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T R A N S F U S I O N  P R A C T I C E

 

Delayed platelet engraftment in group O patients after autologous 
progenitor cell transplantation

 

Sandra Hoffmann, Lan Zhou, Yuan Gu, Robertson Davenport, and Laura Cooling

 

BACKGROUND:

 

 Fucosylated glycans, including H-
antigen, play critical roles in hematopoietic progenitor cell 
homing, adhesion, growth, and differentiation. H-active 
antigens are strongly expressed on CD34

 

+

 

 progenitor 
cells and committed megakaryocytic progenitors and may 
mediate adhesion to marrow stromal fibroblasts. We 
examined the possible influence of donor ABO type on 
platelet (PLT) engraftment after autologous peripheral 
blood progenitor cell transplant (PBPCT).

 

STUDY DESIGN AND METHODS:

 

 A retrospective 
analysis of all patients who underwent a single 
autologous PBPCT between 1996 and 2000 were 
reviewed. Neutrophil and PLT engraftment were 
compared by patient ABO type and CD34

 

+

 

 cell dose by 
t test, chi-square test, analysis of variance, Kaplan-Meier 
probability, and log-rank test.

 

RESULTS:

 

 Engraftment data was available in 195 
patients. PLT engraftment was delayed in all patients, 
regardless of ABO type, at CD34

 

+

 

 PBPC doses of 2 

 

¥

 

 10

 

6

 

 
to 3 

 

¥

 

 10

 

6

 

 per kg (p 

 

<

 

 0.001). When examined by ABO 
type, late PLT engraftment (PLT count 

 

>

 

50 

 

¥

 

 10

 

9

 

/L) was 
significantly delayed in group O patients relative to 
all non-group O patients (32.4 days vs. 19.6 days, 
p 

 

<

 

 0.001). Approximately 50 percent of group O patients 
required more than 40 days to achieve late PLT recovery 
(p 

 

<

 

 0.005).

 

CONCLUSIONS:

 

 A group O phenotype may be 
associated with delayed PLT engraftment at lower CD34 
doses.

 

ell-surface carbohydrates, particularly those
containing fucose, play integral roles in hemato-
poietic cell adhesion, growth, and differentia-
tion.

 

1,2

 

 Lewis X (Le

 

X

 

) and sialylated Lewis X (sLe

 

X

 

;
Table 1) are two blood group–related antigens that serve
as ligands for selectins (L-, P-, and E-selectin)—a family of
vascular addressins that mediate white blood cell (WBC)
adhesion to endothelium.

 

3,4

 

 Among hematopoietic cells,
Le

 

X

 

 and sLe

 

X

 

 are expressed on CD34

 

+

 

 progenitor cells,
early lymphoid progenitors, monocytes, and granulo-
cytes, where they facilitate homing to marrow sinusoids,
lymph nodes, and sites of inflammation.

 

1,3,5

 

 Fucosylation
also plays a central role in the Notch signaling pathway,
an evolutionarily conserved system regulating cell differ-
entiation. In hematopoiesis, Notch preserves stem cell
repopulating cells,

 

6,7

 

 favoring lymphoid and dendritic cell
differentiation while inhibiting erythroid and terminal
myeloid differentiation.

 

8,9

 

 Loss and/or modification of
several unusual O-linked fucoses present on epidermal
growth factor repeats can profoundly alter Notch ligand
binding and hematopoietic differentiation.

 

10-12

 

There is increasing evidence that H- and H-active
antigens may also be developmentally important antigens
in early hematopoiesis. Recently, Cao and colleagues

 

13

 

reported that CD34

 

+

 

 progenitor cells are positive for
Type 2 chain H (H-2, CD173; Table 1) and Lewis Y (Le

 

Y

 

;
CD174), a difucosylated oligosaccharide related to Le

 

X

 

with blood group H-activity.

 

13

 

 Parallel studies have con-

C
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firmed the presence of FUT1, the 

 

a

 

1,2-fucosyltransferase
responsible for H-2 and Le

 

Y

 

 synthesis, in CD34

 

+

 

 progeni-
tors.

 

14

 

 Expression of H-2, Le

 

Y

 

, and FUT1 is relatively spe-
cific for early hematopoietic progenitors and is lost with
increasing lymphoid and myeloid differentiation.

 

13,14

 

H-antigen may also play a role in megakaryocytic dif-
ferentiation. H-antigen is commonly expressed in mega-
karyoblastic leukemia, in conjunction with CD34 and
glycoprotein IIb/IIIa (CD41), an early megakaryocyte
marker.

 

15

 

 Likewise, monoclonal antibody MG-2 (MoAb
MG-2), an antibody against early megakaryocytic pro-
genitors and megakaryoblastic leukemia, appears to re-
cognize an H-active antigen.

 

15

 

 In immortalized
megakaryoblastic cell lines, H- and MG-2 antigens are
progressively lost with increasing megakaryocytic matura-
tion and proplatelet formation.

 

15

 

 Finally, Schmitz and
coworkers

 

16

 

 have reported that megakaryocyte adhesion
to marrow stromal fibroblasts is fucose-dependent, inhib-
ited by both H-active lectins (

 

Ulex europeaus

 

 lectin-1) and
soluble H-antigen. A role for H-antigen in mediating stro-
mal cell adhesion could have important implications for
ex vivo megakaryocyte expansion as well as platelet (PLT)
recovery following chemotherapy and marrow transplan-
tation. Expansion and long-term preservation of mega-
karyocytic progenitors requires direct contact and
adherence to stromal fibroblasts and extracellular matrix
proteins (ECM).

 

17,18

 

Based on these findings, we hypothesized that ABO
type may influence the rate of PLT engraftment after che-

motherapy or autologous progenitor cell transplant. Spe-
cifically, we hypothesized that group O patients may have
accelerated PLT recovery owing to prolonged expression
of H-antigen on developing megakaryocytes. To examine
this question, we retrospectively reviewed WBC and PLT
engraftment times in patients undergoing an autologous
peripheral blood progenitor cell transplant (PBPCT).

 

MATERIALS AND METHODS

 

Patients

 

The study was confined to a retrospective analysis of all
patients who underwent autologous peripheral blood
progenitor cell (PBPC) collection at our institution
between 1996 and 2000. Inclusion criteria were an age of
more than 18 years at the time of PBPC collection, fol-
lowed by a single autologous PBPCT at our institution. Of
263 patients who underwent PBPC collection, 195 (74%)
were included for analysis (Table 2). Sixty-eight patients
were excluded because of a prior transplant or back-to-
back double transplant (n 

 

=

 

 16), transplant with PBPCs
and marrow (n 

 

=

 

 8), transplant at an outside facility
(n 

 

=

 

 2), postcollection CD34

 

+

 

 selection (n 

 

=

 

 1), no trans-
plant (n 

 

=

 

 37), and death before engraftment (n 

 

=

 

 7). All
patients were enrolled in clinical trials approved by the
human research institutional review board of the Univer-
sity of Michigan. Informed consent was obtained from all
patients before leukapheresis and treatment.

 

TABLE 1. Fucosylated glycans in hematopoiesis

 

Name CD* Structure† Expression‡ Function References
H-2 CD173 Fuc

 

a

 

1-2Gal

 

b

 

1-4GlcNAc

 

b

 

1-3R CD34+ cells, RBCs,
MKs/PLTs

H-Antigen, adhesion?,

 

≠

 

 survival?
Cao et al.,

 

13

 

 Hosoi et al.,

 

14

 

Okumura et al.,

 

15

 

 
Ichikawa et al.,

 

46,47

 

 
Groupille et al.

 

48

 

Le

 

Y

 

CD174 Fuc

 

a

 

1-2Gal

 

b

 

1-4GlcNAc

 

b

 

1-3R
                              
                         Fuc

 

a

 

1-3

CD34

 

+

 

 cells,
PMNs (MKs?)

Adhesion?, 

 

≠

 

 survival? Cao et al.,

 

13

 

 Hosoi et al.,

 

14

 

Okumura et al.,

 

15

 

Ichikawa et al.,

 

46,47

 

Groupille et al.

 

48

 

Le

 

X

 

CD15 Gal

 

b

 

1-4GlcNAc

 

b

 

1-3R
                
           Fuc

 

a

 

1-3

CD34

 

+

 

 cells, PMNs,
monocytes,
lymphoid
subsets and
progenitors

Adhesion, homing,
inflammation

Chan and Watt,

 

1

 

 
Haltiwanger,

 

2

 

Sanchez-Madrids,

 

3

 

Cooling et al.,

 

4

 

Mazo and von Adrian

 

5

 

sLe

 

X

 

SCD15 NeuAc

 

a

 

2-3Gal

 

b

 

1-4GlcNAc

 

b

 

1-3R
                                   
                               Fuc

 

a

 

1-3

CD34

 

+

 

 cells, PMNs,
monocytes,
lymphoid
subsets and
progenitors

Adhesion, homing,
inflammation

Chan and Watt,

 

1

 

Haltiwanger,

 

2

 

Gonzalez-Amaro and
Sanchez-Madrid,

 

3

 

Cooling et al.,

 

4

 

 Mazo
and von Adrian

 

5

 

Notch                                         Fuc-

 

O

 

-Ser/Thr
                     

 

Modification by Fringe

 

 

 

Ø

 

NeuAc

 

a

 

2-3Gal

 

b

 

1-4GlcNAc

 

b

 

1-3Fuc-

 

O

 

-S/T

Marrow (CD34

 

+

 

/–),
endothelium,
fibroblasts

Differentiation,
expansion, marrow
progenitor cells

Carlesso et al.,

 

6

 

 Varnum-
Finney,

 

7

 

 Allman et al.,

 

8

 

Milner et al.,

 

9

 

 Moloney
et al.,

 

10

 

 Okajima et al.,

 

11

 

 
Zhou et al.

 

12

 

* CD 

 

=

 

 cluster designation.
† Fuc 

 

=

 

 fucose; Gal 

 

=

 

 galactose; GlcNAc 

 

=

 

 

 

N

 

-acetylglucosamine; NeuAc 

 

=

 

 neuraminic acid; R 

 

=

 

 unspecified core glycan.
‡ MKs 

 

=

 

 megakaryocytes; PMNs 

 

=

 

 neutrophils.
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PBPC mobilization and collection

 

PBPCs were mobilized in all patients by a combination of
disease-oriented chemotherapy and granulocyte–colony-
stimulating factor (G–CSF; 10 

 

m

 

g per kg per day). Six
patients received escalating doses of G–CSF (12-16 

 

m

 

g/kg/
day) owing to poor PBPC mobilization and collection. One
patient failed to collect and was remobilized with a com-
bination of granulocyte-macrophage–colony-stimulating
factor (GM–CSF; 500 

 

m

 

g/day) and G–CSF (10 

 

m

 

g/kg/day).
PBPC collection was initiated when the peripheral WBC
recovery exceeded 2 

 

¥

 

 10

 

9

 

 per L after chemotherapy.
PBPCs were collected by processing two blood volumes by
standard continuous-flow leukapheresis on an apheresis
machine (COBE Spectra, COBE BCT Inc., Lakewood, CO).
Leukocytopheresis was performed daily until a minimum
final yield of 2 

 

¥

 

 10

 

6

 

 CD34+ cells per kg of body weight
were collected. Cells were volume-adjusted to a final con-
centration of less than 4 

 

¥

 

 10

 

8

 

 WBCs per mL in 10 percent
dimethyl  sulfoxide,  frozen  in  a  controlled-rate  freezer
(

 

-

 

1

 

∞

 

C/min to -90∞C), and stored in the liquid phase of
liquid nitrogen.

Product analysis

An aliquot of each leukocytopheresis collection was sub-
jected to a complete blood count with WBC differential.
Hematopoietic colony assays were not routinely per-
formed per our institution’s transplant program guide-

lines. CD34+ yields and cell viability
were determined by a whole-blood lysis
technique and flow cytometry as rec-
ommended by the International Society
of  Hematology  and  Graft  Engineer-
ing (ISHAGE).19 Samples (30 mL) were
stained with a phycoerythrin-labeled
monoclonal anti-CD34 (MoAb 581), flu-
orescein-labeled anti-CD14 (MoAb MY-
4), energy-coupled dye–labeled CD45
(MoAb J.33), and 7-aminoactinomycin-
D (Molecular Probes, Eugene, OR) for
10 minutes at room temperature. Anal-
ysis was subsequently performed on a
flow cytometer (Coulter EPICS XL-MCL,
Beckman Coulter, Miami, FL) with
ISHAGE acquisition layouts. Briefly,
mononuclear cells (MNCs) were initially
gated on CD45 fluorescence, side and
forward scatter. Nonviable cells were
excluded based on 7-aminoactinomy-
cin-D fluorescence. The percentage of
CD34+ cells was determined in the
CD45+, CD14– fraction after counting
50,000 events. To calculate the total
CD34+ cell yield, the percentage of

CD34+ cells was multiplied by the total number of MNCs
collected. All MoAbs used were purchased from Immuno-
tech (Miami, FL).

Definitions of engraftment and CD34++++ cell dose

Times for WBC and PLT engraftment were calculated from
the day of PBPC infusion (Day 0). Neutrophil or WBC
engraftment was defined as the first of three consecutive
days to achieve a sustained absolute neutrophil count of
at least 0.5 ¥ 109 WBCs per L. Early PLT engraftment was
defined as the first day to achieve a sustained PLT count
of greater than 20 ¥ 109 per L (20 ¥ 109/L) in the absence of
PLT transfusion support for at least 72 hours. Late PLT
engraftment was defined as the first day to achieve a sus-
tained, independent PLT count of greater than 50 ¥ 109 per
L in the absence of transfusion support.20,21

Because engraftment times are dependent on the
number of CD34+ cells infused,20-22 we also classified
patients as receiving a high, intermediate, and low PBPCT
dose, based on the total number of CD34+ PBPCs infused
at transplant. High dose was considered a weight-adjusted
CD34 dose of at least 5 ¥ 106 CD34+ cells per kg body
weight. Previous studies have reported that 5 ¥ 106 CD34
per kg of body weight is the threshold dose predictive for
rapid PLT engraftment.20-24 Intermediate and low doses
were arbitrarily established at a CD34+ cell dose of 3 ¥ 106

to 5 ¥ 106 CD34+ cells per kg of body weight and 2 ¥ 106 to
3 ¥ 106 CD34+ cells per kg of body weight, respectively. All

TABLE 2. Patient characteristics
Characteristic Number Percentage
All patients 195 100
Diagnosis

Hodgkin’s lymphoma 53 27.2
Non-Hodgkin’s lymphoma 64 32.8
Multiple myeloma 63 32.3
Breast cancer 13 6.7
Ewing’s sarcoma 1 0.5
Testicular cancer 1 0.5

Sex
Male 116 59.5
Female 79 40.5

Mean (± SD) age (years) 46.9 ± 15.5
(range, 19-71)

100

ABO type
Group A 85 43.6
Group O 74 38.5
Group B 24 12.3
Group AB 12 6.0

CD34 cell dose (¥106/kg of body weight)
Low (2 to <3) 76 39
Intermediate (3 to 5) 40 20.5
High (≥5) 79 40.5

Engraftment data
WBC 195 100
PLT 170 87
Early (>20 ¥ 109/L) 170 87
Late (>50 ¥ 109/L) 155 79.5
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patients analyzed received at least 2 ¥ 106 CD34+ cells per
kg of body weight in accordance with our institution’s
guidelines.

Transfusion support

Patients were transfused with irradiated, leukoreduced
red blood cells (RBCs) and whole blood–derived pooled
PLT concentrates (5 units/dose) to maintain a minimum
hemoglobin level of 8.0 g per dL and a PLT count of
greater than 10 ¥ 109 per dL according to clinical guide-
lines and underlying medical condition. Patients were
rarely transfused with single-donor apheresis PLTs (<1%
total). Transfusion support was determined by the total
number of RBCs and whole blood–derived PLT equiva-
lents transfused during their admission for PBPCT. Single-
donor apheresis PLTs, when given, were considered
equivalent to seven whole blood–derived PLT
concentrates.

Records were also reviewed in 54 patients trans-
planted at low CD34 doses for evidence of PLT refractori-
ness, based on an initial request for either single-donor
apheresis PLTs or cross-matched or HLA-matched PLTs.
No patient reviewed had a request for special PLT prod-
ucts. Two patients received a single unit of apheresis PLTs
based on available inventory.

Statistical analysis

WBC and PLT engraftment times were
analyzed and compared relative to
CD34+ cell dose and patient ABO type
and expressed as the mean ± standard
deviation except as indicated. Mean
engraftment  rates  were  compared  by
a two-tailed t test. The probability of
early and late PLT engraftment were
calculated with the method of Kaplan
and Meier25 and compared by the log-
rank test. In patients transplanted at
low CD34+ cell doses, categorical vari-
ables were assessed by a chi-square
test, a t test, and a multivariate analy-
sis of variance. A result was considered
significant at a p value of less than
0.05. Because of a limited number of
group AB and B patients, statistical
comparisons were typically limited to
group O, group A, and all non-group O
patients (groups A, B, and AB). Graph-
ics and statistical analysis were per-
formed with computer software
(Kaleidograph, Synergy Software,
Reading, PA; SPSS software, SPSS, Chi-
cago, IL).

RESULTS

Patients

A total of 195 patients, who underwent a single autologous
PBPCT, were available for analysis (Table 2). More than
90 percent of patients received transplants for an under-
lying hematologic malignancy. Overall, there was a slight
predominance in men and the group A phenotype in our
study cohort. There was a broad range in the number of
CD34+ PBPCs collected and infused (Table 2; Fig. 1). A
comparison of patients in the three CD34+ dose categories
found no significant differences by sex, ABO type, or
underlying diagnosis (data not shown).

Of our 195 patients, WBC engraftment data were
available in 100 percent of patients. Although all patients
had achieved WBC engraftment at the time of discharge,
data regarding PLT engraftment were only available in
87 percent of patients; the remaining 13 percent (n = 25)
were still PLT transfusion–dependent at discharge.
Because these latter patients were followed by their local
physicians after discharge, it was not possible to docu-
ment when early and late PLT engraftment occurred.
Despite the latter, full PLT engraftment was documented
at 100 days after transplant in most of these patients,
with 17 of 25 (68%) patients having PLT counts of greater
than 100 ¥ 109 per L. Poor engraftment (PLT count
<50 ¥ 109/L) and relapse (n = 3) were noted in 6 of 25
patients.

Fig. 1. Correlation between CD34++++ PBPC dose and engraftment times for WBC (A) and 

early (B, >20 ¥¥¥¥    109 L) and late PLT engraftment (C, >50 ¥¥¥¥    109/L). A correlation between 

the time to early and late PLT engraftment was also observed (D).
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WBC engraftment

Most patients achieved an absolute neutrophil count of
greater than 0.5 ¥ 109 per L within 10 to 11 days after infu-
sion (mean ± SD, 10.8 ± 1.2; range, 7-15; n = 195), which is
comparable to other studies.20-23 There was a mean 1- to
2-day lag in WBC engraftment at lower CD34+ cell doses,
but this difference did not reach clinical significance
(Table 3; Fig. 2). There was an exponential relationship
between CD34+ cell dose and WBC engraftment (r = 0.73;
Fig. 1A). A comparison of WBC engraftment by ABO type
found no significant differences.

PLT engraftment

The mean times necessary for early and late PLT engraft-
ment were 12.7 ± 4.3 and 17.3 ± 7.7 days, respectively. As
reported, both early and late PLT engraftment were
strongly influenced by the CD34+ cell dose.20-22 On aver-
age, transplant at low CD34+ cell doses resulted in a 4- to
9-day delay in early and late PLT recovery, respectively
(Table 3; Fig. 1). There was no correlation between the
time to WBC engraftment and either early (r = 0.36) or late
PLT engraftment (r = 0.38). A positive correlation was
observed between the time to early and late PLT recovery
(r = 0.70; Fig. 1D), particularly at low CD34+ doses
(r = 0.80; data not shown).

As noted by others,20-24 a CD34+ dose of greater than
5 ¥ 106 per kg of body weight was highly predictive of rapid
PLT recovery (Fig. 2). Early PLT engraftment was observed
in these patients by Day 20 in 97 percent of patients, with

the majority of patients engrafting between Day 10 (44%)
and Day 12 (83%). Late PLT recovery was observed by
Days 15 (76%) and 20 (92%). Rapid PLT recovery was also
observed in most patients transplanted at a CD34+ cell
dose of greater than 3 ¥ 106 per kg. At these intermediate
CD34+ cell doses, early and late PLT recovery was
observed by Day 12 (74% of patients) and Day 20 (82%),
respectively. In contrast, only 22 percent of patients trans-
planted at a CD34+ cell dose of less than 3 ¥ 106 per kg of
body weight achieved a PLT count of greater than 20 ¥ 109

per L by Day 12. Although they were excluded from our
analysis, it is noteworthy that five of six patients with
either poor PLT engraftment or relapse at Day +100 after
transplant were transplanted at low CD34+ cell doses
(2.4 ± 0.4; range, 2.1-3.0).

The effect of ABO on PLT engraftment

To examine whether ABO group can influence PLT
engraftment, we specifically examined PLT engraftment
times by patient ABO type at all three CD34+ cell doses
(Table 3; Fig. 2). There were no significant differences in
either mean engraftment times (Table 3) or the probability
of PLT engraftment (not shown), by ABO type at transplant
doses of greater than 3 ¥ 106 per kg. At low CD34+ doses,
however, there was a trend toward delayed engraftment in
group O patients. Relative to group A and B patients, early
PLT engraftment was delayed nearly 2 days, and late
engraftment, 12 to 14 days (p < 0.001). Likewise, the prob-
ability of achieving late PLT engraftment was significantly

TABLE 3. WBC and PLT engraftment by CD34++++ cell dose and ABO type

ABO type
Number of

patients
CD34 cell

dose (¥106/kg):
Engraftment in days* <3 vs. >5† vs. >3||

P value§Low (<3) Intermediate High (>5) D†§ P value†§
WBC engraftment

All patients 195 11.6 ± 1.0 10.9 ± 0.7 9.9 ± 0.9 1.7 NS NS
Non-group O 121 11.5 ± 0.9 10.9 ± 0.8 9.9 ± 1.0 1.6 NS NS
Group A 85 11.5 ± 1.0 10.9 ± 0.7 9.8 ± 0.9 1.7 NS NS
Group B 24 11.5 ± 0.8 10.7 ± 0.6 9.7 ± 1.4 1.8 NS NS
Group O 74 11.9 ± 1.1 11.0 ± 0.7 10.1 ± 0.7 1.8 NS NS

PLT engraftment (early, >20 ¥ 109/L)
All patients 132 15.2 ± 4.6 11.8 ± 1.3 10.9 ± 2.4 4.3 <0.01 <0.001
Non-group O 87 14.6 ± 4.2 11.9 ± 1.3 10.8 ± 2.1 3.8 <0.01 <0.02
Group A 67 14.5 ± 4.3 11.8 ± 1.5 10.6 ± 1.5 3.9 <0.01 <0.02
Group B 16 14.3 ± 2.5 12.5 ± 0.5 11.0 ± 4.4 3.3 <0.01 NS
Group O 45 16.0 ± 2.6 11.6 ± 1.1 11.2 ± 3.0 4.8 <0.01 <0.005

PLT engraftment (late, >50 ¥ 109/L)
All patients 103  23 ± 10.5 16.9 ± 5.6 14.1 ± 3.8 8.9 <0.001 <0.003
Non-group O 66 19.6 ± 7.9 17.1 ± 6.4 13.7 ± 3.5 5.9 <0.001 <0.02
Group A 48 18.5 ± 6.4 16.1 ± 6.5 13.7 ± 3.4 4.8 <0.001 <0.02
Group B 9 20.5 ± 2.2 13.8 ± 4.0 6.7 <0.001 NS
Group O 37 32.4 ± 13.3 16.8 ± 4.8 14.7 ± 4.2 17.7 <0.001 <0.01

* Mean ± SD.
† Comparison between CD34 dose <3 ¥ 106 per kg (low dose) and >5 ¥ 106 per kg (high dose only).
‡ Difference in days.
§ T test; NS = not significant (p > 0.05).
|| Comparison between CD34 dose <3 ¥ 106/kg and >3 ¥ 106/kg (intermediate and high dose).
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lower among group O patients at low CD34+ doses
(Fig. 3B; p < 0.001).

Analysis of patients transplanted at low CD34++++ 
doses

In an effort to identify any confounding factors or vari-
ables that could account for delayed PLT recovery, we per-
formed a detailed comparison of product and patient
characteristics for all patients transplanted at low CD34+
cell doses (Table 4). Of 54 patients reviewed, 30 percent
were group O and 52 percent were group A. Overall, there
were no significant differences in patient age, sex, primary
diagnosis, number of PBPC collections required,22 CD34+
cell dose, or final MNC yield26 infused by ABO type. To
further exclude CD34+ yield as the etiology for delayed

engraftment among group O patients,
we directly compared CD34+ dose and
PLT engraftment for all patients trans-
planted at low CD34+ doses. There was
no correlation between CD34+ yield
and early (r = 0.18) and late (r = 0.10)
PLT engraftment.

A detailed comparison of late PLT
engraftment highlighted the differ-
ences between group O and non-
group O patients. Whereas 75 percent
of non-group O patients achieved a
PLT count of greater than 50 ¥ 109 per
L by Day 20, only 13 percent of
group O patients did. In fact,
50 percent of group O patients
required more than 40 days for late
engraftment. Despite this marked
delay, there were no significant differ-
ences in either PLT or RBC transfusion
support by ABO type (Table 4). This
was not surprising given the lack of
correlation between PLT recovery and
PLT (r = 0.14) and RBC utilization
(r = 0.39) in individual patients (data
not shown).27

After analysis of the data, it was
clear that delayed recovery occurred
in a subset of group O patients. We
therefore performed a subanalysis of
all patients transplanted at low CD34+
cell doses, regardless of ABO type, who
required more than 35 days for to
achieve a PLT count of greater than
50 ¥ 109 per L. As before, there were no
significant differences in sex (57%
male), age (51 ± 13 years; range, 22-
60 years), underlying diagnosis, WBC
engraftment (11.3 ± 0.5), CD34+ cell

dose (2.27 ± 0.28), and MNC dose (6.5 ± 2.2; range, 4-9.9).
Late PLT engraftment was preceded by delays in early PLT
engraftment (20.2 days; range, 15-40 days) and was
accompanied by increased PLT (40.8 ± 17.4; range, 20-70)
and RBC (6.8 ± 2.7; range, 4-11) utilization. Increased PLT
utilization was not due to PLT refractoriness: No patient
transplanted at low CD34 doses had evidence of clinical
refractoriness. Among patients requiring more than 35
days to reach late PLT engraftment, 70 percent were
group O (p < 0.02).

PLT recovery and CD34 mobilization

Because of reports indicating that poor mobilization
increases the probability for slow and/or poor PLT recov-
ery after PBPCT,22 we performed an analysis comparing

Fig. 2. Time to early (A) and late PLT engraftment (B) in group A and group O patients at 

high (CD34 > 5 [¥¥¥¥106]) and low (CD34 <<<< 3 [¥¥¥¥106]) CD34++++ cell doses. Also shown are the 

Kaplan-Meier probabilities for early (B, C) and late PLT engraftment (E, F) by CD34++++ cell 

dose in group A (B, E) and group O (C, F) patients, respectively. Engraftment times at 

high (- - -) and low (—) CD34++++ transplant doses was compared by the log-rank test.
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the number of PBPC collections per patient relative to late
PLT engraftment at low CD34+ doses. On average, patients
requiring more than 35 days for late PLT engraftment
needed slightly more PBPC collections, with 70 percent of
patients requiring at least six PBPC collections to achieve
a CD34 cell dose of greater than 2 ¥ 106 per kg (5.5 ± 1.9;
range, 3-7). When we examined all patients transplanted
at low CD34+ doses, however, we found no correlation
between the number of PBPC collections and late PLT
engraftment (p > 0.15).

We also examined six of seven patients with poor
mobilization who required “remobilization” with GM–CSF
and G–CSF or high dose G–CSF. Although these patients
required between 8 and 10 leukapheresis procedures per
patient, there was no significant delay in either early
(range, 10-16 days) or late (range, 10-28 days) PLT engraft-
ment. Likewise, there was no correlation between ABO
type and poor mobilization in this group of patients
(group A, n = 2; group B, n = 1; group O, n = 2; group AB,
n = 1). In summary, poor mobilization is not correlated

with either delayed late PLT engraft-
ment or group O phenotype.

DISCUSSION

Advances in PBPC mobilization, col-
lection, and transplant support, par-
ticularly the use of G–CSF and other
growth factors, have markedly
decreased the morbidity and
mortality associated with PBPCT by
decreasing the period of absolute
neutropenia.22,27 As a consequence,
the vast majority of patients achieve
WBC engraftment within 2 weeks of
transplant.20-24 In contrast, many
patients still experience delays in PLT

Fig. 3. Kaplan-Meier probability for early (A) and late (B) PLT engraftment in all group A 

(···), non-group O (– · –), and group O (—) patients at low CD34 transplant doses. There 

was a significant delay in late PLT engraftment in group O patients (p < 0.001, log-rank 

test).

TABLE 4. Group O vs. group A and non-group O patients at low CD34 doses

Group O
(mean ± SD)

Group A Non-group O*
Mean ± SD P value† Mean ± SD P value†

Number of patients 18 28 36
Absolute neutrophil count > 500 (days) 11.9 ± 1.1 11.5 ± 1.0 NS 11.5 ± 0.9 NS
PLT count > 20 ¥ 109/L (days) 16.0 ± 2.6 14.5 ± 4.3 NS 14.6 ± 4.2 NS
PLT count > 50 ¥ 109/L(days)‡ 32.4 ± 13.3 18.5 ± 6.4 <0.001 19.6 ± 7.9 <0.001

Percent engrafting < 20 days§ 13 77 <0.005 73.7 <0.005
Percent engrafting > 40 days§ 50 6 <0.01 4.5 <0.005

Number of units of PLTs 30.8 ± 17.7 28 ± 16.7 NS 27.2 ± 14.0 NS
transfused (range) (5-70) (5-80) (5-80)

Number of units of RBCs 6.7 ± 3.4 5.0 ± 2.4 <0.05 5.2 ± 2.6 NS
transfused (range) (2-12) (2-12) (2-12)

CD34 dose (¥106/kg) 2.41 ± 0.31 2.36 ± 0.35 NS 2.36 ± 0.33 NS
MNCs/kg (¥108/kg) 3.63 ± 3.03 4.02 ± 3.05 NS 3.78 ± 3.38 NS
Number of PBPC procedures/ 4.3 ± 3.1 4.1 ± 2.3 NS 4.0 ± 2.4 NS

patient (range) (1-8) (1-8) (1-10)
Patient age, years  49 ± 14.5 44 ± 15 NS 46 ± 15.3 NS

(range) (22-62) (21-71) (21-71)
Sex (%)

Male 61 70 NS 66 NS
Female 39 30 NS 33 NS

Primary diagnosis (%)
Hodgkin’s lymphoma 33 41 NS 33 NS
Non-Hodgkin’s lymphoma 33 37 NS 42 NS
Multiple myeloma 33 22 NS 22 NS

* All non-group O patients (group A, B and AB).
† T test; NS = not significant (p > 0.05).
‡ Difference between group O, group A, and all non-group O also significant by multivariate analysis (p = 0.0013).
§ Chi-square test.
|| Whole blood–derived PLT concentrates (99.3% of all PLTs). Two patients each received a single unit of apheresis PLT concentrates (0.7% 

total) based on available inventory. Neither patient had evidence of clinical PLT refractoriness.
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engraftment with the attendant risks of bleeding, alloim-
munization, multiorgan failure, and increased mortality.28-30

Although many clinical factors are reportedly associated
with delays in PLT engraftment,28 the single strongest pre-
dictor is the CD34+ cell dose. Several studies have verified
a significant inverse relationship between CD34+ cell dose
and PLT engraftment kinetics, with an estimated thresh-
old minimum of at least 5 ¥ 106 CD34+ cells per kg of body
weight for rapid PLT recovery.20-24 PBPCT at low CD34+
doses, however, does not guarantee slow PLT engraftment,
suggesting the involvement of other factors.28,31

We also found a strong correlation between CD34+
cell dose and the rate of PLT recovery. Although WBC
engraftment was essentially equivalent at all CD34+ doses
of greater than 2 ¥ 106 per kg, there was a significant dose-
response relationship between CD34 dose and early and
late PLT engraftment. As reported,20-22 rapid PLT engraft-
ment was observed at 5 ¥ 106 CD34+ cells per kg with no
significant shortening at higher CD34 doses (data not
shown). Interestingly, we found nearly equivalent mean
engraftment times at intermediate CD34 doses (>3 ¥ 106).
In contrast, autologous PBPCT at CD34 doses <3 ¥ 106

CD34+ cells per kg of body weight were associated with
significant delays in PLT engraftment. Our findings are
consistent with other studies, but suggest that a threshold
yield of 3 ¥ 106 CD34+ cells per kg is sufficient for rapid
WBC and early PLT engraftment.

The relationship between CD34+ PBPC dose and PLT
engraftment kinetics is believed to reflect the dose of
committed megakaryocyte progenitors transplanted.32-35

Mobilized CD34+ PBPCs are a heterogeneous population
consisting of uncommitted pluripotent progenitor cells
and primitive lineage-committed progenitors, including
early megakaryocyte progenitors, which comprise 6 to
8 percent of all CD34+ cells (range, 1%-28%).34-36 Several
clinical investigators have shown that the dose of these
early committed megakaryocyte progenitors, as deter-
mined by CD34+ CD41+ cells, is inversely related to the
rate of PLT engraftment in vivo (r = -0.60 to 0.81).32,33,35

Optimal engraftment is observed at CD34+ CD41+ doses
of greater than 1 ¥ 105 per kg of body weight, which is
roughly equivalent to a total CD34+ PBPC dose of at least
5 ¥ 106 per kg of body weight.21,32 Interestingly, transplants
with highly purified, primitive CD34+ cells, which lack
these early megakaryocyte progenitors, are associated
with profoundly delayed PLT engraftment, decreased
marrow megakaryocytes, and altered megakaryocyto-
poiesis.37

We also examined the effect of recipient ABO type and
engraftment. As noted earlier, an H-active antigen is
strongly and developmentally expressed on progenitor
cells and immature megakaryocytes,13-15 with expression
decreasing with increasing ploidy and megakaryocyte
maturation. As a consequence, we hypothesized that
patient ABO type might influence the rate of PLT recovery

after PBPCT. Contrary to our original hypothesis, there
was a trend toward delayed engraftment at low CD34+ cell
doses in group O patients. This delay was independent of
other potential confounding factors and was specific for
CD34+ doses between 2 ¥ 106 and 3 ¥ 106 per kg of body
weight. To our knowledge, this is the first report suggesting
a relationship between PLT engraftment kinetics and ABO
type.

How ABO group could influence megakaryocyte
development and PLT recovery is unknown. Multiple
studies have shown that the regulation of human mega-
karyocytopoiesis is a complex process that occurs through
a synergistic interaction between megakaryocytic precur-
sors, marrow stromal cells, endothelial cells, and the
ECM.36,38,39 Megakaryocyte adhesion to stromal fibroblasts
and ECM proteins, such as fibronectin, promotes the sur-
vival and expansion of megakaryocytic precursors in vivo
and ex vivo.16-18,40 Interestingly, there is evidence that the
adhesion of megakaryocytes to marrow fibroblasts is
influenced by fucosylation and may, in fact, be fucose-
dependent. Schmitz and colleagues16 were able to inhibit
megakaryocyte adhesion to stromal fibroblasts with fuco-
sylated bovine serum albumin, fucose-specific lectins
(Ulex europeaus lectin-1 and Anguilla anguilla), and sol-
uble H-antigen (aFuc-1,2Galb-HAS).16 Their studies
concluded that megakaryocytes express a fucosylated,
possibly H-active ligand that acts as a counterreceptor for
a fucose-specific lectin on marrow stromal fibroblasts.

Several glycoproteins critical to megakaryocyte devel-
opment and adhesion are known to express ABO-anti-
gens, including GPIIb/IIIa (CD41), GPIba (CD42), and
PECAM (CD31).41,42 An early marker of megakaryocytic
and erythroid differentiation, GPIIb/IIIa binds the ECM
and marrow fibroblasts43 and is required for erythroid,
megakaryocyte, and pleuripotent progenitor mainte-
nance.38 GPIba and PECAM are later megakaryocytic
markers and may contribute to growth arrest and pro-
platelet formation, respectively.38,44,45 ABO antigens are
also expressed by a4b1 and a5b1 integrins, where they are
known to directly influence integrin function. In epithelial
tumors, loss of A/B antigens, with a concomitant increase
in H and LeY, is associated with increased fibronectin
binding, cell adhesion, cell motility, and resistance to apo-
ptosis.46-48 In marrow, integrins mediate CD34+ PBPCs and
megakaryocyte adhesion to ECM and stromal fibro-
blasts,40,45,49 inhibiting apoptosis,50 while promoting
fibroblast growth, megakaryocyte differentiation, and
proplatelet formation.18,39,45

Finally, ABO might influence the binding and cellular
response to required growth factors. The best known
example is the epidermal growth factor receptor, a glyco-
protein important in cell growth regulation and tumori-
genesis.51,52 On RBCs, there is a strong correlation
between ABO type and high-affinity binding.53 In epithe-
lial and PBPCs, ABH influences epidermal growth factor
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and epidermal growth factor receptor expression,54 auto-
phosphorylation, and protein kinase activity.55,56

Although it is not clear whether epidermal growth factor
receptor contributes to megakaryocytic differentiation,57

ABO antigens may be expressed on N-glycans of other
growth factors necessary for fibroblast and megakaryo-
cyte growth.58,59

Based on our findings and those of others, we hypoth-
esize that H is a developmentally regulated antigen that
may play a critical role during megakaryocytopoiesis. Spe-
cifically, fucose-mediated adhesion to marrow fibroblasts
and the ECM, possibly via H/LeY on integrins, may pro-
mote the expansion and/or maintenance of committed,
self-renewing megakaryocytic progenitors while inhibit-
ing terminal differentiation.16,17 In group O individuals,
fucose-mediated adhesion and signaling may be pro-
longed relative to group A and B patients, leading to
delayed megakaryocyte maturation and PLT recovery. This
delay may be relatively subtle and only observed at limit-
ing numbers of megakaryocyte progenitors.

In summary, we have confirmed the inverse correla-
tion between CD34+ cell dose and PLT engraftment kinet-
ics. In addition, we report that ABO type may influence
PLT engraftment at low CD34+ PBPC doses. Specifically,
there is an increased probability of delayed engraftment
among group O patients at CD34+ doses of 2 ¥ 106 to
3 ¥ 106 per kg of body weight. With the advent of ex vivo
culturing techniques, it may now be possible to delineate
the regulation and role of ABO antigen expression in
megakaryocytopoiesis. In contrast, humanized murine
PBPCT models, utilizing SCID mice transplanted with
human PBPCs,60 may not be applicable owing to intrinsic
differences in ABO and glycosyltransferase expression
between mice and humans.61

REFERENCES

1. Chan YH, Watt SM. Adhesion receptors on haematopoietic 

progenitor cells. Br J Haematol 2001;112:541-57.

2. Haltiwanger RS. Regulation of signal transduction pathways 

in development by glycosylation. Curr Opin Struct Biol 

2002;12:593-8.

3. Gonzalez-Amaro R, Sanchez-Madrid F. Cell adhesion 

molecules: selectins and integrins. Crit Rev Immunol 

1999;19:389-429.

4. Cooling L, Zhang DS, Koerner TA. Lewis X and sialyl Lewis X 

glycosphingolipids. Trends Glycoscience Glycotech 1997;9:

191-209.

5. Mazo IB, von Adrian UH. Adhesion and homing of blood-

borne cells in bone marrow microvessels. J Leukocyte Biol 

1999;66:25-32.

6. Carlesso N, Aster JC, Sklar J, Scadden DT. Notch1-induced 

delay of human hematopoietic progenitor cell differentia-

tion is associated with altered cell cycle kinetics. Blood 1999;

93:838-48.

7. Varnum-Finney B, Xu L, Brashem-Stein C, et al. Pluripotent, 

cytokine-dependent, hematopoietic stem cells are 

immortalized by constitutive Notch1 signaling. Nat Med 

2000;6:1278-81.

8. Allman D, Aster JC, Pear WS. Notch signaling in 

hematopoiesis and early lymphocyte development. 

Immunol Rev 2002;187:75-86.

9. Milner LA, Bigas A, Kopan R, et al. Inhibition of granulocytic 

differentiation by mNotch1. Proc Natl Acad Sci U S A 

1996;93:13014-9.

10. Moloney DJ, Panin VM, Johnston SH, et al. Fringe is a 

glycosyltransferase that modifies Notch. Nature 2000;

406:369-75.

11. Okajima T, Xu A, Irvine KD. Modulation of notch-ligand 

binding by protein O-fucosyltransferase 1 and fringe. J Biol 

Chem 2003;278:42340-5.

12. Zhou L, Myers J, Petryniak B, et al. Delta-like 1-induced 

Notch activation in hematopoietic stem cell: a process 

disturbed by absence of fucosylation. Transfusion 

2003;43S:12A.

13. Cao Y, Merling A, Karsten U, Schwartz-Albiez R. The 

fucosylated histo-blood group antigens H (type 2 blood 

group O, CD173) and Lewis Y (CD174) are expressed on 

CD34+ hematopoietic progenitors but absent on mature 

lymphocytes. Glycobiology 2001;11:677-83.

14. Hosoi E, Hirose M, Hamano S. Expression levels of H-type 

a(1,2)-fucosyltransferase gene and histo-blood group ABO 

gene corresponding to hematopoietic cell differentiation. 

Transfusion 2003;43:65-71.

15. Okumura M, Morishima Y, Michinori O, et al. Expression 

of H-related antigen on human megakaryocytes and 

megakaryocytic leukemic cells. Int J Hematol 1991;54:151-8.

16. Schmitz B, Thiele J, Otto F, et al. Interactions between 

endogenous lectins and fucosylated oligosaccharides in 

megakaryocyte-dependent fibroblast growth of the normal 

bone marrow. Leukemia 1996;10:1604-14.

17. Zweegman S, Veenhof MA, Huijgens PC, Schuurhuis GJ, 

Drager AM. Regulation of megakaryocytopoiesis in an in 

vitro stroma model: preferential adhesion of megakaryo-

cytic progenitors and subsequent inhibition of maturation. 

Exp Hematol 2000;28:401-10.

18. Han P, Guo XH, Story CJ. Enhanced expansion and 

maturation of megakaryocytic progenitors by fibronectin. 

Cytotherapy 2002;4:277-83.

19. Sutherland DR, Anderson L, Keeney M, et al. The ISHAGE 

guidelines for CD34+ cell determination by flow cytometry. 

International society for hematotherapy and graft 

engineering. J Hematother 1996;5:213-26.

20. Diaz MA, Vicent MG, Garcia-Sanchez F, Vicario JL, Madero 

L. Long-term hematopoietic engraftment after autologous 

peripheral blood progenitor cell transplantation in pediatric 

patients: effect of the CD34+ cell dose. Vox Sang 2000;79:145-

50.

21. Kiss JE, Rybka WB, Winkelstein A, et al. Relationship of 

CD34+ cell dose to early and late hematopoiesis following 



HOFFMANN ET AL.

894 TRANSFUSION Volume 45, June 2005

autologous peripheral blood stem cell transplantation. Bone 

Marrow Transplant 1997;19:303-10.

22. Weaver CH, Hazelton B, Birch R, et al. An analysis of 

engraftment kinetics as a function of the CD34 content of 

peripheral blood progenitor cell collections in 692 patients 

after the administration of myeloablative chemotherapy. 

Blood 1995;86:3961-9.

23. Feugier P, Bensoussan D, Girard F, et al. Hematologic 

recovery after autologous PBPC transplantation: 

importance of the number of postthaw CD34+ cells. 

Transfusion 2003;43:878-84.

24. Beguin Y, Baudoux E, Sautois B, et al. Hematopoietic 

recovery in cancer patients after transplantation of 

autologous blood CD34+ cells or unmanipulated peripheral 

blood stem and progenitor cells. Transfusion 1998;83:199-

208.

25. Kaplan EL, Meier P. Nonparametric estimation from 

incomplete observations. J Am Stat Assoc 1958;53:457.

26. Smith RJ, Sweetenham JW. A mononuclear cell dose of 3 ¥ 

108/kg predicts early multilineage recovery in patients with 

malignant lymphoma treated with carmustine, etoposide, 

Ara-C and melphalan (BEAM) and peripheral blood 

progenitor cell transplantation. Exp Hematol 1995;23:

1581-8.

27. Menendez P, Caballero MD, Prosper F, et al. The 

composition of leukapheresis products impacts on the 

hematopoietic recovery after autologous transplantation 

independently of the mobilization regimen. Transfusion 

2002;42:1159-72.

28. Nash RA, Gooley T, Davis C, Appelbaum FR. The problem 

of thrombocytopenia after hematopoietic stem cell 

transplantation. Oncologist 1996;1:371-80.

29. Benjamin RJ, Antin JH. ABO-incompatible bone marrow 

transplantation: the transfusion of incompatible plasma 

may exacerbate regiment-related toxicity. Transfusion 

1999;39:1273-4.

30. Gordon B, Tarantolo S, Ruby E, et al. Increased platelet 

transfusion requirement is associated with multiple organ 

dysfunctions in patients undergoing hematopoietic stem 

cell transplantation. Bone Marrow Transplant 1998;22:999-

1003.

31. Robinson SN, Freedman AS, Neuberg DS, Nadler LM, Mauch 

PM. Loss of marrow reserve from dose-intensified 

chemotherapy results in impaired hematopoietic 

reconstitution after autologous transplantation: CD34(+), 

CD34(+)38(–), and week-6 CAFC assays predict poor 

engraftment. Exp Hematol 2000;28:1325-33.

32. Kanamaru S, Kawano Y, Watanabe T, et al. Low numbers of 

megakaryocyte progenitors in grafts of cord blood cells may 

result in delayed platelet recovery after cord blood cell 

transplant. Stem Cells 2000;18:190-5.

33. Feng R, Shimazaki C, Inaba T, et al. CD34+/CD41a+ cells best 

predict platelet recovery after autologous peripheral blood 

stem cell transplantation. Bone Marrow Transplant 1998;

21:1217-22.

34. Dercksen MW, Rodenhuis S, Dirkson MK, et al. Subsets 

of CD34+ cells and rapid hematopoietic recovery after 

peripheral-blood stem-cell transplantation. J Clin Oncol 

1995;13:1922-32.

35. Begemann PG, Hassan HT, Kroger N, et al. Correlation of 

time to platelet engraftment with amount of transplanted 

CD34+CD41+ cells after allogeneic bone marrow 

transplantation. J Hematother Stem Cell Res 2002;11:321-6.

36. Hoffman R, Bruno E. Human megakaryocyte progenitor 

cells. Semin Hematol 1998;35:183-91.

37. Bradford G, Williams N, Barber L, Bertoncello I. Temporal 

thrombocytopenia after engraftment with defined stem cells 

with long-term marrow reconstituting activity. Exp Hematol 

1993;21:1615-20.

38. Mossuz P, Schweitzer A, Molla A, Berthier R. Expression and 

function of receptors for extracellular matrix molecules in 

the differentiation of human megakaryocytes in vitro. Br J 

Haematol 1997;98:819-27.

39. Rafii S, Mohle R, Shapiro F, Frey BM, Moore MA. Regulation 

of hematopoiesis by microvascular endothelium. Leuk 

Lymphoma 1997;27:375-86.

40. Scjick PK, Wojenski CM, He X, et al. Integrins involved in the 

adhesion of megakaryocytes to fibronectin and fibrinogen. 

Blood 1998;92:2650-6.

41. Cooling L. ABO and human blood platelets. ADVANCE for 

Laboratory Administrators 2004;13:72-8.

42. Santoso S, Kiefel V, Mueller-Eckhardt C. Blood group A and 

B determinants are expressed on platelet glycoproteins IIa, 

IIIa, and Ib. Thromb Haemostasis 1991;65:196-201.

43. Wickenhauser C, Schmitz A, Baldus SE, et al. Selectins 

(CD62L, CD62P) and megakaryocytic glycoproteins (CD41a, 

CD42b) mediate megakaryocyte–fibroblast interactions in 

human bone marrow. Leukemia Res 2000;24:1013-21.

44. Feng S, Christodoulides N, Kroll MH. The glycoprotein 

Ib/IX complex regulates cell proliferation. Blood 1999;93:

4256-63.

45. Molla A, Mossuz P, Berthier R. Extracellular matrix receptors 

and the differentiation of human megakaryocytes in vitro. 

Leuk Lymphoma 1999;33:15-23.

46. Ichikawa D, Handa K, Withers DA, Hakomori SI. Histo-blood 

group A/B versus H status of human carcinoma cells as 

correlated with haptotactic cell motility: approach with A 

and B gene transfection. Cancer Res 1997;57:3092-6.

47. Ichikawa D, Handa K, Hakomori SI. Histo-blood group A/B 

antigen deletion/reduction vs. continuous expression in 

human tumor cells as correlated with their malignancy. Int 

J Cancer 1998;76:284-9.

48. Groupille C, Marionneau S, Bureau V, et al. a1,2-

Fucosyltransferase increases resistance to apoptosis of rat 

colon carcinoma cells. Glycobiology 2000;10:375-82.

49. Carion A, Domenech J, Herault O, et al. Decreased stroma 

adhesion capacity of CD34+ progenitor cells from mobilized 

peripheral blood is not lineage- or stage-specific and is 

associated with low b1 and b2 integrin expression. 

J Hematother Stem Cell Res 2002;11:491-500.



ABO AND PLT ENGRAFTMENT IN PBPCT

Volume 45, June 2005 TRANSFUSION 895

50. Bendall LJ, Daniel A, Kortlepel K, Gottlieb DJ. Bone marrow 

adherent layers inhibit apoptosis of acute myeloid leukemia 

cells. Exp Hematol 1994;22:1252-60.

51. Cummings RD, Soderquist AM, Carpenter G. The 

oligosaccharide moities of the epidermal growth factor 

receptor in A-431 cells: presence of complex-type N-linked 

chains that contain terminal N-acetylgalactosamine 

residues. J Biol Chem 1985;260:11944-52.

52. Le Pendu J, Fredman P, Richter ND, et al. Monoclonal 

antibody 101 that precipitates the glycoprotein receptor for 

epidermal growth factor is directed against the Y antigen, 

not the H type 1 antigen. Carbohydrate Res 1985;141:

347-9.

53. Engelemann B, Schumacher U, Haen E. Epidermal growth 

factor binding sites on human erythrocytes in donors 

with different ABO blood groups. Am J Hematol 1992;39:

239-41.

54. Kong Y, Ge CH, Li H, Zhu ZM. Effects of Lewis Y 

oligosaccharide on secretion and gene expression of EGF 

and EGF-R in mouse embryos. Acta Biochim Biophys Sinica 

2002;34:373-7.

55. Defize LH, Arndt-Jovin DJ, Jovin TM, et al. A431 cell variants 

lacking the blood group A antigen display increased high 

affinity epidermal growth factor-receptor number, protein-

tyrosine kinase activity, and receptor turnover. J Cell Biol 

1988;107:939-49.

56. Klinger M, Farhan H, Just H, et al. Antibodies directed 

against Lewis-Y antigen inhibit signaling of Lewis-Y 

modified ErbB receptors. Cancer Res 2004;64:1087-93.

57. Kimura A, Katoh O, Kuramoto A. Effects of platelet-derived 

growth factor, epidermal growth factor and transforming 

growth factor-b on the growth of human marrow fibroblasts. 

Fr J Haematol 1988;69:9-12.

58. Feige JJ, Baird A. Glycosylation of the basic fibroblast growth 

factor receptor: the contribution of carbohydrate to receptor 

function. J Biol Chem 1988;263:14023-9.

59. Bruno E, Cooper RJ, Wilson EL, Gabrilove JL, Hoffman R. 

Basic fibroblast growth factor promotes the proliferation of 

human megakaryocyte progenitor cells. Blood 1993;82:430-

5.

60. Angelopoulou MK, Rinder H, Wang C, et al. A preclinical 

xenotransplantation animal model to assess human 

hematopoietic stem cell engraftment. Transfusion 

2004;44:555-66.

61. Oriol R. Tissular expression of ABH and Lewis antigens in 

humans and animals: expected value of different animal 

models in the study of ABO-incompatible organ transplants. 

Transplant Proc 1987;19:4416-20.


