

As a corollary, we get
Lemma 4.14. The conclusion of 4.12 holds for infinite t.

Proof. . The map t>teG is metrically continuous. (Lemma 4.10) The map

F+F(n), where F is a closed set and F ¢ | teF} is also metrically

(n) (n)

continuous (proof: At.t is obviously m.c., so AF.F

(n)={

is both m.c. and

sup.c. by Theorem 4.2.). Composing these, we get a m.c. map t+(t°G)(n).

similarly t>(t ™ og)

is m.c., and by 4.12 these maps agree on the dense
subset of finite trees.
Now we can prove the conclusion (*) of 4.11 for arbitrary t. Let Gi be
a decreasing sequence of nonempty closed sets. We claim for each i
d(toGi,t°{;\Gi) < d(toGy,(7)toG,) .
We know that the sequence <toGi> is a;so closed and decreasing. By Lemma 4.6,

d(téGi)+0 as i»w. But we also have, by the inequality above, d(t°Gi,to(WGi)+O.

Therefore, by uniqueness of limits, to()Gi = f;)taGi.

Proof of claim. For any k>0

k k
d(teG,,teG,) < d((teG,)", (£(1G)™)
by properties of W-equivalence on forests. Let Fi=t°Gi.
k
Then d(Fik,(tof\Gi) )
k
=d(Fik,(tkoﬂGi). ) by 4.14
k k k .
=d(Fi ,((z)t °Gi) ) by 4.11 for finite trees

=d(Fik.f?\(tk°Gi)k) by sup-ctn. of XF.F(k)

1
k k
-—d(Fi ,Q(toGi) ) by 4.14.
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Now as k-, FK+F, and d is continuous, so for any €, we can choose a k such
that
d((F‘)k (()toG )k) < &(F, ) toG, ) +e.
it 'Y i - i"ti i
Thus A(F,,te ) G,;) < d(F,, () teG, ) +e.
The inequality follows since € was arbitrary. Lemma 4.11 is thus proved for

all cases. We are almost ready for

Theorem 4.3. The map AGH.H°G is sup-continuous.
Recall HeG = U toG.
teH
Theorem 4.3 will be a consequence of
Lemma 4.15. Let f be a metrically continuous function from the compact space
X to PC(Y) (with the Hausdorff metric). Define for closed H:
fHl = | fx).-
. xeH
Then f: PC(X)+PC(Y) is sup-continuous.
Proof. We leave to the reader the proof that'?[H] is closed. We then
must show
E1NH,] = Qf[ﬁil
The inclusion of the left side in the right is obvious. Let y ¢ f;)%[Hi]. Then
for each i,:HxieHi such that f(xi)=y. The X, have a convergent subsequence
Xip %, and EIE[E\Hi by Lemma 4.5. We want ysf(g). But d(f(xik), £(x))>0 as k=,
and d{y,f(x)) < A(fxg), f(x)) for each k. So d(y,f(x))=0. Thus y € £(x) since
£(x) is closed.

As a corollary:

Theorem 4.3. AGH. HoG is sup-continuous in both arguments.
The final and most trivial operation on closed sets is that of union:
AFG. (FG) .

Clearly this is a sup-continuous operation by the distributive law.
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V. Applications and conclusions.
The operators of Section IV can be used to give a denotational semantics
to a CSP-like language, with two versions of nondeterminism. The operator @

of Dijkstra will be interpreted as + on forests. When applied to singleton

i - fA
it produces ’ KX‘

This is exactly the guarded command construct from Dijkstra. On the other hand,

forests of the form

the operator f will be interpreted as union of forests. When applied to the

above two singletons, it produces

A A

which can be thought of as a 'tree'

In a sense, the "} operator is introducing a hidden choice as in {[HBR]. It

should not beidentified with Milner's use of silent transitions, however. For

example in our semantics ( ’/’ \\
| a
7 N = { a a y = a a
/N
/ ) t , u
A A | |

but for Milner

where T is the silent transition.
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Consider the CSP-like language L:
<§> := <stmtvariable>|skip|fail|a»s|s is,|s,0 szfslflszfslliszlh(s)luxs
<stmtvar> := x[y[z e

where in the construct a>*S we let a;Z range over atomic events, and in
h(s) we specify a renaming h:I*I. § stands for a statement expression with
possible free occurrences of statement variables x,v,z.. . We interpret L in
the space of maps [Env ~> PC(TZ)]' where

Env = [Stmvar - Pc(TZ)]

is the set of environments = assignments of 'processes' to free statement
variables. Let the variable p range over environments.

We unave the‘semantic map M:L+[Env+Pc(Tz)]

M [xJp = p(x) for x a stmtvar

{ena}

M [skiplp

— M [faillp = {nil}

M [a*Slp = (a*end)o[M [Slpl]
M [sl;szﬂp =M [Sl]p ° M [3210
M [slﬂ s,do = M Is;1o + M [S,]p

M s s Jo = m [s;00 UM Es,dp

MIs, || s.lp
1 T2

M [h(S)lp = hiM [slp]

M s,] }Al M [S,1p

M f[uxsS] = least fixpoint of ¢

where ¢ is the map AK.M fs]p (K/x) and p (K/x) is the same as p except x is

assigned the forest K.

Example: Consider

ux(a+x‘1 brx)
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This can be given by the familiar fixpoint formula

ﬂ?“(b

n>0

where L = 51 and
c .
95y =1
() = 2o (D) + bes™(])

Pictorially ?o(l) = l

a///\\\P

Tl(l)

I
o
o'

g,) =

L1l L

etc.
Thus the least fixpoint is the singleton set consisting of the full infinite

binary tree over {a,b}.

Example. Two more syntactic constructs can be introduced into L by
definition. Let S be a statement expression not containing a free occurrence
of the statement variable x.

Then

0
S déf UX(S,X)

S*jZ¢ Wx((s;x) v skip).

In conclusion, we have shown how the information system approach leads to

a natural cpo for the semantics of concurrency. This cpo is closely related

to the metric spaces introduced in [BaZ], and even more closely to the structures

explored in [BaBKM], where the cpo of closed languages (sets of strings) is used

as a linear time semantic structure. The work of [BK] on projective limits

gives another approach, although in this work no use is made of cpo methods.



-27-

It should be remarked that this theory is also connected closely to the
work of Courcelle [C]. The contrast here is that we work with unordered trees
and trees with infinite branching. However the metric space (Tz,d) can probably
be obtained as a quotient of the free F-magma studied in [C]. Also in ﬁhis

paper compactness plays a key role for the definition of operators on our space.

The space Pc(TZ) seems a natural candidate for further study; one interesting
problem is to relax the hypothesis of finite I and still obtain sup-continuity

properties.
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